CUBO A Mathematical Journal Vol.12, $N^{\underline{o}}02$, (43–52). June 2010

On subsets of ideal topological spaces

V. RENUKADEVI Department of Mathematics, ANJA College, Sivakasi-626 124, Tamil Nadu, India. email: renu_siva2003@yahoo.com

ABSTRACT

We define some new collection of sets in ideal topological spaces and characterize them in terms of sets already defined. Also, we give a decomposition theorem for $\alpha - \mathcal{I}$ -open sets and open sets. At the end, we discuss the property of some collection of subsets in \star -extremally disconnected spaces.

RESUMEN

Definimos una nueva colección de conjuntos en espacios topológicos ideales y caracterizamos estos en términos de conjuntos ya definidos. También damos un teorema de descomposición para $\alpha - \mathcal{I}$ - abiertos y conjuntos abiertos. Finalmente discutimos la probabilidad de algunas colecciones de subconjuntos en espacios disconexos \star - extremos.

Key words and phrases: \star -extremally disconnected spaces, $t-\mathcal{I}$ -set, $\alpha-\mathcal{I}$ -open set, $pre-\mathcal{I}$ -open set, $semi-\mathcal{I}$ -open set, $semi^{\star}-\mathcal{I}$ -open, $semipre^{\star}-\mathcal{I}$ -open, $\mathcal{C}_{\mathcal{I}}$ -set, $\mathcal{B}_{\mathcal{I}}$ -set, $\mathcal{B}_{1\mathcal{I}}$ -set, $\mathcal{B}_{2\mathcal{I}}$ -set, $\mathcal{B}_{3\mathcal{I}}$ -set, $\delta-\mathcal{I}$ -open, \mathcal{RI} -open, \mathcal{I} -locally closed set, weakly \mathcal{I} -locally closed set, $\mathcal{A}_{\mathcal{IR}}$ -set, $\mathcal{D}_{\mathcal{I}}$ -set. 2000 AMS subject Classification: Primary: 54 A 05, 54 A 10

1 Introduction

By a space, we always mean a topological space (X, τ) with no separation properties assumed. If $A \subset X$, cl(A) and int(A) will, respectively, denote the closure and interior of A in (X, τ) . An *ideal* \mathcal{I} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies (i) $A \in \mathcal{I}$ and $B \subset A$ implies $B \in \mathcal{I}$ and (ii) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$. Given a topological space (X, τ) with an ideal \mathcal{I} on X and if $\wp(X)$ is the set of all subsets of X, a set operator $(.)^* : \wp(X) \to \wp(X)$, called a local function [14] of A with respect to τ and \mathcal{I} , is defined as follows: for $A \subset X$, $A^{\star}(\mathcal{I},\tau) = \{x \in \mathcal{I}, x \in \mathcal{I}\}$ $X \mid U \cap A \notin \mathcal{I}$ for every $U \in \tau(x)$ where $\tau(x) = \{U \in \tau \mid x \in U\}$. We will make use of the basic facts concerning the local function [11, Theorem 2.3] without mentioning it explicitly. A Kuratowski closure operator $cl^{\star}()$ for a topology $\tau^{\star}(\mathcal{I},\tau)$, called the \star - topology, finer than τ is defined by $cl^{\star}(A) = A \cup A^{\star}(\mathcal{I},\tau)$ [16]. When there is no chance for confusion, we will simply write A^{\star} for $A^{\star}(\mathcal{I},\tau)$ and τ^{\star} or $\tau^{\star}(\mathcal{I})$ for $\tau^{\star}(\mathcal{I},\tau)$. $int^{\star}(A)$ will denote the interior of A in (X,τ^{\star}) . If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal space. A subset A of an ideal space (X, τ, \mathcal{I}) is τ^* - closed or \star - closed [11](resp. \star - perfect[10]) if $A^{\star} \subset A$ (resp. $A = A^{\star}$). A subset A of an ideal space (X, τ, \mathcal{I}) is said to be a $t - \mathcal{I} - set[8]$ if $int(A) = int(cl^*(A))$. A subset A of an ideal space (X, τ, \mathcal{I}) is said to be $\delta - \mathcal{I} - open[2]$ (resp. $\alpha - \mathcal{I} - open[8], pre - \mathcal{I} - open[6], semi - \mathcal{I} - open[8], strong \beta - \mathcal{I} - open[9]$) if $int(cl^{\star}(A)) \subset cl^{\star}(int(A))$ (resp. $A \subset int(cl^{\star}(int(A))), A \subset int(cl^{\star}(A)), A \subset cl^{\star}(int(A), A \subset cl^{\star}(int(A)))$ $cl^{\star}(int(cl^{\star}(A)))$. We will denote the family of all $\delta - \mathcal{I}$ -open (resp. $\alpha - \mathcal{I}$ -open, pre- \mathcal{I} -open, semi- \mathcal{I} -open, strong $\beta - \mathcal{I}$ -open) sets by $\delta \mathcal{I}O(X)$ (resp. $\alpha \mathcal{I}O(X), \mathcal{PI}O(X), \mathcal{SI}O(X), s\beta \mathcal{I}O(X)$). The largest pre \mathcal{I} -open set contained in A is called the pre $-\mathcal{I}$ -interior of A and is denoted by $\mathcal{I}int(A)$. For any subset A of an ideal space (X, τ, \mathcal{I}) , $p\mathcal{I}int(A) = A \cap int(cl^{\star}(A))$ [15, Lemma 1.5].

2 Subsets of Ideal Topological Spaces

Let (X, τ, \mathcal{I}) be an ideal space. A subset A of X is said to be a $semi^* - \mathcal{I} - open$ set [7] if $A \subset cl(int^*(A))$. A subset A of X is said to be a $semi^* - \mathcal{I} - closed$ set [7] if its complement is a $semi^* - \mathcal{I} - open$ set. Clearly, A is $semi^* - \mathcal{I} - closed$ if and only if $int(cl^*(A)) \subset A$ if and only if $int(cl^*(A)) = int(A)$ and so $semi^* - \mathcal{I} - closed$ sets are nothing but $t - \mathcal{I} - sets$. A is said to be a $semipre^* - \mathcal{I} - closed$ set if $int(cl^*(int(A))) \subset A$. Clearly, A is said to be a $semipre^* - \mathcal{I} - closed$ if and only if $int(cl^*(int(A))) = int(A)$ if and only if A is $\alpha^* - \mathcal{I} - set$ [8]. Clearly, X is both $semi^* - \mathcal{I} - closed$ and $semipre^* - \mathcal{I} - closed$. The smallest $semi^* - \mathcal{I} - closed$ (resp. $semipre^* - \mathcal{I} - closed$) set containing is called the $semi^* - \mathcal{I} - closure$ (resp. $semipre^* - \mathcal{I} - closed$) set $S\mathcal{I}cl(A)$ (resp. $sp\mathcal{I}cl(A)$). A subset A of an ideal space (X, τ, \mathcal{I}) is said to be a $\mathcal{B}_{\mathcal{I}} - set[8]$ if $A = U \cap V$ where U is open and V is a $t - \mathcal{I} - set$. The easy proof of the following Theorem 2.1 is omitted which says that the arbitrary intersection of $semi^* - \mathcal{I} - closed$ (resp. $semipre^* - \mathcal{I} - closed$) set is a $semi^* - \mathcal{I} - closed$ (resp. $semipre^* - \mathcal{I} - closed$) set.

