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ABSTRACT

In this paper we study L -random and L -fuzzy normed spaces and prove open mapping

and closed graph theorems for these spaces.

RESUMEN

En este artículo estudiamos espacios normados L -random and L -fuzzy. Probamos el teo-

rema de la aplicación abierta y el teorema del gráfico cerrado.
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1 Introduction and Preliminaries

In this paper we study L -random and L -fuzzy normed spaces and study completeness for

these spaces. Further we prove open mapping and closed graph theorems in this setting. The

ideas here are motivated from the functional analysis literature. The plan in sections 1-3 is to

present in detail the L -random normed space setting. In section 4 we see from the definition

how easily the theory extends to the L -fuzzy normed space situation.

Let L = (L,≥L) be a complete lattice, i.e. a partially ordered set in which every nonempty

subset admits a supremum and infimum, and 0L = inf L, 1L = supL. The space of lattice

random distribution functions, denoted by ∆
+
L

, is defined as the set of all mappings F : R∪

{−∞,+∞} → L such that F is continuous and non-decreasing on R, F(0)= 0L , F(+∞)= 1L .

Now D+
L
⊆ ∆

+
L

is defined as D+
L
= {F ∈∆

+
L

: l−F(+∞) = 1L }, where l− f (x) denotes the left

limit of the function f at the point x. The space ∆
+
L

is partially ordered by the usual point-wise

ordering of functions, i.e., F ≥G if and only if F(t) ≥L G(t) for all t in R. The maximal element

for ∆
+
L

in this order is the distribution function given by

ε0(t) =







0L , if t≤ 0,

1L , if t> 0.

Define the mapping T∧ from L2 to L by:

T∧(x, y)=











x, if y≥L x,

y, if x ≥L y.

Recall (see [4], [5]) that if {xn} is a given sequence in L, (T∧)n
i=1xi is defined recurrently by

(T∧)1
i=1xi = x1 and (T∧)n

i=1xi =T∧((T∧)n−1
i=1 xi ,xn) for n≥ 2.

A negation on L is any decreasing mapping N : L → L satisfying N (0L ) = 1L and

N (1L ) = 0L . If N (N (x)) = x, for all x ∈ L, then N is called an involutive negation. In the

following L is endowed with a (fixed) negation N .

Definition 1.1. A lattice random normed space (briefly, L -random normed space) is a triple

(X ,P ,T ), where X is a vector space, T is a t–norm on the lattice L and P is a mapping

from X × [0,∞) into D+
L

such that the following conditions hold:

(LRN1) P (x, t) = ε0(t) for all t> 0 if and only if x = 0;

(LRN2) P (αx, t) =P

(

x, t
|α|

)

for all x in X , α 6= 0 and t≥ 0;

(LRN3) P (x+ y, t+ s) ≥L T (P (x, t),P (y,s)) for all x, y ∈ X and t,s≥ 0.
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We note from (LPN2) that P (−x, t) =P (x, t) (x ∈ X , t≥ 0).

Example 1.2. Let L = [0,1]× [0,1] and operation ≤L defined by:

L = {(a1,a2) : (a1,a2) ∈ [0,1]× [0,1]and a1 +a2 ≤ 1},

(a1,a2)≤L (b1,b2)⇐⇒ a1 ≤ b1, a2 ≥ b2, ∀a= (a1,a2),b = (b1,b2) ∈ L.

Then (L,≤L) is a complete lattice (see [2]). In this complete lattice, we denote its units by 0L =

(0,1) and 1L = (1,0). Let (X ,‖ · ‖) be a normed space. Let T (a,b) = (min{a1,b1},max{a2,b2})

for all a= (a1,a2), b = (b1,b2) ∈ [0,1]× [0,1] and µ be a mapping defined by

P (x, t) =
( t

t+‖x‖
,

‖x‖

t+‖x‖

)

, ∀t ∈ R+.

Then (X ,P ,T ) is a L -random normed space.

Definition 1.3. Let (X ,P ,T ) be a L -random normed space.

(1) A sequence {xn} in X is said to be convergent to x in X if, for every t> 0 and ε ∈ L\{0L },

there exists a positive integer N such that P (xn − x, t) >L N (ε) whenever n≥ N.

(2) A sequence {xn} in X is called Cauchy sequence if, for every t> 0 and ε ∈ L\{0L }, there

exists a positive integer N such that P (xn − xm, t) >L N (ε) whenever n≥ m ≥ N.

(3) A L -random normed space (X ,P ,T ) is said to be complete if and only if every Cauchy

sequence in X is convergent to a point in X .

