K-Theory of an Algebra of Pseudodifferential Operators on a Noncompact Manifold

PATRÍCIA HESS AND SEVERINO T. MELO Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, 05508-090 São Paulo, Brazil emails: phess@ime.usp.br, toscano@ime.usp.br

ABSTRACT

Let \mathcal{A} denote the C*-algebra of bounded operators on $L^2(\mathbb{R}\times\mathbb{S}^1)$ generated by: all multiplications a(M) by functions $a \in C^{\infty}(\mathbb{S}^1)$, all multiplications b(M) by functions $b \in C([-\infty, +\infty])$, all multiplications by 2π -periodic continuous functions, $\Lambda = (1 - \Delta_{\mathbb{R}\times\mathbb{S}^1})^{-1/2}$, where $\Delta_{\mathbb{R}\times\mathbb{S}^1}$ is the Laplacian operator on $L^2(\mathbb{R}\times\mathbb{S}^1)$, and $\partial_t\Lambda$, $\partial_x\Lambda$, for $t \in \mathbb{R}$ and $x \in \mathbb{S}^1$. We compute the K-theory of \mathcal{A} and of its quotient by the ideal of compact operators.

RESUMEN

Denotemos \mathcal{A} la C*-algebra de operadores acotados sobre $L^2(\mathbb{R} \times \mathbb{S}^1)$ gerados por todas las multiplicaciones a(M) por funciones $a \in C^{\infty}(\mathbb{S}^1)$, todas las multiplicaciones b(M) por funciones $b \in C([-\infty, +\infty])$, todas las multiplicaciones por funciones continuas 2π -periódicas, $\Lambda = (1 - \Delta_{\mathbb{R} \times \mathbb{S}^1})^{-1/2}$, donde $\Delta_{\mathbb{R} \times \mathbb{S}^1}$ es el operador de Laplace sobre $L^2(\mathbb{R} \times \mathbb{S}^1)$, y $\partial_t \Lambda$, $\partial_x \Lambda$, para $t \in \mathbb{R}$ y $x \in \mathbb{S}^1$. Nosotros calculamos la K-teoria de \mathcal{A} y su cuociente por el ideal de los operadores compactos.

Key words and phrases: *K*-Theory, pseudodifferential operators. Math. Subj. Class.: 46L80, 47G30.

1 Introduction

Let \mathbb{B} denote an n-dimensional compact Riemannian manifold. Write $\Omega = \mathbb{R} \times \mathbb{B}^1$ and let Δ_{Ω} denote its Laplacian. Define \mathcal{A} as the C*-algebra of bounded operators on $L^2(\Omega)$ generated by:

- (i) all $a(M_x)$, operators of multiplication by $a \in C^{\infty}(\mathbb{B})$, $[a(M_x)f](t,x) = a(x)f(t,x)$;
- (ii) all $b(M_t)$, operators of multiplication by $b \in C([-\infty, +\infty])$, $[b(M_t)f](t, x) = b(t)f(t, x)$;
- (iii) every multiplication by 2π -periodic continuous functions;
- (iv) $\Lambda = (1 \Delta_{\Omega})^{-1/2};$
- (v) $\frac{1}{i}\frac{\partial}{\partial t}\Lambda$, $t \in \mathbb{R}$;
- (vi) $L\Lambda$, where L is a first order differential operator on \mathbb{B} .

 \mathcal{A} contains a class of classical pseudodifferential operators, including all $A = L\Lambda^N$, where L is a differential operator of order N with coefficients approaching periodic functions at infinity. $A: L^2(\Omega) \to L^2(\Omega)$ is Fredholm if and only if so is $L: H^N(\Omega) \to L^2(\Omega)$ and they have the same index.

The structure of \mathcal{A} is given in [4], so we will mention some of those results. The principal symbol extends to a *-homomorphism $\sigma : \mathcal{A} \to C_b(S^*\Omega)$, where $C_b(S^*\Omega)$ denotes the algebra of continuous functions on the co-sphere bundle of Ω . Let \mathcal{E} denote the kernel of σ and $\mathcal{K}_{\Omega} := \mathcal{K}(L^2(\Omega))$ the ideal of compact operators on $L^2(\Omega)$.