Theorem 2.1. Let (X, τ, \mathcal{I}) be an ideal space and $A \subset X$. If $\{A_{\alpha} \mid \alpha \in \Delta\}$ is a family of semi^{*} – \mathcal{I} -closed (resp. semipre^{*} – \mathcal{I} -closed) sets, then $\cap A_{\alpha}$ is a semi^{*} – \mathcal{I} -closed (resp. semipre^{*} – \mathcal{I} -closed) set.

Theorem 2.2. Let (X, τ, \mathcal{I}) be an ideal space and $A \subset X$. Then the following hold. (a) $S\mathcal{I}cl(A) = A \cup int(cl^*(A))$. $(b)sp\mathcal{I}cl(A) = A \cup int(cl^{\star}(int(A))).$

Proof. The proof follows from Theorem 1.3 and Theorem 3.1 of [5].

Every $semi^* - \mathcal{I}$ -closed set is a $semipre^* - \mathcal{I}$ -closed set but not the converse as shown by the following Example 2.3. Theorem 2.4 below shows that the reverse direction is true if the set is $semi-\mathcal{I}$ -open. Theorem 2.5 gives a characterization of $t - \mathcal{I}$ -sets.

Example 2.3. Consider the ideal space (X, τ, \mathcal{I}) where $X = \{a, b, c, d\}, \tau = \{\emptyset, \{d\}, \{a, c\}, \{a, c, d\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}, \{d\}, \{c, d\}\}$. If $A = \{a\}$, then

 $int(cl^{\star}(int(A))) = int(cl^{\star}(\emptyset)) = \emptyset \subset A \text{ and so } A \text{ is semipre}^{\star} - \mathcal{I} - closed. \text{ Since } int(cl^{\star}(A)) = int(cl^{\star}(\{a\})) = int(\{a, b, c\}) = \{a, c\} \not\subseteq \{a\}, A \text{ is not semi}^{\star} - \mathcal{I} - closed.$

Theorem 2.4. Let (X, τ, \mathcal{I}) be an ideal space and $A \subset X$ be semipre^{*} $-\mathcal{I}-$ closed. If A is semi- $\mathcal{I}-$ open, then A is semi^{*} $-\mathcal{I}-$ closed.

Proof. If A is semi- \mathcal{I} -open, then $A \subset cl^*(int(A))$ and so $cl^*(A) \subset cl^*(int(A))$. Now $int(cl^*(A)) \subset int(cl^*(int(A))) \subset A$ and so A is semi^* $-\mathcal{I}$ -closed.

Theorem 2.5. Let (X, τ, \mathcal{I}) be an ideal space and $A \subset X$. Then the following are equivalent. (a) A is a $t - \mathcal{I}$ -set.

(b) A is semi^{*} $- \mathcal{I}-closed$.

(c) A is a semipre^{*} $- \mathcal{I}$ -closed $\mathcal{B}_{\mathcal{I}}$ -set.

Proof. Enough to prove that $(c) \Rightarrow (a)$. Suppose A is a semipre^{*} $-\mathcal{I}$ -closed $\mathcal{B}_{\mathcal{I}}$ -set. Then $A = U \cap V$ where U is open and V is a $t - \mathcal{I}$ -set. Now $int(cl^*(A)) = int(cl^*(U \cap V)) \subset int(cl^*(U) \cap cl^*(V)) = int(cl^*(U)) \cap int(cl^*(V)) = int(cl^*(U)) \cap int(CV) = int(cl^*(U)) \cap int(V) = int(cl^*(U) \cap int(V)) \subset int(cl^*(U \cap int(V)) = int(cl^*(int(U \cap V))) = int(cl^*(int(A))) \subset A$ and so $int(cl^*(A)) \subset int(A)$. But $int(A) \subset int(cl^*(A))$ and so $int(A) = int(cl^*(A))$ which implies that A is a $t - \mathcal{I}$ -set.

The following Example 2.6 shows that the union of two $semi^* - \mathcal{I}closed$ (resp. $semipre^* - \mathcal{I}-closed$) set is not a $semi^* - \mathcal{I}closed$ (resp. $semipre^* - \mathcal{I}-closed$) set.

Example 2.6. Consider the ideal $space(X, \tau, \mathcal{I})$ of Example 2.3. If $A = \{a, c\}$ and $B = \{d\}$, then $int(cl^*(A)) = int(cl^*(\{a, c\})) = int(\{a, b, c\}) = \{a, c\} = A \text{ and so } A \text{ is semi}^* - \mathcal{I} - closed \text{ and hence}$ semipre* $-\mathcal{I} - closed$. Also, $int(cl^*(B)) = int(cl^*(\{d\})) = int(\{d\}) = \{d\} = B$. Therefore, B is $semi^* - I - closed$ and so $semipre^* - I - closed$. But $int(cl^*(int(A \cup B))) = int(cl^*(int(\{a, c, d\}))) = int(cl^*(\{a, c, d\})) = int(cl^*(\{a, c, d\})) = int(Cl^*(\{a, c, d\})) = int(X) = X \nsubseteq A \cup B$ and so $A \cup B$ is not $semipre^* - \mathcal{I} - closed$ and hence $A \cup B$ is not $semi^* - \mathcal{I} - closed$.

A subset A of an ideal space (X, τ, \mathcal{I}) is said to be a $\mathcal{C}_{\mathcal{I}}$ -set [8] if $A = U \cap V$ where U is open and V is a semipre^{*} $-\mathcal{I}$ -closed set. We will denote the family of all $\mathcal{C}_{\mathcal{I}}$ -set by $\mathcal{C}_{\mathcal{I}}(X)$. The following Theorem 2.7 gives a characterization of $\mathcal{B}_{\mathcal{I}}$ -sets and $\mathcal{C}_{\mathcal{I}}$ -sets.

Theorem 2.7. Let (X, τ, \mathcal{I}) be an ideal space and A be a subset of X. Then the following hold.

(a) A is a $\mathcal{B}_{\mathcal{I}}$ -set if and only if there exists an open set U such that $A = U \cap S\mathcal{I}cl(A)$.

(b) A is a $C_{\mathcal{I}}$ -set if and only if there exists an open set U such that $A = U \cap sp\mathcal{I}cl(A)$.

Proof. (a) Suppose A is a $\mathcal{B}_{\mathcal{I}}$ -set. Then $A = U \cap V$ where U is open and V is a $t - \mathcal{I}$ -set. Since $t - \mathcal{I}$ -sets are $semi^* - \mathcal{I}$ -closed sets, $S\mathcal{I}cl(V) = V$. Now $A = U \cap A \subset U \cap S\mathcal{I}cl(A) \subset U \cap S\mathcal{I}cl(V) = U \cap V = A$ and so $A = U \cap S\mathcal{I}cl(A)$. Conversely, suppose $A = U \cap S\mathcal{I}cl(A)$ for some

open set U. Since SIcl(A) is $semi^* - I$ -closed, $int(cl^*(SIcl(A))) \subset SIcl(A)$. Also, $int(SIcl(A)) \subset int(cl^*(SIcl(A))) \subset SIcl(A)$ and so $int(SIcl(A)) = int(cl^*(SIcl(A)))$ which implies that SIcl(A) is a t - I-set. Therefore, A is a \mathcal{B}_I -set.

