CUBO A Mathematical Journal Vol.13,  $N^{\underline{o}}01$ , (1–10). March 2011

# On strongly $\alpha$ -*I*-*Open* sets and a new mapping

R.Devi, A.Selvakumar, M.Parimala

Department of Mathematics, Kongunadu Arts and Science College, Coimbatore - 641 029, Tamilnadu, India. email: rdevicbe@yahoo.com

and

S.JAFARI College of Vestsjaelland Syd, Herrestraede 11,4200 Slagelse, Denmark.

### ABSTRACT

In this paper, we introduce the notion of strongly  $\alpha$ -*I*-open sets in ideal topological spaces and investigate some of their properties. Further we study the continuous functions for the above set and derive the some of their properties.

#### RESUMEN

En este trabajo, se introduce la noción del gran conjunto  $\alpha$ -*I-abierto* ideal en espacios topológicos y se investigan algunas de sus propiedades. Además se estudian las funciones continuas para el conjunto y parte de sus propiedades.

Keywords:  $\alpha$ -*I*-open set, Strongly  $\alpha$ -*I*-open set and  $B_I$  set. Mathematics Subject Classification: 54A05,54D10,54F65,54G05.



# 1 Introduction

The notion of  $\alpha$ -open sets was introduced and investigated by Njastad [16]. By using  $\alpha$ -open sets. Mashhour et al. [14] defined and studied  $\alpha$ -continuity and  $\alpha$ -openness in topological spaces. Ideals in topological spaces have been considered since 1930. This topic has won its importance by the paper of Vaidyanathaswamy [19]. In 2002, Hatir and Noiri [6] have introduced the notion of  $\alpha$ -*I*-continuous functions and used it to obtain a decomposition of continuity. The notion of  $B_I$  sets introduced by Hatir and Noiri [6] and provided a decomposition of continuity. In this paper, we introduce strongly  $\alpha$ -*I*-open sets and establish a decomposition of continuity.

In 1990, Jankovic and Hamlett [9] introduced the notion of *I-open* sets in ideal topological spaces. An ideal is defined as a non-empty collection I of subsets of X satisfying the following two conditions. (1) If  $A \in I$  and  $B \subset A$ , then  $B \in I$ . (2) If  $A \in I$  and  $B \in I$ , then  $A \cup B \in I$ . An ideal topological space is a topological space  $(X, \tau)$  with an ideal I on X and it is denoted by  $(X, \tau, I)$ . For a subset  $A \subset X$ ,  $A^*(I) = \{x \in X : U \cap A \notin I \text{ for each neighbourhood } U \text{ of } x\}$  is called the local function of A with respect to I and  $\tau$  [9]. We simply write  $A^*$  instead of  $A^*(I)$  to be brief. For every ideal topological space  $(X, \tau, I)$ , there exists a topology  $\tau^*(I)$ , finer than  $\tau$ , generated by  $\beta(I, \tau) = \{U - i : U \in \tau \text{ and } i \in I\}$ , but in general  $\beta(I, \tau)$  is not always a topology [9]. Additionally,  $cl^*(A) = A \cup A^*$  defines a kuratowski closure operator for  $\tau^*(I)$ . Given a space  $(X, \tau, I)$  and  $A \subset X$ , A is called I-open if  $A \subset int(A^*)$  and a subset K is called I-closed if its complement is I-open [8,9].

### 2 Preliminaries

First we will recall some definitions used in sequel.

