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ABSTRACT

This work is concerned with a nonlinear periodic system, which depends on parameters.

We investigate continuity with respect to parameters of the periodic solution of the

system. Applying a fixed point theorem and the results regarding parameters for C0-

semigroups, we obtained some convenient conditions for determining both existence of

a unique periodic solution and continuity in parameters of the periodic solution. The

results are applied to a nonlinear wave equation with forced and damped boundary

conditions.

RESUMEN

Este trabajo tiene que ver con un sistema no lineal periódico que depende de paramet-

ros. Investigamos continuidad con respecto a los parametros de la solución periódica
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del sistema. Aplicando un teorema de punto fijo y resultados considerando paramet-

ros para C0-semigrupos, obtenemos algunas condiciones convenientes para determinar

existencia de una única solución periódica y también continuidad en terminos de los

parametros para la solución periódica. Los resultados son aplicados para una ecuación

de onda no lineal con condiciones de frontera de tipo forzado y damped.
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1 Introduction

Boundary value conditions in partial differential equations lead to problems involving parameters.

If these equations are reformulated as abstract Cauchy problems, the equations will depend on

these parameters in a way that is reflected by the domain of the operators involved. For such

parameter dependent equations it is natural to want continuity and differentiability with respect

to parameters of solutions of the equations. Recent studies [3, 4, 6, 7, and references therein] have

established fundamental theory about continuity and differentiability with respect to parameters.

In this work, we are particularly interested in a class of nonlinear periodic systems that depend on

parameters and study continuity in parameters of its solutions. In our subsequent paper, we will

discuss differentiability with respect to parameters of the solutions.

Consider a nonlinear wave equation with forced and damped boundary conditions

utt = uxx + ηF (ut) for t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x) for x ∈ [0, 1],

µut(0, t) − γux(0, t) = f1(t),

δut(1, t) + γux(1, t) = f2(t), µ, γ, δ > 0, (1.1)

where f1(t) and f2(t) are both ρ-periodic and continuously differentiable. F satisfies a uniform

Lipschitz condition

Let v = ut and w = ux, then equation (1.1) is written as

vt = wx + ηF (v),

wt = vx,

µv(0, t) − γw(0, t) = f1(t),

δv(1, t) + γw(1, t) = f2(t), µ, γ, δ > 0. (1.2)

If the change of variables

v̄ = v − xδ
−1

f2,

w̄ = w + (1 − x)γ
−1

f1



CUBO
11, 3 (2009)

Fixed Point Theory and Nonlinear Periodic Systems 103

is made, equation (1.2) has the form:

v̄t = w̄x + ηF (v̄ + xδ
−1

f2(t)) + γ
−1

f1(t) − xδ
−1

f
′

2
(t),

w̄t = v̄x + δ
−1

f2(t) + (1 − x)γ
−1

f
′

1
(t),

µv̄(0, t) − γw̄(0, t) = 0,

δv̄(1, t) + γw̄(1, t) = 0, µ, γ, δ > 0. (1.3)

Further, the associated abstract equation of (1.3) is given by

dz(t)

dt
= A(ε)z(t) + F̄ (t, z(t), ε),

z(0) = z0 (1.4)

on X = L
2
[0, 1] × L

2
[0, 1], where

A(ε) =

[

0 ∂x

∂x 0

]

, ε = (µ, γ, δ, η) ∈ R
4

+
, z =

[

v̄

w̄

]

,

D(A(ε)) =

{[

v̄

w̄

]

∈
2

∏

i=1

H
1
[0, 1]

∣

∣

∣

∣

∣

µv̄(0) = γw̄(0),

δv̄(1) = −γw̄(1),
µ, γ, δ > 0

}

,

F̄ (t, z, ε)x =

[

ηF (v̄ + xδ
−1

f2(t)) + γ
−1

f1(t) − xδ
−1

f
′

2
(t)

δ
−1

f2(t) + (1 − x)γ−1
f
′

1
(t)

]

.

