Positive Solutions for Elliptic Boundary Value Problems with a Harnack-Like Property

Toufik Moussaoui
Department of Mathematics, E.N.S., P.O. Box 92, 16050 Kouba, Algiers, Algeria email: moussaoui@ens-kouba.dz and
Radu Precup
Department of Applied Mathematics, Babeş-Bolyai University, 400084 Cluj, Romania
email: r.precup@math.ubbcluj.ro

Abstract

The aim of this paper is to present some existence results of positive solutions for elliptic equations and systems on bounded domains of $\mathbb{R}^{N}(N \geq 1)$. The main tool is Krasnosel'skii's compression-expansion fixed point theorem.

RESUMEN

El objetivo de este artículo es presentar algunos resultados de existencia de soluciones positivas para ecuaciones elipticas y sistemas sobre dominios acotados de $\mathbb{R}^{N}(N \geq 1)$. La principal herramienta es el teorema de punto fijo compresión-expansión de Krasnosel'skii.

Key words and phrases: Positive solution, elliptic boundary value problem, elliptic systems, Harnack-like inequality, Krasnosel'skii's compression-expansion fixed point theorem.

Math. Subj. Class.: 47H10, 35J65.

1 Introduction

In this paper, we are concerned with the existence of positive solutions for the elliptic boundary value problem

$$
\begin{cases}-\Delta u=\lambda f(x, u), & \text { in } \Omega \tag{1.1}\\ u=0, & \text { on } \partial \Omega\end{cases}
$$

and for the elliptic system

$$
\begin{cases}-\Delta u=\alpha g(x, u, v), & \text { in } \Omega \tag{1.2}\\ -\Delta v=\beta h(x, u, v), & \text { in } \Omega \\ u=v=0, & \text { on } \partial \Omega\end{cases}
$$

Here Ω is a bounded regular domain of $\mathbb{R}^{N}(N \geq 1), f: \bar{\Omega} \times \mathbb{R}_{+} \longrightarrow \mathbb{R}_{+}$and $g, h: \bar{\Omega} \times \mathbb{R}_{+}^{2} \longrightarrow \mathbb{R}_{+}$ are continuous functions, and λ, α and β are real parameters. By a positive solution of problem (1.1) we mean a function $u \in C^{1}(\bar{\Omega}, \mathbb{R})$ which satisfies (1.1) (with Δu in the sense of distributions), and with $u(x)>0$ for all $x \in \Omega$. A positive solution to problem (1.2) is a vector-valued function $(u, v) \in C^{1}\left(\bar{\Omega}, \mathbb{R}^{2}\right)$ satisfying (1.2), with $u, v \geq 0$ and $u+v>0$ in Ω.

The main assumption will be a global weak Harnack inequality for nonnegative superharmonic functions. By a superharmonic function in a domain $\Omega \subset \mathbb{R}^{N}$ we mean a function $u \in C^{1}(\Omega, \mathbb{R})$ with $\Delta u \leq 0$ in the sense of distributions, i.e.,

$$
\int_{\Omega} \nabla u \cdot \nabla v \geq 0 \quad \text { for every } v \in C_{0}^{\infty}(\Omega, \mathbb{R}) \quad \text { satisfying } v(x) \geq 0 \quad \text { on } \Omega
$$

We shall assume that the following global weak Harnack inequality holds:

$$
\left\{\begin{array}{l}
\text { There exists a compact set } K \subset \Omega \text { and a number } \eta>0 \tag{1.3}\\
\text { such that } u(x) \geq \eta\|u\|_{0} \text { for all } x \in K \\
\text { and every nonnegative superharmonic function } \\
u \in C^{1}(\bar{\Omega}, \mathbb{R}) \text { with } u=0 \text { on } \partial \Omega
\end{array}\right.
$$

Here by $\|u\|_{0}$ we denote the sup norm in $C(\bar{\Omega}, \mathbb{R})$, i.e., $\|u\|_{0}=\sup _{x \in \bar{\Omega}}|u(x)|$.
The connection between such type of inequalities and Krasnosel'skii's compression-expansion theorem when applied to boundary value problems was first explained in [4]. Also in [4] (see also [1]), several comments on weak Harnack type inequalities can be found.

By a cone in a Banach space E we mean a closed convex subset \mathcal{C} of E such that $\mathcal{C} \neq\{0\}$, $\lambda \mathcal{C} \subset \mathcal{C}$ for all $\lambda \in \mathbb{R}_{+}$, and $\mathcal{C} \cap(-\mathcal{C})=\{0\}$.

