CUBO A Mathematical Journal
Vol.12, № 01, (181-193). March 2010

On $N(k)$-Contact Metric Manifolds

A.A. Shaikh
Department of Mathematics, University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
email: aask2003@yahoo.co.in
AND
C.S. Bagewadi
Department of Mathematics, Kuvempu University, Jana Sahyadri, Shankaraghatta-577 451, Karnataka, India
email: prof_bagewadi@yahoo.com

Abstract

The object of the present paper is to study a type of contact metric manifolds, called $N(k)$ contact metric manifolds admitting a non-null concircular and torse forming vector field. Among others it is shown that such a manifold is either locally isometric to the Riemannian product $E^{n+1}(0) \times S^{n}(4)$ or a Sasakian manifold. Also it is shown that such a contact metric manifold can be expressed as a warped product $I \times{ }_{e^{p}} \stackrel{*}{M}$, where $(\stackrel{*}{M}, \stackrel{*}{g})$ is a $2 n$-dimensional manifold.

RESUMEN

El objetivo del presente artículo es estudiar un tipo de variedades métricas de contacto, llamadas $N(k)$-variedades métricas de contacto admitiendo un campo de vectores concircular y forma torse. Es demostrado también que tales variedades son o localmente isométricas a productos Riemannianos $E^{n+1}(0) \times S^{n}(4)$ o una variedade Sasakian. Es demostrado que tales variedades métricas de contacto pueden ser expresadas como un producto deformado $I \times{ }_{e^{p}} \stackrel{*}{M}$, donde $(\stackrel{*}{M}, \stackrel{*}{g})$ es una variedad $2 n$-dimensional.

Key words and phrases: Contact metric manifold, k-nullity distribution, $N(k)$-contact metric manifold, concircular vector field, torse forming vector field, η-Einstein, Sasakian manifold, warped product.

Math. Subj. Class.: 53C05, 53C15, 53C25.

1 Introduction

A contact manifold is a smooth $(2 n+1)$-dimensional manifold $M^{2 n+1}$ equipped with a global 1-form η such that $\eta \wedge(d \eta)^{n} \neq 0$ everywhere. Given a contact form η, there exists a unique vector field ξ, called the characteristic vector field of η, satisfying $\eta(\xi)=1$ and $d \eta(X, \xi)=0$ for any vector field X on $M^{2 n+1}$. A Riemannian metric g is said to be associated metric if there exists a tensor field ϕ of type $(1,1)$ such that

$$
\begin{equation*}
\eta(X)=g(X, \xi), d \eta(X, Y)=g(X, \phi Y) \text { and } \phi^{2} X=-X+\eta(X) \xi \tag{1.1}
\end{equation*}
$$

for all vector fields X, Y on $M^{2 n+1}$. Then the structure (ϕ, ξ, η, g) on $M^{2 n+1}$ is called a contact metric structure and the manifold $M^{2 n+1}$ equipped with such a structure is said to be a contact metric manifold [2]. It can be easily seen that in a contact metric manifold, the following relations hold :

$$
\begin{equation*}
\phi \xi=0, \quad \eta \circ \phi=0, \quad g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{1.2}
\end{equation*}
$$

for any vector field X, Y on $M^{2 n+1}$.
Given a contact metric manifold $M^{2 n+1}(\phi, \xi, \eta, g)$ we define a $(1,1)$ tensor field h by $h=\frac{1}{2} £_{\xi} \phi$, where $£$ denotes the operator of Lie differentiation. Then h is symmetric and satisfies

$$
\begin{equation*}
h \xi=0, \quad h \phi=-\phi h, \quad \text { Tr } . h=\operatorname{Tr} . \phi h=0 . \tag{1.3}
\end{equation*}
$$

If ∇ denotes the Riemannian connection of g, then we have the following relation

$$
\begin{equation*}
\nabla_{X} \xi=-\phi X-\phi h X \tag{1.4}
\end{equation*}
$$

A contact metric manifold $M^{2 n+1}(\phi, \xi, \eta, g)$ for which ξ is a Killing vector field is called a K-contact manifold. A contact metric manifold is Sasakian if and only if

$$
\begin{equation*}
R(X, Y) \xi=\eta(Y) X-\eta(X) Y \tag{1.5}
\end{equation*}
$$

where R is the Riemannian curvature tensor of type $(1,3)$.

