Weakly Picard Pairs of Multifunctions

Valeriu Popa
Department of Mathematics, University of Bacău, Str. Spiru Haret nr. 8, 600114 Bacău, Romania
email: vpopa@ub.ro

Abstract

The purpose of this paper is to present a general answer for the following problem: Let (X, d) be a metric space and $T_{1}, T_{2}: X \rightarrow P(X)$ two multifunctions. Determine the metric conditions which imply that (T_{1}, T_{2}) is a weakly Picard pair of multifunctions and T_{1}, T_{2} are weakly Picard multifunctions, for multifunctions satisfying an implicit contractive condition, generalizing some results from [6] and [7].

RESUMEN

Abstract

El proposito de este artículo es presentar una respuesta general para el siguiente problema: Sea (X, d) un espacio métrico $y T_{1}, T_{2}: X \rightarrow P(X)$ dos multifunciones. Determine los condiciones metricas para las cuales $\left(T_{1}, T_{2}\right)$ sea un par de multifunciones de Picard debil y T_{1}, T_{2} sean multifunciones satisfaziendo una condición contractiva implícita, generalizando algunos resultados de [6] y [7].

Key words and phrases: Multifunction, fixed point, implicit relation, weakly Picard multifunction, weakly Picard pair of multifunctions.

Math. Subj. Class.: 47H10, 54 H25.

1 Introduction and Preliminaries

Let X be a nonempty set. We denote $\mathrm{P}(\mathrm{X})$ the set of all nonempty subsets of X , i.e. $P(X)=\{Y$: $\Phi \neq Y \subset X\}$. Let $T: X \rightarrow P(X)$ a multifunction. We denote by F_{T} the set of fixed points of T, i.e. $F_{T}=\{x \in X: x \in T(x)\}$.

Let (X,d) be a metric space. We denote by $\operatorname{Pcl}(\mathrm{X})$ the set of all nonempty and closed sets of X .
We also recall the functional
$D: P(X) \times P(X) \rightarrow R_{+}$, defined by
$D(A, B)=\inf \{d(a, b): a \in A, b \in B\}$ for each $A, B \in P(X)$ and generalized Hansdorff-Pompeiu metric
$H: P(X) \times P(X) \rightarrow R_{+} \cup\{+\infty\}$ defined by
$H(A, B)=\max \{\sup [D(a, B), a \in A], \sup [D(A, b), b \in B]\}$ for $A, B \in P(X)$.
The following property of H is well-known.
Lemma 1.1. Let (X,d) be a metric space, $A, B \in P(X)$ and $q>1$. Then for every $a \in A$, there exists $b \in B$ such that $d(a, b) \leq q H(A, B)$.

Definition 1.1. Let (X, d) be a metric space and $T:(X, d) \rightarrow P(X)$ a multifunction. We say that T is a weakly Picard multifunction [3],[4] if for each $x \in X$ and for every $y \in T(x)$, there exists a sequence $\left(x_{n}\right)_{n \in N}$ such that:
(i) $x_{0}=x, x_{1}=y$;
(ii) $x_{n+1} \in T\left(x_{n}\right)$, for each $n \in N^{*}$;
(iii) the sequence $\left(x_{n}\right)_{n \in N}$ is convergent and its limit is a fixed point of T .

Definition 1.2. Let (X, d) be a metric space and $T_{1}, T_{2}: X \rightarrow P(X)$ two multifunctions. We say that $\left(T_{1}, T_{2}\right)$ is a weakly Picard pair of multifunctions if for each $x \in X$ and for every $y \in$ $T_{1}(x) \cup T_{2}(x)$, there exists a sequence $\left(x_{n}\right)_{n \in N}$ such that
(i) $x_{0}=x, x_{1}=y$;
(ii) $x_{2 n+1} \in T_{i}\left(x_{2 n}\right)$ and $x_{2 n+2} \in T_{j}\left(x_{2 n+1}\right)$, for $n \in N$, where $i, j \in\{1,2\}, i \neq j$;
(iii) the sequence $\left(x_{n}\right)_{n \in N}$ is convergent and its limit is a common fixed point of T_{1} and T_{2}.