Our main tool in proving the existence of positive solutions to problems (1.1) and (1.2) is Krasnosel'skii's compression-expansion theorem [3], [2]:
Theorem 1. Let E be a Banach space, $\mathcal{C} \subset E$ a cone in E, and assume that $T: \mathcal{C} \longrightarrow \mathcal{C}$ is a completely continuous map such that for some numbers r and R with $0<r<R$, one of the following conditions is satisfied:
(i) $\|T u\| \leq\|u\|$ for $\|u\|=r$ and $\|T u\| \geq\|u\|$ for $\|u\|=R$,
(ii) $\|T u\| \geq\|u\|$ for $\|u\|=r$ and $\|T u\| \leq\|u\|$ for $\|u\|=R$.

Then T has a fixed point with $r \leq\|u\| \leq R$.

2 Existence results for Problem 1.1

In this section, E is the Banach space

$$
C_{0}(\bar{\Omega}, \mathbb{R})=\{u \in C(\bar{\Omega}, \mathbb{R}): u=0 \quad \text { on } \partial \Omega\}
$$

endowed with norm $\|\cdot\|_{0}$, and \mathcal{C} is the cone

$$
\begin{equation*}
\mathcal{C}=\left\{u \in C_{0}\left(\bar{\Omega}, \mathbb{R}_{+}\right): u(x) \geq \eta\|u\|_{0} \quad \text { for all } x \in K\right\} \tag{2.1}
\end{equation*}
$$

In order to state our results we introduce the notation

$$
\begin{aligned}
& f_{0}=\limsup _{y \rightarrow 0^{+}} \max _{x \in \bar{\Omega}} \frac{f(x, y)}{y} \text { and } \underline{f}_{\infty}=\liminf _{y \rightarrow \infty} \min _{x \in K} \frac{f(x, y)}{y} \\
& \underline{f}_{0}=\liminf _{y \rightarrow 0^{+}} \min _{x \in K} \frac{f(x, y)}{y} \text { and } f_{\infty}=\limsup _{y \rightarrow \infty} \max _{x \in \bar{\Omega}} \frac{f(x, y)}{y}
\end{aligned}
$$

Also, for a function $h: \bar{\Omega} \rightarrow \mathbb{R}$, by $\left.h\right|_{K}$ we mean the function $\left.h\right|_{K}(x)=h(x)$ if $x \in K$ and $\left.h\right|_{K}$ $(x)=0$ if $x \in \bar{\Omega} \backslash K$. For example, if 1 is the constant function 1 on $\bar{\Omega}$, then $\left.1\right|_{K}(x)=1$ if $x \in K$ and $\left.1\right|_{K}(x)=0$ for $x \in \bar{\Omega} \backslash K$.

Theorem 2. Suppose (1.3) holds. Then for each λ satisfying

$$
\begin{equation*}
\frac{1}{\underline{f}_{\infty} \eta\left\|\left.(-\Delta)^{-1} 1\right|_{K}\right\|_{0}}<\lambda<\frac{1}{f_{0}\left\|(-\Delta)^{-1} 1\right\|_{0}} \tag{2.2}
\end{equation*}
$$

there exists at least one positive solution of problem (1.1).
Proof. Let λ be as in (2.2) and let $\epsilon>0$ be such that

$$
\begin{equation*}
\frac{1}{\left(\underline{f}_{\infty}-\epsilon\right) \eta\left\|\left.(-\Delta)^{-1} 1\right|_{K}\right\|_{0}} \leq \lambda \leq \frac{1}{\left(f_{0}+\epsilon\right)\left\|(-\Delta)^{-1} 1\right\|_{0}} \tag{2.3}
\end{equation*}
$$

We know that u is a solution of problem (1.1) if and only if

$$
u=\lambda(-\Delta)^{-1} F u
$$

where $F: C(\bar{\Omega}, \mathbb{R}) \longrightarrow C(\bar{\Omega}, \mathbb{R}), F u(x)=f(x, u(x))$. Hence, a solution to problem (1.1) is a fixed point of the operator $T: \mathcal{C} \longrightarrow C_{0}(\bar{\Omega}, \mathbb{R})$ given by

$$
T u=\lambda(-\Delta)^{-1} F u
$$

We shall prove that the hypotheses of Theorem 1 are satisfied.

