CUBO A Mathematical Journal Vol.12, N<sup>o</sup>03, (121–138). October 2010

# Calculations in New Sequence Spaces and Application to Statistical Convergence

BRUNO DE MALAFOSSE LMAH Université du Havre, BP 4006 IUT Le Havre, 76610 Le Havre. France email: bdemalaf@wanadoo.fr

AND

VLADIMIR RAKOČEVIĆ<sup>1</sup> Department of Mathematics, University of Niš, Videgradska 33, 18000 Niš, Serbia email: vrakoc@bankerinter.net

#### ABSTRACT

In this paper we recall recent results that are direct consequences of the fact that  $(w_{\infty}(\lambda), w_{\infty}(\lambda))$  is a Banach algebra. Then we define the set  $W_{\tau} = D_{\tau}w_{\infty}$  and characterize the sets  $W_{\tau}(A)$  where A is either of the operators  $\Delta$ ,  $\Sigma$ ,  $\Delta(\lambda)$ , or  $C(\lambda)$ . Afterwards we consider the sets  $[A_1, A_2]_{W_{\tau}}$  of all sequences X such that  $A_1(\lambda)(|A_2(\mu)X|) \in W_{\tau}$  where  $A_1$  and  $A_2$  are of the form  $C(\xi)$ ,  $C^+(\xi)$ ,  $\Delta(\xi)$ , or  $\Delta^+(\xi)$  and it is given necessary conditions to get  $[A_1(\lambda), A_2(\mu)]_{W_{\tau}}$  in the form  $W_{\xi}$ . Finally we apply the previous results to statistical convergence. So we have conditions to have  $x_k \to L(S(A))$  where A is either of the infinite matrices  $D_{1/\tau}C(\lambda)C(\mu)$ ,  $D_{1/\tau}\Delta(\lambda)\Delta(\mu)$ ,  $D_{1/\tau}C^+(\lambda)\Delta(\mu)$ ,  $D_{1/\tau}C^+(\lambda)C(\mu)$ ,  $D_{1/\tau}C^+(\lambda)C(\mu)$ ,  $D_{1/\tau}C^+(\lambda)C(\mu)$ .

<sup>&</sup>lt;sup>1</sup>Supported by Grant No. 144003 of the Ministry of Science, Technology and Development, Republic of Serbia.



#### RESUMEN

Recordamos resultados recientes que son consecuencia directa del hecho de que  $(w_{\infty}(\lambda), w_{\infty}(\lambda))$  es una algebra de Banach. Entonces nosotros definimos el conjunto  $W_{\tau} = D_{\tau} w_{\infty}$  y caracterizamos los conjuntos  $W_{\tau}(A)$  donde A es uno de los siguientes operadores  $\Delta, \Sigma, \Delta(\lambda)$ , o  $C(\lambda)$ . Después consideramos los conjuntos  $[A_1, A_2]_{W_{\tau}}$  de todas las sucesiones X tal que  $A_1(\lambda)(|A_2(\mu)X|) \in W_{\tau}$  donde  $A_1$  y  $A_2$  son de la forma  $C(\xi), C^+(\xi), \Delta(\xi), o \Delta^+(\xi)$  y son dadas condiciones necesarias para obtener  $[A_1(\lambda), A_2(\mu)]_{W_{\tau}}$  en la forma  $W_{\xi}$ . Finalmente, aplicamos los resultados previos para tener  $x_k \to L(S(A))$  donde A es una de las matrices infinitas  $D_{1/\tau}C(\lambda)C(\mu), D_{1/\tau}\Delta(\lambda)\Delta(\mu), D_{1/\tau}\Delta(\lambda)C(\mu)$ . Nosotros también damos condiciones para tener  $x_k \to 0(S(A))$  donde A es uno de los operadores  $D_{1/\tau}C^+(\lambda)\Delta(\mu), D_{1/\tau}C^+(\mu).$ 

**Key words and phrases:** *Banach algebra, statistical convergence, A-statistical convergence, infinite matrix.* 

Math. Subj. Class.: 40C05, 40F05, 40J05, 46A15.

### 1 Introduction

In this paper we consider spaces generalizing the well-known sets  $w^0$  and  $w_\infty$  introduced and studied by Maddox [12, 13]. Recall that  $w^0$  and  $w_\infty$  are the sets of strongly summable and strongly bounded sequences. In [15] Malkowsky and Rakočević gave characterizations of matrix maps between  $w^0$ , w, or  $w_\infty$  and  $w^p_\infty$  and between  $w^0$ , w, or  $w_\infty$  and  $l_1$ . In [2] de Malafosse defined the spaces  $w_\alpha(\lambda)$ ,  $w^{(c)}_\alpha(\lambda)$  and  $w^0_\alpha(\lambda)$  of all sequences that are  $\alpha$ -strongly bounded, summable and summable to zero respectively. For instance recall that  $w_\alpha(\lambda)$  is the set of all sequences  $(x_n)_n$  such that  $1/\lambda_n \sum_{m=1}^n |x_m| = \alpha_n O(1)$  as n tends to infinity. It was shown that these spaces can be written in the form  $s_{\xi}$ ,  $s^{(c)}_{\xi}$  and  $s^0_{\xi}$  under some condition on  $\alpha$ and  $\lambda$ .

More recently in [5] it was shown that if  $\lambda$  is a sequence exponentially bounded then  $(w_{\infty}(\lambda), w_{\infty}(\lambda))$  is a Banach algebra. This result led to consider bijective operators mapping between  $w_{\infty}(\lambda)$ . Here we will use these results to study sets of the form  $W_{\tau} = D_{\tau}w_{\infty}$ ,  $W_{\tau}(\Delta(\lambda))$ ,  $W_{\tau}(C(\lambda))$  and  $W_{\tau}(C^{+}(\lambda))$  generalizing the well-known set of strongly bounded sequences  $c_{\infty} = w_{\infty}(\Delta(\mu))$  where  $\mu_{n} = n$  for all n. These results lead to the study of statistical convergence which was introduced by Steinhaus in 1949, see [16], and studied by several authors such as Fast [7], Fridy, Orhan [8-11] and Connor. Here we will deal with the notion of A- statistical convergence which generalizes the notion of statistical convergence, see [6], where A belongs to a special class of operators.

The paper is organized as follows. In Section 2 among other things we recall a recent result on the operators  $\Delta_{\rho}$  and  $\Delta_{\rho}^{T}$  considered as map from  $w_{\infty}(\lambda)$  to itself. In Sections 3 and 4 our aim is to give necessary conditions to have  $W_{\tau}(A)$  in the form  $W_{\xi}$  when A is either one of the matrices  $\Delta(\lambda)$ ,  $C(\lambda)$  or  $C^{+}(\lambda)$ . Then we consider spaces generalizing the wellknown set of all strongly bounded sequences  $[C, \Delta] = c_{\infty}$  defined and studied by Maddox. Then we will define the sets  $[A_1, A_2]_{W_{\tau}}$  of all sequences X with  $A_1(\lambda)(|A_2(\mu)X|) \in W_{\tau}$  where  $A_1$  and  $A_2$  are of the form  $C(\xi)$ ,  $C^{+}(\xi)$ ,  $\Delta(\xi)$ , or  $\Delta^{+}(\xi)$  and we will give necessary conditions to get  $[A_1(\lambda), A_2(\mu)]$  in the form  $W_{\tau}$ . In Section 5 we apply these results to A- statistical convergence, where A is equal to  $D_{1/\tau}A_1A_2$  and  $A_1$ ,  $A_2$  are of the form  $C(\xi)$ ,  $\Delta(\xi)$ ,  $\Delta(\mu)$ , or  $C^{+}(\xi)$ .