For convenience, write v̄ as v,w̄ as w, F̄ as F1, and α =
µ
γ , β =

γ
δ , we then have

dz(t)

dt
= A(ε)z(t) + F1(t, z(t), ε),

z(0) = z0 (1.5)

on X = L
2[0, 1]× L

2[0, 1], where

A(ε) =

[

0 ∂x

∂x 0

]

, ε = (α, β, δ, η) ∈ R
4

+
, z =

[

v

w

]

,

D(A(ε)) =

{[

v

w

]

∈
2

∏

i=1

H
1
[0, 1]

∣

∣

∣

∣

∣

αv(0) = w(0),

v(1) = −βw(1),
α, β > 0

}

,

F1(t, z, ε)x =

[

ηF (v + xδ
−1

f2(t)) + γ
−1

f1(t) − xδ
−1

f
′

2
(t)

δ
−1

f2(t) + (1 − x)γ−1
f
′

1
(t)

]

.

By examining equation (1.5), we see that a) F1 is a nonlinear and ρ-periodic function, b) ε is

a multi-parameter, c) A(ε) is linear and densely defined, and d) D(A(ε)) is dependent on the

parameter ε.
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Our work is motivated by this example to consider the abstract nonlinear periodic equation

dz(t)

dt
= A(ε)z(t) + F (t, z(t), ε),

z(0) = z0 (1.6)

on a Banach space X with norm ‖ · ‖, where A(ε) is linear and densely defined, ε ∈ P is a

parameter (where P is an open subset of a finite-dimensional normed linear space P with norm

| · |), F (t + ρ, z, ε) = F (t, z, ε) for some ρ > 0, and F is continuous in (t, z, ε) ∈ R × X × P . Note

that the above example illustrates a fact that the occurrence of parameters in boundary conditions

causes the domain of the operator A(ε) to depend on the parameters. This phenomenon is not

considered in any papers known to the authors. The goal of this work is to determine conditions

concerning a) existence and uniqueness of the periodic (weak) solution of equation (1.6) and b)

continuity with respect to parameter ε of the solution of (1.6).

Based on semigroup theory, when A(ε) generates a C0-semigroup T (t, ε), the weak solution of

(1.6) will have the form

z(t, ε) = T (t, ε)z0 +

∫ t

0

T (t − s, ε)F (s, z(s, ε), ε) ds.

It is clear that the continuity in parameter ε of semigroup T (t, ε) will play a key role in

attaining our goals. To this end we first discuss the parameter properties of C0-semigroup T (t, ε)

and present a method which can be especially useful for dealing with operator A(ε) that has a

domain dependent on ε in Section 2. We then apply a fixed point theorem to show both existence

of a unique periodic solution and continuity in ε of the periodic solution of (1.6) in Section 3. In

the last section, we shall illustrate the results and technique in an application to a nonlinear wave

equation with variable boundary conditions.

2 Continuity in Parameters of C0-Semigroups

As noted in Section 1, the semigroup theory indicates that the continuity in parameters of C0-

semigroup T (t, ε) generated by A(ε) in (1.6) can easily derive the analogous result for the solution of

equation (1.6). Hence, we will focus on discussing continuity property of C0-semigroup T (t, ε). In

this section, we will first state a continuity result for the case that operators have constant domains

(the domain is independent of parameters). Then we will present a method that is especially useful

in handling the case that operators have variable domains (the domain is dependent of parameters).

In the sequel we use “A is a Hille-Yosida operator" to mean that there are constants M ≥ 1

and ω ∈ R such that λ > ω implies λ ∈ ρ(A) (the resolvent set of A) and

‖(λI − A)
−n‖ ≤ M

(λ − ω)n
for λ > ω, n ∈ N.
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In the special case when an operator has a constant domain, one has the result which states

that the strong continuity in parameters of the operator implies the continuity in parameters of

its semigroup.

Theorem 2.1. Assume that

(2.1) D(A(ε)) = D for all ε ∈ P .

(2.2) There are constants M ≥ 1 and ω ∈ R such that

||(λI − A(ε))
−n|| ≤ M

(λ − ω)n
for λ > ω, n ∈ N, and all ε ∈ P.

(2.3) For each x ∈ D, A(ε)x is continuous in ε ∈ P .

Then (λI−A(ε))−1
x is continuous in ε for each x ∈ X . Further, the C0-semigroup T (t, ε) generated

by A(ε) is strongly continuous in ε ∈ P , and the continuity is uniform on bounded t-intervals. In

particular, for any ε ∈ P, h ∈ P with ε + h ∈ P , and any t0 ∈ [0,∞),

sup
0≤t≤t0

‖T (t, ε + h)x − T (t, ε)x‖ = ◦(1) as |h| → 0, for each x ∈ X .