(b) The proof is similar to that of (a).

A subset A of an ideal space (X, τ, \mathcal{I}) is said to be a $\mathcal{A}_{1\mathcal{I}}$ -set (resp. $\mathcal{B}_{1\mathcal{I}}$ -set $[4](\alpha_{\mathcal{I}}M_1$ -set [1]))if $A = U \cap V$ where U is open (resp. $\alpha - \mathcal{I}$ -open) and $cl^*(int(V)) = X$. We will denote the family of all $\mathcal{B}_{1\mathcal{I}}$ -sets (resp. $\mathcal{A}_{1\mathcal{I}}$ -sets) by $\mathcal{B}_{1\mathcal{I}}(X)$ (resp. $\mathcal{A}_{1\mathcal{I}}(X)$). Clearly, $\mathcal{A}_{1\mathcal{I}}(X) \subset \mathcal{B}_{1\mathcal{I}}(X)$. The following Theorem 2.8 shows that $\mathcal{B}_{1\mathcal{I}}$ -sets and $\mathcal{A}_{1\mathcal{I}}$ -sets are nothing but $\alpha - \mathcal{I}$ -open sets.

Theorem 2.8. Let (X, τ, \mathcal{I}) be an ideal space. Then $\mathcal{B}_{1\mathcal{I}}(X) = \alpha \mathcal{I}O(X) = \mathcal{A}_{1\mathcal{I}}(X)$.

Proof. Suppose $A \in \mathcal{B}_{1\mathcal{I}}(X)$. Then $A = U \cap V$ where U is $\alpha - \mathcal{I}$ -open and $cl^*(int(V)) = X$. Since $V \subset X = int(cl^*(int(V))), V \in \alpha \mathcal{I}O(X)$. Since $\alpha \mathcal{I}O(X)$ is a topology on $X, A \in \alpha \mathcal{I}O(X)$ and so $\mathcal{B}_{1\mathcal{I}}(X) \subset \alpha \mathcal{I}O(X)$.

Suppose $A \in \alpha \mathcal{I}O(X)$. Then $A \subset int(cl^*(int(A)))$ and so $A = int(cl^*(int(A))) \cap (X - (int(cl^*(int(A))) - A)) = int(cl^*(int(A))) \cap ((X - int(cl^*(int(A)))) \cup A)$. Also, $cl^*(int((X - int(cl^*(int(A)))) \cup A)) \supset cl^*(int(X - int(cl^*(int(A)))) \cup int(A)) = cl^*(int(X - int(cl^*(int(A))))) \cup cl^*(int(A)) \supset cl^*(int(A))) \cup int(A)) = cl^*(int(X - int(cl^*(int(A))))) \cup cl^*(int(A))) \supset cl^*(int(A))) \cup cl^*(int(A))) \cup cl^*(int(A))) \cup cl^*(int(A))) \cup cl^*(int(A))) \cup cl^*(int(A))) \cup cl^*(int(A))) = int(X) = X$. Therefore, $A \in \mathcal{A}_{1\mathcal{I}}(X)$ which implies that $\alpha \mathcal{I}O(X) \subset \mathcal{A}_{1\mathcal{I}}(X)$. Clearly, $\mathcal{A}_{1\mathcal{I}}(X) \subset \mathcal{B}_{1\mathcal{I}}(X)$. This completes the proof.

A subset A of an ideal space (X, τ, \mathcal{I}) is said to be an \mathcal{RI} -open set [17] if $A = int(cl^*(A))$. We will denote the family of all \mathcal{RI} -open sets by $\mathcal{RIO}(X)$. In [17], it is established that $\mathcal{RIO}(X)$ is a base for a topology $\tau_{\mathcal{I}}$ and $\tau_s \subset \tau_{\mathcal{I}} \subset \tau$ where τ_s is the semiregularization of τ . The following Theorem 2.9 gives characterizations of pre- \mathcal{I} -open sets in terms of \mathcal{RI} -open sets.

Theorem 2.9. Let (X, τ, \mathcal{I}) be an ideal space and $A \subset X$. Then the following are equivalent.

(a) A is pre- \mathcal{I} -open.

(b) There exists an $R\mathcal{I}$ -open set G such that $A \subset G$ and $cl^*(G) = cl^*(A)$.

 $(c)A = G \cap D$ where G is $R\mathcal{I}$ -open and D is τ^* -dense.

 $(d)A = G \cap D$ where G is open and D is τ^* -dense.

Proof. (a) \Rightarrow (b). Suppose A is pre- \mathcal{I} -open. If $G = int(cl^*(A))$, then $A \subset G$ and $int(cl^*(G)) = int(cl^*(int(cl^*(A)))) = int(cl^*(A)) = G$ which implies that G is an $R\mathcal{I}$ -open set containing A. Also, $cl^*(A) \subset cl^*(G) = cl^*(int(cl^*(A))) \subset cl^*(A)$ which implies that $cl^*(A) = cl^*(G)$. This proves (b). (b) \Rightarrow (c). Suppose G is an $R\mathcal{I}$ -open set such that $A \subset G$ and $cl^*(G) = cl^*(A)$. If $D = A \cup (X - G)$, then $A = G \cap D$ and D is τ^* -dense. This proves (c). (c) \Rightarrow (d) is clear.

 $(d) \Rightarrow (a)$ follows from Lemma 4.3 of [3].

A subset A of an ideal space (X, τ, \mathcal{I}) is said to be a $\mathcal{A}_{2\mathcal{I}}$ -set (resp. $\mathcal{B}_{2\mathcal{I}}$ -set $[4](\alpha_{\mathcal{I}}M_2$ -set [1])) if $A = U \cap V$ where U is open (resp. $\alpha - \mathcal{I}$ -open) and $cl^*(V) = X$. We will denote the family of all $\mathcal{A}_{2\mathcal{I}}$ -sets (resp. $\mathcal{B}_{2\mathcal{I}}$ -sets) by $\mathcal{A}_{2\mathcal{I}}(X)$ (resp. $\mathcal{B}_{2\mathcal{I}}(X)$). Clearly, $\mathcal{A}_{2\mathcal{I}}(X) \subset \mathcal{B}_{2\mathcal{I}}(X)$. The following Theorem 2.10 shows that $\mathcal{A}_{2\mathcal{I}}$ -sets and $\mathcal{B}_{2\mathcal{I}}$ -sets are nothing but pre- \mathcal{I} -open sets. Also, it shows that the converse of Proposition 2.6 of [4] is true.

Theorem 2.10. Let (X, τ, \mathcal{I}) be an ideal space. Then $\mathcal{A}_{2\mathcal{I}}(X) = P\mathcal{I}O(X) = \mathcal{B}_{2\mathcal{I}}(X)$.