### 2 Well Known Results

CUBO

12, 3 (2010)

For a given infinite matrix  $A = (a_{nm})_{n,m\geq 1}$  we define the operators  $A_n$  for any integer  $n \geq 1$ , by

$$A_n(X) = \sum_{m=1}^{\infty} a_{nm} x_m \tag{1}$$

where  $X = (x_n)_{n \ge 1}$ , the series intervening in the second member being convergent. So we are led to the study of the infinite linear system

$$A_n(X) = b_n \quad n = 1, 2, \dots$$
 (2)

where  $B = (b_n)_{n \ge 1}$  is a one-column matrix and X the unknown, see [2-5]. The equations (2) can be written in the form AX = B, where  $AX = (A_n(X))_{n \ge 1}$ . In this paper we shall also consider A as an operator from a sequence space into another sequence space.

We will write s for the set of all complex sequences and  $\ell_{\infty}$  for the set of all bounded sequences.

Let *E* and *F* be any subsets of *s*. When *A* maps *E* into *F* we write that  $A \in (E, F)$ . So for every  $X \in E$ ,  $AX \in F$ ,  $(AX \in F \text{ means that for each } n \ge 1$  the series defined by  $y_n = \sum_{m=1}^{\infty} a_{nm} x_m$  is convergent and  $(y_n)_{n\ge 1} \in F$ .

Body Math For any subset E of s, we put

Body Math

$$AE = \{Y \in s : Y = AX \text{ for some } X \in E\}.$$
(3)

If *F* is a subset of *s*, we shall denote

$$F(A) = F_A = \{ X \in s : Y = AX \in F \}.$$
(4)



In all what follows we will use the set

$$U^{+} = \{(u_{n})_{n \ge 1} \in s : u_{n} > 0 \text{ for all } n\}$$

and the notation e = (1, ..., 1, ...). So for  $\lambda = (\lambda_n)_{n \ge 1} \in U^+$  we will consider the sets of *strongly* bounded and strongly summable sequences, respectively, that is

$$w_{\infty}(\lambda) = \left\{ X = (x_n)_{n \ge 1} \in s : \sup_{n} \frac{1}{\lambda_n} \sum_{m=1}^{n} |x_m| < \infty \right\},$$
$$w^0(\lambda) = \left\{ X = (x_n)_{n \ge 1} \in s : \lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{m=1}^{n} |x_m| = 0 \right\}$$

and

$$w(\lambda) = \{ X = (x_n)_{n \ge 1} \in s : X - le \in w^0(\lambda) \text{ for some } l \in \mathbb{C} \}$$

were studied by Malkowsky, with the concept of *exponentially bounded sequences*, see [3]. Recall that Maddox [12, 13], defined and studied the sets  $w_{\infty}(\lambda) = w_{\infty}$ ,  $w_0(\lambda) = w^0$  and  $w(\lambda) = w$  where  $\lambda_n = n$  for all n.

A Banach space E of complex sequences with the norm  $||||_E$  is a BK space if each projection  $P_n : X \mapsto P_n X = x_n$  is continuous. A BK space E is said to have AK if every sequence  $X = (x_n)_{n\geq 1} \in E$  has a unique representation  $X = \sum_{n=1}^{\infty} x_n e_n$  where  $e_n$  is the sequence with 1 in the n-th position and 0 otherwise.

Recall that a nondecreasing sequence  $\lambda = (\lambda_n)_{n\geq 1} \in U^+$  is exponentially bounded if there is an integer  $m \geq 2$  such that for all non-negative integers v there is at least one term  $\lambda_n \in I_m^{(v)} = [m^v, m^{v+1} - 1]$ . It was shown (cf. [14, Lemma 1]) that a non-decreasing sequence  $\lambda = (\lambda_n)_{n\geq 1}$  is exponentially bounded if and only if there are reals  $s \leq t$  such that for some subsequence  $(\lambda_{n_i})_{i>1}$ 

$$0 < s \le rac{\lambda_{n_i}}{\lambda_{n_{i+1}}} \le t < 1 ext{ for all } i = 1, 2, ...;$$

such a sequence is called an associated subsequence. Consider now the norm

$$\|X\|_{\lambda} = \sup_{n} \left( \frac{1}{\lambda_n} \sum_{m=1}^{n} |x_m| \right).$$

In [5] it was shown that if  $\lambda = (\lambda_n)_{n \ge 1} \in U^+$  is exponentially bounded the class  $(w_{\infty}(\lambda), w_{\infty}(\lambda))$  is a *Banach algebra* with the norm

$$\|A\|_{(w_{\infty}(\lambda),w_{\infty}(\lambda))} = \sup_{X \neq 0} \left(\frac{\|AX\|_{\lambda}}{\|X\|_{\lambda}}\right).$$
(5)

**CUBO** 12, 3 (2010)

For  $\rho = (\rho_n)_{n \ge 1}$  consider now the following matrices

$$\Delta_{\rho}^{+} = \begin{pmatrix} 1 & -\rho_{1} & & \\ & \ddots & & \\ & & 1 & -\rho_{n} \\ & 0 & \ddots & \ddots \\ & & & & \ddots \end{pmatrix} \text{ and } \Delta_{\rho} = \begin{pmatrix} 1 & & & & \\ -\rho_{1} & 1 & & 0 \\ & \ddots & \ddots & \\ & & -\rho_{n-1} & 1 \\ & & & \ddots \end{pmatrix}$$

It can easily be shown that if  $\rho = (\rho_n)_{n \ge 1}$  and  $(\lambda_{n+1}/\lambda_n)_{n \ge 1} \in \ell_{\infty}$  then  $\Delta_{\rho}^+ \in (w_{\infty}(\lambda), w_{\infty}(\lambda))$ . We also see that  $\Delta_{\rho} \in (w_{\infty}(\lambda), w_{\infty}(\lambda))$  for  $\rho$ ,  $(\lambda_{n-1}/\lambda_n)_{n \ge 2} \in \ell_{\infty}$ . Recall the next result which is a direct consequence of [5, Theorem 5.1 and Theorem 5.12].

**Lemma 2.1.** Let  $\lambda \in U^+$  be a sequence exponentially bounded.

(i) If

$$\overline{\lim_{n \to \infty}} \left( \frac{\lambda_{n+1}}{\lambda_n} \right) < \infty \text{ and } \overline{\lim_{n \to \infty}} \left| \rho_n \right| < \frac{1}{\overline{\lim_{n \to \infty}} \left( \frac{\lambda_{n+1}}{\lambda_n} \right)}, \tag{6}$$

for given  $B \in w_{\infty}(\lambda)$  the equation  $\Delta_{\rho}^{+}X = B$  has a unique solution in  $w_{\infty}(\lambda)$ .

(ii) If

$$\overline{\lim_{n \to \infty}} \left| \rho_n \right| < \frac{1}{\overline{\lim_{n \to \infty}} \left( \frac{\lambda_{n-1}}{\lambda_n} \right)},\tag{7}$$

then for any given  $B \in w_{\infty}(\lambda)$  the equation  $\Delta_{\rho}X = B$  has a unique solution in  $w_{\infty}(\lambda)$ .

When  $\lambda$  is a strictly increasing sequence tending to infinity we obtain similar results on the Banach algebra  $(w^0(\lambda), w^0(\lambda))$  with the norm  $||A||_{(w_{\infty}(\lambda), w_{\infty}(\lambda))}$ .