In 1988, S. Tanno [7] introduced the notion of k-nullity distribution of a contact metric manifold as a distribution such that the characteristic vector field ξ of the contact metric manifold belongs to the distribution. The contact metric manifold with ξ belonging to the k-nullity distribution is called $N(k)$-contact metric manifold and such a manifold is also studied by various
authors. Generalizing this notion in 1995, Blair, Koufogiorgos and Papantoniou [4] introduced the notion of a contact metric manifold with ξ belonging to the (k, μ)-nullity distribution, where k and μ are real constants. In particular, if $\mu=0$, then the notion of (k, μ)-nullity distribution reduces to the notion of k-nullity distribution.

The present paper deals with a study of $N(k)$-contact metric manifolds. The paper is organised as follows. Section 2 is concerned with the discussion of $N(k)$-contact metric manifolds. In section 3 , we obtain a necessary and sufficient condition for a $N(k)$-contact metric manifold to be an η Einstein manifold. Section 4 is devoted to the study of $N(k)$-contact metric manifolds admitting a non-null concircular vector field and it is proved that such a manifold is either locally isometric to the Riemannian product $E^{n+1}(0) \times S^{n}(4)$ or a Sasakian manifold. The last section deals with a study of $N(k)$-contact metric manifolds admitting a non-null torse forming vector field and it is shown that such a torse forming vector field reduces to a unit proper concircular vector field. Hence a $N(k)$-contact metric manifold admits a proper concircular vector field, namely, the characteristic vector field ξ, and it is proved that a $N(k)$-contact metric manifold is a subprojective manifold in the sense of Kagan [1]. Finally it is shown that a $N(k)$-contact metric manifold can be expressed as a warped product $I \times{ }_{e^{p}} \stackrel{*}{M}$, where $(\stackrel{*}{M}, \stackrel{*}{g})$ is a $2 n$-dimensional manifold.

$2 N(k)$-Contact Metric Manifolds

Let us consider a contact metric manifold $M^{2 n+1}(\phi, \xi, \eta, g)$. The k-nullity distribution [7] of a Riemainnian manifold (M, g) for a real number k is a distribution

$$
N(k): p \rightarrow N_{p}(k)=\left\{Z \in T_{p} M: R(X, Y) Z=k[g(Y, Z) X-g(X, Z) Y]\right\}
$$

for any $X, Y \in T_{p} M$. Hence if the characteristic vector field ξ of a contact metric manifold belongs to the k-nullity distribution, then we have

$$
\begin{equation*}
R(X, Y) \xi=k[\eta(Y) X-\eta(X) Y] \tag{2.1}
\end{equation*}
$$

Thus a contact metric manifold $M^{2 n+1}(\phi, \xi, \eta, g)$ satisfying the relation (2.1) is called a $N(k)$ contact metric manifold. From (1.5) and (2.1) it follows that a $N(k)$-contact metric manifold is a Sasakian manifold if and only if $k=1$. Also in a $N(k)$-contact metric manifold, k is always a constant such that $k \leq 1$ [7].

The (k, μ)-nullity distribution of a contact metric manifold $M^{2 n+1}(\phi, \xi, \eta, g)$ is a distribution [4]

$$
\begin{aligned}
N(k, \mu): p \rightarrow N_{p}(k, \mu)= & {\left[Z \in T_{p} M: R(X, Y) Z=k\{g(Y, Z) X-g(X, Z) Y\}\right.} \\
& +\mu\{g(Y, Z) h X-g(X, Z) h Y\}]
\end{aligned}
$$

for any $\mathrm{X}, \mathrm{Y} \in T_{p} M$, where k, μ are real constants. Hence if the characteristic vector field ξ belongs to the (k, μ)-nullity distribution, then we have

$$
\begin{equation*}
R(X, Y) \xi=k\{\eta(Y) X-\eta(X) Y\}+\mu\{\eta(Y) h X-\eta(X) h Y\} \tag{2.2}
\end{equation*}
$$

A contact metric manifold $M^{2 n+1}(\phi, \xi, \eta, g)$ satisfying the relation (2.2) is called a $N(k, \mu)$-contact metric manifold or simply a (k, μ)-contact metric manifold. In particular, if $\mu=0$, then the relation (2.2) reduces to (2.1) and hence a $N(k)$-contact metric manifold is a $N(k, 0)$-contact metric manifold.