Proof. By Theorem 2.9(d), $\mathcal{A}_{2\mathcal{I}}(X) = P\mathcal{I}O(X)$. Since $\mathcal{A}_{2\mathcal{I}}(X) \subset \mathcal{B}_{2\mathcal{I}}(X)$, it is enough to prove that $\mathcal{B}_{2\mathcal{I}}(X) \subset \mathcal{A}_{2\mathcal{I}}(X)$. Suppose $A \in \mathcal{B}_{2\mathcal{I}}(X)$. Then $A = U \cap V$ where U is $\alpha - \mathcal{I}$ -open and $cl^*(V) = X$. Now $A \subset U \subset int(cl^*(int(U))) = int(cl^*(int(U \cap X))) = int(cl^*(int(U \cap cl^*(V)))) \subset$ $int(cl^*(int(cl^*(U \cap V)))) = int(cl^*(U \cap V)) = int(cl^*(A))$ and so $A \in P\mathcal{I}O(X)$. This completes the proof.

Clearly, $A_{1\mathcal{I}}(X) \subset A_{2\mathcal{I}}(X)$. The following Example 2.11 shows that an $A_{2\mathcal{I}}$ -set need not be an $A_{1\mathcal{I}}$ -set.

Example 2.11. Consider the ideal space (X, τ, \mathcal{I}) where $X = \{a, b, c\}, \tau = \{\emptyset, \{c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. If $A = \{a, c\}$, then A is an $A_{2\mathcal{I}}$ -set. But $cl^*(int(A)) = int(A) \cup (int(A))^* = \{c\} \neq X$. Hence A is not an $A_{1\mathcal{I}}$ -set.

A subset A of an ideal space (X, τ, \mathcal{I}) is said to be an $\alpha_{\mathcal{I}} N_5$ -set [1] if $A = U \cap V$ where U is $\alpha - \mathcal{I}$ -open and V is \star -closed. We will denote the family of all $\alpha_{\mathcal{I}} N_5$ -sets of an ideal space (X, τ, \mathcal{I}) by $\alpha_{\mathcal{I}} N_5(X)$. A subset A of an ideal space (X, τ, \mathcal{I}) is said to be an \mathcal{I} -locally closed [6] (resp. weakly \mathcal{I} -locally closed [13]) set if $A = U \cap V$ where U is open and V is a \star -perfect (resp. \star -closed) set. By Theorem 2.9 of [15], A is weakly \mathcal{I} -locally closed if and only if $A = U \cap cl^*(A)$ for some open set U. The family of all weakly \mathcal{I} -locally closed sets is denoted by $W\mathcal{I}LC(X)$. Clearly, every weakly \mathcal{I} -locally closed set is an $\alpha_{\mathcal{I}} N_5$ -set but not the converse as shown by the following Example 2.12. Theorem 2.13 below gives a characterization of $\alpha_{\mathcal{I}} N_5$ -sets.

Example 2.12. [4, Example 2.2]Consider the ideal space (X, τ, \mathcal{I}) where $X = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{a, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{b\}, \{c\}, \{b, c\}\}$. If $A = \{a, b\}$, then $int(cl^*(int(A))) = int(cl^*(int(\{a, b\}))) = int(cl^*(\{a\})) = int(\{a, b, c\}) = X \supset A$ and so A is $\alpha - \mathcal{I}$ -open and hence an $\alpha_{\mathcal{I}}N_5$ -set. But there is no open set U such that $A = U \cap cl^*(A)$ where $cl^*(A) = X$. Hence A is not a weakly \mathcal{I} -locally closed set.

Theorem 2.13. Let (X, τ, \mathcal{I}) be an ideal space and $A \subset X$. Then A is $\alpha_{\mathcal{I}} N_5$ -set if and only if $A = U \cap cl^*(A)$ for some $U \in \alpha \mathcal{I}O(X)$.

Proof. If A is an $\alpha_{\mathcal{I}}N_5$ -set, then $A = U \cap V$ where U is $\alpha - \mathcal{I}$ -open and V is \star -closed. Since $A \subset V$, $cl^*(A) \subset cl^*(V) = V$ and so $U \cap cl^*(A) \subset U \cap V = A \subset U \cap cl^*(A)$ which implies that $A = U \cap cl^*(A)$. Conversely, suppose $A = U \cap cl^*(A)$ for some $U \in \alpha \mathcal{I}O(X)$. Since $cl^*(A)$ is \star -closed, A is an $\alpha_{\mathcal{I}}N_5$ -set.

A subset A of an ideal space (X, τ, \mathcal{I}) is said to be an $\mathcal{I}R$ -closed set [1] if $A = cl^*(int(A))$. A subset A of an ideal space (X, τ, \mathcal{I}) is said to be an $\alpha \mathcal{A}_I$ -set [4] $(\alpha_{\mathcal{I}}N_2$ -set [1]) (resp. $\mathcal{A}_{\mathcal{I}R}$ -set [1]) if $A = U \cap V$ where U is an $\alpha - \mathcal{I}$ -open (resp. open) set and V is an $\mathcal{I}R$ -closed set. $\mathcal{A}_{\mathcal{I}R}$ -sets are called as $\mathcal{A}_{\mathcal{I}}$ -sets in [4]. We will denote the family of all $\alpha \mathcal{A}_I$ -sets (resp. $\mathcal{A}_{\mathcal{I}R}$ -sets) by $\alpha \mathcal{A}_{\mathcal{I}}(X)$ (resp. $\mathcal{A}_{\mathcal{I}R}(X)$). Clearly, every $\mathcal{A}_{\mathcal{I}R}$ -set is an $\alpha \mathcal{A}_I$ -set but the converse is not true [4, Example 2.2]. Theorem 2.14 below shows that $\alpha \mathcal{A}_I$ -sets are nothing but semi- \mathcal{I} -open sets which shows that the reverse direction of Proposition 2.4 of [4] is true and each such set is both a strong $\beta - \mathcal{I}$ -open set and an $\alpha_{\mathcal{I}}N_5$ -set.

Theorem 2.14. Let (X, τ, \mathcal{I}) be an ideal space. Then $\alpha \mathcal{A}_{\mathcal{I}}(X) = s\beta \mathcal{I}O(X) \cap \alpha_{\mathcal{I}}N_5(X) = S\mathcal{I}O(X)$.

