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ABSTRACT

Similarities are shown between the algebras of complex differential forms and of complex

Clifford algebra-valued multi-vector functions in an open region of Euclidean space of

even dimension.

RESUMEN

Se presentan las similitudes entre las álgebras de formas diferenciales complejas y de las

funciones de álgebras de Clifford complejas con valores de múltiples vectores aplicados

en una región abierta del espacio euclidiano de dimensión par.
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1 Introduction

Usually Clifford analysis is understood to be the study of the solutions of the Dirac equation for

functions defined on the (anti-)Euclidean vector space R
0,m and taking values in the correspond-

ing Clifford algebra R0,m. It thus offers a proper analogue to the Cauchy-Riemann equations for

holomorphic functions in the complex plane. For a thorough study of the so-called monogenic

functions of Clifford analysis we refer to the standard textbooks [5, 15, 17, 18].

The symmetry group of the Dirac equation is either SO(m) or Spin(m), according to the

definition of the group action on the values taken by the functions under consideration. If these

values are in the Clifford algebra with left multiplication, the symmetry group is Spin(m), which

then usually is realized inside the Clifford algebra. In the case of functions with values in the

Clifford algebra with both side action, it is more natural to identify the Dirac equation with the

equation (d+d∗)f = 0, and to identify the space of values, in casu the Clifford algebra, as a vector

space, with the Grassmann algebra of R
m. This Grassmann algebra may then be decomposed

into the direct sum of its homogeneous parts, which is a decomposition into irreducible parts

under the action of SO(m). In this framework it was shown (see [13]) that, on the polynomial

level, the space of monogenic functions can be split into a direct sum of solutions of the Hodge-de

Rham equations for homogeneous differential forms. This entails a finer structure of the space of

monogenic functions, which manifests itself explicitly in a finer form of the corresponding Fischer

decomposition (see [14]).

An important ingredient in the latter approach is the translation of spaces and operators from

the language of multivector functions with values in a Clifford algebra to the language of real dif-

ferential forms, as was described in detail in [6]. Let us give a very brief overview. On the one hand

we have the Cartan algebra
∧

(G) of smooth real differential forms in an open subset G of Euclidean

space R
m, endowed with exterior multiplication. A fundamental operator on

∧

(G) is the exterior

derivative d with its important property that for any differential form ω, d2ω = d(dω) = 0.

Introducing the Hodge co-derivative d∗ leads to the differential operator D = d + d∗, by means

of which the so-called ”harmonic” r-forms (0 < r < m) are characterized as smooth differential r-

forms ωr satisfying Dωr = 0. On the other hand we have the algebra E(G) of smooth multi-vector

functions in G. Multi-vector functions arise in a natural way when considering functions defined

in G and taking values in the universal real Clifford algebra R0,m constructed over R
0,m, i.e. R

m

equipped with an anti-Euclidean metric. If R
r
0,m (0 ≤ r ≤ m) denotes the space of r-vectors, then

the Clifford algebra R0,m is precisely the associative algebra R0,m =
⊕m

r=0 R
r
0,m, and an r-vector

function Fr is a map Fr : G→ R
r
0,m. A fundamental operator on the space of smooth multi-vector
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functions, is the rotation-invariant Dirac operator ∂X, by means of which the so-called monogenic

functions are characterized as the smooth functions f satisfying ∂Xf = 0, as already mentioned

above. The spaces of smooth differential forms and of smooth multi-vector functions were shown to

be isomorphic in a natural way: a smooth r-form is identified with a smooth r-vector function, and

the action of the differential operator d + d∗ on the space
∧r

(G) of smooth r-forms, is identified

with the action of the Dirac operator ∂X on the space Er(G) of smooth r-vector functions. Also

other correspondences were studied in detail in [6].

When the dimension is taken to be even (m = 2n), one can make the framework of Clifford

analysis closer to complex analysis by introducing on R
2n a complex structure J. The symmetry

group then reduces to the subgroup U(n) ⊂ SO(2n) preserving the chosen complex structure J.

This is the basic setting for so-called Hermitean Clifford analysis, which recently has emerged as

a new and successful branch of Clifford analysis, offering yet a refinement of the Euclidean case.

The functions studied are defined in open regions of C
n and take their values in the complex

Clifford algebra C2n. More particularly Hermitean Clifford analysis focusses on the simultaneous

null solutions, called Hermitean (or h–) monogenic functions, of two Hermitean Dirac operators

∂z and ∂z† . A systematic development of this function theory, including the invariance proper-

ties with respect to the underlying Lie groups and Lie algebras, is still in full progress, see e.g.

[9, 1, 2, 7, 8, 3, 4, 23, 12]. Part of this program also concerns the study of the finer structure

induced on the space of monogenic functions by the choice of the complex structure J.