# **3** On the Sets $W_{\tau}(A)$ Where A is Either $\Delta(\lambda)$ , $C(\lambda)$ or $C^{+}(\lambda)$

In the following we will use the operators represented by  $C(\lambda)$  and  $\Delta(\lambda)$ . Let U be the set of all sequences  $(u_n)_{n\geq 1}$  with  $u_n \neq 0$  for all n. We define  $C(\lambda)$  for  $\lambda = (\lambda_n)_{n\geq 1} \in U$ , by

$$[C(\lambda)]_{nm} = \begin{cases} \frac{1}{\lambda_n} & \text{if } m \le n, \\ 0 & \text{otherwise.} \end{cases}$$

We will write  $C(\lambda)^T = C^+(\lambda)$ ,  $C(e) = \Sigma$ ,  $\Sigma^+ = \Sigma^T$ , and for  $\lambda_n = n$ , the matrix  $C_1 = C((n)_n)$  is called the Cesaro operator. If It can be proved that the matrix  $\Delta(\lambda)$  with

$$[\Delta(\lambda)]_{nm} = \begin{cases} \lambda_n & \text{if } m = n, \\ -\lambda_{n-1} & \text{if } m = n-1 \text{ and } n \ge 2, \\ 0 & \text{otherwise,} \end{cases}$$



is the inverse of  $C(\lambda)$ , see [2, 3]. We will use the following sets

$$\begin{split} \Gamma &= \left\{ X \in U^+ : \ \overline{\lim_{n \to \infty}} \left( \frac{x_{n-1}}{x_n} \right) < 1 \right\}, \\ \Gamma^+ &= \left\{ X \in U^+ : \ \overline{\lim_{n \to \infty}} \left( \frac{x_{n+1}}{x_n} \right) < 1 \right\}. \end{split}$$

Note that  $X \in \Gamma^+$  if and only if  $1/X \in \Gamma$ .

For given sequence  $\tau = (\tau_n)_{n \ge 1} \in U^+$ , we write  $D_{\tau}$  for the diagonal matrix defined by  $[D_{\tau}]_{nn} = \tau_n$  for all *n*. For any subset *E* of *s*, we write

$$D_{\tau}E = \left\{ X = (x_n)_{n \ge 1} \in s : \left(\frac{x_n}{\tau_n}\right)_n \in E \right\}.$$

We put  $W_{\tau} = D_{\tau} w_{\infty}$  for  $\tau \in U^+$ , that is

$$W_{\tau} = \left\{ X : \|X\|_{W_{\tau}} = \sup_{n} \left( \frac{1}{n} \sum_{m=1}^{\infty} \frac{|x_{m}|}{\tau_{m}} \right) < \infty \right\}.$$

It can easily be seen that  $W_{\tau} = w_{\infty}(D_{1/\tau})$  is a BK space with norm  $||||_{W_{\tau}}$ , (cf. [17, Theorem 4.3.6, p. 52]). In all that follows we will use the convention that the entries with subscripts strictly less than 1 are equal to zero. Then we are interested in the study of the following sets where  $\lambda, \tau \in U^+$ .

$$W_{\tau}(\Delta(\lambda)) = \left\{ X : \sup_{n} \left( \frac{1}{n} \sum_{m=1}^{n} \frac{1}{\tau_{m}} |\lambda_{m} x_{m} - \lambda_{m-1} x_{m-1}| \right) < \infty \right\},$$
  

$$W_{\tau}(C(\lambda)) = \left\{ X : \sup_{n} \frac{1}{n} \sum_{m=1}^{n} \left( \frac{1}{\lambda_{m} \tau_{m}} \sum_{k=1}^{m} |x_{k}| \right) < \infty \right\},$$
  

$$W_{\tau}(C^{+}(\lambda)) = \left\{ X : \sup_{n} \frac{1}{n} \sum_{m=1}^{n} \left( \frac{1}{\tau_{m}} \sum_{k=m}^{\infty} \frac{|x_{k}|}{\lambda_{k}} \right) < \infty \right\}.$$

Note that for  $\lambda_n = n$  and  $\tau = e$ ,  $W_{\tau}(\Delta(\lambda))$  is the well known set of all strongly and bounded sequences  $c_{\infty}$ . We obtain the following result that is a direct consequence of Lemma 2.1.

**Proposition 3.1.** (i) If  $\tau \in \Gamma$  then the operators  $\Delta$  and  $\Sigma$  are bijective from  $W_{\tau}$  into itself and

$$W_{\tau}(\Delta) = W_{\tau}, \ W_{\tau}(\Sigma) = W_{\tau}.$$

(ii) a) If  $\lambda \tau \in \Gamma$  then

$$W_{\tau}(C(\lambda)) = W_{\lambda\tau}$$

b) If  $\tau \in \Gamma$  then

$$W_{\tau}(\Delta(\lambda)) = W_{\tau/\lambda}$$

127

(iii) Let  $\tau \in \Gamma^+$ . Then

a) the operators  $\Delta^+$  and  $\Sigma^+$  are bijective from  $W_{\tau}$  into itself and

 $W_{\tau}\left(\Sigma^{+}\right)=W_{\tau}.$ 

b) the operator  $C^+(\lambda)$  is bijective from  $W_{\lambda\tau}$  into  $W_{\tau}$  and

$$W_{\tau}\left(C^{+}\left(\lambda\right)\right)=W_{\lambda\tau}.$$

*Proof.* (i) By Lemma 2.1 where  $\rho_n = \tau_{n-1}/\tau_n$  and  $\lambda_n = n$  for all *n*, we easily see that if

$$\overline{\lim_{n \to \infty} \frac{\tau_{n-1}}{\tau_n}} < \frac{1}{\lim_{n \to \infty} \left(\frac{n-1}{n}\right)} = 1,$$

that is  $\tau \in \Gamma$ , then  $D_{1/\tau} \Delta D_{\tau}$  is bijective from  $w_{\infty}$  to itself. This means that  $\Delta$  is bijective from  $D_{\tau}w_{\infty}$  to itself. Since  $\Sigma$  is also bijective from  $D_{\tau}w_{\infty}$  to itself, this shows  $W_{\tau}(\Delta) = W_{\tau}$  and  $W_{\tau}(\Sigma) = W_{\tau}$ .

(ii) We have  $X \in W_{\tau}(C(\lambda))$  if and only if  $\Sigma X \in D_{\lambda\tau} w_{\infty} = W_{\lambda\tau}$ . This means that  $X \in W_{\lambda\tau}(\Sigma)$ and by (i) the condition  $\lambda \tau \in \Gamma$  implies  $W_{\lambda\tau}(\Sigma) = W_{\lambda\tau}$ . Then  $W_{\tau}(C(\lambda)) = W_{\lambda\tau}$  and  $C(\lambda)$  is bijective from  $W_{\lambda\tau}$  to  $W_{\tau}$ . Since  $\Delta(\lambda) = C(\lambda)^{-1}$  we conclude  $\Delta(\lambda)$  bijective from  $W_{\tau}$  to  $W_{\lambda\tau}$  and  $W_{\lambda\tau}(\Delta(\lambda)) = W_{\tau}$ . We deduce that for  $\tau \in \Gamma$ ,  $W_{\tau}(\Delta(\lambda)) = W_{\tau/\lambda}$ .

(iii) a) By Lemma 2.1 with  $\rho_n = \tau_{n+1}/\tau_n$  and  $\lambda_n = n$  we have  $\Delta_{\rho}^+ = D_{1/\tau} \Delta^+ D_{\tau}$  and  $\Delta^+$  is bijective from  $D_{\tau} w_{\infty} = W_{\tau}$  into itself for  $\tau \in \Gamma^+$  and it is the same for  $\Sigma^+$ . Now the equation  $\Sigma^+ X = Y$  for  $Y \in W_{\tau}$  is equivalent to

$$\sum_{m=n}^{\infty} x_m = y_n \text{ for all } n.$$
(8)

We deduce (8) has a unique solution  $X = (y_n - y_{n+1})_{n \ge 1} = \Delta^+ Y \in W_\tau$  and  $W_\tau(\Sigma^+) = W_\tau$ .

b) We have

$$W_{\tau}\left(C^{+}\left(\lambda\right)\right) = \left\{X: \Sigma^{+}D_{1/\lambda}X \in W_{\tau}\right\} = D_{\lambda}W_{\tau}\left(\Sigma^{+}\right).$$

Now as we have seen above since  $\tau \in \Gamma^+$  we get  $W_{\tau}(\Sigma^+) = W_{\tau}$  and

$$W_{\tau}\left(C^{+}(\lambda)\right) = D_{\lambda}W_{\tau}\left(\Sigma^{+}\right) = D_{\lambda}W_{\tau} = W_{\lambda\tau}.$$

This gives the conclusion.