Theorem 1. There is a *-isomorphism

$$\Psi: \frac{\mathcal{E}}{\mathcal{K}_{\Omega}} \longrightarrow C(S^1 \times \{-1, +1\}, \mathcal{K}_{\mathbb{Z} \times \mathbb{B}}).$$
(1)

In fact, \mathcal{E} is the commutator ideal of \mathcal{A} . Composing the canonical projection $\mathcal{E} \to \mathcal{E}/\mathcal{K}_{\Omega}$ with Ψ , we can extend the map $\mathcal{E} \to C(S^1 \times \{-1,+1\}, \mathcal{K}_{\mathbb{Z} \times \mathbb{B}})$ and obtain a *-homomorphism $\gamma : \mathcal{A} \to C(S^1 \times \{-1,+1\}, \mathcal{L}(L^2(\mathbb{Z} \times \mathbb{B}))).$

From now on, we will just work in the case that the manifold \mathbb{B} is the circle \mathbb{S}^1 . Therefore, the class of generators $L\Lambda$ can be replaced by the operator $\frac{1}{i}\frac{\partial}{\partial\beta}\Lambda$, $\beta \in \mathbb{S}^1$, since \mathbb{S}^1 has trivial tangent bundle.

Definition 2. Let \mathcal{D} be a C^* -algebra and \mathcal{I} its commutator ideal. We call symbol space of \mathcal{D} the compact space M such that we have $\mathcal{D}/\mathcal{I} \cong C(M)$ by the Gelfand map.

With this definition, we observe that the map σ is the composition $\mathcal{A} \to \mathcal{A}/\mathcal{E} \to C(M_{\mathcal{A}})$, where $M_{\mathcal{A}}$ is the symbol space of \mathcal{A} . Given $A \in \mathcal{A}$, we say that the symbol of A is the continuous function $\sigma_A \in C(M_{\mathcal{A}})$ associated to the class A in \mathcal{A}/\mathcal{E} by the Gelfand isomorphism. **Theorem 3.** The symbol space of \mathcal{A} is the set

$$\mathbf{M}_{\mathcal{A}} = \{ (t, x, (\tau, \xi), e^{i\theta}); \ t \in [-\infty, +\infty], \ x \in \mathbb{S}^1, \ (\tau, \xi) \in \mathbb{R}^2 : \tau^2 + \xi^2 = 1, \\ \theta \in \mathbb{R} \ e \ \theta = t \ se \ |t| < \infty \},$$

and the symbols of the generators (or classes of them) of \mathcal{A} are given below as functions on $(t, x, (\tau, \xi), e^{i\theta})$ in the same order that they appear in the definition:

$$a(x), \quad b(t), \quad e^{ij\theta}, \quad 0, \quad \tau, \quad \xi.$$
 (2)

For each $\varphi \in \mathbb{R}$, let U_{φ} be the operator on $L^2(S^1)$ given by $U_{\varphi}f(z) = z^{-\varphi}f(z), z \in S^1$, and let $Y_{\varphi} := F_d U_{\varphi} F_d^{-1}$, where $F_d : L^2(S^1) \to \ell^2(\mathbb{Z})$ is the discrete Fourier transform. So, Y_{φ} is an unitary operator such that, for all $k \in \mathbb{Z}$, $(Y_k u)_j = u_{j+k}$, and $Y_{\varphi} Y_{\omega} = Y_{\varphi+\omega}$.

Consider the following functions defined on \mathbb{R} and taking values in the algebra of bounded operators on $L^2(\mathbb{S}^1)$:

$$B_4(\tau) = \tilde{\Lambda}(\tau) , \quad B_5(\tau) = -\tau \tilde{\Lambda}(\tau) , \quad B_6(\tau) = \frac{1}{i} \frac{\partial}{\partial \beta} \tilde{\Lambda}(\tau), \quad \tau \in \mathbb{R}, \quad \beta \in \mathbb{S}^1,$$
(3)

where $\tilde{\Lambda}(\tau) = (1 + \tau^2 - \Delta_{\mathbb{S}^1})^{-1/2}$.