When studying the Dirac equation for functions with values in a Clifford algebra, it is well

known that the Clifford algebra can be split into the direct sum of a number of isomorphic copies

of the basic spinor representation. Accordingly, the set of equations will split into a number of

independent subsets of equations for functions with values in the various copies of spinor space. It

is a trivial observation that all these subsystems are equivalent to each other and their solutions

will have the same properties, whence, without any loss of generality, we can restrict the study to

functions with values in the space of spinors (or half-spinors in even dimension). In the standard

situation, this space of values cannot be split further since they are already irreducible under the

(left) action of the Spin(m) group. However, after having fixed the complex structure J, the sym-

metry group is reduced, as explained above, and the spinor space decomposes further into smaller

pieces. If it is realized in a standard way as the Grassmann algebra over the maximal isotropic

subspace in C
2n, then this splitting is just the splitting into homogeneous components; for details

see e.g. [2].

Our final aim is to understand the finer structure of the space of monogenic functions induced

by this splitting. A first step towards that goal is to establish a scheme for the translation of spaces

and operators between the language of complex Clifford algebra and the language of complex dif-

ferential forms. In fact this is the complex analogue of the translation in the Euclidean situation
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mentioned above, see [6]. The purpose of the underlying paper is precisely to describe in a rather

formal, yet detailed, way the similarities between complex differential forms in open regions of C
n

on the one hand and multivector functions in the Hermitean Clifford analysis setting on the other.

Crucial to this description is the detailed analysis of the structure of complex Clifford algebra as

carried out in [10]. The Hermitean Dirac operators ∂z and ∂z† and the associated operators ∂z•,

∂z∧, ∂z†• and ∂z†∧, originating by splitting the Clifford or geometric product into its “inner”

or “dot” and “outer” or “wedge” parts, are identified with well-known differential operators for

complex differential forms on Kählerian manifolds in C
n. However it should be emphasized that,

in this paper, we restrict ourselves to the flat Kählerian metric on C
n with fundamental form

Ω = i
2

∂∂|z|2. The more general approach of Hermitean Clifford analysis on complex Hermitean

manifolds and its comparison with complex analysis on Kählerian manifolds is the subject of the

forthcoming paper [11].

The paper is structured as follows. Sections 2 and 3 are introductory, fixing our definitions

and notations. An identification of all differential operators and forms under consideration in both

pictures is described in Section 4. The relation to the operators which are standard in Kählerian

geometry is clarified in Section 5. The last section adds some remarks on the Hodge operator.

2 Multi-vector functions: preliminaries

In this section we recall some basic notions and results from Clifford algebra and Clifford analysis.

The construction of the universal real Clifford algebra is well-known; for an in-depth study

we refer the reader to e.g. [22]. Here we restrict ourselves to a schematic approach. Let R
0,m be

the real vector space R
m (m ≥ 1) endowed with a non-degenerate symmetric bilinear form B of

signature (0,m), and let (e1, ..., em) be an associated orthonormal basis, i.e.

B(ei, ej) =

{
−1 if i = j

0 if i 6= j
(1 ≤ i, j ≤ m)

then the anti-Euclidean metric on R
0,m is induced by the scalar product

〈ei, ej〉 = −B(ei, ej) = δij, 1 ≤ i, j ≤ m

We first introduce the anti-symmetric outer product by the rules

ei ∧ ei = 0, 1 ≤ i ≤ m

ei ∧ ej + ej ∧ ei = 0, 1 ≤ i 6= j ≤ m

and for each A = {i1, i2, ..., ir} ⊂ M = {1, ...,m}, with 1 ≤ i1 < i2 < ... < ir ≤ m, i.e. ordered in

the natural way, we put

eA = ei1
∧ ei2

∧ ... ∧ eir
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while e∅ = 1. Then for each r = 0, 1, ...,m, the set {eA : A ⊂ M and |A| = r} is a basis for the

space R
r
0,m of so-called r-vectors. Next, we introduce the inner product

ei
• ej = −〈ei, ej〉 = B(ei, ej) = −δij, 1 ≤ i, j ≤ m

leading to the so-called geometric product of vectors in the Clifford algebra:

eiej = ei
• ej + ei ∧ ej, 1 ≤ i, j ≤ m

The respective definitions of the inner, the outer and the geometric product are then extended to

r-vectors as follows: for the inner product, we have

ej
• eA = ej

• (ei1
∧ ... ∧ eir

) =

r∑

k=1

(−1)kδjik
eA\{ik}

with

eA\{ik} = ei1
∧ ... ∧ eik−1

∧ [eik
∧] eik+1

∧ ... ∧ eir

while for the outer product






ej ∧ eA = ej ∧ (ei1
∧ ... ∧ eir

) = ej ∧ ei1
∧ ... ∧ eir

, if j /∈ A

ej ∧ eA = 0, if j ∈ A

and finally, for the geometric product (or product for short)

ejeA = ej
• eA + ej ∧ eA

Finally, these definitions are linearly extended to the whole of the Clifford algebra R0,m, which is

the associative algebra

R0,m =

m
⊕

r=0

R
r
0,m

If [ · ]r : R0,m → R
r
0,m denotes the projection operator from R0,m onto R

r
0,m, then each Clifford

number a ∈ R0,m may be written as

a =

m∑

r=0

[a]r

Note that in particular for a 1-vector u and an r-vector vr, one has

uvr = u • vr + u ∧ vr

with

u • vr = [uvr]r−1 =
1

2

(

uvr − (−1)rvr u

)

u ∧ vr = [uvr]r+1 =
1

2

(

uvr + (−1)rvr u

)
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Usually R and R
m are identified with R