Let $M^{2 n+1}(\phi, \xi, \eta, g)$ be a $N(k)$-contact metric manifold. Then the following relations hold ([5], [7]):

$$
\begin{gather*}
Q \phi-\phi Q=4(n-1) h \phi, \tag{2.3}\\
h^{2}=(k-1) \phi^{2}, \quad k \leq 1, \tag{2.4}\\
Q \xi=2 n k \xi, \tag{2.5}\\
R(\xi, X) Y=k[g(X, Y) \xi-\eta(Y) X], \tag{2.6}
\end{gather*}
$$

where Q is the Ricci operator, i.e., $g(Q X, Y)=S(X, Y), S$ being the Ricci tensor of type (0 , $2)$. In view of (1.1)-(1.2), it follows from (2.3)- (2.6) that in a $N(k)$-contact metric manifold, the following relations hold:

$$
\begin{gather*}
\operatorname{Tr} . h^{2}=2 n(1-k) \tag{2.7}\\
S(X, \phi Y)+S(\phi X, Y)=2(2 n-2) g(\phi X, h Y) \tag{2.8}\\
S(\phi X, \phi Y)=S(X, Y)-2 n k \eta(X) \eta(Y)-2(2 n-2) g(h X, Y) \tag{2.9}\\
Q \phi+\phi Q=2 \phi Q+2(2 n-2) h \phi \tag{2.10}\\
\eta(R(X, Y) Z)=k[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)] \tag{2.11}\\
S(\phi X, \xi)=0 \tag{2.12}
\end{gather*}
$$

for any vector field X, Y on $M^{2 n+1}$. Also in a $N(k)$-contact metric manifold the scalar curvature r is given by ([4], [5])

$$
\begin{equation*}
r=2 n(2 n-2+k) \tag{2.13}
\end{equation*}
$$

We now state a result as a lemma which will be used later on.
Lemma 2.1. [3] Let $M^{2 n+1}(\phi, \xi, \eta, g)$ be a contact metric manifold with $R(X, Y) \xi=0$ for all vector fields X, Y. Then the manifold is locally isometric to the Riemannian product $E^{n+1}(0) \times S^{n}(4)$.

$3 \quad \eta$-Einstein $N(k)$-Contact Metric Manifolds

Definition 3.1. A $N(k)$-contact metric manifold $M^{2 n+1}$ is said to be η-Einstein if its Ricci tensor S of type (0, 2) is of the form

$$
\begin{equation*}
S=a g+b \eta \otimes \eta \tag{3.1}
\end{equation*}
$$

where a, b are smooth functions on $M^{2 n+1}$.

From (3.1) it follows that

$$
\begin{equation*}
\text { (i) } r=(2 n+1) a+b, \quad \text { (ii) } 2 n k=a+b \text {, } \tag{3.2}
\end{equation*}
$$

which yields by virtue of (2.13) that $a=2 n-2$ and $b=2 n(k-1)+2$. Obviously a and b are constants as k is a constant. Hence by virtue of (3.1) we can state the following:

Proposition 3.1 In an η-Einstein $N(k)$-contact metric manifold $M^{2 n+1}(\phi, \xi, \eta, g)(n>1)$, the Ricci tensor is of the form

$$
\begin{equation*}
S=(2 n-2) g+\{2 n(k-1)+2\} \eta \otimes \eta . \tag{3.3}
\end{equation*}
$$

Let $M^{2 n+1}(\phi, \xi, \eta, g)(n>1)$ be a $N(k)$-contact metric manifold. Now we have

$$
(R(X, Y) \cdot S)(U, V)=-S(R(X, Y) U, V)-S(U, R(X, Y) V)
$$

which implies that

$$
\begin{equation*}
(R(X, \xi) \cdot S)(U, V)=-S(R(X, \xi) U, V)-S(U, R(X, \xi) V) \tag{3.4}
\end{equation*}
$$

First we suppose that a $N(k)$-contact metric manifold is an η-Einstein manifold. Then we have

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y) \tag{3.5}
\end{equation*}
$$

where a and b are given by $a=2 n-2$ and $b=2 n(k-1)+2$. Using (3.5), (2.5) and (2.6) in (3.4) we obtain

$$
\begin{align*}
(R(X, \xi) \cdot S)(U, V)= & k[(2 n k-a) g(X, U) \eta(V)+g(X, V) \eta(U) \tag{3.6}\\
& -2 b \eta(X) \eta(U) \eta(V)]
\end{align*}
$$

From (3.2)(ii) it follows that

$$
\begin{equation*}
b=2 n k-a . \tag{3.7}
\end{equation*}
$$

In view of (3.7), (3.6) reduces to

$$
\begin{align*}
(R(X, \xi) \cdot S)(U, V)= & k b[g(X, U) \eta(V)+g(X, V) \eta(U) \tag{3.8}\\
& -2 \eta(X) \eta(U) \eta(V)]
\end{align*}
$$

Putting $V=\xi$ in (3.8) we obtain

$$
\begin{equation*}
(R(X, \xi) \cdot S)(U, \xi)=k\{2 n(k-1)+2\}[g(X, U)-\eta(X) \eta(U)] \tag{3.9}
\end{equation*}
$$

Hence we can state the following:
Theorem 3.1. If a $N(k)$-contact metric manifold $M^{2 n+1}(\phi, \xi, \eta, g)(n>1)$ is η-Einstein, then the relation (3.9) holds.

