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ABSTRACT

The purpose of this paper is to present a general answer for the following problem:
Let (X, d) be a metric space and T1, T2 : X → P (X) two multifunctions. Determine the metric
conditions which imply that (T1, T2) is a weakly Picard pair of multifunctions and T1, T2 are
weakly Picard multifunctions , for multifunctions satisfying an implicit contractive condition,
generalizing some results from [6] and [7].

RESUMEN

El proposito de este artículo es presentar una respuesta general para el siguiente problema:
Sea (X, d) un espacio métrico y T1, T2 : X → P (X) dos multifunciones. Determine los condi-
ciones metricas para las cuales (T1, T2) sea un par de multifunciones de Picard debil y T1, T2

sean multifunciones satisfaziendo una condición contractiva implícita, generalizando algunos
resultados de [6] y [7].
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1 Introduction and Preliminaries

Let X be a nonempty set. We denote P(X) the set of all nonempty subsets of X, i.e. P (X) = {Y :

Φ 6= Y ⊂ X} . Let T : X → P (X) a multifunction. We denote by FT the set of fixed points of T,

i.e. FT = {x ∈ X : x ∈ T (x)}.
Let (X,d) be a metric space. We denote by Pcl(X) the set of all nonempty and closed sets of X.

We also recall the functional

D : P (X) × P (X) → R+, defined by

D(A, B) = inf{d(a, b) : a ∈ A, b ∈ B} for each A, B ∈ P (X) and generalized Hansdorff-Pompeiu

metric

H : P (X) × P (X) → R+ ∪ {+∞} defined by

H(A, B) = max {sup[D(a, B), a ∈ A], sup[D(A, b), b ∈ B]} for A, B ∈ P (X).

The following property of H is well-known.

Lemma 1.1. Let (X,d) be a metric space, A, B ∈ P (X) and q > 1. Then for every a ∈ A, there

exists b ∈ B such that d(a, b) ≤ qH(A, B).

Definition 1.1. Let (X,d) be a metric space and T : (X, d) → P (X) a multifunction. We say that

T is a weakly Picard multifunction [3],[4] if for each x ∈ X and for every y ∈ T (x), there exists a

sequence (xn)n∈N such that:

(i) x0 = x, x1 = y;

(ii) xn+1 ∈ T (xn) , for each n ∈ N∗ ;

(iii) the sequence (xn)n∈N is convergent and its limit is a fixed point of T.

Definition 1.2. Let (X,d) be a metric space and T1, T2 : X → P (X) two multifunctions. We

say that (T1, T2) is a weakly Picard pair of multifunctions if for each x ∈ X and for every y ∈
T1(x) ∪ T2(x), there exists a sequence (xn)n∈N such that

(i) x0 = x, x1 = y;

(ii) x2n+1 ∈ Ti(x2n) and x2n+2 ∈ Tj(x2n+1), for n ∈ N , where i, j ∈ {1, 2}, i 6= j ;

(iii) the sequence (xn)n∈N is convergent and its limit is a common fixed point of T1 and T2.

Problem 1.1 [4]. Let (X,d) be a metric space and T1, T2 : (X, d) → P (X) two multifunctions.

Determine the metric conditions which implies (T1, T2) is a weakly Picard pair of multifunctions

and T1, T2 are weakly Picard multifunctions.

Partial answers to Problem 1.1. was established by Sintămărian in [4]-[7].

In [1] and [2] is introduced the study of fixed point for mappings satisfying implicit relations.

The purpose of this paper is to prove two general fixed points theorems for multifunctions which

satisfy a new type of implicit contractive relation which generalize some results from [6], [7].
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2 Implicit Relations

Let F be the set of all continuous multifunctions F (t1, ..., t6) : R6
+ → R satisfying the following

conditions:

(F1): F is increasing in variable t1 and nonincreasing in variables t3, ..., t6;

(F2): there exists k > 1, h ∈ [0, 1) and g ≥ 0 such that for every u ≥ 0, v ≥ 0, w ≥ 0, such that

(Fa): u ≤ kt and F (t, v, v + w, u + w, u + v + w, w) ≤ 0, or

(Fb): u ≤ kt and F (t, v, u + w, v + w, w, u + v + w) ≤ 0 implies u ≤ hv + gw.