Problem 1.1 [4]. Let (X,d) be a metric space and $T_{1}, T_{2}:(X, d) \rightarrow P(X)$ two multifunctions. Determine the metric conditions which implies $\left(T_{1}, T_{2}\right)$ is a weakly Picard pair of multifunctions and T_{1}, T_{2} are weakly Picard multifunctions.
Partial answers to Problem 1.1. was established by Sintămărian in [4]-[7].
In [1] and [2] is introduced the study of fixed point for mappings satisfying implicit relations.
The purpose of this paper is to prove two general fixed points theorems for multifunctions which satisfy a new type of implicit contractive relation which generalize some results from [6], [7].

2 Implicit Relations

Let \mathcal{F} be the set of all continuous multifunctions $F\left(t_{1}, \ldots, t_{6}\right): R_{+}^{6} \rightarrow R$ satisfying the following conditions:
$\left(F_{1}\right): \mathrm{F}$ is increasing in variable t_{1} and nonincreasing in variables t_{3}, \ldots, t_{6};
$\left(F_{2}\right)$: there exists $k>1, h \in[0,1)$ and $g \geq 0$ such that for every $u \geq 0, v \geq 0, w \geq 0$, such that $\left(F_{a}\right): u \leq k t$ and $F(t, v, v+w, u+w, u+v+w, w) \leq 0$, or $\left(F_{b}\right): u \leq k t$ and $F(t, v, u+w, v+w, w, u+v+w) \leq 0$ implies $u \leq h v+g w$.

Example 2.1. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-a t_{2}-b\left(t_{3}+t_{4}\right)-c\left(t_{5}+t_{6}\right)$, when $0<a+2 b+2 c<1$.
$\left(F_{1}\right)$: Obviously.
$\left(F_{2}\right): F(t, v, v+w, u+w, u+v+w, w)=t-a v-b(u+v+2 w)-c(u+v+2 w) \leq 0$, where $1<k<\frac{1}{a+2 b+2 c}$.
Then $u \leq k t \leq k[a v+b(u+v+2 w)+c(u+v+2 w)]$. Hence $u \leq h v+g w$, where $0<h=\frac{k(a+b+c)}{1-k(b+c)}<0$ and $g=\frac{2 k(b+c)}{1-k(b+c)} \geq 0$
Similarly, $F(t, v, u+w, w+v, w, u+v+w \leq 0$ implies $u \leq h v+g w$.
Remark 2.1. If $a+4 b+4 c<1$ and $1<k<\frac{1}{a+4 b+4 c}$ then $h+g<1$.
Example 2.2. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-\max \left\{t_{2}, t_{3}, t_{4}, \frac{1}{2}\left(t_{5}+t_{6}\right)\right\}$ where $0<m<\frac{1}{2}$.
(F_{1}): Obviously.
$\left(F_{2}\right)$: Let $u \geq 0, v \geq 0, w \geq 0,1<k<\frac{1}{2 m}$ and
$F(t, v, v+w, u+w, u+v+w, w)=t-\operatorname{maxax}\left\{v, u+w, u+v, \frac{1}{2}(u+v+2 w)\right\} \leq 0$
which implies $t \leq m(u+v+w)$.
Then $u \leq k t \leq k m(u+v+w)$. Hence, $u \leq h v+g w$ where $0<h=\frac{k m}{1-k m}<1$ and $g=\frac{k m}{1-k m} \geq 0$.
Similarly, $F(t, v, u+w, v+w, w, u+v+w) \leq 0$ implies $u \leq h v+g w$.