Proof. Suppose $A \in \alpha \mathcal{A}_{\mathcal{I}}(X)$. Then $A = U \cap V$ where $U \in \alpha \mathcal{I}O(X)$ and V is an $\mathcal{I}R$ -closed set. Now $A = U \cap V \subset int(cl^*(int(U))) \cap cl^*(int(V)) \subset cl^*(int(cl^*(int(U))) \cap int(V))) = cl^*(int(cl^*(int(U)))) \cap cl^*(int(U))) \cap cl^*(int(U))) = cl^*(int(cl^*(int(U)))) = cl^*(int(cl^*(int(U))) = cl^*(int(cl^*(int(U)))) = cl^*(int(cl^*(int(U))) = cl^*(int(cl^*(int(U)))) = cl^*(int(cl^*(int(U))) = cl^*(int(cl^*(int(U)))) = cl^*(int(cl^*(int(U)))) = cl^*(int(cl^*(int(U))) = cl^*(int(cl^*(int(U))) = cl^*(int(cl^*(int(U))) =$

 $cl^{\star}(int(cl^{\star}(A)))$ and so $A \in s\beta \mathcal{I}O(X)$. Since V is \star -closed, $A \in \alpha_{\mathcal{I}}N_5(X)$ and so $\alpha \mathcal{A}_{\mathcal{I}}(X) \subset s\beta \mathcal{I}O(X) \cap \alpha_{\mathcal{I}}N_5(X)$. Conversely, suppose $A \in s\beta \mathcal{I}O(X) \cap \alpha_{\mathcal{I}}N_5(X)$. $A \in s\beta \mathcal{I}O(X)$ implies that $A \subset cl^{\star}(int(cl^{\star}(A)))$ and $A \in \alpha_{\mathcal{I}}N_5(X)$ implies that $A = U \cap cl^{\star}(A)$ where $U \in \alpha \mathcal{I}O(X)$. Since $A \subset U, A \subset U \cap cl^{\star}(int(cl^{\star}(A))) \subset U \cap cl^{\star}(A) = A$ and so $A = U \cap cl^{\star}(int(cl^{\star}(A)))$. Since $cl^{\star}(int(cl^{\star}(A)))$ is $\mathcal{I}R$ -closed, $A \in \alpha \mathcal{A}_{\mathcal{I}}(X)$ and so $s\beta \mathcal{I}O(X) \cap \alpha_{\mathcal{I}}N_5(X) \subset \alpha \mathcal{A}_{\mathcal{I}}(X)$. Therefore, $\alpha \mathcal{A}_{\mathcal{I}}(X) = s\beta \mathcal{I}O(X) \cap \alpha_{\mathcal{I}}N_5(X)$.

If $A \in S\mathcal{IO}(X)$, then $A \in s\beta\mathcal{IO}(X)$ by Proposition 1(d) of [9]. Moreover, if $V = A \cup (X - cl^*(int(A)))$, then $A = V \cap cl^*(int(A))$. Also, $int(cl^*(int(V))) = int(cl^*(int(A \cup (X - cl^*(int(A)))))) \supset int(cl^*(int(A)))) = int(cl^*(int(A)) \cup cl^*(int(X - cl^*(int(A))))) \supset int(cl^*(int(A)))) = int(cl^*(int(A)) \cup cl^*(int(X - cl^*(int(A))))) \supset int(cl^*(int(A)))) \supset int(int(cl^*(int(A)) \cup (X - cl^*(int(A)))))) = int(X) = X \supset V$ and so V is $\alpha - \mathcal{I}$ -open. Therefore, $A \in \alpha_{\mathcal{I}} N_5(X)$ and hence $S\mathcal{IO}(X) \subset s\beta\mathcal{IO}(X) \cap \alpha_{\mathcal{I}} N_5(X)$. Conversely, suppose $A \in s\beta\mathcal{IO}(X) \cap \alpha_{\mathcal{I}} N_5(X)$. $A \in \alpha_{\mathcal{I}} N_5(X)$ implies that $A = U \cap V$ where U is $\alpha - \mathcal{I}$ -open and V is \star -closed. Since $A \in s\beta\mathcal{IO}(X)$, $A \subset cl^*(int(cl^*(int(cl^*(U \cap V))) \subset cl^*(int(cl^*(int(U))) \cap V)))) \subset$

 $cl^{*}(int(cl^{*}(int(cl^{*}(int(U)))) \cap V)) = cl^{*}(int(cl^{*}(int(U)) \cap V)) = cl^{*}(int(cl^{*}(int(U))) \cap int(V))) \subset cl^{*}(int(cl^{*}(int(U) \cap int(V)))) = cl^{*}(int(cl^{*}(int(U) \cap V)))) = cl^{*}(int(Cl^{*}(int(U) \cap V)))) = cl^{*}(int(A)).$ Therefore, $A \in SIO(X)$ which implies that $s\beta IO(X) \cap \alpha_{\mathcal{I}} N_{5}(X) \subset SIO(X)$. Hence $s\beta IO(X) \cap \alpha_{\mathcal{I}} N_{5}(X) = SIO(X)$.

Corollary 2.15. Let (X, τ, \mathcal{I}) be an ideal space and $A \subset X$. Then the following are equivalent. (a) A is $\alpha - \mathcal{I} - open$.

(b) A is $pre-\mathcal{I}-open$ and $semi-\mathcal{I}-open$ [4, Proposition 1.1].

(c) A is a $\mathcal{B}_{2\mathcal{I}}$ -set and $\alpha \mathcal{A}_{\mathcal{I}}$ -set[4, Theorem 2.3].

Proof. (a) and (b) are equivalent by Proposition 1.1 of [4]. (b) and (c) are equivalent by Theorem 2.10 and Theorem 2.14.

Corollary 2.16. Let (X, τ, \mathcal{I}) be an ideal space and $A \subset X$. Then the following are equivalent.

- (a) A is open.
- (b) A is $\alpha \mathcal{I}$ -open and $\mathcal{A}_{\mathcal{I}R}$ set.
- (c) A is pre- \mathcal{I} -open and $\mathcal{A}_{\mathcal{I}R}$ -set.
- (d) A is $\alpha \mathcal{I}$ -open and weakly \mathcal{I} -locally closed.
- (e) A is $\alpha \mathcal{I}$ -open and $\mathcal{B}_{\mathcal{I}}$ -set.
- (f) A is $\alpha \mathcal{I} open$ and $\mathcal{C}_{\mathcal{I}} set$.

Proof. (a) and (b) are equivalent by Theorem 2.1 of [4].

That (b) implies (c) is clear.

(c) and (d) are equivalent by Proposition 2.2 of [4].

(d) implies (e) and (e) implies (f) are clear.

(f) implies (a) follows from Proposition 3.3 of [8].

A subset A of an ideal space (X, τ, \mathcal{I}) is said to be a $\mathcal{A}_{3\mathcal{I}}$ -set (resp. $\mathcal{B}_{3\mathcal{I}}$ -set $[4](\alpha_{\mathcal{I}}N_1$ -set [1])) if $A = U \cap V$ where U is open (resp. $\alpha - \mathcal{I}$ -open) and $cl^*(int(V)) \subset V$. We will denote the family of all $\mathcal{A}_{3\mathcal{I}}$ -sets (resp. $\mathcal{B}_{3\mathcal{I}}$ -sets) by $\mathcal{A}_{3\mathcal{I}}(X)$ (resp. $\mathcal{B}_{3\mathcal{I}}(X)$). Clearly, $\mathcal{A}_{3\mathcal{I}}(X) \subset \mathcal{B}_{3\mathcal{I}}(X)$. The following Example 2.17 shows that the reverse direction is not true. Example 2.18 below shows that $\mathcal{A}_{2\mathcal{I}}$ -sets and $\mathcal{A}_{3\mathcal{I}}$ -sets are independent concepts. Theorem 2.19 below gives a characterization of $\mathcal{A}_{\mathcal{I}R}$ -sets in terms of $\mathcal{A}_{3\mathcal{I}}$ -sets.