Example 2.1. F (t1, ..., t6) = t1 − at2 − b(t3 + t4) − c(t5 + t6), when 0 < a + 2b + 2c < 1.

(F1): Obviously.

(F2): F (t, v, v + w, u + w, u + v + w, w) = t − av − b(u + v + 2w) − c(u + v + 2w) ≤ 0, where

1 < k < 1
a+2b+2c

.

Then u ≤ kt ≤ k[av+b(u+v+2w)+c(u+v+2w)]. Hence u ≤ hv+gw, where 0 < h = k(a+b+c)
1−k(b+c) < 0

and g = 2k(b+c)
1−k(b+c) ≥ 0

Similarly, F (t, v, u + w, w + v, w, u + v + w ≤ 0 implies u ≤ hv + gw.

Remark 2.1. If a + 4b + 4c < 1 and 1 < k < 1
a+4b+4c

then h + g < 1.

Example 2.2. F (t1, ..., t6) = t1 − mmax{t2, t3, t4, 1
2 (t5 + t6)} where 0 < m < 1

2 .

(F1): Obviously.

(F2): Let u ≥ 0, v ≥ 0, w ≥ 0, 1 < k < 1
2m

and

F (t, v, v + w, u + w, u + v + w, w) = t − mmax{v, u + w, u + v, 1
2 (u + v + 2w)} ≤ 0

which implies t ≤ m(u + v + w).

Then u ≤ kt ≤ km(u + v + w). Hence, u ≤ hv + gw where 0 < h = km
1−km

< 1 and g = km
1−km

≥ 0.

Similarly, F (t, v, u + w, v + w, w, u + v + w) ≤ 0 implies u ≤ hv + gw .

Remark 2.2. If 0 < m < 1
3 and 1 < k < 1

3m
then h + g < 1.

Example 2.3. F (t1, ..., t6) = t21 − mmax{t22, t3t4, t5t6}, where 0 ≤ m < 1
4 .

(F1): Obviously.

(F2): Let u ≥ 0, v ≥ 0, w ≥ 0, 1 < k < 1
2
√

m
and

F (t, v, v + w, u + w, u + v + w, w) = t2 − mmax{v2, (v + w)(u + w), w(u + v + w)) ≤ 0

which implies t2 ≤ m(u+v +w)2 and t ≤ √
m(u+v+w). Then u ≤ kt ≤ k

√
m(u+v+w). Hence,

u ≤ hv + gw, where 0 ≤ h ≤ k
√

m

1=k
√

m
< 1 and g = k

√
m

1=k
√

m
≥ 0.

Similarly, F (t, v, u + w, v + w, w, u + v + w) ≤ 0 implies u ≤ hv + gw.

Remark 2.3. If o ≤ m < 1
9 and 1 < k < 1

3
√

m
then h + g < 1.

Example 2.4. F (t1, ..., t6) = t31 + t22 + 1
1+t5+t6

− m(t22 + t23 + t24), where 0 < m < 1
12 .

(F1): Obviously.

(F2): Let u ≥ 0, v ≥ 0, w ≥ 0 and 1 < k < 1
2
√

m
and

F (t, v, v + w, u + w, u + v + w, w) = t3 + t2 + t
1+u+v+w

− m(v2 + (v + w)2 + (u + w)2) ≤ 0

which implies



62 Valeriu Popa CUBO
12, 1 (2010)

t2 ≤ m(v2 + (u + v)2 + (u + w)2) ≤ 3m(u + v + w)2 and t ≤
√

3m(u + v + w). If u ≤ kt ≤
k
√

3m(u + v + w) then u ≤ hv + gw, where 0 ≤ h = k
√

3m

1−k
√

3m
< 1 and g = k

√
3m

1−k
√

3m
≥ 0.

Similarly, F (t, v, u + w, v + w, w, u + v + w) ≤ 0 implies u ≤ hv + gw.

Remark 2.4. If 0 < m < 1
27 and 1 < k < 1

3
√

3m
then h + g < 1.