0
0,m and R

1
0,m respectively. An element X = (X1, . . . , Xm) ∈

R
m is thus identified with the 1-vector X =

∑m
j=1 Xjej.

Now let G be an open region in R
m. A smooth r-vector function Fr is a map

Fr : G→ R
r
0,m, X 7→

∑

|A|=r

Fr,A(X) eA

where for each A, Fr,A is a smooth real valued function in G. We denote by Er(G) the space of

smooth r-vector functions in G, and we put

E(G) =

m
⊕

r=0

Er(G)

The projection operator from E(G) onto Er(G) is denoted by [ . ]r.

A fundamental operator in Clifford analysis is the so-called Dirac operator, a first order vector

valued differential operator given by

∂X =

m∑

j=1

ej ∂Xj

Since the multiplication in the Clifford algebra is non-commutative, operators can act from the

left or from the right on a function. For the Dirac operator and a function F =
∑

A

eAFA ∈ E(G),

these actions are given by

∂XF =

m∑

j=1

∑

A

ejeA ∂Xj
FA and F∂X =

m∑

j=1

∑

A

eAej ∂Xj
FA

A function F ∈ E(G) is called left (resp. right) monogenic in G if and only if it satisfies in G the

equation ∂XF = 0 (resp. F∂X = 0).

Restricting the Dirac operator ∂X to the space Er(G), we find for an r-vector function Fr that

∂XFr and Fr∂X split into an (r − 1)-vector part and an (r + 1)-vector part:

∂XFr =

m∑

j=1

ej ∂Xj
Fr =

m∑

j=1

ej
• ∂Xj

Fr +

m∑

j=1

ej ∧ ∂Xj
Fr

Fr∂X =

m∑

j=1

∂Xj
Fr ej =

m∑

j=1

∂Xj
Fr

• ej +

m∑

j=1

∂Xj
Fr ∧ ej
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It readily follows that

[

∂XFr

]

r−1
=

m∑

j=1

ej
• ∂Xj

Fr = (−1)r+1

m∑

j=1

∂Xj
Fr

• ej = (−1)r+1
[

Fr∂X

]

r−1

[

∂XFr

]

r+1
=

m∑

j=1

ej ∧ ∂Xj
Fr = (−1)r

m∑

j=1

∂Xj
Fr ∧ ej = (−1)r

[

Fr∂X

]

r+1

Usually one introduces the notations

∂X
• Fr = [∂XFr]r−1, ∂X ∧ Fr = [∂XFr]r+1

Fr
• ∂X = [Fr∂X]r−1, Fr ∧ ∂X = [Fr∂X]r+1

The action of the Dirac operator ∂X on Er(G) thus gives rise to two auxiliary differential operators

∂X• : Er(G)→ Er−1(G); Fr 7→ (∂X• )Fr = ∂X
• Fr = [∂XFr]r−1

∂X∧ : Er(G)→ Er+1(G); Fr 7→ (∂X∧)Fr = ∂X ∧ Fr = [∂XFr]r+1

for which it holds that

∂X = ∂X • +∂X∧

Symbolically these operators may be written as

(∂X•) =

m∑

j=1

(ej
• )∂xj

(∂X∧) =

m∑

j=1

(ej ∧)∂xj

Their action on Er(G) is two-fold in the sense that they act on the multi-vector by means of the

inner and outer product with basis vectors, and at the same time on the function coefficients

by partial differentiation. We thus have that, for a smooth r-vector function Fr, the notions of

left monogenicity and right monogenicity coincide, and moreover that Fr is left as well as right

monogenic in G if and only if in G

∂XFr = 0 ⇐⇒ Fr∂X = 0 ⇐⇒

{
∂X • Fr = 0

∂X ∧ Fr = 0

As the Dirac operator ∂X factorizes the Laplace operator, viz

∂2
X = ∂X

• ∂X + ∂X ∧ ∂X = ∂X
• ∂X = −〈∂X, ∂X〉 = −∆m

a monogenic function in G is also harmonic in G, but the converse clearly is not true. As moreover

(∂X•)
2 = (∂X∧)2 = 0
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we have that

−∆m = (∂X • +∂X∧)2 = ∂X • ∂X ∧ +∂X ∧ ∂X•

the two second order differential operators
(

∂X • ∂X∧
)

and
(

∂X ∧ ∂X•
)

arising above being scalar

operators in the sense that they keep the order of the multi-vector function invariant. However the

function coefficients, while being differentiated, are interchanged w.r.t. the basis multi-vectors.