Next, we suppose that in a $N(k)$-contact metric manifold $M^{2 n+1}(n>1)$ the relation (3.9) holds. Then using (2.5) and (2.6) in (3.4) we get

$$
\begin{equation*}
(R(X, \xi) \cdot S)(U, \xi)=k[2 n k g(X, U)-S(X, U)] \tag{3.10}
\end{equation*}
$$

By virtue of (3.9) and (3.10) we obtain

$$
k[S(X, U)-(2 n-2) g(X, U)-\{2 n(k-1)+2\} \eta(X) \eta(U)]=0
$$

This implies either $k=0$,

$$
\begin{equation*}
\text { or, } \quad S(X, U)=(2 n-2) g(X, U)+\{2 n(k-1)+2\} \eta(X) \eta(U) \text {. } \tag{3.11}
\end{equation*}
$$

If $k=0$, then from (2.1) we have

$$
R(X, Y) \xi=0 \quad \text { for all } X, Y
$$

Hence by Lemma 2.1, it follows that the manifold is locally isometric to the Riemannian product $E^{n+1}(0) \times S^{n}(4)$. Again (3.11) implies that the manifold is η-Einstein. Hence we can state the following:

Theorem 3.2. If in a $N(k)$-contact metric manifold $M^{2 n+1}(\phi, \xi, \eta, g)(n>1)$ the relation (3.9) holds, then either the manifold is locally isometric to the Riemannian product $E^{n+1}(0) \times S^{n}(4)$ or the manifold is η-Einstein.

Combining Theorem 3.1 and Theorem 3.2 we can state the following:
Theorem 3.3. A $N(k)$-contact metric manifold $M^{2 n+1}(\phi, \xi, \eta, g)(n>1)(k \neq 0)$ is an η-Einstein manifold if and only if the relation (3.9) holds.

$4 N(k)$-Contact Metric Manifolds Admitting a Non-null Concircular Vector Field

Definition 4.1. A vector field V on a Riemannian manifold is said to be concircular vector field [6] if it satisfies an equation of the form

$$
\begin{equation*}
\nabla_{X} V=\rho X \quad \text { for all } X \tag{4.1}
\end{equation*}
$$

where ρ is a scalar.

We suppose that a $N(k)$-contact metric manifold $M^{2 n+1}(\phi, \xi, \eta, g)(n>1)$ admits a non-null concircular vector field. Then we have (4.1). Differentiating (4.1) covariantly we get

$$
\begin{equation*}
\nabla_{Y} \nabla_{X} V=\rho \nabla_{Y} X+d \rho(Y) X \tag{4.2}
\end{equation*}
$$

From (4.2) it follows that (since the torsion tensor $T(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]=0$)

$$
\begin{equation*}
\nabla_{Y} \nabla_{X} V-\nabla_{X} \nabla_{Y} V-\nabla_{[X, Y]} V=d \rho(X) Y-d \rho(Y) X \tag{4.3}
\end{equation*}
$$

Hence by Ricci identity we obtain from (4.3)

$$
\begin{equation*}
R(X, Y) V=d \rho(X) Y-d \rho(Y) X \tag{4.4}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\tilde{R}(X, Y, V, Z)=d \rho(X) g(Y, Z)-d \rho(Y) g(X, Z) \tag{4.5}
\end{equation*}
$$

where $\tilde{R}(X, Y, V, Z)=g(R(X, Y) V, Z)$.
Replacing Z by ξ in (4.5) we get

$$
\begin{equation*}
\eta(R(X, Y) V)=d \rho(X) \eta(Y)-d \rho(Y) \eta(X) \tag{4.6}
\end{equation*}
$$

Again from (2.11) we have

$$
\begin{equation*}
\eta(R(X, Y) V)=k[g(Y, V) \eta(X)-g(X, V) \eta(Y)] . \tag{4.7}
\end{equation*}
$$

By virtue of (4.6) and (4.7) we have

$$
\begin{equation*}
d \rho(X) \eta(Y)-d \rho(Y) \eta(X)=k[g(Y, V) \eta(X)-g(X, V) \eta(Y)] \tag{4.8}
\end{equation*}
$$

Putting $X=\phi X$ and $Y=\xi$ in (4.8), and then using (1.2) we get

$$
\begin{equation*}
d \rho(\phi X)=-k g(\phi X, V) \tag{4.9}
\end{equation*}
$$

Substituting X by ϕX in (4.9), we obtain by virtue of (1.1) that

$$
\begin{equation*}
d \rho(X)-d \rho(\xi) \eta(X)=k[g(X, V)-\eta(X) \eta(V)] \tag{4.10}
\end{equation*}
$$