**Definition 2.1.** A subset A of an ideal topological space  $(X, \tau, I)$  is said to be

- 1.  $\alpha$ -I-open [6] (resp.  $\alpha$ -open [16]) if  $A \subset int(cl^*(int(A)))$  (resp.  $A \subset int(cl(int(A))))$ ,
- 2. semi-I-open [6] (resp. semi-open [12]) if  $A \subset cl^*(int(A))$  (resp.  $A \subset cl(int(A)))$ ),
- 3. pre-I-open [1] (resp. pre-open [13]) if  $A \subset int(cl^*(A))$  (resp.  $A \subset int(cl(A)))$ ,
- 4. b-I-open [3] (resp. b-open [2]) if  $A \subset int(cl^*(A)) \cup cl^*(int(A))$  (resp.  $A \subset int(cl(A)) \cup cl(int(A))$ ,
- 5. *t-I*-set [6] (resp. *t*-set [18]) if  $int(cl^*(A)) = int(A)$  (resp. int(cl(A)) = int(A)),
- 6.  $B_I$ -set [6] if  $A = U \cap V$ , where  $U \in \tau$  and V is a t-I-set,
- 7.  $C_I$ -set [6] if  $A = U \cap V$ , where  $U \in \tau$  and  $int(cl^*(int(V))) = int(V)$ ,
- 8.  $A_I$ -set [11] if  $A = U \cap V$ , where  $U \in \tau$  and  $V = (int(V))^*$ ,

- 9. strongly pre-I-open [17] if A is pre-I-open as well as a  $C_{I}$ -set,
- 10. strongly b-I-open [4] if A is b-I-open as well as a  $C_I$ -set and
- 11. *I*-locally closed set [5] if  $A = U \cap V$ , where  $U \in \tau$  and  $V = V^*$ .

**Definition 2.2.** A subset A of an ideal topological space  $(X, \tau, I)$  is said to be *I*-nowhere dense if  $int(cl^*(A)) = \phi$ .

Observe that if A is rare, then a t-I-set (resp. t-set) is I-nowhere dense (resp. nowhere dense). Recall that a set A of X is rare if it has no interior points. Also notice that if A is rare, then b-I-open sets and b-open sets are pre-I-open and preopen, respectively.

**Definition 2.3.** A function  $f: (X, \tau, I) \to (Y, \sigma)$  is said to be

- 1. semi-I-continuous [6] if for every  $V \in \sigma$ ,  $f^{-1}(V)$  is semi-I-open,
- 2. pre-I-continuous [5] if for every  $V \in \sigma$ ,  $f^{-1}(V)$  is pre-I-open,
- 3. b-I-continuous [3] if for every  $V \in \sigma$ ,  $f^{-1}(V)$  is b-I-open,
- 4. A<sub>I</sub>-continuous [11] if for every  $V \in \sigma$ ,  $f^{-1}(V)$  is A<sub>I</sub>-set,
- 5.  $B_I$ -continuous [6] if for every  $V \in \sigma$ ,  $f^{-1}(V)$  is  $B_I$ -set.
- 6. *I*-locally continuous [5] if for every  $V \in \sigma$ ,  $f^{-1}(V)$  is *I*-locally closed,
- 7. strongly pre-I-continuous [17] if for every  $V \in \sigma$ ,  $f^{-1}(V)$  is strongly pre-I-open and
- 8. strongly b-I-continuous [4] if for every  $V \in \sigma$ ,  $f^{-1}(V)$  is strongly b-I-open.

### 3 Stongly $\alpha$ -I-Open Sets

**Definition 3.1.** A subset A of an ideal space  $(X, \tau, I)$  is said to be strongly  $\alpha$ -*I*-open set if A is *b*-*I*-open as well as a  $B_I$ -set.

The family of all strongly  $\alpha$ -*I*-open sets in  $(X, \tau, I)$  is denoted by  $S \cdot \alpha IO(X, \tau)$  or  $S \cdot \alpha IO(X)$ . For a subset A of  $(X, \tau, I)$ ,  $int_{s\alpha}(A) = \bigcup \{ U \subset A, U \in S \cdot \alpha IO(X, \tau) \}$ . Clearly  $\tau \subset S \cdot \alpha IO(X) \subset \alpha IO(X)$ . The following examples 3.2 and 3.3 show that these inclusions are not reversible.

**Example 3.2.** Let  $X = \{a, b, c, d\}$ ,  $\tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}$  and  $I = \{\phi, \{a\}\}$ . If  $A = \{c\}$ , then  $A^* = \{b, c, d\}$  and so  $int(cl^*(int(A))) = int(cl^*(\{c\})) = int(\{b, c, d\}) = \{c\} = A$ . Therefore A is  $\alpha$ -I-open. Since X is the only open set containing  $A, A = X \cap A$  is the only possibility to write A as the intersection with X. Since  $int(cl^*(A)) = int(cl^*(\{c\})) = int(\{b, c, d\}) = int(A)$ . This shows that A is a  $B_I$ -set and hence A is strongly  $\alpha$ -I-open set, but A is not I-open. This shows



the existence of non trivial strongly  $\alpha$ -*I*-open sets.