Proposition 4. For each generator A of \mathcal{A} , $\gamma_A(e^{2\pi i\varphi}, \pm 1)$ is given respectively by:

 $a(M_x) \ , \ b(\pm\infty) \ , \ Y_{-j} \ , \ Y_{\varphi} B_i(\varphi - M_j) Y_{-\varphi} \ , \ i=4,5,6,$

where $B_i(\varphi - M_j) \in \mathcal{L}(\ell^2(\mathbb{Z}, L^2(\mathbb{S}^1))), i = 4, 5, 6, are the operators of multiplication by the sequences <math>B_i(\varphi - j) \in L^2(\mathbb{S}^1)$, and B_i 's are given in (3).

In this note, we announce results about the calculus of the K-theory of \mathcal{A} . Their proofs will appear in a forthcoming paper.

2 C*-subalgebras of \mathcal{A}

Now, we define two C^{*}-subalgebras of \mathcal{A} and mention some facts about their structure. With the results mentioned here, we can compute their K-theory in the next section.

Let \mathcal{A}^{\dagger} the C*-algebra of bounded operators on $L^{2}(\Omega)$ generated by the class of operators of multiplication by $a \in C^{\infty}(\mathbb{S}^{1})$, Λ , $\frac{1}{i}\partial_{t}\Lambda$ and $\frac{1}{i}\partial_{\beta}\Lambda$, and let \mathcal{A}^{\diamond} denote the C*-algebra generated by the same operators of \mathcal{A}^{\dagger} and operators of multiplication by 2π -periodic continuous functions.

Based on Cordes, [1], and Melo, [4], we can prove the following result.

Theorem 5. Let \mathcal{E}^{\dagger} and \mathcal{E}^{\diamond} denote the commutator ideals of \mathcal{A}^{\dagger} and \mathcal{A}^{\diamond} , respectively. Then $\mathcal{E}^{\dagger} \cong C_0(\mathbb{R}, \mathcal{K}(L^2(\mathbb{S}^1)))$ and $\mathcal{E}^{\diamond} \cong C(S^1, \mathcal{K}(L^2(\mathbb{Z} \times \mathbb{S}^1))).$

The *-isomorphism $\mathcal{E}^{\diamond} \cong C(S^1, \mathcal{K}(L^2(\mathbb{Z} \times \mathbb{S}^1)))$ can be extended to a *-homomorphism $\gamma' : \mathcal{A}^{\diamond} \to C(S^1, \mathcal{L}(L^2(\mathbb{Z} \times \mathbb{S}^1)))$ given by $\gamma'_A(z) = \gamma_A(z, \pm 1)$ for every $A \in \mathcal{A}^{\diamond} \subset \mathcal{A}$.

Knowing these isomorphisms, we are able to describe the symbol spaces of both C*-subalgebras of \mathcal{A} .

Theorem 6. The symbol space of \mathcal{A}^{\dagger} is homeomorphic to $\mathbb{S}^1 \times S^1$ and the symbol space of \mathcal{A}^{\diamond} is homeomorphic to $\mathbb{S}^1 \times S^1 \times S^1$. Moreover, the symbol of an operator in \mathcal{A}^{\dagger} or \mathcal{A}^{\diamond} coincides with the symbol of same operator regarded as an element of \mathcal{A} .

We can see \mathcal{A}^{\dagger} as a C*-subalgebra of $\mathcal{L}(L^2(\mathbb{R} \times \mathbb{S}^1))$ as well. So, if we conjugate \mathcal{A}^{\dagger} with $F \otimes I_{\mathbb{S}^1}$, where $F : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ is the Fourier transform and $I_{\mathbb{S}^1}$ is the identity on $L^2(\mathbb{S}^1)$, we obtain an algebra that can be viewed as a subalgebra of $C_b(\mathbb{R}, \mathcal{L}(L^2(\mathbb{S}^1)))$. Let \mathcal{B}^{\dagger} be this algebra.