Example 2.17. Consider the ideal space (X, τ, \mathcal{I}) of Example 2.12. If $A = \{a, b\}$, then $int(cl^*(int(A))) = int(cl^*(int(\{a, b\}))) = int(cl^*(\{a\})) = int(X) = X \supset A$ and so A is an $\alpha - \mathcal{I}$ -open set and hence A is a $\mathcal{B}_{3\mathcal{I}}$ -set. Since $cl^*(int(A)) \not\subseteq A$ and X is the only open set containing A, A is not an $A_{3\mathcal{I}}$ -set.

Example 2.18. (a) Consider the ideal space (X, τ, \mathcal{I}) of Example 2.12. If $A = \{a, b\}$, then A is not an $A_{3\mathcal{I}}$ -set. Since $cl^*(A) = A \cup A^* = \{a, b\} \cup X = X$, and so A is an $A_{2\mathcal{I}}$ -set.

(b) Consider the ideal space (X, τ, \mathcal{I}) where $X = \{a, b, c, d\}, \tau = \{\emptyset, \{d\}, \{a, c\}, d\}$

 $\{a, c, d\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}, \{d\}, \{c, d\}\}$. If $A = \{a, b, c\}$, then $cl^*(int(A)) = int(A) \cup (int(A))^* = \{a, c\} \cup \{a, b, c\} = \{a, b, c\} = A$ and so A is an $A_{3\mathcal{I}}$ -set. Since $cl^*(A) = A \cup A^* = \{a, b, c\} \neq X$, A is not an $A_{2\mathcal{I}}$ -set.

Theorem 2.19. Let (X, τ, \mathcal{I}) be an ideal space. Then $\mathcal{A}_{\mathcal{I}R}(X) = S\mathcal{I}O(X) \cap \mathcal{A}_{3\mathcal{I}}(X)$.

Proof. Suppose $A \in \mathcal{A}_{\mathcal{I}R}(X)$. Clearly, $A \in \mathcal{A}_{3\mathcal{I}}(X)$. By Theorem 3.3 of [1], $A \in S\mathcal{I}O(X)$. Therefore, $\mathcal{A}_{\mathcal{I}R}(X) \subset S\mathcal{I}O(X) \cap \mathcal{A}_{3\mathcal{I}}(X)$. Conversely, suppose $A \in S\mathcal{I}O(X) \cap \mathcal{A}_{3\mathcal{I}}(X)$. $A \in \mathcal{A}_{3\mathcal{I}}(X)$ implies that $A = U \cap V$ where U is open and $cl^*(int(V)) \subset V$. $A \in S\mathcal{I}O(X)$ implies that $A \subset cl^*(int(A))$ and so $A = A \cap cl^*(int(A)) = (U \cap V) \cap cl^*(int(U \cap V)) \subset U \cap cl^*(int(U \cap V)) = U \cap cl^*(U \cap int(V)) \subset$ $U \cap cl^*(U) \cap cl^*(int(V)) \subset U \cap V = A$ and so $A = U \cap cl^*(int(U \cap V)) = U \cap cl^*(int(A))$. Since $cl^*(int(A))$ is $\mathcal{I}R$ -closed, $A \in \mathcal{A}_{\mathcal{I}R}(X)$. Therefore, $\mathcal{A}_{\mathcal{I}R}(X) = S\mathcal{I}O(X) \cap \mathcal{A}_{3\mathcal{I}}(X)$.

Corollary 2.20. Let (X, τ, \mathcal{I}) be an ideal space and $A \subset X$. Then the following are equivalent. (a) $A \in \mathcal{A}_{\mathcal{I}R}(X)$. (b) $A \in S\mathcal{I}O(X) \cap \mathcal{A}_{3\mathcal{I}}(X)$. (c) $A \in \alpha \mathcal{A}_{\mathcal{I}}(X) \cap \mathcal{A}_{3\mathcal{I}}(X)$. (d) $A \in s\beta \mathcal{I}O(X) \cap \alpha_{\mathcal{I}}N_5(X) \cap \mathcal{A}_{3\mathcal{I}}(X)$. (e) $A \in s\beta \mathcal{I}O(X) \cap W\mathcal{I}LC(X)$.

Proof. (a), (b), (c) and (d) are equivalent by Theorem 2.14 and Theorem 2.19. (a) and (e) are equivalent by Theorem 2.10 of [15].

By Remark 3.3 of [8], every $\mathcal{B}_{\mathcal{I}}$ -set is a $\mathcal{C}_{\mathcal{I}}$ -set but the reverse direction is not true. The following Theorem 2.22 gives characterizations of $\mathcal{B}_{\mathcal{I}}$ -sets in terms of $\mathcal{C}_{\mathcal{I}}$ -sets. A subset A of an ideal space (X, τ, \mathcal{I}) is said to be an $\alpha \mathcal{B}_{\mathcal{I}}$ -set $(\alpha_{\mathcal{I}} N_3 - \text{set } [1])$ if $A = U \cap V$ where $U \in \alpha \mathcal{I}O(X)$ and V is a $t-\mathcal{I}$ -set. A subset A of an ideal space (X, τ, \mathcal{I}) is said to be an $\alpha \mathcal{C}_{\mathcal{I}}$ -set $[4](\alpha_{\mathcal{I}} N_4 - \text{set } [1])$ if $A = U \cap V$ where $U \in \alpha \mathcal{I}O(X)$ and V is a $\alpha^* - \mathcal{I}$ -set. Clearly every $\alpha \mathcal{B}_{\mathcal{I}}$ -set is an $\alpha \mathcal{C}_{\mathcal{I}}$ -set [1, Proposition 3.2(c)]but not the converse [1, Example 3.4]. We will denote the family of all $\alpha \mathcal{B}_{\mathcal{I}}$ -sets (resp. $\alpha \mathcal{C}_{\mathcal{I}}$ -sets) in (X, τ, \mathcal{I}) by $\alpha \mathcal{B}_{\mathcal{I}}(X)$ (resp. $\alpha \mathcal{C}_{\mathcal{I}}(X)$). We define $\mathcal{D}_{\mathcal{I}}(X) = \{A \subset X \mid int(A) = p\mathcal{I}int(A)\}$ and if $A \in \mathcal{D}_{\mathcal{I}}$, then A is called a $\mathcal{D}_{\mathcal{I}}$ -set. The following Lemma 2.21 characterizes $\alpha \mathcal{B}_{\mathcal{I}}$ -sets and $\alpha \mathcal{C}_{\mathcal{I}}$ -sets, the proof, which is similar to the proof of Theorem 2.7, is omitted. Corollary 2.23 follows from Theorem 2.22.

Lemma 2.21. Let (X, τ, \mathcal{I}) be an ideal space and A be a subset of X. Then the following hold. (a) A is a $\alpha \mathcal{B}_{\mathcal{I}}$ -set if and only if there exists an $\alpha - \mathcal{I}$ -open set U such that $A = U \cap S\mathcal{I}cl(A)$. (b) A is an $\alpha \mathcal{C}_{\mathcal{I}}$ -set if and only if there exists an $\alpha - \mathcal{I}$ -open set U such that $A = U \cap S\mathcal{I}cl(A)$.