When allowing for complex constants and moreover taking the dimension to be even: m = 2n,

the same generators (e1, . . . , en, en+1, . . . , e2n) produce the complex Clifford algebra C2n, which

is the complexification of the real Clifford algebra R0,2n, i.e. C2n = R0,2n ⊕ i R0,2n. Any com-

plex Clifford number λ ∈ C2n may thus be written as λ = a + ib, a, b ∈ R0,2n, an observation

leading to the definition of the Hermitean conjugation λ† = (a + ib)† = a − ib, where the bar

notation stands for the usual Clifford conjugation in R0,2n, i.e. the main anti–involution for which

ej = −ej, j = 1, . . . , 2n. This Hermitean conjugation also leads to a Hermitean inner product and

its associated norm on C2n given by (λ, µ) = [λ†µ]0 and |λ| =
√

[λ†λ]0 = (
∑

A |λA|2)1/2.

This is the framework for so–called Hermitean Clifford analysis, a refinement of Euclidean

Clifford analysis. An elegant way of introducing this setting consists in considering a so–called

complex structure, i.e. a specific SO(2n; R)–element J for which it holds that J2 = −1 (see [1, 2]).

Here, J is chosen to act upon the generators e1, . . . , e2n of the Clifford algebra as

J[ej] = −en+j and J[en+j] = ej, j = 1, . . . , n

With J one may associate two projection operators 1
2
(1 ± iJ) which produce the main objects

of the Hermitean setting by acting upon the corresponding objects in the Euclidean framework.

First of all, the so–called Witt basis elements (fj, f
†
j)

n
j=1 for C2n are obtained through the action

of ±1
2
(1 ± iJ) on the original orthogonal basis:

fj =
1

2
(1 + iJ)[ej] =

1

2
(ej − i en+j), j = 1, . . . , n

f†j = −
1

2
(1 − iJ)[ej] = −

1

2
(ej + i en+j), j = 1, . . . , n

The Witt basis elements satisfy the Grassmann identities

fjfk + fkfj = f†j f
†
k + f†kf†j = 0 , j, k = 1, . . . , n

including their isotropy: f2j = f†j
2

= 0, j = 1, . . . , n, as well as the duality identities

fjf
†
k + f†kfj = δjk , j, k = 1, . . . , n

The Witt basis of the complex Clifford algebra C2n is then obtained, in much the same way as is

done for the basis of the real Clifford algebra, by taking all possible products of Witt basis vectors.
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Introducing the inner and outer products for the Witt basis vectors we have, see also [9],

fj • fk = f†j • f†k = 0, j, k = 1, . . . , n

fj • f†k = f†j • fk =
1

2
δjk, j, k = 1, . . . , n

and

fj ∧ fk = −fk ∧ fj, j, k = 1, . . . , n

f†j ∧ f†k = −f†k ∧ f†j , j, k = 1, . . . , n

eventually yielding

fjfk = fj • fk + fj ∧ fk = fj ∧ fk, j, k = 1, . . . , n

f†j f
†
k = f†j • f†k + f†j ∧ f†k = f†j ∧ f†k, j, k = 1, . . . , n

fjf
†
k = fj • f†k + fj ∧ f†k =

1

2
δjk + fj ∧ f†k, j, k = 1, . . . , n

This leads to the Grassmann structure of the complex Clifford algebra

C2n
∼=

n
⊕

p=0

n
⊕

q=0

∧p,q

2n

where

∧p,q

2n
= spanC

{
f†j1

∧ . . . ∧ f†jp
∧ fk1

∧ . . . ∧ fkq
|j1 < j2 < . . . < jp, k1 < k2 < . . . < kq

}

A vector (X1, . . . , X2n) in R
0,2n is now denoted by (x1, . . . , xn, y1, . . . , yn) and is identified with

the Clifford vector X =
∑n

j=1(ej xj + en+j yj); the action of the complex structure J on X yields

the twisted vector

X| = J[X] =

n∑

j=1

(ej yj − en+j xj)

Note that X and X| anti-commute, since they are orthogonal w.r.t. the standard Euclidean scalar

product; more precisely they satisfy the following properties.

