K-Theory of an Algebra of Pseudodifferential Operators on a Noncompact Manifold

Patrícia Hess and Severino T. Melo
Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, 05508-090 São Paulo, Brazil
emails: phess@ime.usp.br,
toscano@ime.usp.br

Abstract

Let \mathcal{A} denote the C^{*}-algebra of bounded operators on $L^{2}\left(\mathbb{R} \times \mathbb{S}^{1}\right)$ generated by: all multiplications $a(M)$ by functions $a \in C^{\infty}\left(\mathbb{S}^{1}\right)$, all multiplications $b(M)$ by functions $b \in C([-\infty,+\infty])$, all multiplications by 2π-periodic continuous functions, $\Lambda=\left(1-\Delta_{\mathbb{R} \times \mathbb{S}^{1}}\right)^{-1 / 2}$, where $\Delta_{\mathbb{R} \times \mathbb{S}^{1}}$ is the Laplacian operator on $L^{2}\left(\mathbb{R} \times \mathbb{S}^{1}\right)$, and $\partial_{t} \Lambda, \partial_{x} \Lambda$, for $t \in \mathbb{R}$ and $x \in \mathbb{S}^{1}$. We compute the K-theory of \mathcal{A} and of its quotient by the ideal of compact operators.

RESUMEN

Denotemos \mathcal{A} la C^{*}-algebra de operadores acotados sobre $L^{2}\left(\mathbb{R} \times \mathbb{S}^{1}\right)$ gerados por todas las multiplicaciones $a(M)$ por funciones $a \in C^{\infty}\left(\mathbb{S}^{1}\right)$, todas las multiplicaciones $b(M)$ por funciones $b \in C([-\infty,+\infty])$, todas las multiplicaciones por funciones continuas 2π-periódicas, $\Lambda=\left(1-\Delta_{\mathbb{R} \times \mathbb{S}^{1}}\right)^{-1 / 2}$, donde $\Delta_{\mathbb{R} \times \mathbb{S}^{1}}$ es el operador de Laplace sobre $L^{2}\left(\mathbb{R} \times \mathbb{S}^{1}\right)$, y $\partial_{t} \Lambda, \partial_{x} \Lambda$, para $t \in \mathbb{R}$ y $x \in \mathbb{S}^{1}$. Nosotros calculamos la K-teoria de \mathcal{A} y su cuociente por el ideal de los operadores compactos.

Key words and phrases: K-Theory, pseudodifferential operators.
Math. Subj. Class.: 46L80, $47 G 30$.

1 Introduction

Let \mathbb{B} denote an n-dimensiomal compact Riemannian manifold. Write $\Omega=\mathbb{R} \times \mathbb{B}^{1}$ and let Δ_{Ω} denote its Laplacian. Define \mathcal{A} as the C^{*}-algebra of bounded operators on $L^{2}(\Omega)$ generated by:
(i) all $a\left(M_{x}\right)$, operators of multiplication by $a \in C^{\infty}(\mathbb{B}),\left[a\left(M_{x}\right) f\right](t, x)=a(x) f(t, x)$;
(ii) all $b\left(M_{t}\right)$, operators of multiplication by $b \in C([-\infty,+\infty]),\left[b\left(M_{t}\right) f\right](t, x)=b(t) f(t, x)$;
(iii) every multiplication by 2π-periodic continuous functions;
(iv) $\Lambda=\left(1-\Delta_{\Omega}\right)^{-1 / 2}$;
(v) $\frac{1}{i} \frac{\partial}{\partial t} \Lambda, t \in \mathbb{R}$;
(vi) $L \Lambda$, where L ia a first order differential operator on \mathbb{B}.
\mathcal{A} contains a class of classical pseudodifferential operators, including all $A=L \Lambda^{N}$, where L is a differential operator of order N with coefficients approaching periodic functins at infinity. $A: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is Fredholm if and only if so is $L: H^{N}(\Omega) \rightarrow L^{2}(\Omega)$ and they have the same index.

The structure of \mathcal{A} is given in [4], so we will mention some of those results. The principal symbol extends to a $*$-homomorphism $\sigma: \mathcal{A} \rightarrow C_{b}\left(S^{*} \Omega\right)$, where $C_{b}\left(S^{*} \Omega\right)$ denotes the algebra of continuous funtions on the co-sphere bundle of Ω. Let \mathcal{E} denote the kernel of σ and $\mathcal{K}_{\Omega}:=\mathcal{K}\left(L^{2}(\Omega)\right)$ the ideal of compact operators on $L^{2}(\Omega)$.

