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ABSTRACT

We reduce the construction of a weak solution of the Cauchy problem for the Navier-Stokes

system to the construction of a stochastic problem solution. Under suitable conditions we

solve the stochastic problem and prove that simultaneously we obtain a weak (generalized)

solution to the Cauchy problem for the Navier-Stokes system.

RESUMEN

Nosotros reducimos la construcción de una solución débil de un problema de Cauchy

para el sistema de Navier-Stokes para la construcción de la resolución de un problema

estocástico. Bajo condiciones convenientes resolvimos el problema estocástico y probamos

que simultáneamente obtenemos una solución débil (generalizada) para el problema de

Cauchy del sistema de Navier-Stokes.
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1 Introduction

The main purpose of this article is to construct both strong and weak solutions (in certain functional

classes) of the Cauchy problem for the Navier-Stokes (N-S) system

∂u

∂t
+ (u,∇)u = ν∆u−∇p, u(0, x) = u0(x), x ∈ R3 (1.1)

div u = 0. (1.2)

Here u(t, x) ∈ R3, x ∈ R3, t ∈ [0,∞) is the velocity of the fluid at the position x at time t and ν > 0

is the viscosity coefficient. p(t, x) is a scalar field called the pressure which appears in the equation

to enforce the incompressibility condition (1.2). There exists a number of papers [1] – [4] and others

where the system (1.1), (1.2) was treated from the probabilistic point of view on the base of stochastic

models.

In particular in our previous paper [1] the system (1.1), (1.2) was reduced to a probabilistic

problem presented in the form of the following system of equations

dξ(τ) = −u(t− τ, ξ(τ))dτ + σdw(τ), (1.3)

u(t, x) = E0,x[u0(ξ(t)) +

∫ t

0

∇p(t− τ, ξ(τ))dτ ] (1.4)

p(t, x) = 2E[

∫ ∞

0

γ(t, x+B(t))dt] = 2E[

∫ ∞

0

tr[∇u]2(t, x+B(t))dt]. (1.5)

Here σ =
√

2ν, w(t) and B(t) are independent standard Wiener processes valued in R3, Tr[∇u]2 =
∑3

i,k=1 ∇iuk∇kui. It was shown in [1] that if the initial value u0 is a C3- function the functions

u(t, x), p(t, x) given by (1.4), (1.5) are C2+α solutions of (1.1), (1.2) for 0 < α < 1.

In the present paper we consider an alternative probabilistic system which allows to construct a

weak (distributional) solution to (1.1), (1.2). The approach developed here is based on the theory of

stochastic flows due to Kunita [5], [6] and the results due to Belopolskaya and Dalecky [7], [8].

The article is composed as follows. In section 2 we give some preliminary information concerning

different analytical approaches to the notion of a solution of the Navier-Stokes system. Here we recall

some common ways to exclude the pressure and to obtain a closed equation for the velocity, introduce

necessary functional spaces and state various notions of solutions to (1.1), (1.2). In section 3 we state

our approach and prove main results. In the last section we compare our approach and results with

the Euler-Lagrange approach to incompressible fluids developed by Constantin and Iyer [9],[10].

2 Preliminaries

Within a classical approach to the N-S system one excludes the pressure from (1.1),(1.2) and inves-

tigates the resulting nonlinear pseudo-differential equation. To this end first one can derive formally
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from (1.1),(1.2) the relation

−∆p(t, x) = γ(t, x), (2.1)

where

γ(t, x) =
3

∑

k,j=1

∇kuj∇juk = Tr[∇u]2 = ∇ · ∇ · u⊗ u. (2.2)

Then given an R3-valued vector field u(t) over R3 the operator P is defined by

Pu(t) = u(t) −∇∆−1∇ · u(t). (2.3)

Here and below u · v denotes the inner product in R3 of the vectors u and v.

The map P called the Leray projection is a projection of the space L2(R3) ≡ L2(R3)3 of square

integrable vector fields to the space of divergence free vector fields.

Since the formal solution of the Poisson equation (2.1) is given by

p = ∆−1γ = ∆−1∇ · ∇ · u⊗ u (2.4)

one can present ∇p in the form

∇p = ∇∆−1∇ · ∇ · u⊗ u

keeping in mind that divu = 0. Substituting this expression for ∇p into (1.1) one obtains the following

Cauchy problem
∂u

∂t
= ν∆u − P∇ · (u ⊗ u), u(0) = u0. (2.5)

When (2.5) is solved then the pressure is reconstructed from the Poisson equation (2.1).

The Leray projection P is used to solve the N-S system both in numerous analytical papers (see,

e.g., [11] for references) and in papers where the N-S system is studied from the probabilistic point of

view [2],[3], [10]. In this paper we avoid the direct application of the Leray projection and construct

the solution of (1.1), (1.2) via stochastic processes associated with (1.1) and (2.1).

To give a rigorous definition of a solution for the N-S system we have to specify the required

functional spaces.

Let D = D(R3) = C∞
c denote the space of all infinitely differentiable real valued functions on R3

with compact support equipped with the Schwartz topology and let D′ be its topological dual. Let

〈φ, ψ〉 =
∫

R3 φ(x)ψ(x)dx denote the natural coupling between φ ∈ D and ψ ∈ D′. If it will not lead

to misunderstandings we will use the same notation for vector fields u and v as well, that is

〈h, u〉 =

∫

R3

3
∑

k=1

hk(x)uk(x)dx.

Let D((0, T )×R3) = (D′((0, T )×R3))3 denote the space of R3-valued vector fields h with components

hk ∈ D and D′ denote the space dual to D(R3).

The Leray weak solution of the N-S system on [0, T ]×R3 is a vector field u(t, x) in (D′((0, T )×
R3))3 such that u is locally square integrable on (0, T ) × R3, satisfies div u = 0 and there is a

distribution p ∈ D′((0, T )×R3) such that

∂u

∂t
= ν∆u−∇ · (u⊗ u) −∇p, lim

t→0
u(t) = u0 (2.6)
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holds in the sense of distributions.

The Kato mild solution is a solution u to the following integral equation

u(t) = et∆u0 −
∫ t

0

e(t−s)∆P∇ · (u⊗ u)(s)ds. (2.7)

Note that instead of looking for u(t, x) and p(t, x) one may look for their Fourier images û(λ) =

(2π)−
3
2

∫

R3 e
−iλ·xu(x)dx. The Leray and Kato approaches stated in original terms and in terms of

the Fourier transformation of the Navier-Stokes system were developed in a number of papers (see,

e.g., references in the book by Lemarie-Rieusset [11]).