Remark 2.2. If $0<m<\frac{1}{3}$ and $1<k<\frac{1}{3 m}$ then $h+g<1$.
Example 2.3. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}^{2}-\operatorname{mmax}\left\{t_{2}^{2}, t_{3} t_{4}, t_{5} t_{6}\right\}$, where $0 \leq m<\frac{1}{4}$.
$\left(F_{1}\right)$: Obviously.
$\left(F_{2}\right)$: Let $u \geq 0, v \geq 0, w \geq 0,1<k<\frac{1}{2 \sqrt{m}}$ and
$F(t, v, v+w, u+w, u+v+w, w)=t^{2}-\operatorname{maxax}\left\{v^{2},(v+w)(u+w), w(u+v+w)\right) \leq 0$
which implies $t^{2} \leq m(u+v+w)^{2}$ and $t \leq \sqrt{m}(u+v+w)$. Then $u \leq k t \leq k \sqrt{m}(u+v+w)$. Hence, $u \leq h v+g w$, where $0 \leq h \leq \frac{k \sqrt{m}}{1=k \sqrt{m}}<1$ and $g=\frac{k \sqrt{m}}{1=k \sqrt{m}} \geq 0$.
Similarly, $F(t, v, u+w, v+w, w, u+v+w) \leq 0$ implies $u \leq h v+g w$.
Remark 2.3. If $o \leq m<\frac{1}{9}$ and $1<k<\frac{1}{3 \sqrt{m}}$ then $h+g<1$.
Example 2.4. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}^{3}+t_{2}^{2}+\frac{1}{1+t_{5}+t_{6}}-m\left(t_{2}^{2}+t_{3}^{2}+t_{4}^{2}\right)$, where $0<m<\frac{1}{12}$.
$\left(F_{1}\right)$: Obviously.
$\left(F_{2}\right):$ Let $u \geq 0, v \geq 0, w \geq 0$ and $1<k<\frac{1}{2 \sqrt{m}}$ and
$F(t, v, v+w, u+w, u+v+w, w)=t^{3}+t^{2}+\frac{t}{1+u+v+w}-m\left(v^{2}+(v+w)^{2}+(u+w)^{2}\right) \leq 0$
which implies
$t^{2} \leq m\left(v^{2}+(u+v)^{2}+(u+w)^{2}\right) \leq 3 m(u+v+w)^{2}$ and $t \leq \sqrt{3 m}(u+v+w)$. If $u \leq k t \leq$ $k \sqrt{3} m(u+v+w)$ then $u \leq h v+g w$, where $0 \leq h=\frac{k \sqrt{3} m}{1-k \sqrt{3} m}<1$ and $g=\frac{k \sqrt{3} m}{1-k \sqrt{3} m} \geq 0$.
Similarly, $F(t, v, u+w, v+w, w, u+v+w) \leq 0$ implies $u \leq h v+g w$.

Remark 2.4. If $0<m<\frac{1}{27}$ and $1<k<\frac{1}{3 \sqrt{3} m}$ then $h+g<1$.

3 Main Results

Theorem 3.1. Let $T_{1}, T_{2}:(X, d) \rightarrow \operatorname{Pcl}(X)$ be two multifunctions. If the inequality (1) $\Phi\left(H\left(T_{1}(x), T_{2}(y)\right), d(x, y), D\left(x, T_{1}(x)\right), d\left(y, T_{2}(y)\right), D\left(x, T_{2}(y)\right), D\left(y, T_{1}(x)\right) \leq 0\right.$ holds for all $x, y \in X$, where $F \in \mathcal{F}$ and $F_{T_{1}} \neq \Phi$ or $F_{T_{2}} \neq \Phi$, then $F_{T_{1}}=F_{T_{2}}$.

Proof. Let $u \in F_{T_{1}}$, then $u \in T_{1}(u)$ and by (1) we have
$\Phi\left(H\left(T_{1}(u), T_{2}(u)\right), d(u, u), d\left(u, T_{1}(u)\right), D\left(u, T_{2}(u)\right), D\left(u, T_{2}(u)\right), D\left(u, T_{1}(u)\right) \leq 0\right.$
By $D\left(u, T_{2}(u)\right) \leq H\left(T_{1}(u), T_{2}(u)\right)$ it follows that $\Phi\left(D\left(u, T_{2}(u)\right), 0,0, D\left(u, T_{2}(u)\right), D\left(u, T_{2}(u)\right), 0\right) \leq 0$
Since $D\left(u, T_{2}(u)\right) \leq k D\left(u, T_{2}(u)\right)$ by $\left(F_{a}\right)$ we have that $D\left(u, T_{2}(u)\right)=0$. Since $T_{2}(u)$ is closed we obtain $u \in T_{2}(u)$ i.e. $u \in F_{T_{2}}$ and $F_{T_{1}} \subset F_{T_{2}}$. Similarly, by $\left(F_{b}\right)$ we obtain $F_{T_{2}} \subset F_{T_{1}}$. Similarly, if $u \in F_{T_{2}}$, then $F_{T_{1}}=F_{T_{2}}$.