# 4 Calculations in New Sequence Spaces

**4.1** The sets  $[C, \Delta]_{W_{\tau}}$ ,  $[C, C]_{W_{\tau}}$ ,  $[C^+, \Delta]_{W_{\tau}}$ ,  $[C^+, C]_{W_{\tau}}$  and  $[C^+, C^+]_{W_{\tau}}$ .

In [4], were defined and studied the sets

$$[A_1, A_2] = [A_1(\lambda), A_2(\mu)] = \{X \in s : A_1(\lambda) (|A_2(\mu)X|) \in D_\tau l_\infty\}$$

where  $|X| = (|x_n|)_{n \ge 1}$ ,  $A_1$  and  $A_2$  of the form  $C(\xi)$ ,  $C^+(\xi)$ ,  $\Delta(\xi)$ , or  $\Delta^+(\xi)$  for  $\xi \in U^+$ . It was given necessary conditions to get  $[A_1(\lambda), A_2(\mu)]$  in the form  $s_{\gamma}$ .

Similarly in the following we will put

$$[A_1, A_2]_{W_{\tau}} = \left[A_1(\lambda), A_2\left(\mu\right)\right]_{W_{\tau}} = \left\{X \in s \ : \ A_1(\lambda)\left(\left|A_2\left(\mu\right)X\right|\right) \in W_{\tau}\right\}$$

for  $\lambda, \mu, \tau \in U^+$ . We can explicitly write the previous sets  $[A_1, A_2]_{W_\tau}$  as follows.

$$\begin{split} & [C,\Delta]_{W_{\tau}} = \left\{ X : \sup_{n} \left( \frac{1}{n} \sum_{m=1}^{n} \frac{1}{\lambda_{m} \tau_{m}} \sum_{k=1}^{m} |\mu_{k} x_{k} - \mu_{k-1} x_{k-1}| \right) < \infty \right\}, \\ & [C,C]_{W_{\tau}} = \left\{ X : \sup_{n} \left( \frac{1}{n} \sum_{m=1}^{n} \left( \frac{1}{\lambda_{m} \tau_{m}} \sum_{k=1}^{m} \frac{1}{\mu_{k}} \left| \sum_{i=1}^{k} x_{i} \right| \right) \right) < \infty \right\}, \\ & [C^{+},\Delta]_{W_{\tau}} = \left\{ X : \sup_{n} \left( \frac{1}{n} \sum_{m=1}^{n} \left( \frac{1}{\tau_{m}} \sum_{k=m}^{\infty} \frac{1}{\lambda_{k}} |\mu_{k} x_{k} - \mu_{k-1} x_{k-1}| \right) \right) < \infty \right\}, \\ & [C^{+},C]_{W_{\tau}} = \left\{ X : \sup_{n} \left( \frac{1}{n} \sum_{m=1}^{n} \left( \frac{1}{\tau_{m}} \sum_{k=m}^{\infty} \frac{1}{\lambda_{k}} \frac{1}{\mu_{k}} \left| \sum_{i=1}^{k} x_{i} \right| \right) \right) < \infty \right\}, \\ & C^{+},C^{+}]_{W_{\tau}} = \left\{ X : \sup_{n} \left( \frac{1}{n} \sum_{m=1}^{n} \left( \frac{1}{\tau_{m}} \sum_{k=m}^{\infty} \frac{1}{\lambda_{k}} \left| \sum_{i=k}^{\infty} \frac{x_{i}}{\mu_{i}} \right| \right) \right\} < \infty \right\}. \end{split}$$

Note that if  $\lambda_n = \mu_n$  for all *n* we get the well known set of sequences that are strongly bounded  $[C, \Delta]_{W_e} = c_{\infty}(\lambda)$ . We can state the following.

#### **Theorem 4.1.** Let $\lambda$ , $\mu$ , $\tau \in U^+$ .

(i) If  $\lambda \tau \in \Gamma$  then

[

$$[C,\Delta]_{W_{\tau}} = W_{\lambda\tau/\mu};$$

(*ii*) if  $\lambda \tau$ ,  $\lambda \mu \tau \in \Gamma$  then

$$[C,C]_{W_{\tau}} = W_{\lambda\mu\tau};$$

(iii) if  $\tau \in \Gamma^+$  and  $\lambda \tau \in \Gamma$  then

$$\left[C^+,\Delta\right]_{W_{\tau}}=W_{\lambda\tau/\mu};$$

(iv) if  $\tau \in \Gamma^+$  and  $\lambda \mu \tau \in \Gamma$  then

$$\left[C^+,C\right]_{W_{\tau}}=W_{\lambda\mu\tau};$$

(v) if  $\tau$ ,  $\lambda \tau \in \Gamma^+$  then

$$\left[C^+,C^+\right]_{W_{\tau}}=W_{\lambda\mu\tau}.$$

*Proof.* In the following we will use the fact that for any  $\xi \in U^+$  we have  $|X| \in W_{\xi}$  if and only if  $X \in W_{\xi}$ .

(i) We have  $C(\lambda)(|\Delta(\mu)X|) \in W_{\tau}$  if and only if  $|\Delta(\mu)X| \in W_{\tau}(C(\lambda))$  and by Proposition 3.1, since  $\lambda \tau \in \Gamma$  we get  $W_{\tau}(C(\lambda)) = W_{\lambda\tau}$ . Then by Proposition 3.1 (ii) we have  $W_{\lambda\tau}(\Delta(\mu)) = W_{\lambda\tau/\mu}$  and we conclude  $\Delta(\mu)X \in W_{\lambda\tau}$  if and only if  $X \in W_{\lambda\tau}(\Delta(\mu)) = W_{\lambda\tau/\mu}$ , that is  $[C, \Delta]_{W_{\tau}} = W_{\lambda\tau/\mu}$ .

(ii) Here we have  $C(\lambda)(|C(\mu)X|) \in W_{\tau}$  if and only if  $|C(\mu)X| \in W_{\tau}(C(\lambda))$ ; and since  $\lambda \tau \in \Gamma$  by Proposition 3.1 we have  $W_{\tau}(C(\lambda)) = W_{\lambda\tau}$ . So  $X \in [C,C]_{W_{\tau}}$  if and only if  $C(\mu)X \in W_{\lambda\tau}$ , that is  $X \in W_{\lambda\tau}(C(\mu))$ . Then by Proposition 3.1 (ii) a)  $\lambda\mu\tau \in \Gamma$  implies  $W_{\lambda\tau}(C(\mu)) = W_{\lambda\mu\tau}$  and we have shown (ii).

(iii) For any given  $X \in [C^+, \Delta]_{W_\tau}$  we have  $\Delta(\mu) X \in W_\tau(C^+(\lambda))$  and for  $\tau \in \Gamma^+$  we have  $W_\tau(C^+(\lambda)) = W_{\lambda\tau}$ . Now the condition  $\lambda \tau \in \Gamma$  implies  $X \in [C^+, \Delta]_{W_\tau}$  if and only if  $X \in W_{\lambda\tau}(\Delta(\mu)) = W_{\lambda\tau/\mu}$  and we have shown (iii).

(iv) Let  $X \in [C^+, C]_{W_{\tau}}$ . We have  $\tau \in \Gamma^+$  implies  $W_{\tau}(C^+(\lambda)) = W_{\lambda\tau}$  and so  $X \in [C^+, C]_{W_{\tau}}$  if and only if  $C(\mu)X \in W_{\lambda\tau}$ . Now since  $\lambda\mu\tau \in \Gamma$  we have  $W_{\lambda\tau}(C(\mu)) = W_{\lambda\mu\tau}$  and we conclude  $[C^+, C]_{W_{\tau}} = W_{\lambda\mu\tau}$ .