3 Main Results

Theorem 3.1. Let T1, T2 : (X, d) → Pcl(X) be two multifunctions. If the inequality

(1) Φ(H(T1(x), T2(y)), d(x, y), D(x, T1(x)), d(y, T2(y)), D(x, T2(y)), D(y, T1(x)) ≤ 0

holds for all x, y ∈ X , where F ∈ F and FT1
6= Φ or FT2

6= Φ, then FT1
= FT2

.

Proof. Let u ∈ FT1
, then u ∈ T1(u) and by (1) we have

Φ(H(T1(u), T2(u)), d(u, u), d(u, T1(u)), D(u, T2(u)), D(u, T2(u)), D(u, T1(u)) ≤ 0

By D(u, T2(u)) ≤ H(T1(u), T2(u)) it follows that

Φ(D(u, T2(u)), 0, 0, D(u, T2(u)), D(u, T2(u)), 0) ≤ 0

Since D(u, T2(u)) ≤ kD(u, T2(u)) by (Fa) we have that D(u, T2(u)) = 0. Since T2(u) is closed we

obtain u ∈ T2(u) i.e. u ∈ FT2
and FT1

⊂ FT2
. Similarly, by (Fb) we obtain FT2

⊂ FT1
. Similarly,

if u ∈ FT2
, then FT1

= FT2
.

Theorem 3.2. Let (X,d) be a complete metric space and T1, T2 : (X, d) → Pcl(X) two multifunc-

tions. If (1) holds for all x, y ∈ X , where F ∈ F , then T1 and T2 have a common fixed point and

FT1
= FT2

∈ Pcl(X).

Proof. Let x0 ∈ X and x1 ∈ T1(x0). Then there exists x2 ∈ T2(x1) so that

d(x1, x2) ≤ kH(T1(x0), T2(x1))

Suppose that x2, x3, ..., x2n−1, x2n, ... such that x2n−1 ∈ T1x2n−2, x2n ∈ T2x2n−1, n ∈ N∗ and

(2) d(x2n−1, x2n) ≤ kH(T1(x2n−2), T2(x2n−1)) ,

(3) d(x2n−2, x2n−1) ≤ kH(T1(x2n−2), T2(x2n−3)) .

By (1) we have successively

Φ(H(T1(x2n−2), T2(x2n−1)), d(x2n−2, x2n−1), D(x2n−2, T1(x2n−2)),

D(x2n−1, T2(x2n−1)), D(x2n−2, T2(x2n−1)), D(x2n−1, T1(x2n−2)) ≤ 0

Φ(H(T1(x2n−2), T2(x2n−1)), d(x2n−2, x2n−1), d(x2n−1, x2n−2),

d(x2n−1, x2n), d(x2n−2, x2n), 0) ≤ 0

(4) Φ(H(T1(x2n−2), T2(x2n−1)), d(x2n−2, x2n−1), d(x2n−2, x2n−1),

d(x2n−1, x2n), d(x2n−2, x2n−1) + d(x2n−1, x2n), 0) ≤ 0

Since Φ ∈ F then by (2),(4) and (Fa) we obtain

(5) d(x2n−1, x2n) ≤ hd(x2n−2, x2n−1)

Similarly, by (3) and (Fb) we obtain

(6) d(x2n−2, x2n−1) ≤ hd(x2n−2, x2n−3)
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Then by a rutine calculation one can show that (xn)n∈N is a Cauchy sequence and since (X,d) is

complete we have limxn = x for some x ∈ X .

Now, if n ∈ N∗, (1) implies

Φ(H(T1(x), T2(x2n−1)), d(x, x2n−1), D(x, T1(x)), D(x2n−1, T2(x2n−1)), D(x, T2(x2n−1)),

D(x2n−1, T1x) ≤ 0

As D(x2n, T1(x)) ≤ H(T2(x2n−1), T1(x)) we have

Φ(D(x2n, T1(x)), d(x, x2n−1), D(x, T1(x)), d(x2n−1, x2n), d(x, x2n), D(x2n−1, T1(x)) ≤ 0

Letting n tend to infinity we obtain

Φ(D(x, T1(x)), 0, D(x, T1(x)), 0, 0, D(x, T1(x)) ≤ 0

Since D(x, T1(x)) ≤ kD(x, T1(x)) by (Fb) we obtain D(x, T1(x)) = 0. Since T1(x) is closed,

x ∈ T1(x). Hence x ∈ FT1
. By Theorem 3.1 FT1

= FT2
.