Theorem 1. There is a*-isomorphism

$$
\begin{equation*}
\Psi: \frac{\mathcal{E}}{\mathcal{K}_{\Omega}} \longrightarrow C\left(S^{1} \times\{-1,+1\}, \mathcal{K}_{\mathbb{Z} \times \mathbb{B}}\right) \tag{1}
\end{equation*}
$$

In fact, \mathcal{E} is the commutator ideal of \mathcal{A}. Composing the canonical projection $\mathcal{E} \rightarrow \mathcal{E} / \mathcal{K}_{\Omega}$ with Ψ, we can extend the map $\mathcal{E} \rightarrow C\left(S^{1} \times\{-1,+1\}, \mathcal{K}_{\mathbb{Z} \times \mathbb{B}}\right)$ and obtain a $*$-homomorphism $\gamma: \mathcal{A} \rightarrow C\left(S^{1} \times\{-1,+1\}, \mathcal{L}\left(L^{2}(\mathbb{Z} \times \mathbb{B})\right)\right)$.

From now on, we will just work in the case that the manifold \mathbb{B} is the circle \mathbb{S}^{1}. Therefore, the class of generators $L \Lambda$ can be replaced by the operator $\frac{1}{i} \frac{\partial}{\partial \beta} \Lambda, \beta \in \mathbb{S}^{1}$, since \mathbb{S}^{1} has trivial tangent bundle.

Definition 2. Let \mathcal{D} be a C^{*}-algebra and \mathcal{I} its commutator ideal. We call symbol space of \mathcal{D} the compact space M such that we have $\mathcal{D} / \mathcal{I} \cong C(M)$ by the Gelfand map.

With this definition, we observe that the map σ is the composition $\mathcal{A} \rightarrow \mathcal{A} / \mathcal{E} \rightarrow C\left(M_{\mathcal{A}}\right)$, where $M_{\mathcal{A}}$ is the symbol space of \mathcal{A}. Given $A \in \mathcal{A}$, we say that the symbol of A is the continuous function $\sigma_{A} \in C\left(M_{\mathcal{A}}\right)$ associated to the class A in $\mathcal{A} / \mathcal{E}$ by the Gelfand isomorphism.

Theorem 3. The symbol space of \mathcal{A} is the set

$$
\begin{gathered}
\mathbf{M}_{\mathcal{A}}=\left\{\left(t, x,(\tau, \xi), e^{i \theta}\right) ; t \in[-\infty,+\infty], x \in \mathbb{S}^{1},(\tau, \xi) \in \mathbb{R}^{2}: \tau^{2}+\xi^{2}=1\right. \\
\theta \in \mathbb{R} e \theta=t s e|t|<\infty\}
\end{gathered}
$$

and the symbols of the generators (or classes of them) of \mathcal{A} are given below as functions on $\left(t, x,(\tau, \xi), e^{i \theta}\right)$ in the same order that they appear in the definition:

$$
\begin{equation*}
a(x), \quad b(t), \quad e^{i j \theta}, \quad 0, \quad \tau, \quad \xi \tag{2}
\end{equation*}
$$

For each $\varphi \in \mathbb{R}$, let U_{φ} be the operator on $L^{2}\left(S^{1}\right)$ given by $U_{\varphi} f(z)=z^{-\varphi} f(z), z \in S^{1}$, and let $Y_{\varphi}:=F_{d} U_{\varphi} F_{d}^{-1}$, where $F_{d}: L^{2}\left(S^{1}\right) \rightarrow \ell^{2}(\mathbb{Z})$ is the discrete Fourier transform. So, Y_{φ} is an unitary operator such that, for all $k \in \mathbb{Z},\left(Y_{k} u\right)_{j}=u_{j+k}$, and $Y_{\varphi} Y_{\omega}=Y_{\varphi+\omega}$.