Below we will need as well the following functional spaces:

the space C(Rd, Rn) of bounded continuous functions mapping Rd to Rn,

the space C(R3, R1) = C(R3) of bounded continuous real functions f with the norm ‖f‖∞ =

supx∈R3|f(x)|;

the space C(R3) of bounded continuous vector functions with the norm ‖u‖∞ = supx∈R3‖u(x)‖,
where ‖ · ‖ is the norm in R3;

the space C0(R
3) of continuous vector functions with compact supports; the Banach space Lq(R3)

of integrable functions f with norm ‖f‖q = (
∫

R3 ‖f(x)‖qdx) 1
q ;

the space Ck(R3) of k-times differentiable functions with the norm ‖g‖Ck =
∑

|β|≤k ‖Dβg‖∞;

the space Ck,α(R3) (for a natural number k) of vector fields whose k-th derivatives are Hölder

continuous with exponent α, 0 < α ≤ 1 with norm

‖g‖Ck,α = ‖g‖Ck + [g]k+α

and

[g]k+α =
∑

|β|=k
sup

x,y∈R3

|Dβg(x) −Dβg(y)|
|x− y|α .

Let Z denote the set of all integers, and suppose that k ∈ Z is positive and 1 < q < ∞. Denote

by W k,q = W k,q(R3) the set of all real functions h defined on R3 such that h and all its distributional

derivatives ∇αh of order |α| =
∑

αj ≤ k belong to Lq(R3). It is a Banach space with norm

‖h‖k,p = (
∑

|α|≤k

∫

R3

|Dαh(x)|qdx) 1
q . (2.8)

Denote by W k,q
0 the subspace of functions from W k,q = W k,q(R3) with compact supports.

Finally we will need some spaces of locally integrable functions. Let G ⊂ R3 be a bounded

domain, p be a positive integer and f : G → R1 be a Lebesgue measurable function. The set of

functions {f :
∫

K
|f(x)|pdx < ∞ for all compact subsets K ⊂ G} is denoted by L

p
loc and called a

space of p- locally integrable functions. Although L
p
loc(G) are not normed spaces they are readily

topologized. Namely a sequence {un} converges to u in Lploc(G) if {un} → u in Lp(K) for each open

K having compact closure in G and ‖u‖p,loc = (
∫

K
‖u(x)‖pdx) 1

p <∞.

In a natural way one can define the spaces Wk,q and L
p
loc(G) of vector fields with components

in W k,p and in Lploc(G).
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3 A probabilistic approach to the Navier-Stokes system

Let us come back to the Navier-Stokes system written in the form

∂u

∂t
+ (u,∇)u =

σ2

2
∆u−∇p, u(0, x) = u0(x), x ∈ R3 (3.1)

−∆p = γ (3.2)

with γ defined by (1.3).

Our main purpose in this section is to construct a diffusion process that allows us to obtain a

a weak solution to (3.1), (3.2) via its probabilistic representation. To be more precise we intend to

reduce the system (3.1), (3.2) to a certain system of stochastic equations and to construct its solution.

Then we have to verify that in this way we have constructed a weak solution of (3.1), (3.2).

As above let w(t), B(t) be standard R3-valued independent Wiener processes defined on a prob-

ability space (Ω,F , P ). Given a bounded measurable function f(x) and a stochastic process ξ(t) we

denote Es,xf(ξ(t)) ≡ Ef(ξs,x(t)) the conditional expectation under the condition ξ(s) = x.

Given a function g(t, x) ∈ R3, a smooth (in x) function q(t, x) ∈ R1, t ∈ (0,∞), x ∈ R3 and a

constant σ we consider stochastic processes ξg(t) and λ(t) satisfying the stochastic equations

dξgy(t) = g(t, ξgy(t))dt− σdw(t), ξgy(0) = y ∈ R3,

λ(t) = u0 −
∫ t

0

∇q(τ, φg0,τ )dτ, (3.3)

where φg0,t denotes the stochastic map in R3 generated by the process ξg(t), φg0,t(y) = ξgy(t). The map

φ
g
0,t : R3 → R3 is called a stochastic flow.

The processes ξg(t) and λ(t) are auxiliary ones. The main role in our considerations is played by

the stochastic flow ψt,0 which is an inverse flow to φ0,t, ψt,0(φ0,t(y)) = y. To construct the flow ψt,0

we need the process ŵ(θ) = w(t− θ) − w(t) which is proved to be the standard Wiener process.

Here we use the results of the Kunita theory of stochastic flows [5],[6] and extend them to the

case of stochastic processes associated with nonlinear PDEs.

Actually we consider the closed system

dψt,θ(x) = −u(θ, ψt,θ(x))dθ + σdŵ(θ), ψt,t(x) = x, (3.4)

u(t, x) = E[u0(ψt,0(x)) −
∫ t

0

∇p(τ, ψt,τ (x))dτ ], (3.5)

−2∇p(t, x) = E[

∫ ∞

0

1

τ
γ(t, x+B(τ))B(τ)dτ ], (3.6)

where γ is given by (1.3) and look for a solution u(t, x), p(t, x), ψt,θ(x) of this system under some

assumptions on the initial data u0 to be specified below.

To construct the solution of (3.4)– (3.6) we consider its differential prolongation. Namely, we

consider the following formal relation

dηx(θ) = −∇u(θ, ψt,θ(x))ηx(θ)dθ, ηx(t) = I, (3.7)
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where I is the identity matrix acting in R3, and one of two formal relations for ∇u(t, x)

∇u(t, x) = E

[

∇u0(ψt,0(x))η
x(t) −

∫ t

0

∇2p(τ, ψt,τ (x))η
x(τ)dτ

]

. (3.8)

or

∇u(t, x) = E

[

∇u0(ψt,0(x))η
x(t) −

∫ t

0

∇p(τ, ψt,τ (x))
σ(t− τ)

∫ t

τ

ηx(θ)dŵ(θ)dτ

]

. (3.9)

Note that to derive the second term in the right hand side of (3.9) we need a specific integration by

parts formula called the Bismut-Elworthy-Li formula [12].

Since the system (3.3)– (3.8) is a closed system with respect to

(ψt,0(x), η
x(t), u(t, x), p(t, x),∇u(t, x)), we aim to prove the existence and uniqueness theorem for

its solution. At the end we check that the functions (u(t, x), p(t, x)) given by (3.4)– (3.5) satisfy (3.1),

(3.2).

To construct the solution of (3.4)– (3.8) we consider a system of successive approximations and

prove their convergence.