Let us prove that FT1
= FT2

∈ Pcl(X). For this purpose that yn ∈ FT1
= FT2

for each n ∈ N such

that yn → y∗ as n → ∞. For example yn ∈ T1(yn).

Then by Lemma 1.1 there exists vn ∈ T2y
∗ such that

(7) d(yn, vn) ≤ kH(T1(yn), T2(y
∗)) .

By (1) and (F1) we have successively

Φ(H(T1(yn), T2(y
∗)), d(yn, y∗), D(yn, T1(yn)), D(y∗, T2(y

∗)),

D(yn, T2(y
∗)), D(y∗, T1(yn)) ≤ 0

Φ(H(T1(yn), T2(y
∗)), d(yn, y∗), 0, d(y∗, vn), d(yn, vn), d(y∗, yn)) ≤ 0

(8) Φ(H(T1(yn), T2(y
∗)), d(yn, y∗), d(yn, y∗)+d(yn, y∗), d(y∗, yn)+d(yn, vn), d(yn, vn)+d(yn, y∗)+

d(yn, y∗), d(yn, y∗)) ≤ 0

Since Φ ∈ F by (7) and (8) it follows that

d(yn, vn) ≤ hd(yn, y∗) + gd(y∗, yn)

Using the triangle inequality we obtain

d(y∗, vn) ≤ d(y∗, yn) + d(yn, vn) ≤ (1 + h + g)d(y∗, yn)

Letting n tend to infinity we obtain that limvn = y∗. Since vn ∈ T2(y
∗), for each n ∈ N∗ and

T2(y
∗)is closed, it follows that y∗ ∈ T2(y

∗), hence y∗ ∈ FT2
= FT1

and FT1
is closed.

Therefore, FT1
= FT2

∈ Pcl(X).

Theorem 3.3. Let (X,d) be a complete metric space and T1, T2 : (X, d) → Pcl(X). If (1)

holds for all x, y ∈ X , where Φ ∈ F , then FT1
= FT2

∈ Pcl(X) and (T1, T2) is a weakly Picard

pair of multifunctions. If in adition we have that h + g < 1, then T1 and T2 are weakly Picard

multifunctions.

Proof. The first part it follows from Theorem 3.2.

Let x0 ∈ X and x1 ∈ T1(x0). There exists y1 ∈ T2(x1) such that

(9) d(x1, y1) ≤ kH(T1(x0), T2(x1))

By (1) and (F1) we have successively

Φ(H(T1(x0), T2(x1)), d(x0, x1), D(x0, T1(x0)), D(x1, T2(x1)), D(x0, T2(x1)), D(x1, T1(x0)) ≤ 0

Φ(H(T1(x0), T2(x1)), d(x0, x1), d(x0, x1), d(x1, y1), d(x0, y1), 0) ≤ 0
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(10) Φ(H(T1(x0), T2(x1)), d(x0, x1), d(x0, x1), d(x1, y1), d(x0, x1) + d(x1, y1), 0) ≤ 0

Since Φ ∈ F by (9) and (10) it follows that

d(x1, y1) ≤ hd(x0, x1)

Also, there exists x2 ∈ T1(x1) such that

(11) d(x2, y1) ≤ kH(T1(x1), T2(x1))

By (1) we have successively

Φ(H(T1(x1), T2(x1)), 0, D(x1, T1(x1)), D(x1, T2(x1)), D(x1, T2(x1)), D(x1, T1(x1)) ≤ 0

Φ(H(T1(x1), T2(x1)), 0, d(x1, x2), d(x1, y1), d(x1, y1), d(x1, x2)) ≤ 0

(12) Φ(H(T1(x1), T2(x1)), 0, d(x1, x2), d(x1, x2) + d(x2, y1), d(x1, x2) + d(x2, y1), d(x1, x2)) ≤ 0