Now we have $g(X, V) \neq 0$ for all X. For, if $g(X, V)=0$ for all X, then $g(V, V)=0$ which means that V is a null vector field, contradicts to our assumption. Hence multiplying both sides of (4.10) by $g(X, V)$ we have

$$
\begin{equation*}
d \rho(X) g(X, V)-d \rho(\xi) g(X, V) \eta(X)=k g(X, V)[g(X, V)-\eta(X) \eta(V)] \tag{4.11}
\end{equation*}
$$

Also from (4.5) we get for $Z=V($ since $\tilde{R}(X, Y, V, V)=0)$

$$
\begin{equation*}
d \rho(X) g(Y, V)=d \rho(Y) g(X, V) \tag{4.12}
\end{equation*}
$$

Putting $Y=\xi$ in (4.12) and then using (1.1) we obtain

$$
\begin{equation*}
d \rho(X) \eta(V)=d \rho(\xi) g(X, V) \tag{4.13}
\end{equation*}
$$

Since $\eta(X) \neq 0$ for all X, multiplying both sides of (4.13) by $\eta(X)$, we have

$$
\begin{equation*}
d \rho(X) \eta(X) \eta(V)=d \rho(\xi) \eta(X) g(X, V) \tag{4.14}
\end{equation*}
$$

By virtue of (4.11) and (4.14) we get

$$
\begin{equation*}
[d \rho(X)-k g(X, V)][g(X, V)-\eta(X) \eta(V)]=0 \tag{4.15}
\end{equation*}
$$

Hence it follows from (4.15) that

$$
\begin{equation*}
\text { either } \quad d \rho(X)=k g(X, V) \quad \text { for all } X \tag{4.16}
\end{equation*}
$$

$$
\begin{equation*}
\text { or, } g(X, V)-\eta(X) \eta(V)=0 \quad \text { for all } X \tag{4.17}
\end{equation*}
$$

First we consider the case of (4.16). By virtue of (4.16) we obtain from (4.5) that

$$
\begin{equation*}
\tilde{R}(X, Y, V, Z)=k[-g(Y, V) g(X, Z)+g(X, V) g(Y, Z)] \tag{4.18}
\end{equation*}
$$

Let $\left\{e_{i}: i=1,2, \ldots .2 n+1\right\}$ be an orthonormal basis of the tangent space at any point of the manifold. Then putting $X=Z=e_{i}$ in (4.18) and taking summation over $i, 1 \leq i \leq 2 n+1$, we get

$$
\begin{equation*}
S(Y, V)=-2 n k g(Y, V) \tag{4.19}
\end{equation*}
$$

Now

$$
\begin{equation*}
\left(\nabla_{Z} S\right)(Y, V)=\nabla_{Z} S(Y, V)-S\left(\nabla_{Z} Y, V\right)-S\left(Y, \nabla_{Z} V\right) \tag{4.20}
\end{equation*}
$$

Using (4.1) and (4.19) in (4.20) we obtain

$$
\begin{equation*}
\left(\nabla_{Z} S\right)(Y, V)=\rho[-2 n k g(Y, Z)+S(Y, Z)] \tag{4.21}
\end{equation*}
$$

Setting $Y=Z=e_{i}$ in (4.21) and then taking summation over $1 \leq i \leq 2 n+1$, we get

$$
\begin{equation*}
\frac{1}{2} d r(V)=\rho[-2 n k(2 n+1)+r] \tag{4.22}
\end{equation*}
$$

where r denotes the scalar curvature of the manifold. Since in a $N(k)$-contact metric manifold $M^{2 n+1}(\phi, \xi, \eta, g)(n>1) k$ is a constant, by virtue of (2.13) it follows that r is constant and hence (4.22) yields (since $r \neq 2 n k(2 n+1)) \rho=0$, which implies by virtue of (4.4) that $R(X, Y) V=0$ for all X and Y. This yields $S(Y, V)=0$, which implies by virtue of (4.19) that $k=0$. If $k=0$ then from (2.1) we have $R(X, Y) \xi=0$ for all X and Y and hence by Lemma 2.1, it follows that the manifold is locally isometric to the Riemannian product $E^{n+1}(0) \times S^{n}(4)$.