Set

u1(t, x) = u0(x), ψ0
t,0(x) = x, p1(t, x) = 0 (3.10)

and consider stochastic processes ψkt,θ(x), vector fields uk(t, x) and scalar functions pk(t, x) given by

the following relations

dψkt,θ = −uk(θ, ψkt,θ)dθ + σdŵ(θ), ψkt,t = x, (3.11)

uk+1(t, x) = E[u0(ψ
k
t,0(x)) −

∫ t

0

∇pk+1(τ, ψkt,τ (x))dτ ], (3.12)

−2pk+1(t, x) =

∫ ∞

0

E[γk(t, x +B(τ))]dτ, (3.13)

where

γk(t, x) = Tr[∇uk]2(t, x)]. (3.14)

Finally, we consider ηx,kt,θ , ∇uk+1(t, x) and ∇pk+1(t, x) defined respectively by

dη
x,k
t,θ = −∇uk(θ, ψkt,θ)ηx,kt,θ dθ, η

x,k
t,t = I, (3.15)

and

∇uk+1(t, x) = E[∇u0(ψ
k+1
t,0 (x))ηx,kt,0 −

∫ t

0

∇2pk+1(τ, ψkt,τ (x))η
x,k
t,τ dτ ], (3.16)

−2∇pk+1(t, x) =

∫ ∞

0

1

τ
E[γk(t, x+B(τ))B(τ)]dτ. (3.17)

Note that for k = 1 we have

dψ1
t,θ = −u0(θ, ψ

1
t,θ)dθ + σdŵ(θ), ψ1

t,t = x,
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that is we can solve the stochastic equation (3.4) independently on (3.5)-(3.6). Then given the process

ψ1
t,0(x) and keeping in mind the properties of the function p1 that satisfies the Poisson equation

−∆p1(t, x) = γ0(t, x), (3.18)

we compute u1(t, x) from (3.12). Next we compute ∇u1(t, x), ∇p1(t, x) from (3.16), (3.17) and proceed

to k = 2.

To prove the convergence of the successive approximations obtained in this way we need to derive

some apriori estimates.

Let g(t, x) ∈ R3 be a given bounded Lipschitz continuous function on [0,∞)×R3. Set g(t, ψ(t, x)) =

g(t) ◦ ψ(t)(x) for any functions ψ(t, x) ∈ R3).

Consider the stochastic equation

dψ
g
t,θ = −g(θ) ◦ ψgt,θdθ + σdŵ(θ), ψ

g
t,t(x) = x (3.19)

and define the vector fields ug(t, x) and ∇pg(t, x) by

ug(t, x) = E[u0(ψ
g
t,0(x)) −

∫ t

0

∇pg(τ, ψgt,τ (x))dτ ], (3.20)

−2pg(t, x) =

∫ ∞

0

E[γg(t, x+B(τ))]dτ, (3.21)

where

γg(t, x) = Tr[∇g]2(t, x). (3.22)

We derive formally from (3.21) by the integration by parts formula (Bismut – Elworthy – Li

formula [12]) that

−2∇pg(t, x) =

∫ ∞

0

E[
1

τ
γg(t, x+B(τ))B(τ)]dτ. (3.23)

Below we will describe the conditions on γ which justify (3.23).

Condition C 3.1 Let g(t, x) ∈ R3 be a divergent free vector field depending on time and defined

on [0, T ] ×R3 for a certain constant T > 0. We assume that g(t) belongs to C1,α(R3), 0 < α ≤ 1 for

a fixed t ∈ [0, T ] and satisfies the following estimates:

1. ‖g(t)‖q,loc ≤ Ng(t) for some q to be specified below, ‖g(t)‖∞ ≤ Kg(t) and

‖g(t, x) − g(t, y)‖ ≤ Lg(t)‖x− y‖, ‖∇g(t, x) −∇g(t, y)‖ ≤ L1
g(t)‖x− y‖.

2. ‖∇g(t)‖∞ ≤ K1
g (t), ‖∇g(t)‖r,loc ≤ N1

g (t).

Here Kg(t), Lg(t), Ng(t) and K1
g (t), L

1
g(t), N

1
g (t) are positive continuous functions defined on an

interval [0, T ] with T > 0, r = m and r = q for 1 < q < 3
2 < 3 < m <∞.

Set ψg(τ) = ψ
g
t,τ (x) and consider the stochastic equation

ψg(τ) = x−
∫ t

τ

g(τ1, ψ
g(τ1))dτ1 +

∫ t

τ

σdŵ(τ1), (3.24)
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with 0 ≤ τ ≤ t < T . When we are interested in the particular dependence of the process ψg(τ) on

the parameters t, x we write ψg(τ) = ψ
g
t,x(τ) or ψg(τ) = ψ

g
t,τ (x).

Lemma 3.1 Assume that C 3.1 holds. Then there exists a unique solution ψg(τ) of (3.24) and

the following estimates

E‖ψg(τ)‖2 ≤ 3[‖x‖2 + σ2(t− τ) + (t− τ)

∫ t

τ

[K2
g (τ1)]dτ1], (3.25)

E‖ψgt,x(τ) − ψ
g
t,y(τ)‖ ≤ ‖x− y‖e

R

t

τ
Lg(θ)dθ, (3.26)

E‖ψg(τ) − ψg1(τ)‖ ≤
∫ t

τ

‖g(τ1) − g1(τ1)‖∞dτ1e
R

t

τ
Lg(θ)dθ (3.27)

hold.

Proof. The proof of the estimates of this lemma is standard and based on estimates of classical

and stochastic integrals. We only show the proof of (3.26). In view of C 3.1 we have

E‖ψgt,x(τ) − ψ
g
t,y(τ)‖ ≤ ‖x− y‖ +

∫ t

τ

Lg(τ1)‖ψgt,x(τ1) − ψ
g
t,y(τ1)‖dτ1

where 0 ≤ τ ≤ t ≤ T with some constant T to be chosen later. Finally, by Gronwall’s lemma, we get

E‖ψgt,x(τ) − ψ
g
t,y(τ)‖ ≤ ‖x− y‖e

R

t

τ
Lg(θ)dθ. 2

Along with (3.19)-(3.22) we need the equations for the mean square derivative ηg(t) = ∇ψgt,0(x)
of the diffusion process ψgt,0(x) that satisfies (3.19), and the gradient v(t, x) = ∇ug(t, x) of the function

ug(t, x) given by (3.20).

Lemma 3.2 Assume that C 3.1 holds. Then the process ηx,g(τ) = ∇ψgt,τ (x) satisfies the

stochastic equation

dηx,g(τ) = −∇g(τ, ψx,gt,τ (x))ηx,g(τ)dτ, ηx,g(t) = I. (3.28)

The process ηx,g(τ) possesses the following properties.

The determinant det ηg(τ) is equal to 1, i. e. det ηg(τ) = Jt,τ = 1 and

E‖ηx,g(τ)‖ ≤ e
R

t

τ
K1

g (θ)dθ (3.29)

E‖ηx,g(τ) − ηy,g(τ)‖ ≤ C‖x− y‖ (3.30)

with some positive constant C depending on t, τ and g.

In addition the following integration by part formula is valid

∫

R3

f(ψgt,x(τ))dx =

∫

R3

f(x)dx, f ∈ L1(R3). (3.31)

Proof. Under C 3.1 the first statement immediately follows from general results of the stochastic

differential equation theory. By direct computation one can check that Jt,τ satisfies the linear equation

dJt,τ = −div g(ψgt,τ )Jt,τdτ, Jt,t = I
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and since div g = 0 we get the second statement. Besides ψgt,τ is a C1 stochastic diffeomorphism

(see [5]) and hence the integration by part formula (3.31) holds. Finally (3.29) is deduced from the

inequality

E‖ηx,g(τ)‖ ≤ 1 +

∫ t

τ

K1
g (θ)E‖ηx,g(θ)‖dθ

by the Gronwall lemma.