Theorem 1.4. If (X ,P ,T ) is a L -random normed space and {xn} is a sequence such that

xn → x, then limn→∞P (xn, t) =P (x, t).

Proof. The proof is the same as in [9].

Let (X ,P ,T ) be a L -random normed space. For t > 0 we define the open ball B(x,r, t)

with center x and radius r ∈ L \{0L ,1L } as

B(x,r, t) = {y ∈ X : P (x− y, t) >L N (r)}.

Henceforth we assume that T is a continuous t–norm on the lattice L such that for

every µ ∈ L \{0L ,1L }, there is a λ ∈ L \{0L ,1L } such that

T
n−1(N (λ), ...,N (λ))>L N (µ).

Lemma 1.5. Let (X ,P ,T ) be a L -random normed space. Let N be a continuous negator on

L . Define Eλ,P : V →R+∪ {0} by

Eλ,P (x)= inf{t> 0 : P (x, t) >L N (λ)}

for each λ ∈ L \{0L ,1L } and x ∈V . Then we have the following properties.
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(i) For any µ ∈ L \{0L ,1L } there exists λ ∈ L \{0L ,1L } such that

Eµ,P (x+ y)≤ Eλ,P (x)+Eλ,P (y)

for any x, y ∈V .

(ii) The sequence (xn)n∈N is convergent w.r.t. a L -random norm P if and only if Eλ,P (xn −

x) → 0. Also the sequence (xn)n∈N is Cauchy w.r.t. a L -random norm P if and only if it

is Cauchy w.r.t. Eλ,P .

Proof. For (i), by the continuity of the t-norm T and the negator N , for every µ ∈ L\{0L ,1L }

we can find a λ ∈ L \{0L ,1L } such that

T (N (λ),N (λ))≥L N (µ).

By Definition 1.1 we have

P (x+ y,Eλ,P (x)+Eλ,P (y)+2δ)≥L T (P (x,Eλ,M (x)+δ),P (y,Eλ,P (y)+δ))

≥L T (N (λ),N (λ))

≥L N (µ),

for every δ> 0, which implies that

Eµ,P (x+ y)≤ Eλ,P (x)+Eλ,P (y)+2δ.

Since δ> 0 was arbitrary, we have

Eµ,P (x+ y)≤ Eλ,P (x)+Eλ,P (y).

For (ii), we have

P (xn − x,η)>L N (λ) ⇐⇒ Eλ,P (xn − x)< η

for every η> 0.

2 Quotient Spaces

Definition 2.1. Let (V ,P ,T ) be a L -random normed space, W a linear manifold in V and

let Q : V −→V /W be the natural map, Qx = x+W . For t> 0, we define:

P̄ (x+W , t) = sup{P (x+ y, t) : y ∈W}.
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Theorem 2.2. Let W be a closed subspace of a L -random normed space (V ,P ,T ). If x ∈ V

and ǫ> 0, then there is an x′ in V such that x′+W = x+W , Eλ,P (x′)< E ¯λ,P (x+W)+ǫ.

Proof. By the properties of sup, there always exists y ∈ W such that Eλ,P (x + y) <

E ¯λ,P (x+W)+ǫ. Now it is enough to put x′ = x+ y.

Theorem 2.3. Let W be a closed subspace of a L -random normed space (V ,P ,T ) and P̄ be

given in the above definition. Then:

(1) P̄ is a L -random normed space, on V /W .

(2) P̄ (Qx, t) ≥L P (x, t).

(3) If (V ,P ,T ) is a complete L -random normed space, then so is (V /W ,P̄ ,T ).

Proof. It is clear that P̄ (x+W , t) >L 0L . Let P̄ (x+W , t) = 1L . By definition there is a

sequence {xn} in W such that P (x+xn, t) −→ 1L . Thus, x+xn −→ 0 or equivalently xn −→ (−x)

and since W is closed, x ∈W and x+W =W , the zero element of V /W . Then we have

P̄ ((x+W)+ (y+W), t) = P̄ ((x+ y)+W , t)

≥L P ((x+m)+ (y+n), t)

≥L T (P (x+m, t1),P (y+n, t2))

for m,n ∈ W , x, y ∈V and t1 + t2 = t. Now if we take the sup, then we have

P̄ ((x+W)+ (y+W), t) ≥L T (P̄ (x+W , t1),P̄ (y+W , t2)).

Therefore P̄ is a L -random norm on V /W .

(2) By Definition 2.1, we have

P̄ (Qx, t) = P̄ (x+W , t) = sup{P (x+ y, t) : y ∈W}≥L P (x, t).