We have that the operator T satisfies

$$
\begin{cases}-\Delta(T u)=\lambda f(x, u), & \text { in } \Omega \\ T u=0, & \text { on } \partial \Omega\end{cases}
$$

Then by the global weak Harnack inequality (1.3), one has $T(\mathcal{C}) \subset \mathcal{C}$. Moreover, T is completely continuous by the Arzela-Ascoli Theorem.

Furthermore, by the definition of f_{0}, there exists an $r>0$ such that

$$
\begin{equation*}
f(x, u) \leq\left(f_{0}+\epsilon\right) u \quad \text { for } \quad 0<u \leq r \text { and } x \in \bar{\Omega} \tag{2.4}
\end{equation*}
$$

Let $u \in \mathcal{C}$ with $\|u\|_{0}=r$. Then using (2.4), the monotonicity of operator $(-\Delta)^{-1}$ and of norm $\|\cdot\|_{0}$, and (2.3), we obtain

$$
\begin{aligned}
\|T u\|_{0} & =\lambda\left\|(-\Delta)^{-1} F u\right\|_{0} \\
& \leq \lambda\left(f_{0}+\epsilon\right)\|u\|_{0}\left\|(-\Delta)^{-1} 1\right\|_{0} \\
& \leq\|u\|_{0}
\end{aligned}
$$

Hence

$$
\begin{equation*}
\|T u\|_{0} \leq\|u\|_{0} \quad \text { for } \quad\|u\|_{0}=r \tag{2.5}
\end{equation*}
$$

By the definition of \underline{f}_{∞}, there is $R>r$ such that

$$
f(x, u) \geq\left(\underline{f}_{\infty}-\epsilon\right) u \quad \text { for } \quad u \geq \eta R \text { and } x \in K
$$

Then, if $u \in \mathcal{C}$ with $\|u\|_{0}=R$, we have

$$
\begin{aligned}
\|T u\|_{0} & =\lambda\left\|(-\Delta)^{-1} F u\right\|_{0} \\
& \geq \lambda\left\|\left.(-\Delta)^{-1}(F u)\right|_{K}\right\|_{0} \\
& \geq \lambda\left(\underline{f}_{\infty}-\epsilon\right) \eta\|u\|_{0}\left\|\left.(-\Delta)^{-1} 1\right|_{K}\right\|_{0} \\
& \geq\|u\|_{0} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\|T u\|_{0} \geq\|u\|_{0} \text { for }\|u\|_{0}=R \tag{2.6}
\end{equation*}
$$

Inequalities (2.5) and (2.6) show that the expansion condition (i) in Theorem 1 is satisfied. Now Theorem 1 guarantees the existence of a fixed point u of T with $r \leq\|u\|_{0} \leq R$.

Similarly, we have the following result:
Theorem 3. Suppose (1.3) holds. Then for each λ satisfying

$$
\begin{equation*}
\frac{1}{\underline{f}_{0} \eta\left\|\left.(-\Delta)^{-1} 1\right|_{K}\right\|_{0}}<\lambda<\frac{1}{f_{\infty}\left\|(-\Delta)^{-1} 1\right\|_{0}} \tag{2.7}
\end{equation*}
$$

there exists at least one positive solution of problem (1.1).
Proof. Let λ be as in (2.7) and let $\epsilon>0$ be such that

$$
\begin{equation*}
\frac{1}{\left(\underline{f}_{0}-\epsilon\right) \eta\left\|\left.(-\Delta)^{-1} 1\right|_{K}\right\|_{0}} \leq \lambda \leq \frac{1}{\left(f_{\infty}+\epsilon\right)\left\|(-\Delta)^{-1} 1\right\|_{0}} \tag{2.8}
\end{equation*}
$$

By the definition of \underline{f}_{0}, there exists an $r>0$ such that

$$
f(x, u) \geq\left(\underline{f}_{0}-\epsilon\right) u \text { for } 0<u \leq r \text { and } x \in K
$$

If $u \in \mathcal{C}$ and $\|u\|_{0}=r$, then

$$
\begin{aligned}
\|T u\|_{0} & =\lambda\left\|(-\Delta)^{-1} F u\right\|_{0} \\
& \geq \lambda\left\|\left.(-\Delta)^{-1}(F u)\right|_{K}\right\|_{0} \\
& \geq \lambda\left(\underline{f}_{0}-\epsilon\right) \eta\|u\|_{0}\left\|\left.(-\Delta)^{-1} 1\right|_{K}\right\|_{0} \\
& \geq\|u\|_{0}
\end{aligned}
$$