One can easily check that for the solution ηx,g(t) of (3.28) we have

E‖ηx,g(τ) − ηy,g(τ)‖ ≤
∫ t

τ

E‖∇g(θ, ψgt,θ(x)) −∇g(θ, ψgt,θ(y))‖dθe
R

t

τ
K1

g (θ)dθ ≤

E

∫ t

τ

L1
g(θ)E‖ψgt,θ(x)) − ψ

g
t,θ(y))‖dθ

and by (3.26) we derive (3.30). 2

Let us state conditions on the initial data u0 of the N-S system.

We say that C 3.2 holds when

i) for some 0 < α ≤ 1 the initial vector field u0 ∈ C1+α
0 (R3) satisfies the estimates

‖u0‖∞ ≤ K0, ‖∇u0‖∞ ≤ K1
0 , ‖u0‖r,loc ≤M0, ‖∇u0‖r,loc ≤M1

0

with some positive constants K0,K
1
0 ,M0,M

1
0 and r.

ii) u0 and ∇u0 are Lipschitz-continuous with positive Lipschitz constants L0 and L1
0 respectively.

Keeping in mind conditions C 3.1 and C 3.2 we derive estimates for ug(t) defined by (3.20) on

a certain time interval [0, T ] and its gradient ∇ug(t, x).

Lemma 3.3 Assume that g(t, x) satisfies C 3.1 and u0 satisfies C 3.2 with r = q and r = m for

1 < q < 3
2 < 3 < m <∞. Then the vector field ug(t, x) given by (3.20) satisfies the estimate

‖ug(t)‖∞ ≤ K0 +

∫ t

0

CqmK
1
g(τ)[‖∇g(τ)‖q,loc + ‖∇g(τ)‖m,loc]dτ. (3.32)

Under the conditions of this lemma the proof of (3.32) can be easily obtained by a direct compu-

tation from (3.20) using the estimates of the Newton potential given in lemma 3.4 below.

Lemma 3.4 Let G ⊂ R3 be a bounded domain and γg ∈ Lq(G) ∩ Lm(G) for some 1 ≤ q < 3
2 <

3 < m <∞ and

−∆p(t, x) = γg(t, x), x ∈ G.

Then ‖∇pg‖∞ ≤ Cqm(‖γg‖q,loc + ‖γg‖m,loc) and

‖∇i∇jp
g‖∞ ≤ C(‖γg‖q,loc + [γg]α).

3. Let γg ∈ Lr(G) for 1 < r <∞.Then pg ∈W 2,r(R3) and the Calderon- Zygmund inequality holds

‖∇2pg‖r,loc ≤ C1‖γg‖r,loc.
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The proof of these estimates for a solution of the Poisson equation can be found in the book by

Gilbarg and Trudinger ([13] Th 9.9). The probabilistic proof of some of these estimates can be found

in [4]. 2

Lemma 3.5 Assume that the conditions of lemma 3.3 hold and ug(t, x) is given by (3.20). Then

the function ∇ug(t, x) admits a representation of the form

∇ug(t, x) = E[∇u0(ψ
g
t,0(x))η

x,g(t) −
∫ t

0

∇2pg(τ, ψgt,τ (x))η
x,g(τ)dτ ] (3.33)

and the estimate

‖∇ug(t)‖∞ ≤ e
R

t

0
K1

g(θ)dθK1
0+

∫ t

0

e
R

t

τ
K1

g(θ)dθK1
g (τ)[‖∇g(τ)‖q,loc + ‖∇g(τ)‖m,loc]dτ (3.34)

holds for 1 < q < 3
2 < 3 < m <∞, 0 ≤ t ≤ T .

Proof. The formal differentiation of (3.20) in x justified by C 3.1, C 3.2 and the results of lemma

3.4 yields (3.33). To verify the estimate (3.34) we use the above estimates for the process ηx,g(t) and

the estimates of the Newton potential derivative from lemma 3.4. Hence we obtain

‖∇ug(t)‖∞ ≤ K1
0

∫ t

0

K1
g (θ)dθ+ (3.35)

∫ t

0

Cqme
R

t

τ
K1

g (θ)dθ[‖Tr[∇g(τ)]2‖m,loc + ‖Tr[∇g(τ)]2‖q,loc]dτ ]

that immediately leads to (3.34). 2

Now we have to derive the estimate for the function ‖∇u(t)‖r,loc.

Lemma 3.6 Assume that the conditions of lemma 3.3 hold. Then for 1 < r < ∞ the gradient

of the function ug(t, x) given by (3.20) satisfies the estimate

‖∇ug(t)‖r,loc ≤ e2
R

t

0
K1

g(θ)dθ

[

‖∇u0‖r,loc + C

∫ t

0

‖∇g(τ)‖r,locdτ
]

, (3.36)

where 0 ≤ t ≤ T and C depends on r and T .

Proof. Let us derive the Lp- estimate for ∇ug(t, x) given by (3.33). To derive the estimate for

‖∇ug(t)‖rr,loc =
∫

K
‖∇ug(t, x)‖rdx (where K is an arbitrary compact in G) we apply first the triangle

inequality to obtain

‖∇ug(t)‖r,loc ≤ α1 + α2,

where

α1 =

(
∫

K

E[‖∇u0(ψ
g
t,0(x))η

x,g(t)‖r]dx
)

1
r

,

α2 =

(
∫

K

∫ t

0

E‖∇2pg(τ, ψgt,τ (x)))η
x,g(τ)‖rdτdx

)

1
r

.

To estimate α1 we apply the Hölder inequality and take into account the inequality (3.29) for the

process ηx,g(τ). Besides we recall that ψt,τ (x) preserves the volume. As a result we have

α1 ≤
(

∫

K

(E[‖∇u0(ψ
g
t,0(x))‖2]E[‖ηx,g(t)‖2])

r
2 dx

)

)
1
r ≤ ‖∇u0‖r,loce

R

t

0
K1

g(θ)dθ.
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To derive the estimate for α2 we deduce from the Calderon-Zygmund inequality (see lemma 3.4)

and the estimate of ηx,g(t) that

αr2 ≤ Cr

∫ t

0

e
R

τ

0
K1

g(θ)dθK1
g(τ)

∫

K

‖∇g(τ, x)‖rdxdτ.

Combining the above estimates for α1 and α2 we obtain the required estimate

‖∇ug(t)‖r,loc ≤ e
R

t

0
K1

g(θ)dθ [‖∇u0‖r,loc+

Cr

∫ t

0

e
R

τ

0
K1

g (θ)dθK1
g (τ)‖∇g(τ)‖r,locdτ

]

.