Theorem 3.2. Let (X, d) be a complete metric space and $T_{1}, T_{2}:(X, d) \rightarrow \operatorname{Pcl}(X)$ two multifunctions. If (1) holds for all $x, y \in X$, where $F \in \mathcal{F}$, then T_{1} and T_{2} have a common fixed point and $F_{T_{1}}=F_{T_{2}} \in \operatorname{Pcl}(X)$.
Proof. Let $x_{0} \in X$ and $x_{1} \in T_{1}\left(x_{0}\right)$. Then there exists $x_{2} \in T_{2}\left(x_{1}\right)$ so that

$$
d\left(x_{1}, x_{2}\right) \leq k H\left(T_{1}\left(x_{0}\right), T_{2}\left(x_{1}\right)\right)
$$

Suppose that $x_{2}, x_{3}, \ldots, x_{2 n-1}, x_{2 n}, \ldots$ such that $x_{2 n-1} \in T_{1} x_{2 n-2}, x_{2 n} \in T_{2} x_{2 n-1}, n \in N^{*}$ and
(2) $d\left(x_{2 n-1}, x_{2 n}\right) \leq k H\left(T_{1}\left(x_{2 n-2}\right), T_{2}\left(x_{2 n-1}\right)\right)$,
(3) $d\left(x_{2 n-2}, x_{2 n-1}\right) \leq k H\left(T_{1}\left(x_{2 n-2}\right), T_{2}\left(x_{2 n-3}\right)\right)$.

By (1) we have successively
$\Phi\left(H\left(T_{1}\left(x_{2 n-2}\right), T_{2}\left(x_{2 n-1}\right)\right), d\left(x_{2 n-2}, x_{2 n-1}\right), D\left(x_{2 n-2}, T_{1}\left(x_{2 n-2}\right)\right)\right.$,
$D\left(x_{2 n-1}, T_{2}\left(x_{2 n-1}\right)\right), D\left(x_{2 n-2}, T_{2}\left(x_{2 n-1}\right)\right), D\left(x_{2 n-1}, T_{1}\left(x_{2 n-2}\right)\right) \leq 0$
$\Phi\left(H\left(T_{1}\left(x_{2 n-2}\right), T_{2}\left(x_{2 n-1}\right)\right), d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-1}, x_{2 n-2}\right)\right.$,
$\left.d\left(x_{2 n-1}, x_{2 n}\right), d\left(x_{2 n-2}, x_{2 n}\right), 0\right) \leq 0$
(4) $\Phi\left(H\left(T_{1}\left(x_{2 n-2}\right), T_{2}\left(x_{2 n-1}\right)\right), d\left(x_{2 n-2}, x_{2 n-1}\right), d\left(x_{2 n-2}, x_{2 n-1}\right)\right.$,
$\left.d\left(x_{2 n-1}, x_{2 n}\right), d\left(x_{2 n-2}, x_{2 n-1}\right)+d\left(x_{2 n-1}, x_{2 n}\right), 0\right) \leq 0$
Since $\Phi \in \mathcal{F}$ then by (2),(4) and $\left(F_{a}\right)$ we obtain
(5) $d\left(x_{2 n-1}, x_{2 n}\right) \leq h d\left(x_{2 n-2}, x_{2 n-1}\right)$

Similarly, by (3) and (F_{b}) we obtain
(6) $d\left(x_{2 n-2}, x_{2 n-1}\right) \leq h d\left(x_{2 n-2}, x_{2 n-3}\right)$