Lemma 2.1. One has

(i) X • X| = 0

(ii) X ∧ X| =
∑

j 6=k xjyk(ejek − en+ken+j) −
∑

j,k ejen+k(xjxk + yjyk)

(iii) X| ∧ X =
∑

j 6=k xjyk(ekej − en+jen+k) −
∑

j,k en+kej(xjxk + yjyk)

(iv) X X| + X|X = X ∧ X| + X| ∧ X = 0
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The actions of the projection operators on the Clifford vector X then produce the mutually

Hermitean conjugate Hermitean Clifford variables z and z†, i.e.

z =
1

2
(1 + iJ)[X] =

1

2
(X + i X|)

z† = −
1

2
(1 − iJ)[X] = −

1

2
(X − i X|)

which may also be rewritten in terms of the Witt basis elements as

z =

n∑

j=1

fj zj and z† = (z)† =

n∑

j=1

f†j zc
j

where n complex variables zj = xj + iyj have been introduced, with complex conjugates zc
j =

xj − iyj, j = 1, . . . , n. Finally, the Hermitean Dirac operators ∂z and ∂z† are obtained from the

Euclidean Dirac operator ∂X:

∂z† =
1

4
(1 + iJ)[∂X] =

1

4
(∂X + i ∂X|)

∂z = −
1

4
(1 − iJ)[∂X] = −

1

4
(∂X − i ∂X|)

where also the so–called twisted Dirac operator arises:

∂X| = J[∂X] =

n∑

j=1

(

ej ∂yj
− en+j ∂xj

)

As for ∂X, a notion of (twisted) monogenicity may be associated in a natural way to ∂X| as well.

Passing to the Witt basis, the Hermitean Dirac operators are expressed as

∂z =

n∑

j=1

f†j ∂zj
and ∂z† = (∂z)

† =

n∑

j=1

fj ∂zc
j

involving the classical Cauchy–Riemann operators ∂zc
j

= 1
2
(∂xj

+i∂yj
) and their complex conjugates

∂zj
= 1

2
(∂xj

− i∂yj
) in the complex zj-planes, j = 1, . . . , n. As a consequence of the isotropy of the

Witt basis vectors, the Hermitean vector variables and Dirac operators are isotropic, i.e.

(z)2 = (z†)2 = 0 and (∂z)
2 = (∂z†)2 = 0

whence the Laplacian ∆2n = −∂2
X = −∂2

X|
allows for the decomposition

∆2n = 4(∂z∂z† + ∂z†∂z) = 4(∂z + ∂z†)2

while also

(z + z†)2 = z z† + z†z = |z|2 = |z†|2 = |X|2 = |X||2

The central notion in Hermitean Clifford analysis is that of Hermitean monogenicity. A

continuously differentiable function g on an open region G of R
2n ∼= C

n with values in the complex
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Clifford algebra C2n is called (left) Hermitean monogenic (or h–monogenic for short) in G if and

only if it simultaneously is ∂X– and ∂X|–monogenic in G, i.e. it satisfies in G the system

∂X g = 0 = ∂X| g

which is equivalent with the system

∂z g = 0 = ∂z† g

Now the multivector functions in the Hermitean Clifford analysis setting are smooth functions

defined in an open region G of R
2n ∼= C

n and taking their values in the Grassmann subspaces
∧p,q

2n . They thus take the form

Fp,q(x1, . . . , xn, y1, . . . , yn) =
∑

φj1...jpk1...kq
f†j1

∧ . . . ∧ f†jp
∧ fk1

∧ . . . ∧ fkq

where the scalar functions φj1...jpk1...kq
are assumed to be smooth functions in G. The space of

these multivector functions is denoted by Ep,q(G), and we have

Er(G) =
⊕

p+q=r

Ep,q(G)

Similarly to what was done for the Euclidean Dirac operator ∂X (and holds for ∂X| as well),

also the Hermitean Dirac operators may be split into their scalar or ”dot” part and their bivector

or ”wedge” part, leading to

∂z∧ =

n∑

i=1

∂zi
f†i ∧

∂z• =

n∑

i=1

∂zi
f†i •

∂z†∧ =

n∑

i=1

∂zc
i
fi ∧

∂z†• =

n∑

i=1

∂zc
i
fi•

for which it thus holds that

∂z ∧ +∂z• = ∂z, ∂z† ∧ +∂z†• = ∂z†

These operators have a two-fold action on Ep,q(G) in the sense that they act on the multi-vector

by means of the inner and outer product with Witt basis vectors, and at the same time on the

function coefficients by partial differentiation. They enjoy the following properties, which can be

obtained through direct calculation.

Property 2.2. The Hermitean Dirac dot and wedge operators are interrelated by complex conjuga-

tion as follows:
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(i) (∂z∧)c = −∂z†∧

(ii) (∂z•)
c = −∂z†•

Property 2.3. The Hermitean Dirac dot and wedge operators act as follows on the spaces Ep,q:

(i) ∂z∧ : Ep,q −→ Ep+1,q

(ii) ∂z• : Ep,q −→ Ep,q−1

(iii) ∂z†∧ : Ep,q −→ Ep,q+1

(iv) ∂z†• : Ep,q −→ Ep−1,q

Property 2.4. The Hermitean Dirac dot and wedge operators are isotropic:

(i) (∂z∧)2 = (∂z•)
2 = (∂z†∧)2 = (∂z†•)2 = 0

and they show the following anticommutation relations:

(ii) (∂z∧)(∂z•) + (∂z•)(∂z∧) = 0

(iii) (∂z†∧)(∂z†•) + (∂z†•)(∂z†∧) = 0

(iv) (∂z∧)(∂z†∧) + (∂z†∧)(∂z∧) = 0

(v) (∂z•)(∂z†•) + (∂z†•)(∂z•) = 0

Property 2.5. Composition of the Hermitean Dirac dot and wedge operators yields the following

actions on the spaces Ep,q:

(i) (∂z∧)(∂z•) = −(∂z∧)(∂z•) = (∂z•)(∂z∧) : Ep,q −→ Ep+1,q−1

(ii) (∂z†∧)(∂z†•) = −(∂z†∧)(∂z†•) = (∂z†•)(∂z†∧) : Ep,q −→ Ep−1,q+1

(iii) (∂z∧)(∂z†∧) = −(∂z†∧)(∂z∧) : Ep,q −→ Ep+1,q+1

(iv) (∂z•)(∂z†•) = −(∂z†•)(∂z•) : Ep,q −→ Ep−1,q−1

Property 2.6. The Hermitean Dirac dot and wedge operators establish a decomposition of the

Laplacian in the following ways:

(i) (∂z∧)(∂z†•) + (∂z†•)(∂z∧) = 1
8

∆2n

(ii) (∂z†∧)(∂z•) + (∂z•)(∂z†∧) = 1
8

∆2n
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Property 2.7. The Hermitean Dirac dot and wedge operators establish decompositions of the cor-

responding Euclidean ones as follows:

(i) (∂z†∧) − (∂z∧) = 1
2
∂X∧, (∂z†•) − (∂z•) = 1

2
∂X•

(ii) (∂z†∧) + (∂z∧) = i
2
∂X|∧, (∂z†•) + (∂z•) = i

2
∂X|•

whence they also decompose the actual Euclidean Dirac operators as follows:

(iii) (∂z†∧) − (∂z∧) + (∂z†•) − (∂z•) = 1
2
∂X

(iv) (∂z†∧) + (∂z∧) + (∂z†•) + (∂z•) = i
2
∂X|

Now, let us come back for a moment to the notion of Hermitean monogenicity for multivector

functions. A multivector function Fp,q is h-monogenic if and only if simultaneously ∂zF
p,q =

(∂z • +∂z∧)Fp,q = 0 and ∂z†Fp,q = (∂z† • +∂z†∧)Fp,q = 0, which, due to Property 2.3, is

equivalent with the system

{
∂z • Fp,q = 0, ∂z ∧ Fp,q = 0, ∂z† • Fp,q = 0, ∂z† ∧ Fp,q = 0

}

In view of Property 2.7 we then obtain the following remarkable result.

Proposition 2.8. For a multivector function Fp,q the notions of ∂X-monogenicity, ∂X|-monogenicity

and Hermitean monogenicity coincide.

Remark 2.9. Obviously the system of equations describing Hermitean monogenicity will take par-

ticular forms according to the values of the functions considered. In [2] we have shown e.g. that, if

the function takes its values in the subspace of spinor space corresponding to minimal or maximal

degree of homogeneity, then Hermitean monogenicity reduces to (anti-)holomorphy for a function of

several complex variables. In that sense Proposition 2.8 now reveals that one particular Grassmann

cell
∧p,q

2n can not be considered as an appropriate value space to study Hermitean monogenicity,

since in that case it coincides with Euclidean monogenicity. It remains an interesting problem

to discover appropriate value spaces in order to see the Hermitean monogenicity system reduce

to a significant system of differential equations. To that end we have investigated in [10] how

the complex Clifford algebra C2n decomposes into subspaces leading to exact sequences for the

multiplicative action of the Witt basis vectors.

3 Differential forms: preliminaries

There exists a vast literature on differential forms; in particular we refer to e.g. [19, 24] for real

differential forms and to [20, 21] for complex differential forms. Here we will only recall the basic

concepts needed.
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Let R
m be endowed with the standard Euclidean metric. Denoting by

∧r
R

m the space of

alternating (or skew multilinear) real valued r-forms (0 ≤ r ≤ m), the Grassmann algebra or

exterior algebra over R
m is the graded associative algebra

∧

R
m =

m
⊕

r=0

∧r
R

m

endowed with the exterior multiplication. A basis for
∧r

R
m is obtained as follows. Let {dX1, ..., dXm}

be a basis for the dual space (Rm)∗ of R
m. If, as before, the set A = {i1, . . . , ir} ⊂ M = {0, 1, ...,m}

is ordered in the natural way, put

dXA = dXi1 ∧ dXi2 ∧ ... ∧ dXir

and dX∅ = 1. Then for each r = 0, 1, ...,m, the set {dXA : A ⊂ M and |A| = r} is a basis for
∧r