Finally we get

‖∇ug(t)‖r,loc ≤ e2
R

t

0
K1

g(θ)dθ

[

‖∇u0‖r,loc + C

∫ t

0

‖∇g(τ)‖r,locdτ
]

,

where C depends on r and T. 2

Theorem 3.7 Assume that conditions C 3.1 and C 3.2 hold. Then there exists an interval

∆1 = [0, T1] and functions α(t), β(t), κ(t) bounded for t ∈ ∆1, such that, if for all t ∈ ∆1, ‖g(t)‖∞ ≤
κ(t) and ‖∇g(t)‖∞ ≤ α(t), ‖∇g(t)‖r,loc ≤ βr(t) then the function ‖∇ug(t, x)‖ (where ug(t, x) is given

by (3.20)) satisfies the estimates

‖ug(t)‖∞ ≤ κ(t), ‖∇ug(t)‖2
∞ ≤ α(t), ‖∇ug(t)‖2

r,loc ≤ βr(t) (3.37)

for r = q and r = m and 1 < m < 3
2 < 3 < q <∞.

Proof. Analyzing the above estimates (3.35), (3.36) for the functions ug(t, x) and ∇ug(t, x) we

note that to prove the required estimates it is enough to construct the solutions of the following

integral equations

α(s) = e
R

t

s
α(θ)dθK1

0 + Cqm

∫ t

s

e
R

τ

s
α(θ)dθα(τ)[nq(τ) + nm(τ)]dτ, (3.38)

nr(s) = e
R

t

s
α(θ)dθ‖∇u0‖r + Cr

∫ t

s

e
R

τ

s
α(θ)dθnr(τ)α(τ)dτ (3.39)

for r = q and r = m and Cqm = max(Cq, Cm) and

β(s) = e
R

t

s
α(θ)dθβ0 + Cqm

∫ t

s

e
R

τ

s
α(θ)dθα(τ)β(τ)dτ, (3.40)

where β(τ) = nq(τ) + nm(τ), and

‖∇u0‖q,loc + ‖∇u0‖m,loc = nq(0) + nm(0) = β0.

To construct the solution of the above system of integral equations (3.40)-(3.42) we consider the

system of ODEs
dα

ds
= −α2(s) − Cqmα(s)β(s), α(t) = K1

0 , (3.41)

dβ

ds
= −α(s)β(s) − Cqmα(s)β(s), β(t) = β0. (3.42)
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By classical results of the ODE theory we know that there exists an interval [0, T1] depending onK1
0 , N

1
0

and C,Cqm such that the system (3.41), (3.42) has a bounded solution defined on this interval.

To prove the convergence for k → ∞ of functions uk(t, x),∇uk(t, x) we need one more auxiliary

estimate. Actually, we have proved that uk(t) is Lipschitz-continuous with the Lipschitz constant

independent of k. It remains to prove that ∇uk(t) has the same property.

Lemma 3.8 Assume that C 3.1 and C 3.2 hold. Then the function ∇ug(t, x) defined in lemma

3.5 admits a representation of the form

∇ug(t, x) = E[∇u0(ψ
g
t,0(x))η

x,g(t)−

∫ t

0

1

σ(t − τ)
∇pg(τ, ψgt,τ (x))

∫ t

τ

ηx,g(θ)dŵ(θ)dτ ] (3.43)

and satisfies the estimate

‖∇ug(t, x) −∇ug(t, y)‖ ≤ N
g
1 (t)‖x− y‖ if t ∈ [0, T1]

for any x, y ∈ G where G is a compact in R3 and the positive function N
g
1 (t) depending on the

parameters in conditions C 3.1 and C 3.2 is bounded over the interval [0, T1] defined in theorem 3.7.

Proof. To derive (3.43) we compute directly the gradient of the first term in (3.20) and apply the

Bismut-Elworthy -Li formula [12] to compute the gradient of the second term in this relation. Next we

use the representation (3.43) to deduce the Lipschitz estimate for the gradient of the function u(t, x)

. As a result we have

‖∇ug(t, x) −∇ug(t, y)‖ ≤ κ1 + κ2 + κ3 + κ4,

where

κ1(t) = E[‖∇u0(ψ
g
t,0(x)) −∇u0(ψ

g
t,0(y))‖‖ηx,g(t)‖],

κ2(t) = E[‖∇u0(ψ
g
t,0(y))‖‖ηx,g(0) − ηy,g(0)‖],

κ3(t) =

∫ t

0

E

[ ‖∇pg(τ, ψgt,τ (x)) −∇pg(τ, ψgt,τ (y))‖
σ(t− τ)

‖
∫ t

τ

ηx,g(θ)dŵ(θ)‖
]

dτ,

κ4(t) =

∫ t

0

1

σ(t− τ)
E

[

‖∇pg(τ, ψgt,τ (y))‖
∫ t

τ

[ηx,g(θ) − ηy,g(θ)]dŵ(θ)‖
]

dτ.

One can easily check using the estimates stated in lemmas 3.3 – 3.5 that under the conditions C

3.1, C 3.2

κ1(t) ≤ L1
0E‖ψgt,0(x) − ψ

g
t,0(y)‖e

R

t

0
K1

g(θ)dθ ≤

‖x− y‖L1
0e

R

t

τ
[Lg(θ)+K1

g(θ)]dθ = Θ1‖x− y‖

and

κ2(t) ≤ K1
0E‖ηx,g(t) − ηy,g(t)‖ ≤ ‖x− y‖

∫ t

τ

K1
g (θ)e

R

t

θ
K1

g(θ1)dθ1dθ = Θ2‖x− y‖.
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To derive the estimates for κ3 and κ4 we apply the inequalities ‖∇i∇jp
g‖∞ ≤ C(‖γg‖q,loc +

[γg]1,G), ‖∇i∇jp
g‖r,loc ≤ ‖γg‖r,loc from lemma 3.4. This yields

κ3(t) ≤
∫ t

0

E

[

‖∇2pg(τ)‖∞
‖ψgt,0(x) − ψ

g
t,0(y)‖

σ
√
t− τ

‖ηx,g(τ)‖
]

dτ ≤

∫ t

0

(E‖ψgt,τ (x) − ψt,τ (y)‖2)
1
2

σ
√
t− τ

(‖γg(τ)‖q,loc + [γg(τ)]1,G)e
R

t

τ
K1

g (θ)dθdτ ≤

Θ1‖x− y‖
∫ t

0

‖γg(τ)‖q,loc + [γg(τ)]1,G

σ
√
t− τ

e
R

t

τ
K1

g(θ)dθdτ ≤

Θ3Θ1‖x− y‖σ−1

(

sup0≤τ≤t[β(τ)]
√
t+

∫ t

0

s(τ)√
t− τ

dτ

)

and

κ4(t) ≤
∫ t

0

Cqm(‖γg(τ)‖q,loc + ‖γg(τ)‖m,loc)
σ
√
t− τ

(E‖ηx,g(τ) − ηy,g(τ)‖2)
1
2 dτ ≤

2sup0≤τ≤tβ(τ)‖x − y‖
∫ t

0

Θ2Cqm

σ
√
t− τ

dτ = 2Θ4‖x− y‖Θ2Cqm

σ

√
t.