Then by a rutine calculation one can show that $\left(x_{n}\right)_{n \in N}$ is a Cauchy sequence and since (X, d) is complete we have $\lim x_{n}=x$ for some $x \in X$.
Now, if $n \in N^{*}$, (1) implies
$\Phi\left(H\left(T_{1}(x), T_{2}\left(x_{2 n-1}\right)\right), d\left(x, x_{2 n-1}\right), D\left(x, T_{1}(x)\right), D\left(x_{2 n-1}, T_{2}\left(x_{2 n-1}\right)\right), D\left(x, T_{2}\left(x_{2 n-1}\right)\right)\right.$,
$D\left(x_{2 n-1}, T_{1} x\right) \leq 0$
As $D\left(x_{2 n}, T_{1}(x)\right) \leq H\left(T_{2}\left(x_{2 n-1}\right), T_{1}(x)\right)$ we have
$\Phi\left(D\left(x_{2 n}, T_{1}(x)\right), d\left(x, x_{2 n-1}\right), D\left(x, T_{1}(x)\right), d\left(x_{2 n-1}, x_{2 n}\right), d\left(x, x_{2 n}\right), D\left(x_{2 n-1}, T_{1}(x)\right) \leq 0\right.$
Letting n tend to infinity we obtain
$\Phi\left(D\left(x, T_{1}(x)\right), 0, D\left(x, T_{1}(x)\right), 0,0, D\left(x, T_{1}(x)\right) \leq 0\right.$
Since $D\left(x, T_{1}(x)\right) \leq k D\left(x, T_{1}(x)\right)$ by $\left(F_{b}\right)$ we obtain $D\left(x, T_{1}(x)\right)=0$. Since $T_{1}(x)$ is closed, $x \in T_{1}(x)$. Hence $x \in F_{T_{1}}$. By Theorem 3.1 $F_{T_{1}}=F_{T_{2}}$.
Let us prove that $F_{T_{1}}=F_{T_{2}} \in \operatorname{Pcl}(X)$. For this purpose that $y_{n} \in F_{T_{1}}=F_{T_{2}}$ for each $n \in N$ such that $y_{n} \rightarrow y^{*}$ as $n \rightarrow \infty$. For example $y_{n} \in T_{1}\left(y_{n}\right)$.
Then by Lemma 1.1 there exists $v_{n} \in T_{2} y^{*}$ such that
(7) $d\left(y_{n}, v_{n}\right) \leq k H\left(T_{1}\left(y_{n}\right), T_{2}\left(y^{*}\right)\right)$.

By (1) and $\left(F_{1}\right)$ we have successively
$\Phi\left(H\left(T_{1}\left(y_{n}\right), T_{2}\left(y^{*}\right)\right), d\left(y_{n}, y^{*}\right), D\left(y_{n}, T_{1}\left(y_{n}\right)\right), D\left(y^{*}, T_{2}\left(y^{*}\right)\right)\right.$,
$D\left(y_{n}, T_{2}\left(y^{*}\right)\right), D\left(y^{*}, T_{1}\left(y_{n}\right)\right) \leq 0$
$\Phi\left(H\left(T_{1}\left(y_{n}\right), T_{2}\left(y^{*}\right)\right), d\left(y_{n}, y^{*}\right), 0, d\left(y^{*}, v_{n}\right), d\left(y_{n}, v_{n}\right), d\left(y^{*}, y_{n}\right)\right) \leq 0$
(8) $\Phi\left(H\left(T_{1}\left(y_{n}\right), T_{2}\left(y^{*}\right)\right), d\left(y_{n}, y^{*}\right), d\left(y_{n}, y^{*}\right)+d\left(y_{n}, y^{*}\right), d\left(y^{*}, y_{n}\right)+d\left(y_{n}, v_{n}\right), d\left(y_{n}, v_{n}\right)+d\left(y_{n}, y^{*}\right)+\right.$ $\left.d\left(y_{n}, y^{*}\right), d\left(y_{n}, y^{*}\right)\right) \leq 0$
Since $\Phi \in \mathcal{F}$ by (7) and (8) it follows that

$$
d\left(y_{n}, v_{n}\right) \leq h d\left(y_{n}, y^{*}\right)+g d\left(y^{*}, y_{n}\right)
$$

