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ABSTRACT

In this paper, we discuss the existence problem of periodic solutions of the periodic

difference equation

x(n+ 1) = f(n, x(n)), n ∈ Z

and the periodic difference equation with infinite delay

x(n+ 1) = f(n, xn), n ∈ Z,

where x and f are d-vectors, and Z denotes the set of integers. We show the existence of

periodic solutions by using Schauder’s fixed point theorem, and illustrate an example.

RESUMEN

En este artículo estudiamos el problema de existencia de soluciones periódicas para la

ecuación en diferencia periódica

x(n+ 1) = f(n, x(n)), n ∈ Z

1This paper is in final form and no version of it will be submitted for publication elsewhere, and partly supported
in part by Grant-in-Aid for Scientific Research (C), No. 16540141, Japan Society for the Promotion of Science.
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y la ecuación en diferencia periódica con retardo infinito

x(n+ 1) = f(n, xn), n ∈ Z,

donde x y f son d-vectores, y Z denota el conjunto de los números enteros. Mostramos

la existencia de soluciones periódicas mediante el uso del teorema de punto fijo de

Schauder, exhibimos un ejemplo.
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1 Introduction

The existence problem of periodic solutions of functional equations has been discussed in many

books and papers. For example, see the books [1-3, 12, 15, 28, 30, 32] and papers [4-11, 13, 14,

16-27, 29, 33], and their references. In these books and papers, many kinds of functional equations

have been studied. For example, Volterra equations [2, 4-6, 13, 22, 23], ordinary and functional

differential equations [1, 3, 10, 15-20, 27-29, 32, 33], integro-differential equations [7, 22], integral

equations [8, 9, 21], and difference equations [11-14, 23-26, 30]. In this paper, we give some new

existence results of periodic solutions for periodic difference equations by using Schauder’s fixed

point theorem and a convex Liapunov function, and show that the existence problem of periodic

solutions of a periodic difference equation with infinite delay can be reduced to the existence

problem of periodic solutions of an auxiliary difference equation with finite delay.

Fixed point theorems are very useful tools in obtaining existence theorems for periodic solu-

tions. Since we use Schauder’s second fixed point theorem later, first we state it for the sake of

completeness.

Theorem 1 (Schauder’s second theorem [31]). Let (B, ‖ · ‖) be a normed space, and let S be

a nonempty convex subset of B. Then every continuous mapping of S into a compact set C of S

has a fixed point in C.

2 Periodic difference equations

Let R+ = [0,∞), R = (−∞,∞), and let Rd be the d-dimensional Euclidean space. Let f(n, x) :

Z × Rd → Rd be continuous in x for each fixed n ∈ Z, and N -periodic in n for some N ∈ N with

N > 1, where N denotes the set of positive integers.



CUBO
11, 3 (2009)

Periodic Solutions of Periodic Difference ... 57

Consider the periodic difference equation

x(n+ 1) = f(n, x(n)), n ∈ Z. (1)

For any n0 ∈ Z and ξ ∈ Rd
, x(n) = x(n, n0, ξ) denotes the solution of Eq.(1) with x(n0) = ξ.

When we employ Theorem 1 in order to prove the existence of a fixed point of a mapping, we

need to define a suitable convex set in a Banach space. In [27], Grimmer introduced the concept of

a convex Liapunov function, and proved the existence of periodic solutions of functional differential

equations by employing a fixed point theorem. Moreover, in [20], the existence of periodic solutions

of functional differential equations is proved by using a convex Liapunov function and Schauder’s

fixed point theorem. Here, first we state the definition of a convex Liapunov function for the sake

of completeness.

Definition. A function V (n, x) : Z × Rd → R+ is said to be a convex Liapunov function if

V (n, x) is continuous in x for each fixed n, and satifies the following conditions.

(i) V (n, x) ≥ a(|x|) for a continuous function a(r) such that a(r) → ∞ as r → ∞, where | · |
denotes the Euclidean norm of Rd.

(ii) The set Xρ := {x ∈ Rd : V (n, x) ≤ ρ} is a convex set in Rd for any n ∈ Z and ρ > 0,

provided that Xρ is nonempty.

Now we have the following theorem.

Theorem 2. Let V : Z × Rd → R+ be an N -periodic convex Liapunov function. Suppose

that there exist an n0 ∈ Z ∩ [0, N) and a constant ρ > max{V (n, 0) : 0 ≤ n ≤ N} such that for

any ξ ∈ S := {x ∈ Rd : V (n0, x) ≤ ρ}, we have

V
(

n0, x(n0 +N,n0, ξ)
)

≤ ρ. (2)

Then, Eq.(1) has an N -periodic solution.

Proof. Since V (n, x) is a convex Liapunov function and ρ > max{V (n, 0) : 0 ≤ n ≤ N}, S is

a nonempty compact convex subset of Rd. Let P be a mapping on S defined by

P (ξ) := x(n0 +N,n0, ξ), ξ ∈ S.