R
m. Note that in particular

dXi ∧ dXi = 0, i = 0, 1, . . . ,m

and

dXi ∧ dXj + dXj ∧ dXi = 0, 0 ≤ i 6= j ≤ m

A smooth r-form in an open region G of R
m is a map

ωr : G→
∧r

R
m, X 7→

∑

|A|=r

ωr
A(X1, . . . , Xm)dXA

where, for each A, ωr
A is a smooth real valued function in G. We denote by

∧r
(G) the space of

smooth r-forms in G and we put
∧

(G) =

m
⊕

r=0

∧r
(G)

The projection operator from
∧

(G) onto
∧r

(G) is denoted by [ · ]r. A fundamental linear operator

on the space of smooth forms is the exterior derivative d. It is first defined as d :
∧r

(G)→
∧r+1

(G)

(r < m), by

ωr =
∑

|A|=r

ωr
A dXA 7−→ dωr =

∑

A

∑

j

∂Xj
ωr

A dXj ∧ dXA

a definition which is then extended to
∧

(G) by linearity. A second fundamental linear operator on

the space of smooth forms is the Hodge co-derivative d∗. For A = {ii, ..., ir} ⊂ M we denote

dXA\{ij} = dXi1 ∧ ... ∧ dXij−1 ∧ [dXij∧] dXij+1 ∧ ... ∧ dXir

and in a first step we put

d∗(ωr
AdXA) =

r∑

j=1

(−1)j ∂Xij
ωr

A dXA\{ij}



CUBO
13, 2 (2011)

Differential forms versus multi-vector functions . . . 99

Then d∗ is defined as d∗ :
∧r

(G)→
∧r−1

(G) (r > 0), by

ωr =
∑

|A|=r

ωr
A dXA 7−→ d∗(ωr) =

∑

|A|=r

d∗(ωr
A dXA)

and this definition again is extended to the whole of
∧

(G) by linearity. A smooth r-form ωr in G

is called closed if and only if dωr = 0; it is called co-closed if and only if d∗ωr = 0; and it is called

harmonic (in the sense of Hodge) when it is at the same time closed and co-closed. Introducing

the operator D = d + d∗, a necessary and sufficient condition for a smooth r-form ωr in G to be

harmonic thus reads

Dωr = (d + d∗)ωr = 0 ⇐⇒

{
dωr = 0

d∗ωr = 0
(∗)

The system (∗) is called the Hodge-de Rham system. Note that if ωr is harmonic in an open region

G of R
m then automatically ωr satisfies ∆mωr = 0 in G, since

D2 = (d + d∗)2 = d d∗ + d∗ d = −∆m

The converse, however, is not true.

The action of the operators d and d∗ on differential forms is two-fold in the sense that they

act on the form itself as well as on the function coefficients by partial differentiation. In order to

make this double action explicit we introduce the following symbolic notations for the operators d

and d∗:

d =

m∑

j=1

(dXj∧)∂Xj

d∗ =

m∑

j=1

(dXj •)∂Xj

with

dXj • dXA = dXj • (dXi1 ∧ ... ∧ dXir) =

r∑

k=1

(−1)k δjik
dXA\{ik}

In this last action we recognize the contraction operators ∂Xj
⌋, j = 1, ...m, given by

∂Xj
⌋dXA = ∂Xj

⌋
(

dXi1 ∧ ... ∧ dXir
)

=

r∑

k=1

(−1)k−1δjik
dXA\{ik}

acting only on the basis elements of the differential form, and not on the function coefficients.

Apparently the contraction operator ∂Xj
⌋ coincides with the ”inner product”-operator dXj • up to

a minus sign:

∂Xj
⌋ = (−dXj •), j = 0, 1, ...,m
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However bear in mind that contractions are more fundamental than dot products. Indeed, they

can be introduced independently of a scalar product, and their behaviour is invariant under dif-

feomorphisms, which is not the case for the dot product. We then indeed have for the operators d

and d∗





m∑

j=1

(dXj∧)∂Xj









∑

|A|=r

ωr
A dXA



 =
∑

|A|=r

m∑

j=1

(∂Xj
ωr

A)dXj ∧ dXA = dωr





m∑

j=1

(dXj •)∂Xj









∑

|A|=r

ωr
A dXA



 =
∑

|A|=r

r∑

k=1

(−1)k(∂Xik
ωr

A)dXA\{ik} = d∗ωr

At this moment we make the transition from the Euclidean to the Hermitean Clifford setting,

which, as above, is established by the introduction of the complex structure J, forcing the dimension

to be even: m = 2n. We may now also consider a twisted exterior derivative d| and a twisted

co-derivative d∗|, satisfying the following identities.