Hence

$$
\begin{equation*}
\|T u\|_{0} \geq\|u\|_{0} \text { for }\|u\|_{0}=r \tag{2.9}
\end{equation*}
$$

By the definition of f_{∞}, there is $R_{0}>0$ such that

$$
f(x, u) \leq\left(f_{\infty}+\epsilon\right) u \text { for } u \geq R_{0} \text { and } x \in \bar{\Omega}
$$

Let M be such that $f(x, u) \leq M$ for all $u \in\left[0, R_{0}\right]$ and $x \in \bar{\Omega}$, and let R be such that

$$
R>r \text { and } M \leq\left(f_{\infty}+\epsilon\right) R
$$

If $u \in \mathcal{C}$ with $\|u\|_{0}=R$, then $0 \leq u(x) \leq\left(f_{\infty}+\epsilon\right) R$ for all $x \in \bar{\Omega}$. Consequently, also using (2.8), we obtain

$$
\begin{aligned}
\|T u\|_{0} & =\lambda\left\|(-\Delta)^{-1} F u\right\|_{0} \\
& \leq \lambda\left(f_{\infty}+\epsilon\right) R\left\|(-\Delta)^{-1} 1\right\|_{0} \\
& \leq R \\
& =\|u\|_{0} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\|T u\|_{0} \leq\|u\|_{0} \text { for }\|u\|_{0}=R \tag{2.10}
\end{equation*}
$$

Inequalities (2.9) and (2.10) show that the compression condition (ii) in Theorem 1 is satisfied. Now Theorem 1 guarantees the existence of a fixed point u of T with $r \leq\|u\|_{0} \leq R$.

3 Existence results for Problem 1.2

In this section, we are concerned with the existence of positive solutions to the Dirichlet problem (1.2) for elliptic systems.

Here E will be the Banach space $C_{0}\left(\bar{\Omega}, \mathbb{R}^{2}\right):=C_{0}(\bar{\Omega}, \mathbb{R}) \times C_{0}(\bar{\Omega}, \mathbb{R})$ endowed with the norm $\|(., .)\|_{0}$ given by

$$
\|(u, v)\|_{0}=\|u\|_{0}+\|v\|_{0}
$$

and the cone in E will be $\mathcal{C} \times \mathcal{C}$, where \mathcal{C} is given by (2.1).
In order to state our results in this section we introduce the notation

$$
\begin{aligned}
& g_{0}=\limsup _{y+z \rightarrow 0^{+}} \max _{x \in \bar{\Omega}} \frac{g(x, y, z)}{y+z} \text { and } \underline{g}_{\infty}=\liminf _{y+z \rightarrow \infty} \min _{x \in K} \frac{g(x, y, z)}{y+z} \\
& \underline{g}_{0}=\liminf _{y+z \rightarrow 0^{+}} \min _{x \in K} \frac{g(x, y, z)}{y+z} \text { and } g_{\infty}=\limsup _{y+z \rightarrow \infty} \max _{x \in \bar{\Omega}} \frac{g(x, y, z)}{y+z} .
\end{aligned}
$$

The limits $h_{0}, \underline{h}_{0}, h_{\infty}$ and \underline{h}_{∞} are defined similarly.
Theorem 4. Suppose (1.3) holds. In addition assume that there are numbers $p, q>0$ with $\frac{1}{p}+\frac{1}{q}=1$ such that

$$
\begin{equation*}
\frac{1}{\underline{g}_{\infty} \eta\left\|\left.(-\Delta)^{-1} 1\right|_{K}\right\|_{0}}<\alpha<\frac{1}{p g_{0}\left\|(-\Delta)^{-1} 1\right\|_{0}} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\underline{h}_{\infty} \eta\left\|\left.(-\Delta)^{-1} 1\right|_{K}\right\|_{0}}<\beta<\frac{1}{q h_{0}\left\|(-\Delta)^{-1} 1\right\|_{0}} . \tag{3.2}
\end{equation*}
$$

Then there exists at least one positive solution (u, v) of problem (1.2).