**Example 3.3.** Let  $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}$  and  $I = \{\phi, \{a\}\}$ . If  $A = \{a, b, c\}$ , then  $A^* = \{a, c, d\}$  and so  $int(cl^*(int(A))) = int(cl^*(\{a, c\})) = int(X) = X \supset A$ . Therefore A is  $\alpha$ -*I-open*. Since X is the only open set containing  $A, A = X \cap A$  is the only possibility to write A as the intersection with X. Since  $int(cl^*(A)) = int(cl^*(\{a, b, c\})) = int(X) = X \neq int(A)$ , A is not a  $B_I$ -set and hence A is not a strongly  $\alpha$ -*I-open* set.

The following example shows that  $\alpha$ -*I*-open sets and  $B_I$  sets are independent concepts.

**Example 3.4.** Consider the ideal space  $(X, \tau, I)$  of Example 3.3. (a) If  $A = \{a, b, d\}$ , then  $int(A) = \{a\}$  and  $int(cl^*(int(A))) = int(cl^*(\{a\})) = int(\{a\})$  does not contains A. Therefore A is not a  $\alpha$ -I-open set. But  $int(cl^*(A)) = int(cl^*(\{a, b, d\})) = int(\{a, b, d\}) = \{a\} = int(A)$  and  $A = X \cap A$ . Therefore A is a  $B_I$ -set. (b) If  $B = \{a, b, c\}$ , then  $int(B) = \{a, c\}$  and so  $int(cl^*(int(B))) = int(cl^*(\{a, c\})) = X \supset B$ . Therefore B is  $\alpha$ -I-open set. But B is not a  $B_I$ -set, since  $int(cl^*(B)) = int(X) = X \neq int(B)$ .

#### **Theorem 3.5.** Every strongly $\alpha$ -*I*-open set is strongly pre-*I*-open.

**Proof.** It follows from the fact that every  $\alpha$ -*I*-open set is pre-*I*-open and let A be a  $B_I$  set. Then  $A = U \cap V$ , where  $U \in \tau$  and V is a *t*-*I*-set. Then  $int(V) = int(cl^*(V)) \supset int(cl^*(int(V))) \supset int(V)$  and hence  $int(V) = int(cl^*(int(V)))$ . This shows that A is a  $C_I$ -set. Therefore A is strongly pre-*I*-open set.

The converse of the above theorem need not be true by the following example.

**Example 3.6.** Consider R, the set of all real numbers with the usual topology and the ideal  $I_f$  consisting of all finite subsets of R. If A = Q, the set of all rational numbers, then  $A^* = R$ . Since  $int(cl^*(A)) = R \supset A$ , A is pre-*I*-open. Since  $A = R \cap A$  where R is open and  $int(cl^*(int(A))) = \phi = int(A)$ , it follows that A is strongly pre-*I*-open but A is not strongly  $\alpha$ -*I*-open, since  $int(cl^*(int(A))) = \phi$  does not contains A.

**Theorem 3.7.** Every strongly  $\alpha$ -*I*-open set is strongly *b*-*I*-open. **Proof.** It follows from Theorem 3.5. and [4, Theorem 3.7].

The converse of the above theorem need not be true by the following example.

**Example 3.8.** Let  $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$  and  $I = \{\phi, \{b\}\}$ . Then  $A = \{a, c\}$  is strongly *b-I-open*, but it is not strongly  $\alpha$ -*I-open*. For  $int(cl^*(A)) \cup cl^*(int(A)) = int(\{a, c\}^* \cup \{a, c\}) \cup cl^*(\{a\}) = \{a, c\} \supset A$ . Therefore, A is *b-I-open*. Since X is the only open set containing  $A, A = X \cap A$  is the only possibility to write A as the intersection with X. Since  $int(cl^*(int(A))) = int(cl^*(\{a\})) = int(\{a, c\}) = int(A)$  and hence A is strongly *b-I-open* set. Since  $int(cl^*(int(A))) = int(cl^*(\{a\})) = int(\{a, c\}) = \{a\}$  is not contains A. Hence A is not

strongly  $\alpha$ -*I*-open.