(v) As above  $X \in [C^+, C^+]_{W_\tau}$  if and only if  $C^+(\mu) X \in W_\tau(C^+(\lambda))$  and the condition  $\tau \in \Gamma^+$ implies  $W_\tau(C^+(\lambda)) = W_{\lambda\tau}$ . Since  $\lambda \tau \in \Gamma^+$  we conclude  $W_{\lambda\tau}(C^+(\mu)) = W_{\lambda\mu\tau}$  that is  $[C^+, C^+]_{W_\tau} = W_{\lambda\mu\tau}$ .

Now we are led to study sets of the form  $[\Delta, A_2]_{W_\tau}$  for  $A_2 \in \{\Delta, \Delta, C^+\}$ .

# **4.2** The sets $[\Delta, \Delta]_{W_{\tau}}$ , $[\Delta, C]_{W_{\tau}}$ and $[\Delta, C^+]_{W_{\tau}}$

Using the convention  $\mu_0 = 0$ , and the notation  $\Delta(\mu)x_m = \mu_m x_m - \mu_{m-1}x_{m-1}$  for  $m \ge 1$  we explicitly have

$$\begin{split} & [\Delta, \Delta]_{W_{\tau}} = \left\{ X : \sup_{n} \left( \frac{1}{n} \sum_{m=1}^{n} \frac{1}{\tau_{m}} \left| \lambda_{m} \left| \Delta(\mu) x_{m} \right| - \lambda_{m-1} \left| \Delta(\mu) x_{m-1} \right| \right| \right) < \infty \right\}, \\ & [\Delta, C]_{W_{\tau}} = \left\{ X : \sup_{n} \left( \frac{1}{n} \sum_{m=1}^{n} \frac{1}{\tau_{m}} \left| \lambda_{m} \left| \frac{1}{\mu_{m}} \sum_{k=1}^{m} x_{k} \right| - \lambda_{m-1} \left| \frac{1}{\mu_{m-1}} \sum_{k=1}^{m-1} x_{k} \right| \right| \right\} < \infty \right\}, \end{split}$$

$$\left[\Delta, C^{+}\right]_{W_{\tau}} = \left\{ X : \sup_{n} \left( \frac{1}{n} \sum_{m=1}^{n} \frac{1}{\tau_{m}} \left| \lambda_{m} \left| \sum_{k=m}^{\infty} \frac{x_{k}}{\mu_{k}} \right| - \lambda_{m-1} \left| \sum_{k=m-1}^{\infty} \frac{x_{k}}{\mu_{k}} \right| \right| \right\} < \infty \right\}.$$

As a direct consequence of Proposition 3.1 we also obtain the following results.

**Theorem 4.2.** Let  $\lambda$ ,  $\mu$ ,  $\tau \in U^+$ . Then

(*i*) If  $\tau$ ,  $\tau/\lambda \in \Gamma$  then

$$[\Delta, \Delta]_{W_{\tau}} = W_{\tau/\lambda\mu}.$$

(ii) If  $\tau$ ,  $\tau \mu / \lambda \in \Gamma$  then

$$[\Delta, C]_{W_{\tau}} = W_{\tau \mu / \lambda}.$$

(*iii*) If  $\tau$ ,  $\tau/\lambda \in \Gamma^+$  then

$$\left[\Delta, C^+\right]_{W_{\tau}} = W_{\tau \mu/\lambda}.$$

*Proof.* (i) Let  $X \in [\Delta, \Delta]_{W_{\tau}}$ . Since  $\tau \in \Gamma$  we have  $W_{\tau}(\Delta(\lambda)) = W_{\tau/\lambda}$  and  $\Delta(\lambda) |\Delta(\mu)X| \in W_{\tau}$  means  $\Delta(\mu)X \in W_{\tau/\lambda}$ . We conclude  $W_{\tau/\lambda}(\Delta(\mu)) = W_{\tau/\lambda\mu}$  for  $\tau/\lambda \in \Gamma$ .

(ii) Reasoning as above since  $\tau \in \Gamma$  we have  $X \in [\Delta, C]_{W_{\tau}}$  if and only if  $C(\mu)X \in W_{\tau/\lambda}$ . We conclude since the condition  $\tau \mu/\lambda \in \Gamma$  implies  $W_{\tau/\lambda}(C(\mu)) = W_{\tau\mu/\lambda}$ .

(iii) Here under the conditions  $\tau$ ,  $\tau/\lambda \in \Gamma^+$ , we have  $X \in [\Delta, C^+]_{W_{\tau}}$  if and only if  $X \in W_{\tau/\lambda}(C^+(\mu)) = W_{\tau\mu/\lambda}$ .

The previous results can be applied to the case when  $w_{\infty}$  is replaced by  $w^0$ .

#### **4.3 The sets** $[A_1, A_2]_{W^0_\tau}$

Using the Banach algebra  $(w^0(\lambda), w^0(\lambda))$  we get similar results to those given above replacing  $w_{\infty}(\lambda)$  by  $w^0(\lambda)$  and  $W_{\tau}$  by  $W^0_{\tau} = D_{\tau}w^0$ . Note that  $X \in W^0_{\tau}$  if and only if

$$\frac{1}{n}\sum_{m=1}^{n}\frac{|x_{m}|}{\tau_{m}}\to 0 \ (n\to\infty).$$

By [17, Theorem 4.3.6, p. 52] the set  $W^0_{\tau}$  is a BK space with AK normed by  $\|\|_{W_{\tau}}$ . So we can state the following.

**Proposition 4.3.** Let  $\lambda$ ,  $\mu \in U^+$ .

(i) If  $\lambda \tau \in \Gamma$  then  $[C, \Delta]_{W^0_{\tau}} = W^0_{\lambda \tau/\mu}$ ; (ii) if  $\lambda \tau$ ,  $\lambda \mu \tau \in \Gamma$  then  $[C, C]_{W^0_{\tau}} = W^0_{\lambda \mu \tau}$ ; (iii) if  $\tau \in \Gamma^+$  and  $\lambda \tau \in \Gamma$  then  $[C^+, \Delta]_{W^0_{\tau}} = W^0_{\lambda \tau/\mu}$ ; **CUBO** 12, 3 (2010)

 $\begin{aligned} &(iv) \ if \ \tau \in \Gamma^+ \ and \ \lambda\mu\tau \in \Gamma \ then \ \left[C^+, C\right]_{W^0_\tau} = W^0_{\lambda\mu\tau}; \\ &(v) \ if \ \tau, \ \lambda\tau \in \Gamma^+ \ then \ \left[C^+, C^+\right]_{W^0_\tau} = W^0_{\lambda\mu\tau}; \\ &(vi) \ if \ \tau, \ \tau/\lambda \in \Gamma \ then \ [\Delta, \Delta]_{W^0_\tau} = W^0_{\tau/\lambda\mu}; \\ &(vii) \ if \ \tau, \ \tau/\lambda \in \Gamma \ then \ [\Delta, C]_{W^0_\tau} = W^0_{\tau\mu/\lambda}; \\ &(viii) \ if \ \tau, \ \tau/\lambda \in \Gamma^+ \ then \ \left[\Delta, C^+\right]_{W^0_\tau} = W^0_{\tau\mu/\lambda}. \end{aligned}$ 

We immediatly get the next remark.

**Remark 4.4.** It can easily be seen that in Proposition 4.3 each of the sets  $[A_1, A_2]_{W_{\tau}^0}$  is equal to  $W_{\tau}^0(A_1A_2)$ . This result is a direct consequence of the previous proofs and of the fact that  $W_{\tau}^0$  is of absolute type, that is  $|X| \in W_{\tau}^0$  if and only if  $X \in W_{\tau}^0$ .

These results can be applied to statistical convergence.