Next we consider the case (4.17). Differentiating (4.17) covariantly along Z, we get

$$
\begin{equation*}
\left(\nabla_{Z} \eta\right)(X) \eta(V)+\left(\nabla_{Z} \eta\right)(V) \eta(X)=\left(\nabla_{Z} g\right)(X, V)=0 \tag{4.23}
\end{equation*}
$$

Now we have

$$
\begin{align*}
\left(\nabla_{X} \eta\right)(Y)= & \nabla_{X} \eta(Y)-\eta\left(\nabla_{X} Y\right) \\
& =\nabla_{X} g(Y, \xi)-g\left(\nabla_{X} Y, \xi\right) \\
& =\left(\nabla_{X} g\right)(Y, \xi)+g\left(Y, \nabla_{X} \xi\right) \tag{4.24}
\end{align*}
$$

That is, $\quad\left(\nabla_{X} \eta\right)(Y)=g\left(Y, \nabla_{X} \xi\right)$.
By virtue of (4.24) we get from (4.23) that

$$
\begin{equation*}
\eta(V) g\left(X, \nabla_{Z} \xi\right)+\eta(X) g\left(V, \nabla_{Z} \xi\right)=0 \tag{4.25}
\end{equation*}
$$

In view of (1.4), (4.25) yields

$$
\begin{equation*}
[g(X, \phi Z)+g(X, \phi h Z)] \eta(V)+[g(V, \phi Z)+g(V, \phi h Z)] \eta(X)=0 \tag{4.26}
\end{equation*}
$$

Putting $X=\xi$ in (4.26) we get

$$
\begin{equation*}
g(X, \phi Z)+g(V, \phi h Z)=0 \tag{4.27}
\end{equation*}
$$

Substituting Z by ϕZ in (4.27), we obtain by virtue of (1.1), $h \phi=-\phi h$ and $h \xi=0$ that

$$
\begin{equation*}
-g(V, Z)+\eta(V) \eta(Z)+g(V, h Z)=0 \tag{4.28}
\end{equation*}
$$

Using (4.17) in (4.28) we get

$$
g(V, h Z)=0 \quad \text { for all } Z
$$

Since h is symmetric, the above relation implies that $g(h V, Z)=0$ for all Z, which gives us $h V=0$. But since V is non-null, by our assumption, we must have $h=0$ and hence from (2.4) it follows that $k=1$. Therefore the manifold is Sasakian. Hence summing up all the cases we can state the following:

Theorem 4.1. If a $N(k)$-contact metric manifold $M^{2 n+1}(\phi, \xi, \eta, g)(n>1)$ admits a non-null concircular vector field, then either the manifold is locally isometric to the Riemannian product $E^{n+1}(0) \times S^{n}(4)$ or the manifold is Sasakian.

$5 \quad N(k)$-Contact Metric Manifolds Admitting a Non-null Torse Forming Vector Field

Definition 5.1. A vector field V on a Riemannian manifold is said to be torse forming vector field ([6], [8]) if the 1-form $\omega(X)=g(X, V)$ satisfies the equation of the form

$$
\begin{equation*}
\left(\nabla_{X} \omega\right) Y=\rho g(X, Y)+\pi(X) \omega(Y) \tag{5.1}
\end{equation*}
$$

where ρ is a non-vanishing scalar and π is a non-zero 1-form given by $\pi(X)=g(X, P)$.

If the 1 -form π is closed, then the vector field V is called a proper concircular vector field. In particular if the the 1-form π is zero, then the vector field V reduces to a concircular vector field.

Let us consider a $N(k)$-contact metric manifold $M^{2 n+1}(\phi, \xi, \eta, g)(n>1)$ admitting a unit torse forming vector field U corresponding to the non-null torse forming vector field V. Hence if $T(X)=g(X, U)$, then we have

$$
\begin{equation*}
T(X)=\frac{\omega(X)}{\sqrt{\omega(X)}} \tag{5.2}
\end{equation*}
$$

By virtue of (5.2), it follows from (5.1) that

$$
\begin{equation*}
\left(\nabla_{X} T\right)(Y)=\beta g(X, Y)+\pi(X) T(Y) \tag{5.3}
\end{equation*}
$$

where $\beta=\frac{\alpha}{\sqrt{\omega(V)}}$ is a non-zero scalar. Since U is a unit vector field, substituting Y by U in (5.3) yields

$$
\pi(X)=-\beta T(X)
$$

and hence (5.3) reduces to the following

$$
\begin{equation*}
\left(\nabla_{X} T\right)(Y)=\beta[g(X, Y)+T(X) T(Y)] \tag{5.4}
\end{equation*}
$$

The relation (5.4) implies that the 1-form T is closed. Differentiating (5.4) covariantly we obtain by virtue of Ricci identity that

$$
\begin{align*}
-T(R(X, Y) Z)= & (X \beta)[g(Y, Z)+T(Y) T(Z)]-(Y \beta)[g(X, Z)+T(X) T(Z)] \tag{5.5}\\
& +\beta^{2}[g(Y, Z) T(X)+g(X, Z) T(Y)]
\end{align*}
$$