The idea is to define an action, and then, to show that that \mathcal{A}^{\diamond} has a crossed product structure. Consider α the following translation-by-one automorphism:

$$[\alpha(B)](\tau) = B(\tau - 1), \ \tau \in \mathbb{R}, \ \mathbb{L} \in \mathcal{B}^{\dagger}$$

Let \mathcal{B}^{\diamond} the algebra \mathcal{A}^{\diamond} conjugated with the Fourier transform. Analogously to [5, Theorem 8], we obtain the next result.

Theorem 7. Let α be as described above. We have:

$$\mathcal{B}^\diamond \cong \mathcal{B}^\dagger \rtimes_lpha \mathbb{Z}$$

where $\mathcal{B}^{\dagger} \rtimes_{\alpha} \mathbb{Z}$ is the envelopping C*-algebra([2], 2.7.7) of the Banach algebra with involution $\ell^{1}(\mathbb{Z}, \mathcal{B}^{\dagger})$ of all summable \mathbb{Z} -sequences in \mathcal{B}^{\dagger} , equipped with the product

$$(\mathbf{A} \cdot \mathbf{B})(n) = \sum_{k \in \mathbb{Z}} A_k \alpha^k (B_{n-k}), \ n \in \mathbb{Z}, \ \mathbf{A} = (A_k)_{k \in \mathbb{Z}}, \ \mathbf{B} = (B_k)_{k \in \mathbb{Z}},$$

and involution $\mathbf{A}^*(n) = \alpha^n(A^*_{-n}).$

3 K-Theory

In this section, we compute the K-groups of the algebras that we were defined in this work.

The main idea is to compute the connecting maps in the K-theory six-term exact sequence associated to the C*-algebra short exact sequence induced by the principal symbol

$$0 \longrightarrow \mathcal{E} = ker\sigma \stackrel{i}{\longrightarrow} \mathcal{A} \stackrel{\pi}{\longrightarrow} \frac{\mathcal{A}}{\mathcal{E}} \cong Im\sigma \longrightarrow 0, \tag{4}$$

where *i* is the inclusion and π is the canonical projection.

But before we begin the computation involving the largest algebra, we start with \mathcal{A}^{\dagger} and \mathcal{A}^{\diamond} using the same idea as above.

Studying the K-theory six-term exact sequence induced by the sequence

$$0 \longrightarrow \mathcal{E}^{\dagger} \stackrel{i}{\longrightarrow} \mathcal{A}^{\dagger} \stackrel{\pi}{\longrightarrow} \frac{\mathcal{A}^{\dagger}}{\mathcal{E}^{\dagger}} \longrightarrow 0,$$

we just obtain partial results about the K-theory of \mathcal{A}^{\dagger} , because we do not have a explicit description of the range of the exponential map.

The same thing happens with the exponential map in the sequence involving \mathcal{A}^\diamond . To compute the index map $\delta_1^\diamond: K_1(\mathcal{A}^\diamond/\mathcal{E}^\diamond) \to K_0(\mathcal{E}^\diamond)$, it was necessary to use the Fedosov index formula [3].

Theorem 8. δ_1^{\diamond} is surjective.

From Theorem 7, we have $\mathcal{B}^{\diamond} \cong \mathcal{B}^{\dagger} \rtimes_{\alpha} \mathbb{Z}$. Then the K-groups of \mathcal{B}^{\dagger} and \mathcal{B}^{\diamond} fit in the Pimsner-Voiculescu exact sequence, [6, theorem 2.4]:

Now, we have enough information to conclude that

$$K_0(\mathcal{A}^{\dagger}) \cong \mathbb{Z}$$
, $K_1(\mathcal{A}^{\dagger}) \cong \mathbb{Z}^2$, $K_i(\mathcal{A}^{\diamond}) \cong \mathbb{Z}^3$, $i = 0, 1$.

The next step is to work with \mathcal{A} . In the beginning of this section the sequence induced by the symbol was mentioned. We will rewrite it, quotiented by the ideal of compact operators \mathcal{K}_{Ω} :

$$0 \longrightarrow \frac{\mathcal{E}}{\mathcal{K}_{\Omega}} \xrightarrow{i} \frac{\mathcal{A}}{\mathcal{K}_{\Omega}} \xrightarrow{\pi} \frac{\mathcal{A}}{\mathcal{E}} \longrightarrow 0,$$
(6)

where *i* is the inclusion and π is the canonical projection.