Using the triangle inequality we obtain
$d\left(y^{*}, v_{n}\right) \leq d\left(y^{*}, y_{n}\right)+d\left(y_{n}, v_{n}\right) \leq(1+h+g) d\left(y^{*}, y_{n}\right)$
Letting n tend to infinity we obtain that $\lim v_{n}=y^{*}$. Since $v_{n} \in T_{2}\left(y^{*}\right)$, for each $n \in N^{*}$ and $T_{2}\left(y^{*}\right)$ is closed, it follows that $y^{*} \in T_{2}\left(y^{*}\right)$, hence $y^{*} \in F_{T_{2}}=F_{T_{1}}$ and $F_{T_{1}}$ is closed.
Therefore, $F_{T_{1}}=F_{T_{2}} \in \operatorname{Pcl}(X)$.
Theorem 3.3. Let (X, d) be a complete metric space and $T_{1}, T_{2}:(X, d) \rightarrow \operatorname{Pcl}(X)$. If (1) holds for all $x, y \in X$, where $\Phi \in \mathcal{F}$, then $F_{T_{1}}=F_{T_{2}} \in \operatorname{Pcl}(X)$ and $\left(T_{1}, T_{2}\right)$ is a weakly Picard pair of multifunctions. If in adition we have that $h+g<1$, then T_{1} and T_{2} are weakly Picard multifunctions.

Proof. The first part it follows from Theorem 3.2.
Let $x_{0} \in X$ and $x_{1} \in T_{1}\left(x_{0}\right)$. There exists $y_{1} \in T_{2}\left(x_{1}\right)$ such that
(9) $d\left(x_{1}, y_{1}\right) \leq k H\left(T_{1}\left(x_{0}\right), T_{2}\left(x_{1}\right)\right)$

By (1) and (F_{1}) we have successively
$\Phi\left(H\left(T_{1}\left(x_{0}\right), T_{2}\left(x_{1}\right)\right), d\left(x_{0}, x_{1}\right), D\left(x_{0}, T_{1}\left(x_{0}\right)\right), D\left(x_{1}, T_{2}\left(x_{1}\right)\right), D\left(x_{0}, T_{2}\left(x_{1}\right)\right), D\left(x_{1}, T_{1}\left(x_{0}\right)\right) \leq 0\right.$
$\Phi\left(H\left(T_{1}\left(x_{0}\right), T_{2}\left(x_{1}\right)\right), d\left(x_{0}, x_{1}\right), d\left(x_{0}, x_{1}\right), d\left(x_{1}, y_{1}\right), d\left(x_{0}, y_{1}\right), 0\right) \leq 0$
(10) $\Phi\left(H\left(T_{1}\left(x_{0}\right), T_{2}\left(x_{1}\right)\right), d\left(x_{0}, x_{1}\right), d\left(x_{0}, x_{1}\right), d\left(x_{1}, y_{1}\right), d\left(x_{0}, x_{1}\right)+d\left(x_{1}, y_{1}\right), 0\right) \leq 0$

Since $\Phi \in \mathcal{F}$ by (9) and (10) it follows that

$$
d\left(x_{1}, y_{1}\right) \leq h d\left(x_{0}, x_{1}\right)
$$

Also, there exists $x_{2} \in T_{1}\left(x_{1}\right)$ such that
(11) $d\left(x_{2}, y_{1}\right) \leq k H\left(T_{1}\left(x_{1}\right), T_{2}\left(x_{1}\right)\right)$

By (1) we have successively
$\Phi\left(H\left(T_{1}\left(x_{1}\right), T_{2}\left(x_{1}\right)\right), 0, D\left(x_{1}, T_{1}\left(x_{1}\right)\right), D\left(x_{1}, T_{2}\left(x_{1}\right)\right), D\left(x_{1}, T_{2}\left(x_{1}\right)\right), D\left(x_{1}, T_{1}\left(x_{1}\right)\right) \leq 0\right.$
$\Phi\left(H\left(T_{1}\left(x_{1}\right), T_{2}\left(x_{1}\right)\right), 0, d\left(x_{1}, x_{2}\right), d\left(x_{1}, y_{1}\right), d\left(x_{1}, y_{1}\right), d\left(x_{1}, x_{2}\right)\right) \leq 0$
(12) $\Phi\left(H\left(T_{1}\left(x_{1}\right), T_{2}\left(x_{1}\right)\right), 0, d\left(x_{1}, x_{2}\right), d\left(x_{1}, x_{2}\right)+d\left(x_{2}, y_{1}\right), d\left(x_{1}, x_{2}\right)+d\left(x_{2}, y_{1}\right), d\left(x_{1}, x_{2}\right)\right) \leq 0$