Setting $Z=\xi$ in (5.5) and then using (2.1) we get

$$
\begin{align*}
& (X \beta)[\eta(Y)+T(Y) \eta(U)]-(Y \beta)[\eta(X)+T(X) \eta(U)] \tag{5.6}\\
& +\left(k+\beta^{2}\right)[g(Y, Z) T(X)+g(X, Z) T(Y)]=0
\end{align*}
$$

Putting $X=U$ in (5.6) we obtain

$$
\left[k+\beta^{2}+(U \beta)\right][\eta(Y)-\eta(U) T(Y)]=0
$$

which implies that

$$
\begin{align*}
& \text { either }\left[k+\beta^{2}+(U \beta)\right]=0 \tag{5.7}\\
& \text { or, } \eta(Y)-\eta(U) T(Y)=0 \tag{5.8}
\end{align*}
$$

We first consider the case of (5.7). From (5.5) it follows that

$$
\begin{equation*}
S(Y, U)=\left[2 n \beta^{2}+(U \beta)\right] T(Y)-(2 n-1)(Y \beta) \tag{5.9}
\end{equation*}
$$

which yields for $Y=\xi$ that

$$
\begin{equation*}
(\xi \beta)=(U \beta) \eta(U) \tag{5.10}
\end{equation*}
$$

Again, setting $Y=\xi$ in (5.6) we obtain by virtue of (5.10) that

$$
\begin{equation*}
\left[1-(\eta(U))^{2}\right]\left[(X \beta)-\left(k+\beta^{2}\right) T(X)\right]=0 \tag{5.11}
\end{equation*}
$$

In this case $\eta(Y)-\eta(U) T(Y) \neq 0$ for all Y and hence $1-(\eta(U))^{2} \neq 0$. Consequently, (5.11) gives us

$$
\begin{equation*}
(X \beta)=\left(k+\beta^{2}\right) T(X) \tag{5.12}
\end{equation*}
$$

Again, from $\pi(X)=-\beta T(X)$ it follows that

$$
\begin{equation*}
Y \pi(X)=-[(Y \beta) T(X)+\beta(Y T(X))] \tag{5.13}
\end{equation*}
$$

In view of (5.13) we obtain

$$
d \pi(X, Y)=-\beta d T(X, Y)
$$

Since T is closed, π is also closed and hence the vector field V is a proper concircular vector field in this case.

Next, we consider the case of (5.8). The relation (5.8) implies that

$$
(\eta(U))^{2}=1
$$

and hence $\eta(U)= \pm 1$. Consequently (5.8) reduces to

$$
\begin{equation*}
\eta(Y)= \pm T(Y) \tag{5.14}
\end{equation*}
$$

Differentiating (5.14) covariantly along X, we obtain by virtue of (5.14) that

$$
\begin{equation*}
\left(\nabla_{X} \eta\right)(Y)= \pm \beta[g(X, Y)-\eta(X) \eta(Y)] \tag{5.15}
\end{equation*}
$$

which yields by virtue of (1.4) that

$$
\begin{equation*}
g(X+h X, \phi Y)= \pm \beta[g(X, Y)-\eta(X) \eta(Y)] \tag{5.16}
\end{equation*}
$$

Replacing Y by ϕY in (5.16) and then using (1.2) we get

$$
\begin{equation*}
-g(X, Y)-g(h X, Y)+\eta(X) \eta(Y)= \pm \beta g(X, \phi Y) \tag{5.17}
\end{equation*}
$$

Again setting $X=h X$ in (5.17) we obtain by virtue of (1.1) and (2.4) that

$$
\begin{equation*}
-g(h X, Y)+(k-1)[g(X, Y)-\eta(X) \eta(Y)]= \pm \beta g(h X, \phi Y) \tag{5.18}
\end{equation*}
$$

Putting $X=Y=e_{i}$ in (5.18) and then taking summation over $1 \leq i \leq 2 n+1$ we get by virtue of (1.3) that

$$
\begin{equation*}
k=1 \tag{5.19}
\end{equation*}
$$

and hence the manifold is Sasakian.