**Proposition 3.9.** Let  $(X, \tau, I)$  be an ideal topological space. A subset A of X is I-locally closed set if A is both open and  $A_I$ -set.

**Proof.** Let A be an open and  $A_I$ -set, then  $A = G \cap V$ , where  $G \in \tau$  and  $V = (int(V))^* = V^*$ . This shows that A is I-locally closed set.

Observe that if V is rare, then A is empty.

The following theorem gives a characterization of open sets in terms of strongly  $\alpha$ -I-open sets and  $A_I$ -sets.

**Theorem 3.10.** If  $(X, \tau, I)$  is an ideal topological space. For a subset A of X, the following conditions are equivalent.

- (a) A is open.
- (b) A is open, strongly  $\alpha$ -I-open and A<sub>I</sub>-set.
- (c) A is strongly  $\alpha$ -I-open and I-locally closed set.
- (d) A is strongly pre-I-open and I-locally closed set.
- (e) A is strongly pre-I-open and  $A_I$ -set.

#### Proof.

(a)  $\Rightarrow$  (b) is obvious.

(b)  $\Rightarrow$  (c) It follows from Proposition 3.9.

(c)  $\Rightarrow$  (d) It follows from Theorem 3.5.

(d)  $\Rightarrow$  (e) If A is I-locally closed, then  $A = G \cap A^*$  for some open set G. Since  $A \subset A^*$ , by [17, Lemma 2.5]  $A^* = cl^*(A)$ . Now  $A \subset int(cl^*(A)) = int(A^*)$  and so  $A^* \subset (int(A^*))^* \subset (A^*)^* \subset A^*$ . Therefore  $A^* = (int(A^*))^*$  which implies that A is an  $A_I$  set. (e)  $\Rightarrow$  (a) Suppose A is strongly *pre-I-open* and A<sub>I</sub>-set.

$$A \subset int(cl^*(A))$$
  
=  $int(cl^*(U \cap V))$ 

where U is open and  $V = (int(V))^*$ . By [10, Theorem 2.1.]

$$A \subset U \cap (int(cl^*(V)))$$
  

$$\subset U \cap int(V^*)$$
  

$$\subset U \cap int(int(V))^*$$
  

$$\subset U \cap int(cl^*(int(V)))$$
  

$$\subset U \cap int(V)$$
  

$$= int(A)$$



**Theorem 3.11.** Let  $(X, \tau, I)$  be an ideal topological space. A subset A of  $(X, \tau, I)$  is pre-I-open and  $B_I$ -set if A is strongly  $\alpha$ -I-open.

**Proof.** Let A be strongly  $\alpha$ -I-open set. Since every  $\alpha$ -I-open set is pre-I-open, then A is pre-I-open and  $B_I$ -set.

**Theorem 3.12.** Let  $(X, \tau, I)$  be an ideal topological space. A subset A of  $(X, \tau, I)$  is strongly  $\alpha$ -I-open if and only if it is semi-I-open, pre-I-open and  $B_I$ -set. **Proof.** 

**Necessity.** It follows from the fact that every  $\alpha$ -*I-open* set is *semi-I-open* and *pre-I-open*. **Sufficiency.** Let A be *semi-I-open*, *pre-I-open* and  $B_I$ -set. Then, we have  $A \subset int(cl^*(A)) \subset int(cl^*(cl^*(int(A)))) = int(cl^*(int(A)))$ . This shows that A is  $\alpha$ -*I-open* set and also A is  $B_I$ -set. Therefore A is a strongly  $\alpha$ -*I-open* set.

## 4 Strongly $\alpha$ -*I*-Continuous Maps

**Definition 4.1.** A mapping  $f : (X, \tau, I) \to (Y, \sigma)$  is said to be strongly  $\alpha$ -*I*-continuous if for every  $V \in \sigma$ ,  $f^{-1}(V)$  is strongly  $\alpha$ -*I*-open.