Since $\Phi \in \mathcal{F}$ by (11) and (12) it follows that

$$
d\left(y_{1}, x_{2}\right) \leq g d\left(x_{1}, x_{2}\right)
$$

Using the triangle inequality we have
$d\left(x_{1}, x_{2}\right) \leq d\left(x_{1}, y_{1}\right)+d\left(y_{1}, x_{2}\right) \leq h d\left(x_{0}, x_{1}\right)+g d\left(x_{1}, x_{2}\right)$
which implies that

$$
d\left(x_{1}, x_{2}\right) \leq \frac{h}{1-g} d\left(x_{0}, x_{1}\right)
$$

Now, there exists $y_{2} \in T_{2}\left(x_{2}\right)$ such that
(13) $d\left(x_{2}, y_{2}\right) \leq k H\left(T_{1}\left(x_{1}\right), T_{2}\left(x_{2}\right)\right)$

By (1) we have successively
$\Phi\left(H\left(T_{1}\left(x_{1}\right), T_{2}\left(x_{2}\right)\right), d\left(x_{1}, x_{2}\right), D\left(x_{1}, T_{1}\left(x_{1}\right)\right), D\left(x_{2}, T_{2}\left(x_{2}\right)\right), D\left(x_{1}, T_{2}\left(x_{2}\right)\right), D\left(x_{2}, T_{1}\left(x_{1}\right)\right) \leq 0\right.$
$\Phi\left(H\left(T_{1}\left(x_{1}\right), T_{2}\left(x_{2}\right)\right), d\left(x_{1}, x_{2}\right), d\left(x_{1}, x_{2}\right), d\left(x_{2}, y_{2}\right), d\left(x_{1}, y_{2}\right), 0\right) \leq 0$
(14) $\Phi\left(H\left(T_{1}\left(x_{1}\right), T_{2}\left(x_{2}\right)\right), d\left(x_{1}, x_{2}\right), d\left(x_{1}, x_{2}\right), d\left(x_{2}, y_{2}\right), d\left(x_{1}, x_{2}\right)+d\left(x_{2}, y_{2}\right), 0\right) \leq 0$

Since $\Phi \in \mathcal{F}$ by (13) and (14) it follows that

$$
d\left(x_{2}, y_{2}\right) \leq h d\left(x_{1}, x_{2}\right)
$$

Also, there exists $x_{3} \in T_{1}\left(x_{2}\right)$ such that
(15) $d\left(x_{3}, y_{2}\right) \leq k H\left(T_{1}\left(x_{2}\right), T_{2}\left(x_{2}\right)\right)$

By (1) we have successively
$\Phi\left(H\left(T_{1}\left(x_{2}\right), T_{2}\left(x_{2}\right)\right), 0, D\left(x_{2}, T_{1}\left(x_{2}\right)\right), D\left(x_{2}, T_{2}\left(x_{2}\right)\right), D\left(x_{2}, T_{2}\left(x_{2}\right)\right), D\left(x_{2}, T_{1}\left(x_{2}\right)\right) \leq 0\right.$
$\Phi\left(H\left(T_{1}\left(x_{2}\right), T_{2}\left(x_{2}\right)\right), 0, d\left(x_{2}, x_{3}\right), d\left(x_{2}, y_{2}\right), d\left(x_{2}, y_{2}\right), d\left(x_{2}, x_{3}\right)\right) \leq 0$
(16) $\Phi\left(H\left(T_{1}\left(x_{2}\right), T_{2}\left(x_{2}\right)\right), 0, d\left(x_{2}, x_{3}\right), d\left(x_{2}, x_{3}\right)+d\left(x_{3} y_{2}\right), d\left(x_{2}, x_{3}\right)+d\left(x_{3}, y_{2}\right), d\left(x_{2}, x_{3}\right)\right) \leq 0$