Theorem 2.22. Let (X, τ, \mathcal{I}) be an ideal space and $A \subset X$. Then the following are equivalent.

(a) A is a $\mathcal{D}_{\mathcal{I}}$ -set and a $\mathcal{C}_{\mathcal{I}}$ -set.

(b) A is a $\delta - \mathcal{I}$ -open set and a $C_{\mathcal{I}}$ -set.

(c) A is a $\mathcal{B}_{\mathcal{I}}$ -set.

(d) A is an $\alpha \mathcal{B}_{\mathcal{I}}$ -set and a $\mathcal{C}_{\mathcal{I}}$ -set.

Proof. $(a) \Rightarrow (b)$. Suppose $A \in \mathcal{D}_{\mathcal{I}}(X) \cap \mathcal{C}_{\mathcal{I}}(X)$. If $A \in \mathcal{D}_{\mathcal{I}}(X)$, then $int(A) = p\mathcal{I}int(A)$. Now $int(cl^*(A)) = cl^*(A) \cap int(cl^*(A)) \subset cl^*(A \cap int(cl^*(A))) = cl^*$

 $(p\mathcal{I}int(A)) = cl^{\star}(int(A))$ and so A is a $\delta - \mathcal{I}$ -open set. This proves (b).

 $(b)\Rightarrow(c)$. Suppose A is a $\delta - \mathcal{I}$ -open set and a $\mathcal{C}_{\mathcal{I}}$ -set. Then, by Theorem 2.4 of [12], $int(cl^*(A)) = int(cl^*(int(A)))$ and so $A \cup int(cl^*(A)) = A \cup int(cl^*(int(A)))$ which implies that $S\mathcal{I}cl(A) = sp\mathcal{I}cl(A)$. If A is a $\mathcal{C}_{\mathcal{I}}$ -set, then Theorem 2.7, $A = U \cap sp\mathcal{I}cl(A)$ for some open set U and so $A = U \cap S\mathcal{I}cl(A)$ for some open set U which implies that A is a $\mathcal{B}_{\mathcal{I}}$ -set.

 $(c) \Rightarrow (a).$ Clearly, every $\mathcal{B}_{\mathcal{I}}$ -set is a $\mathcal{C}_{\mathcal{I}}$ -set. If A is a $\mathcal{B}_{\mathcal{I}}$ -set, then $A = U \cap V$ where U is open and $int(cl^*(V)) = int(V)$. Now $p\mathcal{I}int(A) = A \cap int(cl^*(A)) = A \cap int(cl^*(U \cap V)) \subset A \cap int(cl^*(U) \cap cl^*(V)) = A \cap int(cl^*(U)) \cap int(cl^*(V)) = (U \cap V) \cap int(cl^*(U)) \cap int(V) = U \cap int(V) = int(U \cap V) = int(A)$. But always, $int(A) \subset p\mathcal{I}int(A)$ and so $int(A) = p\mathcal{I}int(A)$ which implies that A is a $\mathcal{D}_{\mathcal{I}}$ -set. This proves (a).

 $(c) \Rightarrow (d)$ is clear.

 $(d) \Rightarrow (c)$. If A is an $\alpha \mathcal{B}_{\mathcal{I}}$ -set, then $A = U \cap V$ where U is $\alpha - \mathcal{I}$ -open and $int(cl^{*}(V)) = int(V)$. Now $A \subset U$ implies that $A \subset int(cl^{*}(int(U)))$ and so $int(cl^{*}(A)) \subset int(cl^{*}(int(cl^{*}(int(U))))) = int(cl^{*}(int(U))) \subset int(cl^{*}(U))$. Again, $A \subset V$ implies that $int(cl^{*}(A)) \subset int(cl^{*}(V)) = int(V)$. Therefore,

 $int(cl^{*}(A)) \subset int(cl^{*}(U)) \cap int(V) \subset cl^{*}(int(U) \cap int(V)) \subset cl^{*}(int(U \cap V)) = cl^{*}(int(A))$ and so $int(cl^{*}(A)) = int(cl^{*}(int(A)))$ which implies that $A \cup int(cl^{*}(A))$

 $= A \cup int(cl^*(int(A)))$. Hence SIcl(A) = spIcl(A). Since A is a $C_{\mathcal{I}}$ -set, by Theorem 2.7, $A = G \cap spIcl(A)$ for some open set G and so $A = G \cap SIcl(A)$. Therefore, A is a $\mathcal{B}_{\mathcal{I}}$ -set.

Corollary 2.23. Let (X, τ, \mathcal{I}) be an ideal space. Then the following hold.

(a) Every $\mathcal{B}_{\mathcal{I}}$ -set is a $\mathcal{D}_{\mathcal{I}}$ -set.

(b) Every $\mathcal{B}_{\mathcal{I}}$ -set is a $\alpha \mathcal{B}_{\mathcal{I}}$ -set.

(c) Every $\mathcal{D}_{\mathcal{I}}$ -set is a $\delta - \mathcal{I}$ -open set (Proof follows from (a) \Rightarrow (b) of Theorem 2.22).

The following Theorem 2.24 characterizes $\alpha \mathcal{B}_{\mathcal{I}}$ -open sets in terms of $\delta - \mathcal{I}$ -open sets and $\alpha \mathcal{C}_{\mathcal{I}}$ -open sets. Example 2.25 below shows that $\delta - \mathcal{I}$ -openness and $\alpha \mathcal{C}_{\mathcal{I}}$ -openness are independent concepts.

Theorem 2.24. Let (X, τ, \mathcal{I}) be an ideal space. Then $\alpha \mathcal{B}_{\mathcal{I}}(X) = \delta \mathcal{I}O(X) \cap \alpha \mathcal{C}_{\mathcal{I}}(X)$.

Proof. Clearly, $\alpha \mathcal{B}_{\mathcal{I}}(X) \subset \alpha \mathcal{C}_{\mathcal{I}}(X)$. If $A \in \alpha \mathcal{B}_{\mathcal{I}}(X)$, then $A = U \cap V$ where U is $\alpha - \mathcal{I}$ -open and V is a $t - \mathcal{I}$ -set. $A \subset U$ implies that $int(cl^*(A)) \subset int(cl^*(U)) \subset int(cl^*(int(cl^*(int(U))))) \subset int(cl^*(int(U))) \subset cl^*(int(U))$. Also, $A \subset V$ implies that $int(cl^*(A)) \subset int(cl^*(V)) = int(V)$ and so $int(cl^*(A)) \subset cl^*(int(U)) \cap int(V) \subset cl^*(int(U) \cap int(V)) = cl^*(int(U \cap V)) = cl^*(int(A)$. Therefore, $A \in \delta \mathcal{I}O(X)$. Hence $\alpha \mathcal{B}_{\mathcal{I}}(X) \subset \delta \mathcal{I}O(X) \cap \alpha \mathcal{C}_{\mathcal{I}}(X)$. Conversely, suppose $A \in \delta \mathcal{I}O(X) \cap \alpha \mathcal{C}_{\mathcal{I}}(X)$. $A \in \delta \mathcal{I}O(X)$ implies that $int(cl^*(A)) = int(cl^*(int(A)))$ and so $S\mathcal{I}cl(A) = sp\mathcal{I}cl(A)$. $A \in \alpha \mathcal{C}_{\mathcal{I}}(X)$ implies that $A = U \cap sp\mathcal{I}cl(A)$ for some $\alpha - \mathcal{I}$ -open set U by Lemma 2.21 and so $A = U \cap S\mathcal{I}cl(A)$ for some $\alpha - \mathcal{I}$ -open set U which implies that $A \in \alpha \mathcal{B}_{\mathcal{I}}(X)$. Therefore, $\delta \mathcal{I}O(X) \cap \alpha \mathcal{C}_{\mathcal{I}}(X) \subset \alpha \mathcal{B}_{\mathcal{I}}(X)$. This completes the proof.