Then (2) implies that P (S) is contained in S. Moreover, the continuity of f(n, x) in x for each

fixed n ∈ Z implies that P : S → S is a continuous mapping. Thus, by Theorem 1, P has a fixed

point ξ ∈ S, and x(n) = x(n, n0, ξ) is an N -periodic solution of Eq.(1).

Now we show an example for Theorem 2.
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Example. Consider the 4-periodic difference equation














x
(1)(n+ 1) = αx

(2)(n) + β cos
nπ
2
,

x
(2)(n+ 1) = γx

(1)(n) + δ sin
nπ
2
,

where n ∈ Z, and where α, β, γ, and δ are constants with
√

2 max(|α|, |γ|) < 1. Let r be a

positive constant with

r ≥
√

2max(|β|, |δ|)
1 −

√
2 max(|α|, |γ|)

, (3)

and let V (n, x) := (x(1))2 + (x(2))2, where x := (x(1)
, x

(2)). Clearly, V is a 4-periodic convex

Liapunov function with a(r) = r
2. The set S defined by

S := {x ∈ R2
: |x| ≤ r}

is a nonempty compact convex subset of R2 for the constant r > 0. For any ξ := (ξ(1), ξ(2)) ∈ S, let

x
(1)(n) = x

(1)(n, 0, ξ), x(2)(n) = x
(2)(n, 0, ξ), and let x(n) =

(

x
(1)(n), x(2)(n)

)

. Then, (3) implies

− r√
2
≤ −|α|r − |β| ≤ αξ

(2) − |β| ≤ x
(1)

(1) ≤ αξ
(2)

+ |β| ≤ |α|r + |β| ≤ r√
2
,

− r√
2
≤ −|γ|r − |δ| ≤ γξ

(1) − |δ| ≤ x
(2)

(1) ≤ γξ
(1)

+ |δ| ≤ |γ|r + |δ| ≤ r√
2
,

which yields that |x(1)| ≤ r. Thus we obtain x(1) ∈ S. By similar arguments, we have V
(

4, x(4, 0, ξ)
)

≤
r
2, and consequently x(4) ∈ S. Thus, by Theorem 2, this 4-periodic difference equation has a 4-

periodic solution x(n) with |x(n)| ≤ r for n ∈ Z.

3 Periodic difference equations with finite delay

In this section, concerning the existence of periodic solutions of periodic difference equations with

finite delay, we state some known results.

For a fixed κ ∈ N, let B be the set of sequences φ : Z ∩ [−κ, 0] → Rd. For any φ ∈ B, define

‖φ‖ by

‖φ‖ := sup{|φ(k)| : k ∈ Z ∩ [−κ, 0]}.
For any α > 0, the set Bα defined by

Bα := {φ ∈ B : ‖φ‖ ≤ α}

is compact. For any sequence x(k) : Z → Rd and any fixed n ∈ Z, the symbol xn denotes the

restriction of x(k) on Z ∩ [n− κ, n], that is, xn is an element of B defined by

xn(k) := x(n+ k), k ∈ Z ∩ [−κ, 0].
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Consider the difference equation with finite delay

x(n+ 1) = f(n, xn), n ∈ Z, (4)

where f : Z × B → Rd is continuous in φ for each fixed n ∈ Z, and N -periodic in n for some

N ∈ N with N > 1. For any n0 ∈ Z and any initial sequence φ ∈ B, there is a unique solution of

Eq.(4), denoted by x(n, n0, φ), such that it satisfies Eq.(4) for n ∈ Z ∩ [n0,∞) and

x(n0 + k, n0, φ) = φ(k) for k ∈ Z ∩ [−κ, 0].

In [26], concerning the existence of periodic solutions of Eq.(4), the following theorem is proved

by employing Browder’s fixed point theorem.

Theorem 3 ([26]). If f(n, φ) in Eq.(4) is N -periodic in n for some N ∈ N with N > 1,

and if the solutions of Eq.(4) are uniformly ultimately bounded for bound X, then Eq.(4) has an

N -periodic solution x(n) such that |x(n)| < X for n ∈ Z.

Here the solutions of Eq.(4) are said to be uniformly ultimately bounded for bound X , if there

exists an X and if corresponding to any n0 ∈ Z and α > 0, there exists a ν = ν(α) ∈ N such that

φ ∈ Bα implies that |x(n, n0, φ)| < X for n ∈ Z ∩ [n0 + ν,∞).

In Theorem 3, uniform ultimate boundedness of solutions of Eq.(4) is an important assump-

tion. Here we state a boundedness theorem due to Shunian Zhang without a proof.