Since Φ ∈ F by (11) and (12) it follows that

d(y1, x2) ≤ gd(x1, x2)

Using the triangle inequality we have

d(x1, x2) ≤ d(x1, y1) + d(y1, x2) ≤ hd(x0, x1) + gd(x1, x2)

which implies that

d(x1, x2) ≤ h
1−g

d(x0, x1)

Now, there exists y2 ∈ T2(x2) such that

(13) d(x2, y2) ≤ kH(T1(x1), T2(x2))

By (1) we have successively

Φ(H(T1(x1), T2(x2)), d(x1, x2), D(x1, T1(x1)), D(x2, T2(x2)), D(x1, T2(x2)), D(x2, T1(x1)) ≤ 0

Φ(H(T1(x1), T2(x2)), d(x1, x2), d(x1, x2), d(x2, y2), d(x1, y2), 0) ≤ 0

(14) Φ(H(T1(x1), T2(x2)), d(x1, x2), d(x1, x2), d(x2, y2), d(x1, x2) + d(x2, y2), 0) ≤ 0

Since Φ ∈ F by (13) and (14) it follows that

d(x2, y2) ≤ hd(x1, x2)

Also, there exists x3 ∈ T1(x2) such that

(15) d(x3, y2) ≤ kH(T1(x2), T2(x2))

By (1) we have successively

Φ(H(T1(x2), T2(x2)), 0, D(x2, T1(x2)), D(x2, T2(x2)), D(x2, T2(x2)), D(x2, T1(x2)) ≤ 0

Φ(H(T1(x2), T2(x2)), 0, d(x2, x3), d(x2, y2), d(x2, y2), d(x2, x3)) ≤ 0

(16) Φ(H(T1(x2), T2(x2)), 0, d(x2, x3), d(x2, x3) + d(x3y2), d(x2, x3) + d(x3, y2), d(x2, x3)) ≤ 0

Since Φ ∈ F by (15) and (16) it follows that

d(x3, y2) ≤ gd(x2, x3)

Using again the triangle inequality we obtain

d(x2, x3) ≤ d(x2, y2) + d(y2, x3) ≤ hd(x1, x2) + gd(x2, x3)

and so
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d(x2, x3) ≤ h
1−g

d(x1, x2)

By induction we obtain that there exists a sequence (xn)n∈N starting from x0, x1 with xn+1 ∈
T1(xn) such that

d(xn, xn+1) ≤ h
1−g

d(xn−1, xn)

for each n ∈ N∗. Since h
1−g

< 1 it follows that (xn)n∈N is a convergent sequence, because (X,d) is

a complete metric space. Let x∗ = limxn.

By (1) we have

Φ(T1(xn), T2(x
∗)), d(x∗, xn), D(xn, T1(xn)), D(x∗, T2(x

∗)), D(xn, T2(x
∗)), D(x∗, T1(xn))) ≤ 0

Since D(xn+1, T2(x
∗)) ≤ H(T1(xn), T2(x

∗) we obtain

Φ(D(x2n+1), T2(x
∗)), d(x∗, xn), d(xn, xn+1), D(x∗, T2(x

∗)), D(xn, T2(x
∗)), D(x∗, xn+1))) ≤ 0

Letting n tend to infinity we obtain

Φ(D(x∗, T2(x
∗)), 0, 0, D(x∗, T2(x

∗)), D(x∗, T2(x
∗)), 0) ≤ 0

Since D(x∗, T2(x
∗)) ≤ kD(x∗, T2(x

∗)) and Φ ∈ F we obtain D(x∗, T2(x
∗)) = 0 and since T2(x

∗) is

closed we have that x∗ ∈ T2(x
∗) and x∗ ∈ FT2

= FT1
.

Hence T1 is a weakly Picard multifunction. The fact that T2 is a weakly Picard multifunction is

similar proved.

Remark 3.1. By Theorems 2 and 3 and Ex. 2.1 we obtain generalizations of the results from

Theorem 2.1 [6] and Theorem 2.1 [7].

By Ex. 2.2 -2.4 we obtain new results.

Received: May, 2008. Revised: October, 2009.
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