**Theorem 4.2.** Every strongly  $\alpha$ -*I*-continuous map is strongly pre-*I*-continuous. **Proof.** It follows from Theorem 3.5.

**Theorem 4.3.** Every strongly  $\alpha$ -*I*-continuous map is strongly b-*I*-continuous. **Proof.** It follows from Theorem 3.7.

**Theorem 4.4.** Let  $f : (X, \tau, I) \to (Y, \sigma)$  be any mapping. Then f is I-locally continuous map if it is both continuous and  $A_I$ -continuous. **Proof.** It follows from Proposition 3.9.

**Theorem 4.5.** Let  $f : (X, \tau, I) \to (Y, \sigma)$  be any mapping. Then the following conditions are equivalent.

- (a) f is continuous.
- (b) f is continuous, strongly  $\alpha$ -I-continuous and A<sub>I</sub>-continuous.
- (c) f is strongly  $\alpha$ -I-continuous and I-locally continuous.
- (d) f is strongly pre-I-continuous and I-locally continuous.
- (e) f is strongly pre-I-continuous and  $A_I$ -continuous.

**Proof.** It follows from Theorem 3.10.

**Theorem 4.6.** Let  $f : (X, \tau, I) \to (Y, \sigma)$  be any mapping. Then f is pre-*I*-continuous and  $B_I$ -continuous if f is strongly  $\alpha$ -*I*-continuous. **Proof.** It follows from Theorem 3.11.

**Theorem 4.7.** Let  $f : (X, \tau, I) \to (Y, \sigma)$  be any mapping. Then f is strongly  $\alpha$ -I-continuous if and only if it is semi-I-continuous, pre-I-continuous and  $B_I$ -continuous.

**Proof.** It follows from Theorem 3.12. **Definition 4.8.** A mapping  $f : (X, \tau, I) \to (Y, \sigma, I)$  is said to be strongly  $\alpha$ -*I*-irresolute if  $f^{-1}(V)$  is strongly  $\alpha$ -*I*-open in X for every strongly  $\alpha$ -*I*-open set V of Y.

**Theorem 4.9.** Let  $f: (X, \tau, I) \to (Y, \sigma)$  and  $g: (Y, \sigma) \to (Z, \eta)$  be mappings. Then the composition  $g \circ f: X \to Z$  is strongly  $\alpha$ -*I*-continuous if g is continuous and f is strongly  $\alpha$ -*I*-continuous. **Proof.** Let W be any open subset of Z. Since g is continuous,  $g^{-1}(W)$  is open in Y. Since f is strongly  $\alpha$ -*I*-continuous, then  $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$  is strongly  $\alpha$ -*I*-open in X and hence  $g \circ f$  is strongly  $\alpha$ -*I*-continuous.

**Theorem 4.10.** Let  $f : (X, \tau, I_1) \to (Y, \sigma, I_2)$  and  $g : (Y, \sigma, I_2) \to (Z, \eta, I_3)$  be mappings. Then the composition  $g \circ f : X \to Z$  is strongly  $\alpha$ -*I*-continuous if g is strongly  $\alpha$ -*I*-continuous and f is strongly  $\alpha$ -*I*-irresolute.

**Proof.** Let W be any open subset of Z. Since g is strongly  $\alpha$ -I-continuous,  $g^{-1}(W)$  is strongly  $\alpha$ -I-open in Y. Since f is strongly  $\alpha$ -I-irresolute, then  $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$  is strongly  $\alpha$ -I-open in X and hence  $g \circ f$  is strongly  $\alpha$ -I-continuous.

**Theorem 4.11.** Let  $f: (X, \tau, I_1) \to (Y, \sigma, I_2)$  and  $g: (Y, \sigma, I_2) \to (Z, \eta, I_3)$  be mappings. Then the composition  $g \circ f: X \to Z$  is strongly  $\alpha$ -*I*-irresolute if both f and g are strongly  $\alpha$ -*I*-irresolute. **Proof.** Let W be any strongly  $\alpha$ -*I*-open subset of Z. Since g is strongly  $\alpha$ -*I*-irresolute,  $g^{-1}(W)$  is strongly  $\alpha$ -*I*-open in Y. Since f is strongly  $\alpha$ -*I*-irresolute, then  $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$  is strongly  $\alpha$ -*I*-open in X and hence  $g \circ f$  is strongly  $\alpha$ -*I*-irresolute.