Here Θ3 = e
R

t

0
K1

g(τ)dτ , s(τ) = [γg(τ)]1,G and β(τ) is defined in theorem 3.7. Finally, combining the

above estimates for κi, i = 1, 2, 3, 4, we obtain

s(t) ≤ Θ5 + Θ6

∫ t

0

s(τ)√
t− τ

dτ

and applying the Gronwall lemma we derive the estimate

s(t) ≤ Θ5e
Θ6

√
t

where Θi, i = 5, 6 depend on the parameters in conditions C 3.1 and C 3.2, σ and T1 for 0 ≤ t ≤ T1,

where T1 is defined in theorem 3.7. 2

The estimates of theorem 3.7 and lemma 3.8 allow to prove the uniform convergence on compacts

of the successive approximations (3.10)-(3.14) for the solutions of the system (3.4) – (3.6) in C([0, T1],

C1,α(K)) ∩ C([0, T1], L
m(K) ∩ Lq(K)) for 1 < q < 3

2 < 3 < m < ∞ and arbitrary compact K in G.

In particular, they justify the possibility to differentiate the system (3.10)-(3.14) in x for each k and

to consider the following equations

dη
k,x
t,θ = −∇uk(θ, ψkt,θ)ηx,kt,θ dθ, η

x,k
t,t = I, (3.44)

where I is the identity matrix acting in R3 and

∇uk+1(t, x) = E[∇u0(ψ
k+1
t,0 (x))ηx,kt,0 −

∫ t

0

1

σ(t− τ)
∇pk+1(τ, ψkt,τ (x))

∫ t

τ

η
x,k
t,θ dŵ(θ)dτ ], (3.45)

−2∇pk+1(t, x) =

∫ ∞

0

1

τ
E[γk(t, x+B(τ))B(τ)]dτ, (3.46)

where γk = Tr[∇uk]2.
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Now we can prove the following assertion.

Theorem 3.9 Assume that C 3.2 holds. Then if k → ∞ the functions uk(t),∇uk(t, x) deter-

mined by (3.11) and (3.45) uniformly converge on compacts to limiting functions u(t), ∇u(t) satisfying

(3.4) and (3.8)and u(t) ∈ C([0, T1],C
1,α), ∇u(t) ∈ C([0, T1],C

0,α), 0 < α ≤ 1 for all t ∈ [0, T1]. Here

[0, T1] is the interval where the solution (α(t), β(t)) of the system (3.41), (3.42) is bounded. In addition

the estimates ‖∇u(t)‖∞ ≤ α(t) , ‖∇u(t)‖q,loc ≤ β(t) hold for 1 < q < 3
2 , t ∈ [0, T1].

Proof. By theorem 3.7 we know that the mapping

Φ(t, x, g) = E

[

u0(ψ
g
t,0(x)) −

∫ t

0

∇pg(τ, ψgt,τ (x))dτ
]

acts in the space C1,α ∩ Lq,loc ∩ Lm,loc (for a fixed t ∈ [0.T1]) with 1 < q < 3
2 < 3 < m <∞.

Consider the successive approximations (3.10) –(3.14) and (3.44) – (3.46), set

Sk+1(t, x) = ‖uk+1(t, x) − uk(t, x)‖,

nk+1(t, x) = ‖∇uk+1(t, x) −∇uk(t, x)‖

and

lk(t) = ‖Sk(t)‖∞, mk
r (t) = ‖Sk(t)‖r,loc,

ρk(t) = ‖nk(t)‖∞, ζkr (t) = ‖nk(t)‖r,loc.

Then we obtain

nk+1(t, x) ≤ L1
0(E[‖ψkt,0(x) − ψk−1

t,0 (x)‖‖ηx,kt,0 ‖]+

E[‖ψkt,0(x)‖‖ηx,kt,0 − η
x,k−1
t,0 ‖]) +

∫ t

0

1

σ(t− τ)
E[‖∇pk+1(τ, ψkt,τ (x))−

∇pk(τ, ψk−1
t,τ (x))‖‖

∫ t

τ

η
x,k
t,θ dŵ(θ)‖]dτ+

∫ t

0

1

σ(t− τ)
E

[

‖∇pk(τ, ψkt,τ (x))‖
∫ t

τ

[ηx,kt,θ − η
x,k−1
t,θ ]dŵ(θ)‖

]

dτ. (3.47)

Recall that by lemmas 3.2, 3.3 we know that

sup
x
E‖ψkt,0(x) − ψk−1

t,0 (x)‖ ≤
∫ t

0

[ ‖uk(τ) − uk−1(τ)‖∞]dτe
R

t

0
α(τ)dτ ,

sup
x
E‖ηx,kt,0 − η

x,k−1
t,0 ‖ ≤

∫ t

0

‖∇uk(τ) −∇uk−1(τ)‖∞dτe
R

t

0
α(τ)dτ

+ sup
x

∫ t

0

E‖∇uk−1(τ, ψkt,τ (x)) −∇uk−1(τ, ψk−1
t,τ (x))‖dτe

R

t

0
α(τ)dτ

and applying the estimates from theorem 3.7 we get

ρk+1(t) ≤ e
R

t

0
α(τ)dτ [L1

0

∫ t

0

sup
x
E‖uk(τ, ψkt,τ (x)) − uk−1(τ, ψk−1

t,τ (x))‖dτ

+

∫ t

0

ρk(τ)dτ + sup
x

∫ t

0

E‖∇uk−1(τ, ψkt,τ (x)) −∇uk−1(τ, ψk−1
t,τ (x))‖dτ ]+
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∫ t

0

C[‖∇uk(τ)∇uk(τ)‖q + ‖∇uk(τ)∇uk(τ)‖m](E‖ηk(τ) − ηk−1(τ)‖2
∞)

1
2

σ
√
t− τ

dτ+

∫ t

0

1

σ
√
t− τ

sup
x
E‖∇pk+1(τ, ψkt,τ (x)) −∇pk(τ, ψk−1

t,τ (x))‖2)
1
2 e

R

t

τ
α(θ)dθdτ.

To derive the estimate for the last term of the above inequality we recall (see lemma 3.1 and

lemma 3.4) that for 1 < q < 3
2 the estimate

‖∇pk(t, x) −∇pk(t, y)‖ ≤ ‖∇2pk(t)‖∞‖x− y‖ ≤

C[‖γk(t)‖q,loc + [γk(t)]1,G]‖x− y‖

holds and as a result we obtain

E‖∇pk(τ, ψkt,τ (x)) −∇pk(τ, ψk−1
t,τ (x))‖ ≤

C[β(τ) + s(τ)]E‖ψkt,τ (x) − ψk−1
t,τ (x)‖.

In addition

‖∇pk+1(t) −∇pk(t)‖∞ ≤ Cqm[ ‖γk+1(t) − γk(t)‖q,loc+

‖γk+1(t) − γk(t)‖m,loc] ≤ Cqmα(t)[ ‖∇uk+1(t) −∇uk(t)‖q,loc+

‖∇uk(t) −∇uk−1(t)‖q,loc+

‖∇uk+1(t) −∇uk(t)‖m,loc + ‖∇uk(t) −∇uk−1(t)‖m,loc].