Proof. Let α, β be as in (3.1), (3.2) and let $\epsilon>0$ be such that

$$
\frac{1}{\left(\underline{g}_{\infty}-\epsilon\right) \eta\left\|\left.(-\Delta)^{-1} 1\right|_{K}\right\|_{0}} \leq \alpha \leq \frac{1}{p\left(g_{0}+\epsilon\right)\left\|(-\Delta)^{-1} 1\right\|_{0}}
$$

and

$$
\frac{1}{\left(\underline{h}_{\infty}-\epsilon\right) \eta\left\|\left.(-\Delta)^{-1} 1\right|_{K}\right\|_{0}} \leq \beta \leq \frac{1}{q\left(h_{0}+\epsilon\right)\left\|(-\Delta)^{-1} 1\right\|_{0}} .
$$

It is easily seen that a vector-valued function (u, v) is a solution of problem (1.2) if and only if

$$
\begin{aligned}
& u=\alpha(-\Delta)^{-1} G(u, v) \\
& v=\beta(-\Delta)^{-1} H(u, v)
\end{aligned}
$$

where $G, H: C\left(\bar{\Omega}, \mathbb{R}^{2}\right) \longrightarrow C(\bar{\Omega}, \mathbb{R})$,

$$
G(u, v)(x)=g(x, u(x), v(x)), \quad H(u, v)(x)=h(x, u(x), v(x)) .
$$

Hence, (u, v) is a positive solution of (1.2) if it is a fixed point of the operator

$$
T: \mathcal{C} \times \mathcal{C} \longrightarrow C_{0}\left(\bar{\Omega}, \mathbb{R}^{2}\right), \quad T=\left(T_{1}, T_{2}\right)
$$

where

$$
T_{1}(u, v)=\alpha(-\Delta)^{-1} G(u, v), \quad T_{2}(u, v)=\beta(-\Delta)^{-1} H(u, v)
$$

We shall prove that the hypotheses of Theorem 1 are satisfied.
Clearly the operator $T=\left(T_{1}, T_{2}\right)$ satisfies

$$
\begin{cases}-\Delta\left(T_{1} u\right)=\alpha g(x, u, v), & \text { in } \Omega \\ -\Delta\left(T_{2} v\right)=\beta h(x, u, v), & \text { in } \Omega \\ T_{1} u=T_{2} v=0, & \text { on } \partial \Omega\end{cases}
$$

Then by the global weak Harnack inequality (1.3), we have $T(\mathcal{C} \times \mathcal{C}) \subset \mathcal{C} \times \mathcal{C}$. Moreover, T is completely continuous by the Arzela-Ascoli Theorem.

By the definitions of g_{0} and h_{0}, there exists an $r>0$ with

$$
g(x, u, v) \leq\left(g_{0}+\epsilon\right)(u+v) \quad \text { for } \quad u, v \geq 0,0<u+v \leq r \text { and } x \in \bar{\Omega}
$$

and

$$
h(x, u, v) \leq\left(h_{0}+\epsilon\right)(u+v) \quad \text { for } \quad u, v \geq 0,0<u+v \leq r \text { and } x \in \bar{\Omega}
$$

Let $(u, v) \in \mathcal{C} \times \mathcal{C}$ with $\|(u, v)\|_{0}=r$. We have

$$
\begin{aligned}
\left\|T_{1}(u, v)\right\|_{0} & =\alpha\left\|(-\Delta)^{-1} G(u, v)\right\|_{0} \\
& \leq \alpha\left(g_{0}+\epsilon\right)\|u+v\|_{0}\left\|(-\Delta)^{-1} 1\right\|_{0} \\
& \leq \frac{1}{p}\|u+v\|_{0} \\
& \leq \frac{1}{p}\left(\|u\|_{0}+\|v\|_{0}\right) \\
& =\frac{1}{p}\|(u, v)\|_{0} .
\end{aligned}
$$

Then $\left\|T_{1}(u, v)\right\|_{0} \leq \frac{1}{p}\|(u, v)\|_{0}$. Similarly, we have

$$
\begin{aligned}
\left\|T_{2}(u, v)\right\|_{0} & =\beta\left\|(-\Delta)^{-1} H(u, v)\right\|_{0} \\
& \leq \beta\left(h_{0}+\epsilon\right)\|u+v\|_{0}\left\|(-\Delta)^{-1} 1\right\|_{0} \\
& \leq \frac{1}{q}\|u+v\|_{0} \\
& \leq \frac{1}{q}\left(\|u\|_{0}+\|v\|_{0}\right) \\
& =\frac{1}{q}\|(u, v)\|_{0}
\end{aligned}
$$