Note that, by Lemma 1.5,

Eλ,P̄ (Qx) = inf{t> 0 : P̄ (Qx, t) >L N (λ)}≤ inf{t> 0 : P (x, t) >L N (λ)}

= Eλ,P (x).

(3) Let {xn +W} be a Cauchy sequence in V /W . Then there exists n0 ∈ N such that for

every n≥ n0, Eλ,P̄ ((xn +W)− (xn+1+W))≤ 2−n. Let y1 = 0. Choose y2 ∈W such that

Eλ,P (x1 − (x2− y2), t) ≤ Eλ,P̄ ((x1 − x2)+W)+1/2.

However E ¯λ,P ((x1− x2)+W)≤ 1/2 and so Eλ,P (x1 − (x2− y2))≤ 1/22.
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Now suppose yn−1 has been chosen, so choose yn ∈W such that

Eλ,P ((xn−1+ yn−1)− (xn + yn))≤ Eλ,P̄ ((xn−1− xn)+W)+2−n+1.

Hence we have

Eλ,P ((xn−1+ yn−1)− (xn + yn))≤ 2−n+2.

However for every positive integer m > n and by Lemma 1.5 for λ ∈ L there exists γ ∈ L,

such that

Eλ,P ((xm + ym)− (xn + yn)) ≤ Eγ,P ((xn+1+ yn+1)− (xn + yn))+

·· ·+Eγ,P ((xm + ym)− (xm−1+ ym−1))

≤

m
∑

i=n

2−i.

By Lemma 1.5, {xn + yn} is a Cauchy sequence in V . Since V is complete, there is an x0 in V

such that xn + yn −→ x0 in V . On the other hand,

xn +W =Q(xn + yn)−→Q(x0)= x0+W .

Therefore, every Cauchy sequence {xn +W} is convergent in V /W and so V /W is complete.

Thus (V /W ,P̄ ,T ) is a complete L -random normed space.

Theorem 2.4. Let W be a closed subspace of a L -random normed space (V ,P ,T ). If two of

the spaces V , W and V /W are complete, then so is the third one.

Proof. If V is a complete L -random normed space, then so are V /W and W . Hence

all that needs to be checked is that V is complete whenever both W and V /W are complete.

Suppose that W and V /W are complete L -random normed spaces and let {xn} be a Cauchy

sequence in V . Since Eλ,P̄ ((xn − xm)+W) ≤ Eλ,P (xn − xm) for each m,n ∈ N, the sequence

{xn +W} is Cauchy in V /W and so converges to y+W for some y ∈W . Thus there is a n0 ∈ N

such that for every n ≥ n0, we have Eλ,P̄ ((xn − y)+W) < 2−n. Now by the last theorem there

exist a sequence {yn} in V such that yn+W = (xn− y)+W , Eλ,P (yn)< Eλ,P̄ ((xn− y)+W)+2−n.

Thus we have limn Eλ,P (yn) ≤ 0 by Lemma 1.5, P (yn, t) → 1L for every t > 0, i.e. limn yn = 0.

Therefore, {xn − yn − y} is a Cauchy sequence in W and thus is convergent to a point z ∈ W .

This implies that {xn} converges to z+ y and hence V is complete.

3 Open Mapping and Closed Graph Theorems

Definition 3.1. A linear operator T : (V ,P ,T )−→ (V ′,P ′,T ′) is said to be L -random bounded

if there exist constants h ∈R+ such that for every x ∈V and for every t> 0,

P
′(Tx, t)≥L P (x, t/h). (3.1)
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Note that, by (3.1) we have

Eλ,P ′ (Tx) = inf{t> 0 : P ′(Tx, t)>L N (λ)}≤ inf{t> 0 : P (x, t/h) >L N (λ)}=

= h inf{t> 0 : P (x, t) >L N (λ)}

= hEλ,P (x).

Theorem 3.2. Every linear operator T : (V ,P ,T ) −→ (V ′,P ′,T ′) is L -random bounded if

and only if it is continuous.

Proof. By (3.1) every L -random bounded linear operator is continuous. Now, we prove

the converse. Let the linear operator T be continuous but not L -random bounded. Then, for

each n in N there is a xn in V such that Eλ,P ′ (Txn)≥ nEλ,P (pn). If we let yn =
xn

nEλ,P (xn) then

it is easy to see yn → 0 but T yn do not tend to 0.

Theorem 3.3. (Open mapping theorem) If T is a L -random bounded linear operator from

a complete L -random normed space (V ,P ,T ) onto a complete L -random normed space

(V ′,P ′,T ) then T is an open mapping.

Proof. The theorem will be proved in several steps.