It follows from (3.47) that

nk+1(t, x) ≤ C(t)[

∫ t

0

E‖∇uk(τ, ψkt,τ (x)) −∇uk−1(τ, ψk−1
t,τ (x))‖dτ+

∫ t

0

nk(τ, x)dτ ] +

∫ t

0

1

σ
√
t− τ

C1[‖∇uk(τ)∇uk(τ)‖q+

‖∇uk−1(τ)∇uk−1(τ)‖m]r(E‖ηx,k(τ) − ηx,k−1(τ)‖2)
1
2 dτ

+

∫ t

0

1

σ
√
t− τ

e
R

t

τ
α(θ)dθ(E‖∇pk+1(τ, ψkt,τ (x)) −∇pk(τ, ψk−1

t,τ (x))‖2)
1
2 dτ.

By the Hölder inequality we derive that for any positive f(τ) ∈ Lr,loc and 1
m1

+ 1
r

= 1 and m1 < 2

we have for any compact G ⊂ R3

∫

K

[

∫ t

0

1

σ
√
t− τ

f(τ, x)dτ ]rdx ≤ 1

σr
t

r(2−m1)
2m1

∫ t

0

∫

K

f r(τ, x)dxdτ. (3.48)

Then from (3.47) and (3.48) we have for r > 2

ζk+1
r (t) ≤ C2(t)[

∫ t

0

∫

K

[E‖uk(τ, ψkt,τ (x)) − uk−1(τ, ψk−1
t,τ (x))‖rdxdτ ]+

∫ t

0

ζkr (τ)dτ +

∫ t

0

∫

K

‖∇uk−1(τ, ψkt,τ (x)) −∇uk−1(τ, ψk−1
t,τ (x))‖rdxdτ ]
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+

∫ t

0

1

σ
√
t− τ

C[[‖∇uk(τ)∇uk−1(τ)‖q + ‖∇uk(τ)∇uk−1(τ)‖m]r

∫

K

(E‖ηx,k(τ) − ηx,k−1(τ)‖2)
r
2 dx]dτ +

∫ t

0

1

σ
√
t− τ

e
R

t

τ
α(θ)dθ

∫

K

(E‖∇pk+1(τ, ψkt,τ (x)) −∇pk(τ, ψk−1
t,τ (x))‖2)

r
2 dxdτ.

For the function mk
r (t) = ‖uk(t) − uk−1(t)‖r,loc using the apriori estimates proved in lemmas 3.2

– 3.8 and theorem 3.9 we obtain

mk+1
r (t) ≤ C(t)[(

∫ t

0

∫

K

E‖uk(τ, ψkt,τ (x)) − uk−1(τ, ψk−1
t,τ (x))‖rdxdτ) 1

r

+(
1

σ
t

2−m1
2m1

∫ t

0

∫

K

E‖∇uk+1(τ, ψkt,τ (x))∇uk(τ, ψkt,τ (x))−

∇uk−1(τ, ψkt,τ (x))∇uk−1(τ, ψk−1
t,τ (x))‖rdxdτ) 1

r ] ≤

C1(t)

[

(
∫ t

0

mk
r (τ)dτ

)

1
r

+

(
∫ t

0

∫

K

α(τ)E‖ψkt,τ (x) − ψk−1
t,τ (x)‖rdxdτ

)

1
r

+

1

σ
t

1
m1

− 1
2

(
∫ t

0

[ρk+1(τ) + ρk(τ)]ζkr (τ)dτ

)

1
r

]

.

Since uk and ∇uk are proved to be uniformly bounded on [0, T1] and

‖∇u1(t, ·) −∇u0(·)‖r,loc ≤ const <∞,

‖u1(t, ·) − u0(·)‖r,loc ≤ const <∞,

both for r = m and r = q we obtain that there exists a bounded on [0, T1] positive function C2(t)

such that the function κk(t) = ρk(t) + ζkm(t) +mk
r satisfies the estimate

κk(t) ≤ [C2(t)]
k

k!

and hence limk→∞ κk(t) = 0. Since all summands defining κk(t) are positive we deduce that all of

them converges to 0 as k → ∞. As a results we deduce that for each t ∈ [0, T1) the family uk(t, ·)
converges uniformly on compacts and the limiting function u(t, ·) ∈ C1,α ∩ Lm,loc. In addition, we

can check that the limiting function ∇u(t, x) is Lipschitz continuous in x. In fact, by lemma 3.8 and

theorem 3.9 for each t ∈ [0, T1], we have for any x, y ∈ G

‖∇uk(t, x) −∇uk(t, y)‖ ≤ s(t)‖x− y‖,

where s(t) and T1 were defined above in lemma 3.8 and the estimate is uniform in k.

To prove the uniqueness of the solution of (3.4)-(3.6) constructed above we assume first that

there exist two solutions u1(t, x), u2(t, x) to (3.4)-(3.6) possessing the same initial data u1(0, x) =

u2(0, x) = u0(x).
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Computations similar to those used to prove the convergence of the family (uk(t),∇uk(t)) allow

to check that both

[∇u1(t) −∇u2(t)]∞ = 0 and ‖∇u1(t) −∇u2(t)‖m,loc = 0.

Finally, we know that a stochastic equation with Lipschitz coefficients has a unique solution of

the Cauchy problem. This implies the uniqueness of the solution to (3.4)-(3.6). 2

Summarizing the above results we see that the following statement is valid.

Theorem 3.10 Assume that C 3.2 holds. Then there exists a unique solution ψt,x(s), u(t, x), p(t, x)

of the system (3.4)-(3.6) for all t from the interval [0, T1], with T1 given by theorem 3.7 and x ∈ K

for any compact K ⊂ G. In addition the process ψt,x(s) is the Markov process in R3 and u ∈
C([0, T1],C

1,α(K)) ∩ C([0, T1],Lq,loc ∩ Lm,loc) for 1 < q < 3
2 < 3 < m <∞.

Proof. First we note that as soon as we know that u(t, x) is locally Lipschitz continuous by

classical SDE theory we know that the silution ψt,0(x) of the equation (3.4) is the Markov process in

R3. All other assertions of the theorem are already proved above.

To fulfill our program we have to check that the functions u(t, x), p(t, x) that satisfy (3.5) and

(3.6) define a weak solution of (1.5),(1.2).

Let us come back to the Kunita theory of stochastic flows [5], [6] and recall that given a dis-

tribution u0 ∈ D′ and a stochastic flow ψut,0 one can define a stochastic flow u0 ◦ ψut,0 as another

distribution satisfying 〈u0 ◦ ψut,0, h〉 = 〈u0, h ◦ φu0,tJ0,t〉. Here φu0,t is the inverse flow to ψut,0. Since

any locally integrable function is a distribution, given u0 and the solution ψt,0, u(t), p(t) of (3.4)-(3.6)

constructed above we consider a process λ(t) ∈ D′ of the form λ(t) = u0 −
∫ t

0 ∇pu(τ) ◦ φu0,τdτ . Next

we consider the process

λ(t) ◦ ψut,0 = u0 ◦ ψut,0 −
∫ t

0

∇pu(τ) ◦ ψut,τdτ

and verify that a weak solution u(t) of (3.1) admits the representation u(t) = E[λ(t)◦ψut,0] and satisfies

(3.2).