**Definition 4.12.** [15] Let A be a subset of a space  $(X, \tau)$  then the set  $\cap \{U \in \tau : A \subset U\}$  is called the kernel of A and denoted by ker(A).

**Lemma 4.13.** [7] Let A be a subset of a space  $(X, \tau)$ , then

- (a)  $x \in ker(A)$  if and only if  $A \cap F \neq \phi$  for any closed subset F of X with  $x \in F$ ;
- (b)  $A \subset ker(A)$  and A = ker(A) if A is open in X;
- (c) if  $A \subset B$ , then  $ker(A) \subset ker(B)$ .

**Definition 4.14.** Let N be a subset of a space  $(X, \tau, I)$  and  $x \in X$ . Then N is called strongly  $\alpha$ -*I*-neighbourhood of x, if there exists a strongly  $\alpha$ -*I*-open set U containing x such that  $U \subset N$ .



**Theorem 4.15.** The following statements are equivalent for a mapping  $f : (X, \tau, I) \to (Y, \sigma)$ .

- 1. f is strongly  $\alpha$ -I-continuous.
- 2. for each  $x \in X$  and each open set V in Y with  $f(x) \in V$ , there exists a strongly  $\alpha$ -I-open set U containing x such that  $f(U) \subset V$ .
- 3. for each  $x \in X$  and each open set V in Y with  $f(x) \in V$ ,  $f^{-1}(V)$  is a strongly  $\alpha$ -I-neighbourhood of x.

#### Proof.

(1)  $\Rightarrow$  (2) Let  $x \in X$  and V be an open set in Y such that  $f(x) \in V$ . Since f is strongly  $\alpha$ -*I*-continuous,  $f^{-1}(V)$  is a strongly  $\alpha$ -*I*-open containing x. Set  $U = f^{-1}(V)$ . Then we have  $f(U) \subset V$ .

(2)  $\Rightarrow$  (3) Let V be an open set in Y and let  $f(x) \in V$ . Then by (2), there exists a strongly  $\alpha$ -*I*-open set U containing x such that  $f(U) \subset V$ . So  $x \in U \subset f^{-1}(V)$ . Hence  $f^{-1}(V)$  is a strongly  $\alpha$ -*I*-neighbourhood of x.

(3)  $\Rightarrow$  (1) Let V be an open set in Y and let  $f(x) \in V$  then by (3),  $f^{-1}(V)$  is a strongly  $\alpha$ -Ineighbourhood of x. Thus for each  $x \in f^{-1}(V)$  there exists a strongly  $\alpha$ -I-open set  $U_x$  containing x such that  $x \in U_x \subset f^{-1}(V)$ . Hence  $f^{-1}(V) \subset \bigcup_{x \in f^{-1}(V)} U_x$  so  $f^{-1}(V) \in S - \alpha IO(X)$ .

**Theorem 4.16.** The following mappings are equivalent for a mapping  $f : (X, \tau, I) \to (Y, \sigma)$ .

- 1. f is strongly  $\alpha$ -I-continuous.
- 2. for every subset A of X,  $f(int_{s\alpha}I(A)) \subset ker(f(A))$ .
- 3. for every subset B of Y,  $int_{s\alpha}I(f^{-1}(B)) \subset f^{-1}(ker(B))$ .

#### Proof.

(1)  $\Rightarrow$  (2) Let A be any subset of X. Suppose that  $y \notin ker(f(A))$ . Then by Lemma 4.13. there exists a *closed* subset F of Y such that  $y \in F$  and  $f(A) \cap F = \phi$ . Thus we have  $A \cap f^{-1}(F) = \phi$  and  $(int_{s\alpha}(I(A))) \cap f^{-1}(F) = \phi$ . Therefore, we obtain  $f(int_{s\alpha}(I(A))) \cap F = \phi$  and  $y \notin f(int_{s\alpha}I(A))$ . This implies that  $f(int_{s\alpha}I(A)) \subset ker(A)$ .