# 5 Application to A-Statistical Convergence

In this section we will give conditions to have  $x_k \to L(S(A))$  where A is either of the infinite matrices  $D_{1/\tau}C(\lambda)C(\mu)$ ,  $D_{1/\tau}\Delta(\lambda)\Delta(\mu)$ , or  $D_{1/\tau}\Delta(\lambda)C(\mu)$ . Then we give conditions to have  $x_k \to O(S(A))$  where A is either of the operators  $D_{1/\tau}C^+(\lambda)\Delta(\mu)$ ,  $D_{1/\tau}C^+(\lambda)C(\mu)$ ,  $D_{1/\tau}C^+(\lambda)C(\mu)$ ,  $D_{1/\tau}C^+(\lambda)C(\mu)$ .

The sequence  $X = (x_n)_{n \ge 1}$  is said to be *statiscally convergent to the number L* if

$$\lim_{n\to\infty}\frac{1}{n}\left|\{k\leq n:|x_k-L|\geq\varepsilon\}\right|=0\text{ for all }\varepsilon>0,$$

where the vertical bars indicate the number of elements in the enclosed set. In this case we will write  $x_k \rightarrow L(S)$  or  $st - \lim X = L$ .

Let  $A \in (E, F)$  for given  $L \in \mathbb{C}$  and for every  $\varepsilon > 0$  we will use the notation

$$I_{\varepsilon}(A) = \{k \le n : |[AX]_k - L| \ge \varepsilon\},\$$

(where we assume that every series  $[AX]_k = A_k(X) = \sum_{m=1}^{\infty} a_{km} x_m$  for  $k \ge 1$  is convergent). We will say that  $X = (x_n)_{n\ge 1}$  is A-statistically convergent to L if for every  $\varepsilon > 0$ ,

$$\lim_{n\to\infty}\frac{1}{n}|I_{\varepsilon}(A)|=0.$$

Then we will write  $x_k \to L(S(A))$  and for A = I,  $x_k \to L(S(I))$  means that  $st - \lim X = L$ , (cf. [6]).

Now we require a lemma where we will put  $T^{-1}e = \tilde{l} = (l_n)_{n \ge 1}$  for given triangle T, that is  $T = (t_{nm})_{n,m \ge 1}$  with  $t_{nn} \ne 0$  and  $t_{nm} = 0$  if m > n for all n, m.



We can state the following.

**Lemma 5.1.** If  $X - L\tilde{l} \in w^0(T)$  then  $x_k$  is T – statistically convergent to L.

*Proof.* The condition  $X - L\tilde{l} \in w^0(T)$  means that  $T(X - L\tilde{l}) \in w^0$ . Since

$$TX - Le = T\left(X - LT^{-1}e\right) = T\left(X - L\tilde{l}\right)$$

for any  $\varepsilon > 0$  we have

$$y_n = \frac{1}{n} \sum_{k=1}^n |[TX]_k - L| = \frac{1}{n} \sum_{k=1}^n |[T(X - L\tilde{l})]_k|$$
  

$$\geq \frac{1}{n} \sum_{k \in I_{\varepsilon}(T)} |[T(X - L\tilde{l})]_k|$$
  

$$\geq \frac{1}{n} \sum_{k \in I_{\varepsilon}(T)} \varepsilon$$
  

$$\geq \frac{\varepsilon}{n} |\{k \le n : |[TX]_k - L| \ge \varepsilon\}|.$$

We conclude that  $X - L\tilde{l} \in w^0(T)$  implies  $y_n \to 0 \ (n \to \infty)$  and  $x_k \to L(S(T))$ .

We are led to state the next results.

**Theorem 5.2.** (*i*) Let  $\lambda \tau$ ,  $\lambda \tau \mu \in \Gamma$ . If

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{\left| x_k - L \left[ \lambda_k \mu_k \tau_k + \left( \mu_{k-1} + \mu_k \right) \lambda_{k-1} \tau_{k-1} - \lambda_{k-2} \mu_{k-2} \tau_{k-2} \right] \right|}{\lambda_k \mu_k \tau_k} = 0$$
(9)

then  $x_k \to L(S(D_{1/\tau}C(\lambda)C(\mu)))$ , that is for every  $\varepsilon > 0$ 

$$\lim_{n\to\infty}\frac{1}{n}\left|\left\{k\leq n: \left|\frac{1}{\lambda_k\tau_k}\sum_{i=1}^k\frac{1}{\mu_i}\left(\sum_{j=1}^i x_j\right)-L\right|\geq \varepsilon\right\}\right|=0.$$

(*ii*) Let  $\tau$ ,  $\tau/\lambda \in \Gamma$ . If

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{\lambda_k \mu_k}{\tau_k} \left| x_k - L\left(\frac{1}{\mu_k} \sum_{i=1}^{k} \frac{1}{\lambda_i} \sum_{j=1}^{i} \tau_j\right) \right| = 0$$

then  $x_k \to L(S(D_{1/\tau}\Delta(\lambda)\Delta(\mu)))$ , that is for every  $\varepsilon > 0$ 

$$\lim_{n\to\infty}\frac{1}{n}\left|\left\{k\leq n: \left|\frac{1}{\tau_k}\left[\lambda_k\Delta(\mu)x_k-\lambda_{k-1}\Delta(\mu)x_{k-1}\right]-L\right|\geq\varepsilon\right\}\right|=0.$$

(iii) Let  $\tau$ ,  $\tau \mu / \lambda \in \Gamma$ . If

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{\lambda_k}{\mu_k \tau_k} \left| x_k - L\left[ \left( \frac{\mu_k}{\lambda_k} - \frac{\mu_{k-1}}{\lambda_{k-1}} \right) \sum_{i=1}^{k-1} \tau_i + \frac{\mu_k}{\lambda_k} \tau_k \right] \right| = 0$$

then  $x_k \to L\left(S\left(D_{1/\tau}\Delta(\lambda)C(\mu)\right)\right)$ , that is for every  $\varepsilon > 0$ 

$$\lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \le n : \left| \frac{1}{\tau_k} \left[ \left( \frac{\lambda_k}{\mu_k} - \frac{\lambda_{k-1}}{\mu_{k-1}} \right) \sum_{i=1}^{k-1} x_i + \frac{\lambda_k}{\mu_k} x_k \right] - L \right| \ge \varepsilon \right\} \right| = 0.$$

*Proof.* (i) First by Proposition 4.3 (ii) and Remark 4.4, we easily see that for  $\lambda \tau$ ,  $\lambda \tau \mu \in \Gamma$  we have  $W^0_{\tau}(C(\lambda)C(\mu)) = W^0_{\lambda\mu\tau}$ . Then putting  $T = D_{1/\tau}C(\lambda)C(\mu)$  we get

$$w^{0}(T) = W^{0}_{\tau}\left(C(\lambda)C(\mu)\right) = W^{0}_{\lambda\mu\tau}.$$
(10)

Then  $\tilde{l} = T^{-1}e = \Delta(\mu)\Delta(\lambda)D_{\tau}e$  for each *n* with

$$l_n = \left[\Delta\left(\mu\right)\Delta(\lambda)D_{\tau}e\right]_n = \lambda_n\mu_n\tau_n + \left(\mu_{n-1} + \mu_n\right)\lambda_{n-1}\tau_{n-1} - \lambda_{n-2}\mu_{n-2}\tau_{n-2}$$
(11)

Using (10) and (11) we see that condition (9) is equivalent  $X - L\tilde{l} \in w^0(T)$ . We conclude by Lemma 5.1 that  $x_k \to L(S(T))$ . This completes the proof of (i).