Proof. See [8] for the proof of continuity of (λI − A(ε))
−1

x. The proof of continuity of C0-

semigroup T (t, ε) is similar to the proof of the C0-semigroup approximation theorem in [1, The-

orem 3.17], and it is omitted. �

The next theorem gives a convenient condition to determine the continuity in parameters of

C0-semigroup when the domain of the operator is dependent on parameters.

We remark that the following assumption is naturally possessed by many hyperbolic and

parabolic types of boundary value problems (see an example in Section 4).

ASSUMPTION Q. Let ε0 ∈ P be given. Then for each ε ∈ P there exists bounded op-

erators Q1(ε), Q2(ε) : X → X with bounded inverses Q
−1

1
(ε) and Q

−1

2
(ε), such that A(ε) =

Q1(ε)A(ε0)Q2(ε).

Note that if A(ε1) = Q1(ε1)A(ε0)Q2(ε1), then

A(ε) = Q1(ε)A(ε0)Q2(ε)

= Q1(ε)Q
−1

1
(ε1)Q1(ε1)A(ε0)Q2(ε1)Q

−1

2
(ε1)Q2(ε)

= Q̃1(ε)A(ε1)Q̃2(ε).

Thus, having such a relationship for some ε0 implies a similar relationship at any other ε1 ∈ P .

Without loss of generality then, we may just consider the continuity of the semigroup T (t, ε) at

ε = ε0 ∈ P .

Consider an auxiliary operator

Ã(ε) = Q2(ε)A(ε)Q
−1

2
(ε) = Q2(ε)Q1(ε)A(ε0).
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Lemma 2.2. Assume that Assumption Q and (2.2) are satisfied and suppose that

(2.4) Qi(ε)x and Q
−1

2
(ε)x are continuous in ε for x ∈ X, i = 1, 2.

Then the C0-semigroup T̃ (t, ε) generated by Ã(ε) is strongly continuous at ε0, and the continuity is

uniform on bounded t-intervals. In particular, for any h ∈ P with ε0 + h ∈ P , and any t0 ∈ [0,∞),

sup
0≤t≤t0

‖T̃ (t, ε0 + h)x − T̃ (t, ε0)x‖ = ◦(1) as |h| → 0, for each x ∈ X .

Proof. Note that Ã(ε) = Q2(ε)Q1(ε)A(ε0). Clearly, D(Ã(ε)) = D(A(ε0)) for all ε ∈ P . Thus,

Ã(ε) has a fixed domain. Also (2.4) implies that Ã(ε) is continuous in ε, that is, Ã(ε) satisfies

(2.3). Since

(λI − Ã(ε))
n

= Q2(ε)(λI − A(ε))
n
Q

−1

2
(ε),

thus

(λI − Ã(ε))
−n

= Q2(ε)(λI − A(ε))
−n

Q
−1

2
(ε).

Because Q2(ε) and Q
−1

2
(ε) are bounded, (2.2) implies that Ã(ε) is a Hille-Yosida operator for all

ε ∈ P . Now applying Theorem 2.1, we have that T̃ (t, ε) is continuous in ε. �

Theorem 2.3. Assume that Assumption Q, (2.2) and (2.4) are satisfied, then the C0-semigroup

T (t, ε) generated by A(ε) is strongly continuous at ε0, and the continuity is uniform on bounded

t-intervals. In particular, for any h ∈ P with ε0 + h ∈ P , and any t0 ∈ [0,∞),

sup
0≤t≤t0

‖T (t, ε0 + h)x − T (t, ε0)x‖ = ◦(1) as |h| → 0, for each x ∈ X .

Proof. In fact, Ã(ε) = Q2(ε)A(ε)Q
−1

2
(ε). By the definition of C0-semigroup [2], it is clear that

T (t, ε) = Q
−1

2
(ε)T̃ (t, ε)Q2(ε).