Step1: Let E be a neighborhood of the 0 in V . We show 0 ∈

(

T(E)
)o

. Let W be a balanced

neighborhood of 0 such that W +W ⊂ E. Since T(V ) = V ′ and W is absorbing, it follows

that V ′ = ∪nT(nW), so by Theorem 3.17 in [6], there exists a n0 ∈ N such that T(n0W) has

nonempty interior. Therefore, 0 ∈

(

T(W)
)o

−

(

T(W)
)o

. On the other hand,

(

T(W)
)o

−

(

T(W)
)o

⊂ T(W)−T(W)= T(W)+T(W)⊂ T(E).

Thus the set T(E) includes the neighborhood
(

T(W)
)o

−

(

T(W)
)o

of 0.

Step 2: We show 0 ∈ (T(E))o. Since 0 ∈ E and E is an open set, there exists 0L <L α<L 1L

and t0 ∈ (0,∞) such that B(0,α, t0) ⊂ E. However 0L <L α <L 1L so a sequence {ǫn} can be

found such that T
m−n(N (ǫn+1),N (ǫm)) → 1L , N (α) <L limn T

n−1(N (ǫ1),N (ǫn)) in which

m > n. On the other hand, 0 ∈ T(B(0,ǫn, t′n)), where t′n =
1

2n t0, so by step 1, there exist 0L <L

σn <L 1L and tn > 0 such that B(0,σn, tn) ⊂ T(B(0,ǫn, t′n)). Since the set {B(0,r,1/n)} is a

countable local base at zero and t′n −→ 0 as n −→ ∞, so tn and σn can be chosen such that

tn −→ 0 and σn −→ 0L as n→∞.

Now we show B(0,σ1, t1)⊂ (T(E))o. Suppose y0 ∈ B(0,σ1, t1). Then y0 ∈ T(B(0,ǫ1, t′1)) and

so for 0L <L σ2 and t2 > 0 the ball B(y0,σ2, t2) intersects T(B(0,ǫ1, t′1)). Therefore there exists

x1 ∈ B(0,ǫ1, t′1) such that Tx1 ∈ B(y0,σ2, t2), i.e. P
′(y0 − Tx1, t2) >L N (σ2) or equivalently

y0 − Tx1 ∈ B(0,σ2, t2) ⊂ T(B(0,ǫ1, t′1)). By the similar argument there exist x2 in B(0,ǫ2, t′2)

such that

P
′(y0− (Tx1+Tx2), t3)=P

′((y0−Tx1)−Tx2, t3)>L N (σ3).
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If this process is continued, it leads to a sequence {xn} such that xn ∈ B(0,ǫn, t′n),

P
′
(

y0−
∑n−1

j=1 Tx j, tn

)

>L N (σn). Now if n,m ∈ N and m > n, then

P

(

n
∑

j=1
x j −

m
∑

j=n+1
x j , t

)

= µ

(

m
∑

j=n+1
x j , t

)

≥L T
m−n(P (xn+1, tn+1),P (xm, tm))

where tn+1 + tn+2 + ·· · + tm = t. Put t′0 = min {tn+1, tn+2, · · · , tm}. Since t′n −→ 0, there exists

n0 ∈N such that 0 < t′n ≤ t′0 for n> n0. Therefore, for m > n we have

T
m−n(P (xn+1, t′0),P (xm, t′0)) ≥L T

m−n(P (xn+1, t′n+1),P (xm, t′m))

≥L T
m−n(N (ǫn+1),N (ǫm)).

Hence,

lim
n−→∞

P

(

m
∑

j=n+1
x j , t

)

≥L lim
n−→∞

T
m−n(N (ǫn+1),N (ǫm))= 1L .

That is, P

(

∑m
j=n+1 x j , t

)

−→ 1L , for all t > 0. Thus the sequence
{

∑n
j=1 x j

}

is a Cauchy se-

quence and consequently the series
{

∑∞
j=1 x j

}

converges to some point x0 ∈ V , because V is a

complete space.

By fixing t> 0, there exists n0 ∈N such that t> tn for n> n0, because tn −→ 0. Thus

P
′

(

y0 −T

(

n−1
∑

j=1
x j

)

, t

)

≥L P
′

(

y0−T

(

n−1
∑

j=1
x j

)

, tn

)

≥L N (σn)

and thus P
′
(

y0 −T
(

∑n−1
j=1 x j

)

, t
)

−→ 1L . Therefore,

y0 = lim
n

T

(

n−1
∑

j=1
x j

)

= T

(

lim
n

n−1
∑

j=1
x j

)

= Tx0.