(ii) By Proposition 4.3 (vi) and Remark 4.4, since  $\tau$ ,  $\tau/\lambda \in \Gamma$  we have  $W^0_{\tau}(\Delta(\lambda)\Delta(\mu)) = W^0_{\tau/\lambda\mu}$ . Then putting  $T' = D_{1/\tau}\Delta(\lambda)\Delta(\mu)$  we get

$$w^{0}(T') = W^{0}_{\tau}(\Delta(\lambda)\Delta(\mu)) = W^{0}_{\tau/\lambda\mu}.$$
(12)

Since  $\tilde{l'} = T'^{-1}e = C(\mu)C(\lambda)D_{\tau}e$  we have

$$l'_{n} = \left[C\left(\mu\right)C(\lambda)D_{\tau}e\right]_{n} = \frac{1}{\mu_{n}}\sum_{i=1}^{n}\frac{1}{\lambda_{i}}\left(\sum_{j=1}^{i}\tau_{j}\right) \text{ for all } n.$$

By Lemma 5.1 we conclude  $x_k \to L(S(D_{1/\tau}\Delta(\lambda)\Delta(\mu)))$  for all X with

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left| x_k - L l'_k \right| \frac{\lambda_k \mu_k}{\tau_k} = 0$$

This shows (ii).

(iii) Again by Proposition 4.3 (vii) and Remark 4.4, since  $\tau$ ,  $\tau \mu / \lambda \in \Gamma$  we have  $W^0_{\tau} \left( \Delta(\lambda) C(\mu) \right) = W^0_{\tau \mu / \lambda}$ . Then putting  $T'' = D_{1/\tau} \Delta(\lambda) C(\mu)$  we get

$$w^{0}\left(T^{''}\right) = W^{0}_{\tau}\left(\Delta(\lambda)C\left(\mu\right)\right) = W^{0}_{\tau\mu/\lambda}.$$
(13)

Writing  $\tilde{l''} = T^{''-1}e = \Delta(\mu)C(\lambda)D_{\tau}e$  we successively get

$$D_{\tau}e = (\tau_n)_{n \ge 1}, C(\lambda)D_{\tau}e = \left(\left(\sum_{i=1}^n \tau_i\right)/\lambda_n\right)_{n \ge 1}$$

and

$$\Delta\left(\mu\right)C(\lambda)D_{\tau}e = \left(\frac{\mu_{n}}{\lambda_{n}}\sum_{i=1}^{n}\tau_{i} - \frac{\mu_{n-1}}{\lambda_{n-1}}\sum_{i=1}^{n-1}\tau_{i}\right)_{n \geq 1}$$



So for each n we have

$$l_n'' = \left[\Delta\left(\mu\right)C(\lambda)D_{\tau}e\right]_n = \left(\frac{\mu_n}{\lambda_n} - \frac{\mu_{n-1}}{\lambda_{n-1}}\right)\sum_{i=1}^{n-1}\tau_i + \frac{\mu_n}{\lambda_n}x_k.$$

We conclude that for every X with

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left| x_k - L l_k'' \right| \frac{\lambda_k}{\mu_k \tau_k} = 0$$

then  $x_k \to L(S(T''))$ . Finally we easily get

$$\begin{bmatrix} T''X \end{bmatrix}_n = \frac{1}{\tau_n} \left( \frac{\lambda_n}{\mu_n} \sum_{i=1}^n x_i - \frac{\lambda_{n-1}}{\mu_{n-1}} \sum_{i=1}^{n-1} x_i \right)$$
$$= \frac{1}{\tau_n} \left[ \left( \frac{\lambda_n}{\mu_n} - \frac{\lambda_{n-1}}{\mu_{n-1}} \right) \sum_{i=1}^{n-1} x_i + \frac{\lambda_n}{\mu_n} x_n \right].$$

This shows (iii).

We are led to illustrate the previous results with some examples where we must have in mind that the condition  $x_k/\tau_k \to 0$   $(k \to \infty)$  implies  $X \in W^0_{\tau}$ .

Example 5.3. The condition

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left| \frac{x_k}{2^k} - \frac{7}{4} L \right| = 0$$

for given  $L \in \mathbb{C}$  implies  $x_k \to L(S(D_{(n/2^n)_n}C_1\Sigma))$ , that is, for each  $\varepsilon > 0$ 

$$\lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \le n : \left| \frac{1}{2^k} \sum_{i=1}^k \sum_{j=1}^i x_j - L \right| \ge \varepsilon \right\} \right| = 0.$$
(14)

Indeed it is enough to apply Theorem 5.2 (i) with  $\lambda_k = k$ ,  $\tau_k = 2^k/k$  and  $\mu_k = 1$  for all k. Note that if  $x_k/2^k \to 7L/4$   $(k \to \infty)$  then  $x_k \to L\left(S\left(D_{(n/2^n)_n}C_1\Sigma\right)\right)$ .

We can also state the next application.

**Example 5.4.** If  $\lim_{n\to\infty} (1/n) \sum_{k=1}^{n} |x_k|/k2^k = 0$  then  $x_k \to L\left(S\left(D_{(2^{-n})_n} \Delta C_1\right)\right)$ , that is for each  $\varepsilon > 0$ 

$$\lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \le n : \left| \frac{1}{2^k} \left( \frac{1}{k} - \frac{1}{k-1} \right) \sum_{i=1}^{k-1} x_i + \frac{1}{k} x_k \right| \ge \varepsilon \right\} \right| = 0.$$

This result is a direct consequence of Theorem 5.2 (iii) with  $\lambda_k = 1$ ,  $\tau_k = 2^k$  and  $\mu_k = k$  for all k. Again note that we have  $x_k \to L\left(S\left(D_{(2^{-n})_n}\Delta C_1\right)\right)$  if  $x_k/k2^k \to 0$   $(k \to \infty)$ .

In the following we will use the previous Proposition 4.3 and the expressions of  $W^0_{\tau}(C^+(\lambda)\Delta(\mu)) = [C^+,\Delta]_{W^0_{\tau}}, W^0_{\tau}(C^+(\lambda)C(\mu)) = [C^+,C]_{W^0_{\tau}}, W^0_{\tau}(C^+(\lambda)C^+(\mu)) = [C^+,C^+]_{W^0_{\tau}}$  and  $W^0_{\tau}(\Delta(\lambda)C^+(\mu)) = [\Delta,C^+]_{W^0_{\tau}}$ . We now require a lemma which is a direct consequence of Lemma 5.1.

**Lemma 5.5.** Let A be an infinite matrix. If  $X \in w^0(A)$  then

$$x_k \rightarrow O(S(A)).$$

we deduce the next results.

**Theorem 5.6.** (*i*) Let  $\tau \in \Gamma^+$  and  $\lambda \tau \in \Gamma$ . If

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{|x_k|}{\lambda_k \tau_k} \mu_k = 0$$
(15)

then  $x_k \to 0 \left( S \left( D_{1/\tau} C^+(\lambda) \Delta(\mu) \right) \right)$ , that is for every  $\varepsilon > 0$ 

$$\lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \le n : \left| \frac{1}{\tau_k} \sum_{i=k}^{\infty} \frac{\mu_i x_i - \mu_{i-1} x_{i-1}}{\lambda_i} \right| \ge \varepsilon \right\} \right| = 0.$$
 (16)

(*ii*) Let  $\tau \in \Gamma^+$  and  $\lambda \mu \tau \in \Gamma$ . If

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{|x_k|}{\lambda_k \mu_k \tau_k} = 0 \tag{17}$$

then  $x_k \to 0 \left( S \left( D_{1/\tau} C^+(\lambda) C (\mu) \right) \right)$ , that is for every  $\varepsilon > 0$ 

$$\lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \le n : \left| \frac{1}{\tau_k} \sum_{i=k}^{\infty} \frac{1}{\lambda_i} \left( \frac{1}{\mu_i} \sum_{j=1}^i x_j \right) \right| \ge \varepsilon \right\} \right| = 0.$$
 (18)

(iii) Let  $\tau$ ,  $\lambda \tau \in \Gamma^+$ . If

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{|x_k|}{\lambda_k \mu_k \tau_k} = 0$$
<sup>(19)</sup>

then  $x_k \to 0 \left( S \left( D_{1/\tau} C^+(\lambda) C^+(\mu) \right) \right)$ , that is for every  $\varepsilon > 0$ 

$$\lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \le n : \left| \frac{1}{\tau_k} \sum_{i=k}^{\infty} \frac{1}{\lambda_i} \left( \sum_{j=i}^{\infty} \frac{x_j}{\mu_j} \right) \right| \ge \varepsilon \right\} \right| = 0.$$
 (20)