Consider the following functions defined on \mathbb{R} and taking values in the algebra of bounded operators on $L^{2}\left(\mathbb{S}^{1}\right)$:

$$
\begin{equation*}
B_{4}(\tau)=\tilde{\Lambda}(\tau), \quad B_{5}(\tau)=-\tau \tilde{\Lambda}(\tau), \quad B_{6}(\tau)=\frac{1}{i} \frac{\partial}{\partial \beta} \tilde{\Lambda}(\tau), \tau \in \mathbb{R}, \beta \in \mathbb{S}^{1} \tag{3}
\end{equation*}
$$

where $\tilde{\Lambda}(\tau)=\left(1+\tau^{2}-\Delta_{\mathbb{S}^{1}}\right)^{-1 / 2}$.
Proposition 4. For each generator A of $\mathcal{A}, \gamma_{A}\left(e^{2 \pi i \varphi}, \pm 1\right)$ is given respectively by:

$$
a\left(M_{x}\right), \quad b(\pm \infty), \quad Y_{-j}, \quad Y_{\varphi} B_{i}\left(\varphi-M_{j}\right) Y_{-\varphi}, i=4,5,6
$$

where $B_{i}\left(\varphi-M_{j}\right) \in \mathcal{L}\left(\ell^{2}\left(\mathbb{Z}, L^{2}\left(\mathbb{S}^{1}\right)\right)\right), i=4,5,6$, are the operators of multiplicaion by the sequences $B_{i}(\varphi-j) \in L^{2}\left(\mathbb{S}^{1}\right)$, and B_{i} 's are given in (3).

In this note, we announce results about the calculus of the K-theory of \mathcal{A}. Their proofs will appear in a forthcoming paper.

$2 \quad \mathrm{C}^{*}$-subalgebras of \mathcal{A}

Now, we define two C^{*}-subalgebras of \mathcal{A} and mention some facts about their structure. With the results mentioned here, we can compute their K-theory in the next section.

Let \mathcal{A}^{\dagger} the C^{*}-algebra of bounded operators on $L^{2}(\Omega)$ generated by the class of operators of multiplication by $a \in C^{\infty}\left(\mathbb{S}^{1}\right), \Lambda, \frac{1}{i} \partial_{t} \Lambda$ and $\frac{1}{i} \partial_{\beta} \Lambda$, and let \mathcal{A}^{\diamond} denote the C^{*}-algebra generated by the same operators of \mathcal{A}^{\dagger} and operators of multiplication by 2π-periodic continuous functions.

Based on Cordes, [1], and Melo, [4], we can prove the following result.
Theorem 5. Let \mathcal{E}^{\dagger} and \mathcal{E}^{\diamond} denote the commutator ideals of \mathcal{A}^{\dagger} and \mathcal{A}^{\diamond}, respectively. Then $\mathcal{E}^{\dagger} \cong C_{0}\left(\mathbb{R}, \mathcal{K}\left(L^{2}\left(\mathbb{S}^{1}\right)\right)\right)$ and $\mathcal{E}^{\diamond} \cong C\left(S^{1}, \mathcal{K}\left(L^{2}\left(\mathbb{Z} \times \mathbb{S}^{1}\right)\right)\right)$.

The $*$-isomorphism $\mathcal{E}^{\diamond} \cong C\left(S^{1}, \mathcal{K}\left(L^{2}\left(\mathbb{Z} \times \mathbb{S}^{1}\right)\right)\right.$) can be extended to a $*$-homomorphism γ^{\prime} : $\mathcal{A}^{\diamond} \rightarrow C\left(S^{1}, \mathcal{L}\left(L^{2}\left(\mathbb{Z} \times \mathbb{S}^{1}\right)\right)\right)$ given by $\gamma_{A}^{\prime}(z)=\gamma_{A}(z, \pm 1)$ for every $A \in \mathcal{A}^{\diamond} \subset \mathcal{A}$.

Knowing these isomorphisms, we are able to describe the symbol spaces of both C^{*}-subalgebras of \mathcal{A}.

Theorem 6. The symbol space of \mathcal{A}^{\dagger} is homeomorphic to $\mathbb{S}^{1} \times S^{1}$ and the symbol space of \mathcal{A}^{\diamond} is homeomorphic to $\mathbb{S}^{1} \times S^{1} \times S^{1}$. Moreover, the symbol of an operator in \mathcal{A}^{\dagger} or \mathcal{A}^{\diamond} coincides with the symbol of same operator regarded as an element of \mathcal{A}.

We can see \mathcal{A}^{\dagger} as a C^{*}-subalgebra of $\mathcal{L}\left(L^{2}\left(\mathbb{R} \times \mathbb{S}^{1}\right)\right)$ as well. So, if we conjugate \mathcal{A}^{\dagger} with $F \otimes I_{\mathbb{S}^{1}}$, where $F: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ is the Fourier transform and $I_{\mathbb{S}^{1}}$ is the identity on $L^{2}\left(\mathbb{S}^{1}\right)$, we obtain an algebra that can be viewed as a subalgebra of $C_{b}\left(\mathbb{R}, \mathcal{L}\left(L^{2}\left(\mathbb{S}^{1}\right)\right)\right)$. Let \mathcal{B}^{\dagger} be this algebra.