Example 2.25. (a) Let $X = \{a, b, c, d\}, \tau = \{\emptyset, \{d\}, \{a, b\}, \{a, b, d\}, X\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. If $A = \{a, c\}, \text{ then } int(cl^*(int(A))) = int(cl^*(int(\{a, c\}))) = int(cl^*(\emptyset)) = \emptyset = int(A)$. Therefore, A is

an $\alpha^* - \mathcal{I}$ -set and hence an $\alpha C_{\mathcal{I}}$ -set. But $int(cl^*(A)) = int(\{a, b, c\}) = \{a, b\}$ and $cl^*(int(A)) = cl^*(\emptyset) = \emptyset$ and so A is not a $\delta - \mathcal{I}$ -set.

(b) Let $X = \{a, b, c, d\}, \tau = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. If $A = \{a, b, c\}$, then A is neither open nor an $\alpha^* - \mathcal{I}$ -set and so A is not an $\alpha C_{\mathcal{I}}$ -set. But $int(cl^*(A)) = int(\{a, b, c, d\}) = X$ and $cl^*(int(A)) = cl^*(\{a, c\}) = X$ and so A is a $\delta - \mathcal{I}$ -set.

An ideal space (X, τ, \mathcal{I}) is said to be \star -extremally disconnected [7] if the τ^{\star} -closure (\star -closure) of every open set is open. Clearly, $\mathcal{B}_{3\mathcal{I}}(X) \subset \alpha \mathcal{C}_{\mathcal{I}}(X)$. By Example 3.6 of [1] the reverse direction is not true. The following Theorem 2.26 shows that for \star -extremally disconnected spaces, the two collection of sets coincide. Example 2.27 below shows that $\alpha \mathcal{C}_{\mathcal{I}}(X) = B_{3\mathcal{I}}(X)$ does not imply that the space is \star -extremally disconnected.

Theorem 2.26. Let (X, τ, \mathcal{I}) be a \star -extremally disconnected ideal space. Then $\mathcal{B}_{3\mathcal{I}}(X) = \alpha \mathcal{C}_{\mathcal{I}}(X)$.

Proof. Enough to prove that $\alpha C_{\mathcal{I}}(X) \subset \mathcal{B}_{3\mathcal{I}}(X)$. Suppose $A \in \alpha C_{\mathcal{I}}(X)$. Then $A = U \cap V$ where U is $\alpha - \mathcal{I}$ -open and $int(cl^*(int(V))) = int(V)$. Since (X, τ, \mathcal{I}) is \star -extremally disconnected, $cl^*(int(V))$ is open and so $int(V) = int(cl^*(int(V))) = cl^*(int(V))$. Therefore, $A \in \mathcal{B}_{3\mathcal{I}}(X)$. This completes the proof.

Example 2.27. Consider the ideal space (X, τ, \mathcal{I}) where $X = \{a, b, c\}, \tau = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$ and $\mathcal{I} = \{\emptyset, \{a\}\}$. If $A = \{b\}$, A is open and $cl^*(A) = \{b\} \cup \{a, b\} = \{a, b\}$, which is not open. Hence (X, τ, \mathcal{I}) is not \star -extremally disconnected but $\wp(X) = \alpha C_{\mathcal{I}}(X) = B_{3\mathcal{I}}(X)$.

Received: November 2008. Revised: February 2009.

References

- [1] A. AÇIKGÖZ AND Ş.YÜKSEL, Some new sets and Decompositions of $A_{\mathcal{I}-R}$ -continuity, $\alpha \mathcal{I}$ -continuity, Continuity via Idealization, Acta Math. Hungar., 114(1 2)(2007), 79 89.
- [2] A. AÇIKGÖZ, T. NOIRI AND Ş.YÜKSEL, On δ *I*-open sets and Decomposition of α-continuity, Acta Math. Hungar., 102(2004), 349 - 357.
- [3] A. AÇIKGÖZ, Ş.YÜKSEL AND NOIRI, α *I*-Preirresolute Functions and β *I*-Preirresolute Functions, Bull. Malays. Math. Sci. Soc., (2)28(1)(2005), 1 - 8.
- [4] G. ASLIM, A. CAKSU GULER AND T. NOIRI, On decompositions of continuity and some weaker forms of continuity via idealization, Acta Math. Hungar., 109(3)(2005), 183 - 190.
- [5] Å. $Cs\acute{a}sz\acute{a}r$, On the γ -interior and γ -closure of a set, Acta Math. Hungar., 80(1998), 89 93.
- [6] J. DONTCHEV, On pre- \mathcal{I} -open sets and a decomposition of \mathcal{I} -continuity, Banyan Math.J., 2(1996).
- [7] E. EKICI AND T. NOIRI, *-extremally disconnected ideal topological spaces, Acta Math. Hungar., to appear.
- [8] E. HATIR AND T. NOIRI, On decomposition of Continuity via Idealization, Acta Math. Hungar., 96(4)(2002), 341 - 349.

- [9] E. HATIR, A. KESKIN AND T. NOIRI, On a new decomposition of continuity via idealization, JP Jour. Geometry and Topology, 3(2003), 53 - 64.
- [10] E. HAYASHI, Topologies defined by local properties, Math. Ann., 156(1964), 205 215.
- [11] D. JANKOVIC AND T.R. HAMLETT, New Topologies from old via Ideals, Amer. Math. Monthly, 97 No.4 (1990), 295 - 310.
- [12] V. JEYANTHI AND D. SIVARAJ, A note on $\delta \mathcal{I}$ -sets, Acta Math. Hungar., 114(1 2)(2007), 165 169.
- [13] A. KESKIN, Ş. YÜKSEL AND T. NOIRI, Decompositions of *I*-continuity and Continuity, Commun. Fac. Sci. Univ. Ank. Serials A1, 53(2004), 67 - 75.
- [14] K. KURATOWSKI, Topology, Vol. I, Academic Press, New York, 1966.
- [15] V. RENUKADEVI, Note on $\mathcal{I}R$ -closed and $A_{\mathcal{I}R}$ -sets, Acta Math. Hungar., To appear.
- [16] R. VAIDYANATHASWAMY, The Localization Theory in Set Topology, Proc. Indian Acad. Sci. Math. Sci., 20 (1945), 51 - 61.
- [17] S. YÜKSEL, A. AÇIKGÖZ AND T. NOIRI, On $\delta \mathcal{I}$ -continuous functions, Turk. J. Math., 29(2005), 39 51.