(2)  $\Rightarrow$  (3) Let *B* be any subset of *Y* by (2) and Lemma 4.13., we have  $f(int_{s\alpha}I(f^{-1}(B))) \subset ker(f(f^{-1}(B))) \subset ker(B)$  and  $int_{s\alpha}I(f^{-1}(B)) \subset f^{-1}(ker(B))$ .

(3)  $\Rightarrow$  (1) Let V be an open set of Y. Then by Lemma 4.13. and (3), we have  $int_{s\alpha}I(f^{-1}(V)) \subset f^{-1}(ker(V)) = f^{-1}(V)$  and  $int_{s\alpha}I(f^{-1}(V)) = f^{-1}(V)$ . This implies  $f^{-1}(V)$  is strongly  $\alpha$ -I-open.

Received: April 2009. Revised: August 2009.

### References

- M.E. ABD EL-MONSEF, E.F.LASHIEN AND A.A. NASEF, On I-open sets and I-continuous mappings, Kyungpook Mathematical Journal, Vol. 32, No. 1 (1992), 21-30.
- [2] D. ANDRIJEVIC, On b-open sets, Mathematichki Vesnik, Vol.48, No. 1-2 (1996), 59-64.
- [3] A. CAKSU GULER AND G. ASLIM, b-I-open sets and decomposition of continuity via idealization, Proceedings of Institute of Mathematics and Mechanics. National Academy of Sciences of Azerbaijan, Vol. 22 (2005), 27-32.
- [4] R. DEVI, A. SELVAKUMAR AND M. PARIMALA, Strongly b-I-open sets in ideal topological spaces, (submitted).
- [5] J. DONTCHEV, Idealization of Ganster-Reilly decomposition theorems, (1999), http://arxiv.org/abs/Math.GN/9901017.
- [6] E. HATIR AND T. NOIRI, On decomposition of continuity via idealization, Acta Math. Hungar., 96 (4) (2002), 341-349.
- [7] S. JAFARI AND T. NOIRI, Contra-super-continuous mappings, Annales Universitatis Scientiarum Budapestinensis, Vol. 22 (1999), 27-34.
- [8] D. JANKOVIC AND T.R. HAMLETT, Compatible extensions of ideals, Unione Matematica Italiana Bollettino. B. Serie VII, Vol. 6, No. 3 (1992), 453-465.
- [9] D. JANKOVIC AND T.R. HAMLETT, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295-310.
- [10] V. JEYANTHI, V. RENUKA DEVI AND D. SIVARAJ, Some subsets of ideal topological spaces, Math. Benchink, 59 (2007), 75-84.
- [11] A. KESKIN, T. NOIRI AND S. YUKSEL, Idealization of decomposition theorem, Acta Math. Hungar., 102 (2004), 269-277.
- [12] N. LEVINE, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [13] A. S. MASHHOUR, M. E. ABD EL-MONSEF AND S. N. EL-DEEB, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.
- [14] A. S. MASHHOUR, I. N. HASANEIN AND S. N. EL-DEEB, α-continuous and α-open mappings, Acta Math. Hungar., 41 (1983), 213-218.
- [15] M. MRSEVIC, On Pairwise  $R_0$  and pairwise  $R_1$  bitopological spaces, Bulletin Mathematique de la Societe des Sciences Mathematiques de la Republique Socialiste de Roumanie. Nouvelle Serie, Vol. 30 (78), No. 2 (1986), 141-148.

- [16] O. NJASTAD, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
- [17] V. RENUKA DEVI AND D. SIVARAJ, A Decomposition of continuity via ideals, Acta. Math. Hungar., Vol. 118 (1-2) (2008), 53-59.
- [18] J. TONG, On decomposition of continuity in topological spaces, Acta Math. Hungar., 54 (1989), 51-55.
- [19] R. VAIDYANATHASWAMY, The localisation theory in set topology, Proc. Indian Acad. Sci. Math. Sci., 20 (1945), 51-61.