Further, for x ∈ X and ε0 + h ∈ Bδ(ε0) = {ε | |ε − ε0| ≤ δ},

‖T (t, ε0 + h)x − T (t, ε0)x‖
= ‖Q−1

2
(ε0 + h)T̃ (t, ε0 + h)Q2(ε0 + h)x − Q

−1

2
(ε0)T̃ (t, ε0)Q2(ε0)x‖

≤ ‖Q−1

2
(ε0 + h)T̃ (t, ε0 + h)‖ ‖Q2(ε0 + h)x − Q2(ε0)x‖

+ ‖Q−1

2
(ε0 + h)‖ ‖(T̃ (t, ε0 + h) − T̃ (t, ε0))Q2(ε0)x‖

+ ‖(Q−1

2
(ε0 + h) − Q

−1

2
(ε0))T̃ (t, ε0)Q2(ε0)x‖ .

Note that ‖Q−1

2
(ε0+h)T̃ (t, ε0+h)‖, ‖Q−1

2
(ε0+h)‖ are uniformly bounded. Moreover, from Lemma

2.2 and (2.4), T̃ (t, ε), Q2(ε), and Q
−1

2
(ε) are continuous in ε. Thus, we have T (t, ε) is continuous

in ε. �
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3 Continuity in Parameters of Periodic Solutions of (1.6)

The goal of this section is to obtain existence and continuity in parameters of a unique periodic

solution z(t, ε) of (1.6). We first study a special case of (1.6)

dz(t)

dt
= A(ε)z(t) + F (t, ε),

z(0) = z0 (3.1)

on a Banach space X , where A(ε) is linear and densely defined, ε ∈ P is a parameter, F (t+ρ, ε) =

F (t, ε) for some ρ > 0, and F (t, ε) is continuous in (t, ε) ∈ R × P .

We aim for obtaining the existence and continuity in ε of the periodic solution of (3.1) and

then apply this result together with a fixed point theorem to show that (1.6) has a unique periodic

solution, which is continuous in parameter ε.

For convenient reference, we state the fixed point theorem that will be needed in the later

proofs.

Theorem 3.1.[5, p7] If F is a closed subset of a Banach space X , G is a subset of a Banach

space Y, Ty : F → F , y ∈ G is a uniform contraction on F and Tyx is continuous in y for each

fixed x in F , then the unique fixed point g(y) of Ty, y in G, is continuous in y.

As discussed in Section 2, several convenient conditions have been obtained for determining

continuity in parameter ε of C0-semigroup T (t, ε). Thereby, in this section, we will just assume

that T (t, ε) is continuous in parameter ε.

Theorem 3.2. Assume that

(3.2) T (t, ε)z is continuous in ε for each z ∈ X , and

‖T (t, ε)‖ ≤ M(t0)

for some M(t0) > 0 and all ε ∈ P, t ∈ [0, t0], and

(3.3) ‖T (Nρ, ε)‖ ≤ k < 1 for some integer N with Nρ < t0 and all ε ∈ P .

Then there exists a unique ρ-periodic solution of (3.1), say z(t, ε), which is continuous in ε for

ε ∈ P .

Proof. First, we know that the weak solution of (3.1) can be expressed as

z(t, ε) = T (t, ε)z0 +

∫ t

0

T (t− s, ε)F (s, ε) ds.

To show that there is a unique ρ-periodic solution which is continuous in ε, it suffices to show that

the operator K(ε) has a unique fixed point where

K(ε)z = T (ρ, ε)z +

∫ ρ

0

T (ρ − s, ε)F (s, ε) ds.
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Consider the Nth-iterate, K
N(ε). We first note that K

N (ε) is a uniform contraction on X . In

fact, note that

K
N

(ε)z = T (Nρ, ε)z +

∫ Nρ

0

T (Nρ− s, ε)F (s, ε) ds

and then, for all ε ∈ P and z1, z2 ∈ X ,

‖KN
(ε)z1 − K

N
(ε)z2‖ = ‖T (Nρ, ε)(z1 − z2)‖

≤ ‖T (Nρ, ε)‖ · ‖z1 − z2‖ ≤ k‖z1 − z2‖ (since ‖T (Nρ, ε)‖ ≤ k < 1).

In addition, K
N(ε) is continuous in ε for each fixed z ∈ X . To see this, let ε be an arbitrary

point in P . It is clear, from (3.2) and continuity of F (t, ε), that T (Nρ − s, ε)F (s, ε) is continuous

at ε = ε0.