Theorem 4 ([34]). Suppose that there exists a Liapunov function V : Z× Rd → R+, which

satifies the following conditions;

(i) a(|x|) ≤ V (n, x) ≤ b(|x|), where a, b : R+ → R+, a(r) and b(r) are continuous, increasing

and a(r) → ∞ as r → ∞,

(ii) ∆V(4)(n, x(n)) := V (n+ 1, x(n+ 1)) − V (n, x(n)) ≤M − c(|x(n)|)
whenever

P
(

V (n+ 1, x(n+ 1))
)

> V (k, x(k)) for k ∈ Z ∩ [n− κ, n],

where x(n) is a solution of Eq.(4), M is a positive constant, c : R+ → R+ is continuous,

increasing and c(r) → ∞ as r → ∞, and P : R+ → R+ is continuous, P (u) > u for u > 0, and

κ ∈ N.

Then the solutions of Eq.(4) are uniformly ultimately bounded for a bound X.
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4 Periodic difference equations with infinite delay

By combining Liapunov’s method and Theorems 3 and 4 in Section 3, we can obtain a theorem

which assures the existence of periodic solutions of periodic difference equations. But Theorem 4 is

applicable to difference equations with finite delay, and it seems to be open whether we can prove a

theorem similar to Theorem 4 for difference equations with infinite delay or not. In this section, we

show that the existence problem of periodic solutions of periodic difference equations with infinite

delay can be reduced to the existence problem of periodic solutions of auxiliary difference equations

whose delay is equal to its period.

Let B be the set of bounded sequences φ : Z− → Rd, where Z− denotes the set of nonpositive

integers. For any φ ∈ B, define ‖φ‖ by

‖φ‖ := sup{|φ(k)| : k ∈ Z−}.

For any sequence x(k) : Z → Rd and any fixed n ∈ Z, the symbol xn denotes the restriction of

x(k) on Z ∩ (−∞, n], that is, xn is an element of B defined by

xn(k) = x(n+ k), k ∈ Z−.

Consider the periodic difference equation with infinite delay

x(n+ 1) = f(n, xn), n ∈ Z, (5)

where f(n, φ) : Z×B → Rd is continuous in φ for each fixed n ∈ Z, and N -periodic in n for some

N ∈ N with N > 1. For any n0 ∈ Z and any initial sequence φ ∈ B, there is a unique solution of

Eq.(5), denoted by x(n, n0, φ), such that it satisfies Eq.(5) for n ∈ Z ∩ [n0,∞) and

x(n0 + k, n0, φ) = φ(k) for k ∈ Z−.

Corresponding to B, let BN be the set of sequences ψ : Z ∩ [−N, 0] → Rd. For any ψ ∈ BN ,

define a mapping ρ(ψ) : BN → BN by

ρ(ψ)(k) := ψ(k) +
N + k

N

(

ψ(−N) − ψ(0)
)

, k ∈ Z ∩ [−N, 0],

and a mapping σ(ψ) : BN → B by

σ(ψ)(k) :=















ψ(k), −N ≤ k ≤ 0,

ρ(ψ)(k + jN), −(j + 1)N ≤ k < −jN, j ∈ N.

Then, we have the following lemma.

Lemma. The functional σ(ψ) is continuous. If ψ ∈ BN satisfies ψ(−N) = ψ(0), then

σ(ψ)(k) is N -periodic on Z−.
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Proof. From the definition of σ(ψ), it is clear that the functional σ(ψ) is continuous. Next,

from the definition of ρ(ψ), if ψ(−N) = ψ(0), then we have

ρ(ψ)(k) ≡ ψ(k) for k ∈ Z ∩ [−N, 0],

which together with the definition of σ(ψ), implies that σ(ψ)(k) is N -periodic on Z−.

For the functional f(n, φ) in Eq.(4), define the functional g(n, ψ) : Z × BN → Rd by

g(n, ψ) := f
(

n, σ(ψ)
)

, (n, ψ) ∈ Z× BN .

Then, g(n, ψ) is continuous in ψ for each fixed n ∈ Z, and N -periodic in n. Corresponding to

Eq.(5), consider the auxiliary difference equation

y(n+ 1) = g(n, yn), n ∈ Z, (6)

where yn ∈ BN , that is,

yn(k) = y(n+ k), k ∈ Z ∩ [−N, 0].

Then, we have the following theorem.

Theorem 5. If Eq.(5) has an N -periodic solution, then it is an N -periodic solution of

Eq.(6), and vice versa.

Proof. Let x(n) be an N -periodic solution of Eq.(5), and let yn ∈ BN be the restriction

of x(k) on Z ∩ [n − N,n]. Then we have yn(−N) = yn(0), which together with Lemma, implies

σ(yn) = xn. Thus, we obtain

y(n+ 1) = x(n+ 1) = f(n, xn) = f
(

n, σ(yn)
)

= g(n, yn),

which shows that y(n) is an N -periodic solution of Eq.(6).

The converse part can be proved similarly.

Received: January 28, 2008. Revised: March 10, 2008.
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