Since $\Phi \in \mathcal{F}$ by (15) and (16) it follows that

$$
d\left(x_{3}, y_{2}\right) \leq g d\left(x_{2}, x_{3}\right)
$$

Using again the triangle inequality we obtain
$d\left(x_{2}, x_{3}\right) \leq d\left(x_{2}, y_{2}\right)+d\left(y_{2}, x_{3}\right) \leq h d\left(x_{1}, x_{2}\right)+g d\left(x_{2}, x_{3}\right)$
and so

$$
d\left(x_{2}, x_{3}\right) \leq \frac{h}{1-g} d\left(x_{1}, x_{2}\right)
$$

By induction we obtain that there exists a sequence $\left(x_{n}\right)_{n \in N}$ starting from x_{0}, x_{1} with $x_{n+1} \in$ $T_{1}\left(x_{n}\right)$ such that

$$
d\left(x_{n}, x_{n+1}\right) \leq \frac{h}{1-g} d\left(x_{n-1}, x_{n}\right)
$$

for each $n \in N^{*}$. Since $\frac{h}{1-g}<1$ it follows that $\left(x_{n}\right)_{n \in N}$ is a convergent sequence, because (X,d) is a complete metric space. Let $x^{*}=\lim x_{n}$.
By (1) we have
$\left.\Phi\left(T_{1}\left(x_{n}\right), T_{2}\left(x^{*}\right)\right), d\left(x^{*}, x_{n}\right), D\left(x_{n}, T_{1}\left(x_{n}\right)\right), D\left(x^{*}, T_{2}\left(x^{*}\right)\right), D\left(x_{n}, T_{2}\left(x^{*}\right)\right), D\left(x^{*}, T_{1}\left(x_{n}\right)\right)\right) \leq 0$
Since $D\left(x_{n+1}, T_{2}\left(x^{*}\right)\right) \leq H\left(T_{1}\left(x_{n}\right), T_{2}\left(x^{*}\right)\right.$ we obtain
$\left.\left.\Phi\left(D\left(x_{2 n+1}\right), T_{2}\left(x^{*}\right)\right), d\left(x^{*}, x_{n}\right), d\left(x_{n}, x_{n+1}\right), D\left(x^{*}, T_{2}\left(x^{*}\right)\right), D\left(x_{n}, T_{2}\left(x^{*}\right)\right), D\left(x^{*}, x_{n+1}\right)\right)\right) \leq 0$
Letting n tend to infinity we obtain
$\Phi\left(D\left(x^{*}, T_{2}\left(x^{*}\right)\right), 0,0, D\left(x^{*}, T_{2}\left(x^{*}\right)\right), D\left(x^{*}, T_{2}\left(x^{*}\right)\right), 0\right) \leq 0$
Since $D\left(x^{*}, T_{2}\left(x^{*}\right)\right) \leq k D\left(x^{*}, T_{2}\left(x^{*}\right)\right)$ and $\Phi \in \mathcal{F}$ we obtain $D\left(x^{*}, T_{2}\left(x^{*}\right)\right)=0$ and since $T_{2}\left(x^{*}\right)$ is closed we have that $x^{*} \in T_{2}\left(x^{*}\right)$ and $x^{*} \in F_{T_{2}}=F_{T_{1}}$.
Hence T_{1} is a weakly Picard multifunction. The fact that T_{2} is a weakly Picard multifunction is similar proved.
Remark 3.1. By Theorems 2 and 3 and Ex. 2.1 we obtain generalizations of the results from Theorem 2.1 [6] and Theorem 2.1 [7].
By Ex. 2.2-2.4 we obtain new results.

Received: May, 2008. Revised: October, 2009.

References

[1] Popa, V., Some fixed point theorems for contractive mappings, Stud.Cerc.St.Ser. Mat. Univ. Bacău, 7(1997), 127-133.
[2] Popa, V., Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Math., 32(1999), 156-163.
[3] Rus, I.A., Petruşel, A. and Sintămărian, A., Data dependence of the fixed points set of multivalued weakly Picard operators, Studia Univ. "Babeş Bolyai", Mathematica, 46(2)(2001), 111-121.
[4] Sintămărian, A., Weakly Picard pairs of multivalued operators, Mathematica, 45(2)(2003), 195-204.
[5] SintĂmărian, A., Weakly Picard pairs of some multivalued operators, Mathematical Communications, 8(2003), 49-53.
[6] SintĂmăRian, A., Pairs of multivalued operators, Nonlinear Analysis Forum, 10(1)(2005), 55-67.
[7] Sintămărian, A., Some pairs of multivalued operators, Carpathian J. of Math. 21,1-2(2005), 115-125.