The idea is to define an action, and then, to show that that \mathcal{A}^{\diamond} has a crossed product structure. Consider α the following translation-by-one automorphism:

$$
[\alpha(B)](\tau)=B(\tau-1), \tau \in \mathbb{R}, \mathbb{L} \in \mathcal{B}^{\dagger}
$$

Let \mathcal{B}^{\diamond} the algebra \mathcal{A}^{\diamond} conjugated with the Fourier transform. Analogously to [5, Theorem 8], we obtain the next result.

Theorem 7. Let α be as described above. We have:

$$
\mathcal{B}^{\diamond} \cong \mathcal{B}^{\dagger} \rtimes_{\alpha} \mathbb{Z}
$$

where $\mathcal{B}^{\dagger} \rtimes_{\alpha} \mathbb{Z}$ is the envelopping C^{*}-algebra([2], 2.7.7) of the Banach algebra with involution $\ell^{1}\left(\mathbb{Z}, \mathcal{B}^{\dagger}\right)$ of all summable \mathbb{Z}-sequences in \mathcal{B}^{\dagger}, equipped with the product

$$
(\mathbf{A} \cdot \mathbf{B})(n)=\sum_{k \in \mathbb{Z}} A_{k} \alpha^{k}\left(B_{n-k}\right), n \in \mathbb{Z}, \mathbf{A}=\left(A_{k}\right)_{k \in \mathbb{Z}}, \mathbf{B}=\left(B_{k}\right)_{k \in \mathbb{Z}}
$$

and involution $\mathbf{A}^{*}(n)=\alpha^{n}\left(A_{-n}^{*}\right)$.

3 K-Theory

In this section, we compute the K-groups of the algebras that we were defined in this work.
The main idea is to compute the connecting maps in the K-theory six-term exact sequence associated to the C^{*}-algebra short exact sequence induced by the principal symbol

$$
\begin{equation*}
0 \longrightarrow \mathcal{E}=\operatorname{ker} \sigma \xrightarrow{i} \mathcal{A} \xrightarrow{\pi} \frac{\mathcal{A}}{\mathcal{E}} \cong \operatorname{Im} \sigma \longrightarrow 0, \tag{4}
\end{equation*}
$$

where i is the inclusion and π is the canonical projection.
But before we begin the computation involving the largest algebra, we start with \mathcal{A}^{\dagger} and \mathcal{A}^{\diamond} using the same idea as above.

Studying the K-theory six-term exact sequence induced by the sequence

$$
0 \longrightarrow \mathcal{E}^{\dagger} \xrightarrow{i} \mathcal{A}^{\dagger} \xrightarrow{\pi} \frac{\mathcal{A}^{\dagger}}{\mathcal{E}^{\dagger}} \longrightarrow 0
$$

we just obtain partial results about the K-theory of \mathcal{A}^{\dagger}, because we do not have a explicit description of the range of the exponential map.

The same thing happens with the exponential map in the sequence involving \mathcal{A}. To compute the index map $\delta_{1}^{\diamond}: K_{1}\left(\mathcal{A}^{\diamond} / \mathcal{E}^{\diamond}\right) \rightarrow K_{0}\left(\mathcal{E}^{\diamond}\right)$, it was necessary to use the Fedosov index formula [3].
Theorem 8. δ_{1}^{\diamond} is surjective.
From Theorem 7, we have $\mathcal{B}^{\diamond} \cong \mathcal{B}^{\dagger} \rtimes_{\alpha} \mathbb{Z}$. Then the K-groups of \mathcal{B}^{\dagger} and \mathcal{B}^{\diamond} fit in the PimsnerVoiculescu exact sequence, [6, theorem 2.4]:

Now, we have enough information to conclude that

$$
K_{0}\left(\mathcal{A}^{\dagger}\right) \cong \mathbb{Z}, \quad K_{1}\left(\mathcal{A}^{\dagger}\right) \cong \mathbb{Z}^{2}, \quad K_{i}\left(\mathcal{A}^{\diamond}\right) \cong \mathbb{Z}^{3}, \quad i=0,1
$$