Furthermore,

∫ Nρ

0

T (Nρ− s, ε)F (s, ε) ds is continuous at ε = ε0 (3.4)

In fact, for each fixed s ∈ [0, Nρ] and h ∈ P with ε0 + h ∈ P ,

‖T (Nρ− s, ε0 + h)F (s, ε0 + h) − T (Nρ − s, ε0)F (s, ε0)‖
≤ ‖T (Nρ− s, ε0 + h)‖ · ‖F (s, ε0 + h) − F (s, ε0)‖

+‖(T (Nρ− s, ε0 + h) − T (Nρ − s, ε0))F (s, ε0)‖
→ 0 as |h| → 0, (by (3.2) and continuity of F (t, ε)).

Also, by continuity of F (t, ε), there is B(ε0, δ(ε0)) (δ(ε0) > 0) such that

‖F (s, ε)‖ ≤ N(ε0) for some N(ε0) > 0 and (s, ε) ∈ [0, ρ] × B(ε0, δ(ε0)).

Thus

‖T (ρ− s, ε0 + h)f(s, ε0 + h) − T (ρ − s, ε0)f(s, ε0)‖ ≤ 4M(t0) · N(ε0)

and (3.4) follows from the Dominated Convergence Theorem. Above all, K
N (ε)z is continuous at

ε = ε0. Since ε0 is arbitrarily chosen, K
N(ε)z is continuous in ε ∈ P .

Taking F = X, y = ε, and Ty = K
N (ε), we have that Theorem 3.1 implies that there exists a

unique fixed point z0(ε) of K
N(ε) which is continuous in ε. Thus, z0(ε) is the unique fixed point

of K(ε) and it is continuous in ε.

Finally, using the same argument as above, we have that the unique ρ-periodic weak solution

of (3.10)

z(t, ε) = T (t, ε)z0(ε) +

∫ t

0

T (t − s, ε)F (s, ε) ds.

is continuous in ε. �

Now we discuss equation (1.6).
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Lemma 3.3. Assume that (3.2) and (3.3) are satisfied. Then (I −T (Nρ, ε))−1
z is continuous in

ε for each z ∈ X .

Proof. First note that from (3.3), it is easy to show that (I − T (ρ, ε))−1 exists. Also,

‖(I − T (Nρ, ε))
−1‖ ≤ 1

1 − k

.
= H.

Next consider the operator defined on X :

J(ε)z = T (Nρ, ε)z + y where y is a given point in X.

Then we have

‖J(ε)z1 − J(ε)z2‖ ≤ ‖T (Nρ, ε)‖ · ‖z1 − z2‖ ≤ k‖z1 − z2‖.

Thus, J(ε) is a uniform contraction. Also it is obvious that J(ε)z is continuous in ε by (3.2).

From Theorem 3.1 it follows that there is a unique fixed point of J(ε), say z(ε), such that z(ε) =

T (Nρ, ε)z(ε) + y and z(ε) is continuous in ε.

Furthermore, z(ε) = (I − T (Nρ, ε))−1
y and (I − T (Nρ, ε))−1

y is continuous in ε. �

Let PC[R, ρ] = {g ∈ C(R, X)
∣

∣ g(t + ρ) = g(t), t ∈ R} together with the sup norm, ‖ · ‖∞.

Consider the equation

z
′
(t) = A(ε)z(t) + f(t, g(t), ε)

z(0) = z0 (3.5)

on a Banach space (X, ‖ · ‖), where f(t + ρ, g, ε) = F (t, g, ε) for some ρ > 0 and g ∈ PC[R, ρ], and

f(t, g, ε) is continuous in (t, g, ε) ∈ R × PC[R, ρ] × P .

Lemma 3.4. Assume that (3.2) and (3.3) are satisfied.