But, by Proposition 1 of [7],

P (x0, t0) = lim
n

P

(

n
∑

j=1
x j , t0

)

≥L T
n(lim

n
(P (x1, t′1),P (xn, t′n))

≥L lim
n

T
n−1(N (ǫ1), ...,N (ǫn))>L N (α)

Hence x0 ∈ B(0,α, t0).

Step 3: Let G be an open subset of V and x ∈G. Then we have

T(G)= Tx+T(−x+G)⊃ Tx+ (T(−x+G))o.

Hence T(G) is open, because it includes a neighborhood of each of its point.
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Corollary 3.4. Every one-to-one L -random bounded linear operator from a complete L -

random normed space onto a complete L -random normed space has a L -random bounded

inverse.

Definition 3.5. Let T and T
′ be two continuous t-norms. Then T

′ dominates T , denoted

by T
′ ≫L T , if for all x1,x2, y1, y2 ∈L ,

T [T ′(x1,x2),T ′(y1, y2)]≤L T
′[T (x1, y1),T (x2, y2)].

Theorem 3.6. (Closed graph theorem) Let T be a linear operator from the complete L -random

normed space (V ,P ,T ) into the complete L -random normed space (V ′,P ′,T ). Suppose for

every sequence {xn} in V such that xn −→ x and Txn −→ y for some elements x ∈V and y ∈V ′ it

follows that Tx= y. Then T is L -random bounded.

Proof. For any t> 0, x ∈V and y ∈V ′, define

Φ((x, y), t) =T
′(P (x, t),P ′(y, t)),

where T
′ ≫L T . First we show that (V ×V ′,Φ,T ) is a complete L -random normed space.

The properties of (LRN1) and (LRN2) are immediate from the definition. For the triangle

inequality (LRN3), suppose that x, z ∈V , y,u ∈ V ′ and t,s> 0, then

T (Φ((x, y), t),Φ((z,u),s)) = T [T ′(P (x, t),P ′(y, t)),T ′(P (z,s),P ′(u,s))]

≤L T
′[T (P (x, t),P (z,s)),T (P ′(y, t),P ′(u,s))]

≤L T
′(P (x+ z, t+ s),P ′(y+u, t+ s))

= Φ((x+ z, y+u), t+ s).

Now if {(xn, yn)} is a Cauchy sequence in V ×V ′, then for every ǫ ∈ L\{0L } and t> 0 there

exists n0 ∈N such that Φ((xn, yn)− (xm, ym), t) >L N (ǫ) for m,n> n0. Thus for m,n> n0,

T
′(P (xn − xm, t),P ′(yn − ym, t)) = Φ((xn − xm, yn − ym), t)

= Φ((xn, yn)− (xm, ym), t) >L N (ǫ).

Therefore {xn} and {yn} are Cauchy sequences in V and V ′, respectively, and there exist x ∈

V and y ∈ V ′ such that xn −→ x and yn −→ y and consequently (xn, yn) −→ (x, y). Hence

(V ×V ′,Φ,T ) is a complete L -random normed space. The remainder of the proof is the same

as the classical case.

4 L -fuzzy normed space

We conclude the paper with the setting of L -fuzzy normed spaces. Consider the L -fuzzy

normed space (X ,F ,T ) in which F is a L -fuzzy set on X× ]0,+∞[ satisfying the following
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conditions for every x, y in X and t,s in (0,+∞):

(a) 0L <L F (x, t);

(b) F (x, t) = 1L if and only if x = 0;

(c) F (αx, t) =F (x, t
|α|

) for each α 6= 0;

(d) T (F (x, t),F (y,s)) ≤L F (x+ y, t+ s);

(e) F (x, ·) : ]0,∞[→ L is continuous;

(f) limt→0 F (x, t) = 0L and limt→∞F (x, t) = 1L .

In this case F is called a L -fuzzy norm. For some details on the L -fuzzy normed spaces,

please see [1]

It is clear that all the results in section 2 and 3 can be written for L -fuzzy normed spaces.

References

[1] DESCHRIJVER, G, O’REGAN, D., SAADATI, R. AND VAEZPOUR, S.M., L -fuzzy Eu-

clidean normed spaces and compactness, Chaos, Solitons and Fractals, 42 (2009), no.

1, 40–45, MR2543015.

[2] DESCHRIJVER, G. AND KERRE, E.E., On the relationship between some extensions of

fuzzy set theory, Fuzzy Sets and Systems, 23 (2003), 227–235.

[3] GOGUEN, J., L -fuzzy sets, J. Math. Anal. Appl., 18 (1967), 145–74.
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