The next step is to work with \mathcal{A}. In the begining of this section the sequence induced by the symbol was mentioned. We will rewrite it, quotiented by the ideal of compact operators \mathcal{K}_{Ω} :

$$
\begin{equation*}
0 \longrightarrow \frac{\mathcal{E}}{\mathcal{K}_{\Omega}} \xrightarrow{i} \frac{\mathcal{A}}{\mathcal{K}_{\Omega}} \xrightarrow{\pi} \frac{\mathcal{A}}{\mathcal{E}} \longrightarrow 0 \tag{6}
\end{equation*}
$$

where i is the inclusion and π is the canonical projection.
By the isomorphism (1), we know that $\mathcal{E} / \mathcal{K}_{\Omega}$ can be viewed as two copies of $C\left(S^{1}, \mathcal{K}\left(L^{2}(\mathbb{Z} \times\right.\right.$ $\left.\left.\mathbb{S}^{1}\right)\right)$). Then,

$$
K_{i}\left(\frac{\mathcal{E}}{\mathcal{K}_{\Omega}}\right) \cong \mathbb{Z} \oplus \mathbb{Z}, i=0,1
$$

We know the range of σ by Theorem 3. With the help of [5, Proposition 3], we can state the next result.

Proposition 9. $K_{0}(\mathcal{A} / \mathcal{E}) \cong K_{1}(\mathcal{A} / \mathcal{E}) \cong \mathbb{Z}^{6}$.
From sequence (6), we have:

$$
\begin{array}{ccc}
\mathbb{Z}^{2} \cong K_{0}\left(\mathcal{E} / \mathcal{K}_{\Omega}\right) & \xrightarrow{i_{*}} \quad K_{0}\left(\mathcal{A} / \mathcal{K}_{\Omega}\right) & \xrightarrow{\pi_{*}} \\
\delta_{1} \uparrow & K_{0}(\mathcal{A} / \mathcal{E}) \cong \mathbb{Z}^{6} \tag{7}\\
& \downarrow \delta_{0} \\
\mathbb{Z}^{6} \cong K_{1}(\mathcal{A} / \mathcal{E}) & \stackrel{\pi_{*}}{\longleftarrow} & K_{1}\left(\mathcal{A} / \mathcal{K}_{\Omega}\right) \\
\stackrel{i_{*}}{\longleftarrow} & K_{1}\left(\mathcal{E} / \mathcal{K}_{\Omega}\right) \cong \mathbb{Z}^{2}
\end{array}
$$

The image of δ_{1} is determined the same way as the image of δ_{1}^{\diamond}.
Theorem 10. δ_{1} is surjective.
Corollary 11. $K_{0}\left(\mathcal{A} / \mathcal{K}_{\Omega}\right)$ has no torsion.
Theorem 12. Given the short exact sequence

$$
0 \longrightarrow \mathcal{K}_{\Omega} \xrightarrow{i} \mathcal{A} \xrightarrow{\pi} \frac{\mathcal{A}}{\mathcal{K}_{\Omega}} \longrightarrow 0
$$

where i is the inclusion and π is the canonical projection, the following statements hold:
(i) $\delta_{1}: K_{1}\left(\frac{\mathcal{A}}{\mathcal{K}_{\Omega}}\right) \rightarrow \mathbb{Z}$ is surjective (there exists a matrix of operators in \mathcal{A} with Fredholm index equal to one);
(ii) $K_{0}(\mathcal{A}) \cong K_{0}\left(\mathcal{A} / \mathcal{K}_{\Omega}\right) \cong \mathbb{Z}^{5}$;
(iii) $K_{1}(\mathcal{A}) \cong \mathbb{Z}^{4}$ and $K_{1}\left(\mathcal{A} / \mathcal{K}_{\Omega}\right) \cong \mathbb{Z}^{5}$.

```
Received: December, 2008. Revised: April, 2009.
```


References

[1] Cordes, H.O., On the two-fold symbol chain of a c^{*}-algebra of singular integral operators on a polycylinder, Revista Matemática Iberoamericana, 2(1 y 2):215-234, 1986.
[2] Dixmier, J., C*-algebras, North Holland, New York, 1977.
[3] Fedosov, B.V., Index of an elliptic system on a manifold, Funct. Anal. and its Application, 4(4):312-320, 1970.
[4] Melo, S.T., A comparison algebra on a cylinder with semi-periodic multiplications, Pacific J. Math., 142(2):281-304, 1990.
[5] Melo, S.T. and Silva, C.C., K-theory of pseudodifferential operators with semi-periodic symbols, K-theory, 37:235-248, 2006.
[6] Pimsner, M. and Voiculescu, D., Exact sequences for k-groups and ext-groups of certain cross-product c^{*}-algebras, J. Operator Theory, 4(1):93-118, 1980.