(iv) Let  $\tau$ ,  $\tau/\lambda \in \Gamma^+$ . If

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{\lambda_k |x_k|}{\mu_k \tau_k} = 0$$

then  $x_k \to 0 \left( S \left( D_{1/\tau} \Delta(\lambda) C^+(\mu) \right) \right)$ , that is for every  $\varepsilon > 0$ 

$$\lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \le n : \frac{1}{\tau_k} \left| (\lambda_k - \lambda_{k-1}) \sum_{i=k-1}^{\infty} \frac{x_i}{\mu_i} + \frac{\lambda_k}{\mu_k} x_k \right| \ge \varepsilon \right\} \right| = 0.$$
(21)

*Proof.* (i) Condition (15) implies  $X \in W^0_{\lambda\tau/\mu}$  and by Proposition 4.3 and Remark 4.4 since  $\tau \in \Gamma^+$  and  $\lambda \tau \in \Gamma$  we have  $W^0_{\lambda\tau/\mu} = W^0_{\tau} \left( C^+(\lambda) \Delta(\mu) \right)$  and  $X \in W^0_{\tau} \left( C^+(\lambda) \Delta(\mu) \right)$ . Now it can be easily seen that

$$\left[D_{1/\tau}C^{+}(\lambda)\Delta(\mu)\right]_{n}=\frac{1}{\tau_{n}}\sum_{i=n}^{\infty}\frac{\mu_{i}x_{i}-\mu_{i-1}x_{i-1}}{\lambda_{i}},$$

so by Lemma 5.5 with  $A = D_{1/\tau}C^+(\lambda)\Delta(\mu)$  we conclude  $x_k \to 0(S(D_{1/\tau}C^+(\lambda)\Delta(\mu)))$ . This shows (i).

(ii) Here condition (17) means  $X \in W^0_{\lambda\mu\tau}$  and by Proposition 4.3 and Remark 4.4 since  $\tau \in \Gamma^+$  and  $\lambda\mu\tau \in \Gamma$  we have  $W^0_{\lambda\mu\tau} = W^0_{\tau} \left( C^+(\lambda)C(\mu) \right)$  and  $X \in W^0_{\tau} \left( C^+(\lambda)C(\mu) \right)$ . Now since

$$\left[D_{1/\tau}C^{+}(\lambda)C(\mu)\right]_{n} = \frac{1}{\tau_{n}}\sum_{i=n}^{\infty}\frac{1}{\lambda_{i}}\left(\frac{1}{\mu_{i}}\sum_{j=1}^{i}x_{j}\right),$$

by Lemma 5.5 where  $A' = D_{1/\tau}C^+(\lambda)C(\mu)$ , we conclude  $x_k \to 0(S(D_{1/\tau}C^+(\lambda)C(\mu)))$ . So we have shown (ii).

(iii) can be obtained reasoning as above with  $A'' = D_{1/\tau}C^+(\lambda)C^+(\mu)$  and so  $x_k \to 0$   $(S(D_{1/\tau}C^+(\lambda)C^+(\mu))).$ 

(iv) can also be obtained similarly. It is enough to put  $A''' = D_{1/\tau} \Delta(\lambda) C^+(\mu)$ . An elementary calculation gives

$$\left[A^{\prime\prime\prime}X\right]_{k} = \frac{1}{\tau_{k}} \left[ (\lambda_{k} - \lambda_{k-1}) \sum_{i=k-1}^{\infty} \frac{x_{i}}{\mu_{i}} + \frac{\lambda_{k}}{\mu_{k}} x_{k} \right]$$

and we conclude that  $x_k \to 0 \left( S \left( D_{1/\tau} \Delta(\lambda) C^+(\mu) \right) \right)$ , that is (21).

We can state the next example

**Example 5.7.** for each  $\varepsilon > 0$  and for every  $X \in W^0_{3/2}$  we have  $x_k \to 0\left(S\left(D_{(2^n)_n}\Sigma^+C((3^n)_n)\right)\right)$ , that is

$$\lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \le n : \left| 2^k \sum_{i=1}^{\infty} \frac{1}{3^i} \left( \sum_{j=1}^i x_j \right) \right| \ge \varepsilon \right\} \right| = 0.$$
(22)

It is enough to apply Theorem 5.6 (ii) with  $\tau_k = 2^{-k}$ ,  $\mu_k = 3^k$  and  $\lambda_k = 1$  for all k. So if  $(2/3)^k x_k \to 0 \ (k \to \infty)$  then (22) holds.

We also have the next example.

**Example 5.8.** From Theorem 5.6 (iii) with  $\lambda_k = \mu_k = k$  and  $\tau_k = 2^{-k}$  the condition

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} 2^k \frac{|x_k|}{k^2} = 0$$



implies  $x_k \to 0 \left( S \left( D_{(2^n)_n} C_1 C_1^+ \right) \right)$  that is, for each  $\varepsilon > 0$ 

$$\lim_{n \to \infty} \frac{1}{n} \left| \left\{ k \le n : \left| 2^k \sum_{i=k}^{\infty} \frac{1}{i} \left( \sum_{j=i}^{\infty} \frac{x_j}{j} \right) \right| \ge \varepsilon \right\} \right| = 0.$$
(23)

As in the previous cases (23) holds if  $2^k x_k/k^2 \to 0 \ (k \to \infty)$ .

### References

- ÇOLAK, R., Lacunary strong convergence of difference sequences with respect to a modulus, Filomat, 17 (2003), 9–14.
- [2] DE MALAFOSSE, B., On some BK space, Int. J. of Math. and Math. Sc., 28 (2003), 1783– 1801.
- [3] DE MALAFOSSE, B., On the set of sequences that are strongly  $\alpha$ -bounded and  $\alpha$ convergent to naught with index p, Seminario Matematico dell'Università e del Politecnico di Torino, **61** (2003), 13–32.
- [4] DE MALAFOSSE, B., Calculations on some sequence spaces, Int. J. of Math. and Math. Sc., 31 (2004), 1653–1670.
- [5] DE MALAFOSSE, B. AND MALKOWSKY, E., The Banach algebra  $(w_{\infty}(\lambda), w_{\infty}(\lambda))$ , in press Far East Journal Math.
- [6] DE MALAFOSSE, B. AND RAKOČEVIĆ, V., Matrix Transformations and Statistical convergence, Linear Algebra and its Applications, 420 (2007), 377–387.
- [7] FAST, H., Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.
- [8] FRIDY, J.A., On statistical convergence, Analysis, 5 (1985), 301-313.
- [9] FRIDY, J.A., Statistical limit points, Proc. Amer. Math. Soc., 118 (1993), 1187-1192.
- [10] FRIDY, J.A. AND ORHAN, C., Lacunary statistical convergence, Pacific J. Math., 160 (1993), 43–51.
- [11] FRIDY, J.A. AND ORHAN, C., Statistical core theorems, J. Math. Anal. Appl., 208 (1997), 520–527.
- [12] MADDOX, I.J., On Kuttner's theorem, J. London Math. Soc., 43 (1968), 285–290.
- [13] MADDOX, I.J., Elements of Functionnal Analysis, Cambridge University Press, London and New York, 1970.

- [14] MALKOWSKY, E., The continuous duals of the spaces  $c_0(\Lambda)$  and  $c(\Lambda)$  for exponentially bounded sequences  $\Lambda$ , Acta Sci. Math (Szeged), **61**, (1995), 241–250.
- [15] MALKOWSKY, E. AND RAKOČEVIĆ, V., An introduction into the theory of sequence spaces and measure of noncompactness, Zbornik radova, Matematčki institut SANU, 9 (17) (2000), 143–243.
- [16] STEINHAUS, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73-74.
- [17] WILANSKY, A., Summability through Functional Analysis, North-Holland Mathematics Studies, 85, 1984.