Then there exists a unique ρ-periodic solution of (3.5), say z(t, g, ε), which is continuous with

respect to ε for ε ∈ P . Also

z(0, g, ε) = (I − T (Nρ, ε))
−1

∫ Nρ

0

T (ρ − s, ε)F (s, g(s), ε) ds. (3.6)

Proof. Let F2(t, ε) = F (t, g(t), ε). Then F2(t+ρ, ε) = F2(t, ε). Also it is obvious that F2(t, ε) is

continuous in (t, ε) because F (t, z, ε) is continuous in (t, z, ε). Therefore, by Theorem 3.2, there is

a unique ρ-periodic weak solution z(t, ε, g) of (3.5) which is continuous in ε. In particular, z(0, ε, g)

is continuous in ε. Moreover, using the same argument as that in the proof of Theorem 3.2 we see

that

z(0, ε, g) = T (Nρ, ε)z(0, ε, g) +

∫ Nρ

0

T (Nρ− s, ε)F (s, g(s), ε) ds.

Thus, (3.6) holds. �
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Define J1(ε) : PC[R, ρ] → PC[R, ρ] by

J1(ε)g(t) = T (t, ε)z(0, ε, g) +

∫ t

0

T (t − s, ε)F (s, g(s), ε) ds.

Lemma 3.5. Assume that (3.2)and (3.3) are satisfied . In addition, assume that

‖F (t, z1, ε) − F (t, z2, ε)‖ ≤ L(ε
1
)‖z1 − z2‖, (3.7)

where L(ε1) is continuous in ε
1 ∈ P in a neighborhood of ε = 0 and L(0) = 0.

Then for small |ε1|, the operator J1(ε) has a unique fixed point g(·, ε) ∈ PC[R, ρ] which is contin-

uous in ε.

Proof. First note that it is clear that (PC[R, ρ], ‖ · ‖∞) is a Banach space. Next since L(0) = 0,

then, by continuity of L(ε1), there is δ0 such that |ε1| < δ0 implies

L(ε
1
) ≤ 1

4
min{ 1

HM2(t0)t0
,

1

M(t0)t0
}.

Now for ε ∈ P with |ε1| < δ0,

‖T (t, ε)‖ · ‖z(0, g1, ε) − z(0, g2, ε)‖

= ‖T (t, ε)‖ · ‖(I − T (Nρ, ε))
−1

∫ Nρ

0

T (Nρ − s, ε)[F (s, g1, ε) − F (s, g2, ε)] ds‖

≤ M(t0)‖(I − T (Nρ, ε))
−1‖

∫ Nρ

0

‖T (Nρ− s, ε)‖ · ‖F (s, g1, ε) − F (s, g2, ε)‖ ds

≤ M(t0) · H · M(t0)

∫ Nρ

0

‖F (s, g1, ε) − F (s, g2, ε)‖ ds

≤ H · M2
(t0) · t0 · L(ε

1
)‖g1 − g2‖ ≤ 1

4
‖g1 − g2‖,

and
∫ t

0

‖T (t− s, ε)‖ · ‖F (s, g1(s), ε) − F (s, g2(s), ε)‖ ds

≤ M(t0)L(ε
1
)

∫ t

0

‖g1(s) − g2(s)‖ ds

≤ M(t0) · t0L(ε
1
)‖g1 − g2‖ ≤ 1

4
‖g1 − g2‖.

Hence

‖J1(ε)g1 − J1(ε)g2‖

≤ ‖T (t, ε)‖ · ‖z(0, g1, ε) − z(0, g2, ε)‖ +

∫ t

0

‖T (t − s, ε)‖ · ‖F (s, g1(s), ε) − F (s, g2(s), ε)‖ ds

≤ 1

4
‖g1 − g2‖ +

1

4
‖g1 − g2‖

≤ 1

2
‖g1 − g2‖.
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Therefore J1(ε) is a uniform contraction.

Furthermore, J1(ε)g is continuous in ε for fixed g. Therefore from Theorem 3.1, it follows that

J1(ε) has a unique fixed point, say g(·, ε) ∈ PC[R, ρ], which is continuous in ε. �

Theorem 3.6 Assume that (3.2), (3.3) and (3.7) are satisfied.

Then for small |ε1|, there exists a unique ρ-periodic weak solution of (1.6), say z(t, ε), which is

continuous in ε for ε ∈ P .

Proof. This is an immediate result from Lemma 3.4 and Lemma 3.5.

4 Application to a Nonlinear Wave Equation

Consider the nonlinear wave equation mentioned in Section 1

utt = uxx + ηF (ut), for t ≥ 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x) for x ∈ [0, 1],

µut(0, t) − γux(0, t) = f1(t),

δut(1, t) + γux(1, t) = f2(t), µ, γ, δ > 0, (4.1)

where f1(t) and f2(t) are both ρ-periodic and continuously differentiable. F satisfies a uniform

Lipschitz condition.