By the isomorphism (1), we know that $\mathcal{E}/\mathcal{K}_{\Omega}$ can be viewed as two copies of $C(S^1, \mathcal{K}(L^2(\mathbb{Z} \times \mathbb{S}^1)))$. Then,

$$K_i\left(\frac{\mathcal{E}}{\mathcal{K}_{\Omega}}\right) \cong \mathbb{Z} \oplus \mathbb{Z}, \ i = 0, 1$$

We know the range of σ by Theorem 3. With the help of [5, Proposition 3], we can state the next result.

Proposition 9. $K_0(\mathcal{A}/\mathcal{E}) \cong K_1(\mathcal{A}/\mathcal{E}) \cong \mathbb{Z}^6$.

From sequence (6), we have:

$$\mathbb{Z}^{2} \cong K_{0}(\mathcal{E}/\mathcal{K}_{\Omega}) \xrightarrow{i_{*}} K_{0}(\mathcal{A}/\mathcal{K}_{\Omega}) \xrightarrow{\pi_{*}} K_{0}(\mathcal{A}/\mathcal{E}) \cong \mathbb{Z}^{6}$$

$$\delta_{1} \uparrow \qquad \qquad \downarrow \delta_{0} \qquad (7)$$

$$\mathbb{Z}^{6} \cong K_{1}(\mathcal{A}/\mathcal{E}) \xleftarrow{\pi_{*}} K_{1}(\mathcal{A}/\mathcal{K}_{\Omega}) \xleftarrow{i_{*}} K_{1}(\mathcal{E}/\mathcal{K}_{\Omega}) \cong \mathbb{Z}^{2}$$

The image of δ_1 is determined the same way as the image of δ_1^\diamond .

Theorem 10. δ_1 is surjective.

Corollary 11. $K_0(\mathcal{A}/\mathcal{K}_\Omega)$ has no torsion.

Theorem 12. Given the short exact sequence

$$0 \longrightarrow \mathcal{K}_{\Omega} \stackrel{i}{\longrightarrow} \mathcal{A} \stackrel{\pi}{\longrightarrow} \frac{\mathcal{A}}{\mathcal{K}_{\Omega}} \longrightarrow 0,$$

where i is the inclusion and π is the canonical projection, the following statements hold:

- (i) $\delta_1 : K_1(\frac{A}{K_{\Omega}}) \to \mathbb{Z}$ is surjective (there exists a matrix of operators in A with Fredholm index equal to one);
- (*ii*) $K_0(\mathcal{A}) \cong K_0(\mathcal{A}/\mathcal{K}_\Omega) \cong \mathbb{Z}^5$;
- (iii) $K_1(\mathcal{A}) \cong \mathbb{Z}^4$ and $K_1(\mathcal{A}/\mathcal{K}_{\Omega}) \cong \mathbb{Z}^5$.

```
Received: December, 2008. Revised: April, 2009.
```

References

- CORDES, H.O., On the two-fold symbol chain of a c*-algebra of singular integral operators on a polycylinder, Revista Matemática Iberoamericana, 2(1 y 2):215-234, 1986.
- [2] DIXMIER, J., C*-algebras, North Holland, New York, 1977.
- [3] FEDOSOV, B.V., Index of an elliptic system on a manifold, Funct. Anal. and its Application, 4(4):312–320, 1970.
- [4] Melo, S.T., A comparison algebra on a cylinder with semi-periodic multiplications, Pacific J. Math., 142(2):281–304, 1990.
- [5] MELO, S.T. AND SILVA, C.C., K-theory of pseudodifferential operators with semi-periodic symbols, K-theory, 37:235–248, 2006.
- [6] PIMSNER, M. AND VOICULESCU, D., Exact sequences for k-groups and ext-groups of certain cross-product c*-algebras, J. Operator Theory, 4(1):93–118, 1980.