Thus $\left\|T_{2}(u, v)\right\|_{0} \leq \frac{1}{q}\|(u, v)\|_{0}$. Combining the above two inequalities, we obtain

$$
\|T(u, v)\|_{0}=\left\|T_{1}(u, v)\right\|_{0}+\left\|T_{2}(u, v)\right\|_{0} \leq\left(\frac{1}{p}+\frac{1}{q}\right)\|(u, v)\|_{0}=\|(u, v)\|_{0}
$$

Next by the definitions of \underline{g}_{∞} and \underline{h}_{∞}, there is $R>0$ such that

$$
g(x, u, v) \geq\left(\underline{g}_{\infty}-\epsilon\right)(u+v) \quad \text { for } \quad u, v \geq 0, u+v \geq \eta R \text { and } x \in K
$$

and

$$
h(x, u, v) \geq\left(\underline{h}_{\infty}-\epsilon\right)(u+v) \quad \text { for } \quad u, v \geq 0, u+v \geq \eta R \text { and } x \in K
$$

Let $(u, v) \in \mathcal{C} \times \mathcal{C}$ with $\|(u, v)\|_{0}=R$. Then for each $x \in K, u(x) \geq \eta\|u\|_{0}$ and $v(x) \geq \eta\|v\|_{0}$. Hence $(u+v)(x) \geq \eta\left(\|u\|_{0}+\|v\|_{0}\right)$, that is $(u+v)(x) \geq \eta R$ for all $x \in K$. Consequently,

$$
G(u, v)(x) \geq\left(\underline{g}_{\infty}-\epsilon\right)(u+v)(x) \text { for all } x \in K
$$

Furthermore

$$
\begin{aligned}
\left\|T_{1}(u, v)\right\|_{0} & =\alpha\left\|(-\Delta)^{-1} G(u, v)\right\|_{0} \\
& \geq \alpha\left\|\left.(-\Delta)^{-1} G(u, v)\right|_{K}\right\|_{0} \\
& \geq \alpha\left(\underline{g}_{\infty}-\epsilon\right)\left\|\left.(-\Delta)^{-1}(u+v)\right|_{K}\right\|_{0} \\
& \geq \alpha\left(\underline{g}_{\infty}-\epsilon\right)\left\|\left.(-\Delta)^{-1} u\right|_{K}\right\|_{0} \\
& \left.\geq \alpha \underline{g}_{\infty}-\epsilon\right) \eta\|u\|_{0}\left\|\left.(-\Delta)^{-1} 1\right|_{K}\right\|_{0} \\
& \geq\|u\|_{0} .
\end{aligned}
$$

Similarly, we have

$$
\left\|T_{2}(u, v)\right\|_{0} \geq\|v\|_{0}
$$

The above two inequalities give

$$
\|T(u, v)\|_{0} \geq\|(u, v)\|_{0}
$$

Thus condition (i) in Theorem 1 is satisfied. Now Theorem 1 guarantees the existence of a fixed point (u, v) of T with $r \leq\|(u, v)\|_{0} \leq R$.

In a similar way, one can prove:
Theorem 5. Suppose (1.3) holds. In addition assume that there are numbers $p, q>0$ with $\frac{1}{p}+\frac{1}{q}=1$ such that

$$
\frac{1}{\underline{g}_{0} \eta\left\|\left.(-\Delta)^{-1} 1\right|_{K}\right\|_{0}}<\alpha<\frac{1}{p g_{\infty}\left\|(-\Delta)^{-1} 1\right\|_{0}}
$$

and

$$
\frac{1}{\underline{h}_{0} \eta\left\|\left.(-\Delta)^{-1} 1\right|_{K}\right\|_{0}}<\beta<\frac{1}{q h_{\infty}\left\|(-\Delta)^{-1} 1\right\|_{0}}
$$

Then there exists at least one positive solution (u, v) of problem (1.2).

References

[1] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1983.
[2] A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York, 2003.
[3] M.A. KrasnoselskiI, Topological Methods in the Theory of Nonlinear Integral Equations, Cambridge University Press, New York, 1964.
[4] R. Precup, Positive solutions of semi-linear elliptic problems via Krasnoselskii type theorems in cones and Harnack's inequality, Mathematical Analysis and Applications, AIP Conf. Proc., 835, Amer. Inst. Phys., Melville, NY, 2006, 125-132.