As shown in Section 1, the associated abstract equation of (4.1) is given by:

dz(t)

dt
= A(ε)z(t) + F1(t, z(t), ε),

z(0) = z0 (4.2)

on X = L
2[0, 1]× L

2[0, 1], where

A(ε) =

[

0 ∂x

∂x 0

]

, ε = (α, β, δ, η) ∈ R
4

+
, z =

[

v

w

]

,

D(A(ε)) =

{[

v

w

]

∈
2

∏

i=1

H
1
[0, 1]

∣

∣

∣

∣

∣

αv(0) = w(0),

v(1) = −βw(1),
α, β > 0

}

.

F1(t, z, ε)x =

[

ηF (v + xδ
−1

f2(t)) + γ
−1

f1(t) − xδ
−1

f
′

2
(t)

δ
−1

f2(t) + (1 − x)γ−1
f
′

1
(t)

]

Now make the change of variables

z̃ =

[

ṽ

w̃

]

= U

[

v

w

]

where U =
1

2

[

1 1

1 −1

]
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Then,

A1(ε) ≡ UA(ε)U
−1

=

[

∂x 0

0 −∂x

]

.

where

D(A1(ε)) =

{ [

ṽ

w̃

]

∈
2

∏

i=1

H
1
[0, 1]

∣

∣

∣

∣

∣

(1 − α)ṽ(0) = (1 + α)w̃(0),

(1 + β)ṽ(1) = −(1 − β)w̃(1).

}

Define

α̃ =
1 − α

1 + α
, β̃ =

1 − β

1 + β
α̃, β̃ ∈ (−1, 1].

A1(ε) has the domain

D(A1(ε)) =

{[

ṽ

w̃

]

∈
2

∏

i=1

H
1
[0, 1]

∣

∣

∣

∣

∣

α̃ṽ(0) = w̃(0),

ṽ(1) = −β̃w̃(1),
α̃, β̃ ∈ (−1, 1]

}

.

If |α̃β̃| < 1, then A1(ε) generates a C0-semigroup, T1(t, ε), on X = L
2[0, 1]×L

2[0, 1], endowed

with the norm ‖(f, g)‖ ≡ ‖f‖2 + ‖g‖2. It can easily be shown using the method of characteristics

that this semigroup satisfies ‖T1(t, ε)‖ = 1 for 0 ≤ t < 1, ‖T1(t, ε)‖ = max{|α̃|, |β̃|} ≤ 1 for

1 ≤ t < 2, and ‖T1(t, ε)‖ ≤ |α̃β̃| < 1 for t ≥ 2. Thus the semigroup is eventually contracting.

It follows from T (t, ε) = UT1(t, ε)U
−1 that T (t, ε) must have the same properties with respect

to the norm

|‖z‖| ≡ ‖Uz‖
on X = L

2[0, 1] × L
2[0, 1] when α̃, β̃ > 0.

Now consider the operator A1(ε). Take ε0 = (0, 0). For ε = (α̃,β̃) with α̃,β̃ ∈ (−1, 1]

A1(ε) =
1

1 + α̃β̃
Q(ε)A1(0)Q(ε)

where

Q(ε) =

[

1 β̃

−α̃ 1

]

.

obviously, Q(ε) is continuous in ε and is bounded. So is Q
−1(ε). Let Q2(ε) =

1

1+α̃β̃
Q(ε) and

Q1(ε) = Q(ε). It is clear that the hypotheses of Theorem 2.3 are satisfied for any ε0 = (α̃0, β̃0) in

R
+ ×R

+. That is, we have strong continuity in parameter ε of semigroup T1(t, ε) and thus strong

continuity of semigroup T (t, ε).

Above all, the associated semigroup is eventually contracting and is continuous in ε. Thus, it

follows from Theorem 3.6 that when |η| is small there is a unique ρ-periodic weak solution of (4.2)

and thus also a unique ρ-periodic weak solution of (4.1) and it is L
2 continuous in ε = (α, δ, γ, η).

Received: June 1, 2008. Revised: July 25, 2008.
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