Let us now suppose that the manifold is non-Sasakian. Then $k<1$ [4]. Hence from (5.17) and (5.18) it follows that

$$
\begin{equation*}
\left(k-\beta^{2}\right)[g(X, Y)-\eta(X) \eta(Y)]=\mp 2 \beta g(X, \phi Y) \tag{5.20}
\end{equation*}
$$

which yields by contraction $k= \pm \beta^{2}$. Since $\beta \neq 0$, it follows that $(X \beta)=0$ for any X and hence β is constant. Consequently we obtain $\pi(X)=-\beta T(X)$ where β is constant, it follows that the 1-form π is also closed and hence the vector field V is a proper concircular vector field. Considering all the cases we can state the following:

Theorem 5.1. In a $N(k)$-contact metric manifold $M^{2 n+1}(\phi, \xi, \eta, g)(n>1)$, a non-null torse forming vector field is a proper concircular vector field.

From (1.4) and (5.4) it follows that in a $N(k)$-contact metric manifold the characteristic vector field ξ is a unit torse forming vector field and hence by virtue of Theorem 5.1, we can state the following:

Theorem 5.2. A $N(k)$-contact metric manifold $M^{2 n+1}(\phi, \xi, \eta, g)(n>1)$ admits a proper concircular vector field.

Again, it is known that if a Riemannian manifold admits a proper concircular vector field, then the manifold is a subprojective manifold in the sense of Kagan ([1]). Since a $N(k)$-contact metric manifold admits a concircular vector field, namely, the vector field ξ, in view of the known result we can state the following:

Theorem 5.3. A $N(k)$ - contact metric manifold $M^{2 n+1}(\phi, \xi, \eta, g)(n>1)$ is a subprojective manifold in the sense of Kagan.

By virtue of Theorem 5.2 and Theorem 4.1 we can state the following:
Theorem 5.4. $A N(k)$-contact metric manifold $M^{2 n+1}(\phi, \xi, \eta, g)(n>1)$ is either locally isometric to the Riemannian product $E^{n+1}(0) \times S^{n}(4)$ or a Sasakian manifold.
K. Yano [8] proved that if a Riemannian manifold $M^{2 n+1}$ admits a concircular vector field, it is necessary and sufficient that there exists a coordinate system with respect to which the fundamental quadratic differential form may be written as

$$
\begin{equation*}
d s^{2}=\left(d x^{1}\right)^{2}+e^{p} \stackrel{*}{g}_{\lambda \mu} d x^{\lambda} d x^{\mu} \tag{5.21}
\end{equation*}
$$

where $\stackrel{*}{g}_{\lambda \mu}=\stackrel{*}{g}{ }_{\lambda \mu}\left(x^{\nu}\right)$ are the function of x^{ν} only $(\lambda, \mu, \nu=2,3, \ldots \ldots, 2 n)$ and $p=p\left(x^{1}\right) \neq$ constant, is a function of x^{1} only. Since a $N(k)$-contact metric manifold admits a proper concircular vector field, namely, the characteristic vector field ξ, by virtue of the above it follows that there exists a coordinate system with respect to which the fundamental quadratic differential form can be written as (5.21). Consequently the manifold can be expressed as a warped product $I \times{ }_{e^{p}} \stackrel{*}{M}$, where $(\stackrel{*}{M}, \stackrel{*}{g})$ is a $2 n$-dimensional manifold. Hence we can state the following:

Theorem 5.5. A $N(k)$-contact metric manifold $M^{2 n+1}(\phi, \xi, \eta, g)(n>1)$ can be expressed as a warped product $I \times{ }_{e^{p}} \stackrel{*}{M}$, where $(\stackrel{*}{M}, \stackrel{*}{g})$ is a $2 n$-dimensional manifold.

```
Received: July, 2008. Revised: January, 2009.
```


References

[1] Adati, T., On Subprojective spaces III, Tohoku Math. J., 3(1951), 343-358.
[2] Blair, D.E., Contact manifolds in Riemannian geometry, Lecture Notes in Math., 509, Springer-Verlag, 1976.
[3] Blair, D.E., Two remarks on contact metric structure, Tohoku Math. J., 29(1977), 319-324.
[4] Blair, D.E., Koufogiorgos, T. and Papantoniou, B.J., Contact metric manifolds satisfying a nullity condition, Israel J. of Math., 19(1995), 189-214.
[5] Shaikh, A.A. and Baishya, K.K., On (k, μ)-contact metric manifolds, J. Diff. Geom. and Dyn. Sys., 11(1906), 253-261.
[6] Schouten, J.A., Ricci Calculas (Second Edition), Springer-Verlag, 1954, 322.
[7] Tanno, S., Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J., 40(1988), 441-448.
[8] Yano, K., On the torse forming direction in Riemannian spaces, Proc. Imp. Acad. Tokyo, 20(1940), 340-345.
[9] Yano, K., Concircular geometry I-IV, Proc. Imp. Acad. Tokyo, 16(1940), 195-200, 354-350.