By the generalized Ito formula we derive

λ(t) ◦ ψut,0 = u0 +

∫ t

0

σ2

2
∆[u(θ) ◦ ψuθ,0]dθ+ (3.49)

∫ t

0

∇[u(θ) ◦ ψuθ,0]σdw(θ) −
∫ t

0

∇[u(θ) ◦ ψuθ,0]u(θ)dθ −
∫ t

0

∇pu(θ)dθ,

where (3.49) is considered in a weak sense. Hence for Lu = −(u,∇)u + σ2

2 ∆u and the test function

h ∈ D we have

E

[
∫

R3

∫ t

0

L(u(τ) ◦ ψuτ,s(x))dτ · h(x)dx
]

= (3.50)

E

[
∫ t

0

〈u(τ) ◦ ψuτ,0, L∗h〉dτ
]

=

∫ t

0

L〈E[u(τ ◦ ψuτ,0)], h〉dτ.
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As a result we deduce from (3.49) and (3.50)

u(t) = E[λ(t) ◦ ψut,0] = u0 +

∫ t

0

LE[u(τ) ◦ ψuτ,0]dτ −
∫ t

0

∇pu(τ)dτ.

Differentiating each term with respect to t we check that the function u(t) = E[λ(t) ◦ψut,0] solves

the Cauchy problem (1.1). As soon as the function p(t) was constructed as a solution of the Poisson

equation (3.2) we can verify that (1.2) holds as well.

To summarize the obtained results we state the following:

Theorem 3.11. Assume that C 3.2 holds. Then the functions u(t), p(t) that solve (3.5),(3.6)

satisfy (3.1)-(3.2) in a weak sense for t ∈ [0, T1] where T1 is defined in theorem 3.9.

Remark 3.13. We have proved that under condition C 3.2 the system (3.4)-(3.6) gives rise to

a weak solution of (3.1)-(3.2). Moreover, when the initial data are smoother, say u0 ∈ C2,α, α ∈ [0, 1]

similar considerations can be applied to verify that the pair u(t, x), p(t, x) given by (3.5)-(3.6) stands

for a classical C2-smooth solution of (3.1), (3.2).

4 Lagrangian and stochastic approach to the N-S system

The probabilistic approach developed in the previous section is in a sense an analogue of the Lagrangian

approach developed for the Euler system which coincides with (1.1), (1.2) when σ = 0. The classical

Lagrangian path starting at y is governed by the Newton equation

∂2φ̃0,t(y)

∂t2
= Fφ̃(t, y). (4.1)

The force F in (4.1) has the form

Fφ̃(t, y) = −∇p(t, φ̃0,t(y)) = −[(∇φ̃0,t(y))
∗]−1∇[p(t, φ̃0,t(y))] (4.2)

and the incompressibility condition yields det(∇φ̃0,t(y)) = 1. One can deduce from (4.1) that

∂

∂t
[
∂φ̃k0,t(y)

∂t

∂φ̃k0,t(y)

∂yi
] = −∂q(t, φ̃0,t(y))

∂yi
, (4.3)

where

q(t, y) = p(t, y) − 1

2
‖∂φ̃0,t(y)

∂t
‖2 (4.4)

summation over repeated indices is assumed. Integrating (4.3) in time we get

∂φ̃k0,t(y)

∂t

∂φ̃k0,t(y)

∂yi
= u0(y) −

∂n(t, φ̃0,t(y))

∂yi
, (4.5)

where

n(t, y) =

∫ t

0

q(τ, y)dτ (4.6)

and u0(y) =
∂φ̃0,t(y)

∂t
|t=0 is the initial velocity.
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Consider the inverse diffeomorphism ψ̃t,0 = [φ̃0,t]
−1, come back to (4.4), multiply it by [∇ψ̃t,0]

and put y = ψ̃t,0(x). As a result we obtain by the chain rule the relation

ui(t, x) = (uj0(ψ̃t,0(x))∇xi
ψ̃
j
t,0(x) −

∫ t

0

∇xi
q(τ, ψ̃t,τ (x))dτ. (4.7)

Hence the Euler equations are equivalent to the system consisting of (4.7) and the relation

∆n(t, x) = ∂
∂xi

{uk0(ψ̃t,0(x))
∂ψ̃k

t,0(x)

∂xi
}, where n is given by (4.6).

Finally due to divu = 0 one can rewrite the equation of state (4.7) in the form

u(t) = P{u0(ψ̃t,0)∇ψ̃t,0} = P{[∇ψ̃t,0]∗u0(ψ̃t,0)}, (4.8)

where P = I − ∇∆−1∇ is the Leray projector. The Euler pressure is determined up to additive

constants by

p(t, x) =
∂n(t, x)

∂t
+ (u(t, x),∇)n(t, x) +

1

2
‖u(t, x)‖2.

When σ 6= 0 one can develop an analogue of the Lagrange approach as follows. Let us choose φ0,t to

be generated by the stochastic equation

dφ0,θ = u(θ, φ0,θ)dθ + σdw(θ), φ0,0(y) = y, (4.9)

next set

ψθ,0 = [φ0,θ]
−1, (4.10)

and finally obtain the closed system by choosing

u(t) = EP[(∇ψt,0)(u0 ◦ ψt,0)]. (4.11)

The system (4.9) – (4.11) was studied by Constantin and Iyer [9], [10]. In [14] the existence and

uniqueness of the solution to (4.9) – (4.11) was proved by the successive approximation technique.

The main result due to Constantin and Iyer reads as follows:

Theorem 4.1 Let k ≥ 1 and u0 ∈ Ck+1,α be divergence free. Then there exists a time interval

[0, T ] with T = T (k, α, L, ‖u0‖k+1,α) but independent of viscosity σ and a pair φ0,t(x), u(t, x) such that

u ∈ C([0, T ], Ck+1,α) and (u, φ) satisfy (4.9)-(4.11). Further there exists U = U(k, α, L, ‖u0‖k+1,α)

such that ‖u(t)‖k+1,α ≤ U for t ∈ [0, T ] and u satisfies the N-S system.

Comparing the system (3.4) – (3.6) and the system (4.9) – (4.11) we can check that the process ψt,0

given by (4.10) has the same distribution as the solution of (3.4). At the other hand the representations

for the velocity u and the pressure p in the above systems are different. In the system (3.4) – (3.6)

we avoid using the Leray projection and use instead the probabilistic representation of the Poisson

equation. This allows us to construct both strong (classical) and weak (distributional) solutions of

the Cauchy problem for the N-S system.

At the very end we remark that the approach developed in the previous section does not allow

to construct a solution to the Euler system as a limit of the solution to (1.1), (1.2) when σ goes to 0,

since the appriori estimates in lemma 3.5 and lemma 3.8 cease to be valid.
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