Property 3.1. It holds that

(i) dd| + d|d = 0 = d∗d|∗ + d|∗d∗ = 0

(ii) dd|∗ + d|∗d = 0 = d∗d| + d|d∗ = 0

Appropriate complex linear combinations of these real operators will give rise to complex

exterior derivatives and co-derivatives, but we will first consider the traditional complex differential

forms in C
n or in an open region G of C

n. We call
∧p,q

(G) the space of complex differential forms

of bidegree (p, q) in G; it contains elements ωp,q of the form

ωp,q =
∑

|J|=p

∑

|K|=q

ωJ,K(z, z†)dzJ ∧ dzc
K

where ωK,L(z1, . . . , zn, zc
1, . . . , zc

n) are smooth functions in G and

dzJ = dzj1
∧ . . . ∧ dzjp

, j1 < j2 < . . . < jp

dzc
K = dzc

k1
∧ . . . ∧ dzc

kq
, k1 < k2 < . . . < kp

The traditional derivatives in this setting are ∂, ∂c, ∂∗ and ∂∗c. They are defined as follows on a

complex differential form of bidegree (p, q), definition which is then extended by linearity to an
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arbitrary complex differential form:

∂ωp,q =
∑

|J|=p

∑

|K|=q

∂ωJ,K ∧ dzJ ∧ dzc
K

∂cωp,q =
∑

|J|=p

∑

|K|=q

∂cωJ,K ∧ dzJ ∧ dzc
K

∂∗ωp,q =
∑

|J|=p

∑

|K|=q

∂∗ (ωJ,KdzJ ∧ dzc
K)

∂∗cωp,q =
∑

|J|=p

∑

|K|=q

∂∗c (ωJ,KdzJ ∧ dzc
K)

with

∂ωJ,K =

n∑

i=1

(∂zi
ωJ,K)dzi

∂cωJ,K =

n∑

i=1

(∂zc
i
ωJ,K)dzc

i

∂∗ (ωJ,KdzJ ∧ dzc
K) =

n∑

i=1

(∂zc
i
ωJ,K)dzc

i • (dzJ ∧ dzc
K)

∂∗c (ωJ,KdzJ ∧ dzc
K) =

n∑

i=1

(∂zi
ωJ,K)dzi • (dzJ ∧ dzc

K)

Here we have introduced, for j = 1, . . . , n, the not commonly used operators dzj• and dzc
j •, which,

via their Euclidean counterparts, are in fact complex contraction operators. We have indeed, for

all j = 1, . . . , n, that

dzj• = (dxj + idyj)• = dxj • +idyj• = −
(

∂xj
⌋ + i∂yj

⌋
)

= −2∂zc
j
⌋

dzc
j • = (dxj − idyj)• = dxj • −idyj• = −

(

∂xj
⌋ − i∂yj

⌋
)

= −2∂zj
⌋

The four complex derivatives may thus be written symbolically as

∂ =

n∑

i=1

∂zi
dzi ∧

∂c =

n∑

i=1

∂zc
i
dzc

i ∧

∂∗ =

n∑

i=1

∂zc
i
dzc

i •

∂∗c =

n∑

i=1

∂zi
dzi•

where it is explicitly shown that ∂ and ∂c act with a wedge product and ∂∗ and ∂∗c with a dot

product or contraction. They enjoy the following properties.
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Property 3.2. The complex derivatives ∂, ∂c, ∂∗ and ∂∗c act as follows on the spaces
∧p,q

(G) of

complex differential forms of bidegree (p, q) in G:

(i) ∂ :
∧p,q

(G) −→
∧p+1,q

(G)

(ii) ∂c :
∧p,q

(G) −→
∧p,q+1

(G)

(iii) ∂∗ :
∧p,q

(G) −→
∧p−1,q

(G)

(iv) ∂∗c :
∧p,q

(G) −→
∧p,q−1

(G)

Property 3.3. The complex derivatives ∂, ∂c, ∂∗ and ∂∗c satisfy the Kähler identities

(i) ∂∂∗c + ∂∗c∂ = 0 = ∂∗∂c + ∂c∂∗

(ii) ∂∂c + ∂c∂ = 0 = ∂∗∂∗c + ∂∗c∂∗

(iii) ∂∂∗ + ∂∗∂ = −1
2
∆2n = ∂c∂∗c + ∂∗c∂c

In a very similar way as the Hermitean variables and Dirac operators are linked to their Eu-

clidean counterparts, the Kählerian derivatives ∂, ∂c, ∂∗ and ∂∗c are linked to the exterior derivative

and co-derivative and their twisted analogues.

Property 3.4. It holds that

(i) ∂c + ∂ = d, ∂c − ∂ = id|

(ii) ∂∗ + ∂∗c = d∗, ∂∗ − ∂∗c = id|∗

whence we may also write

(iii) ∂c = 1
2
(d + id|), ∂ = 1

2
(d − id|)

(iv) ∂∗ = 1
2
(d∗ + id|∗), ∂∗c = 1

2
(d∗ − id|∗)

4 Differential forms and multi-vector functions: an identi-

fication

In [6] it is shown how the world of real differential forms in an open region G of R
m and the world of

Clifford algebra valued multi-vector functions in G may be naturally identified. The fundamental

identification, adapted to the Hermitean setting, reads

ei ←→ dxi, en+i ←→ dyi, i = 1, . . . , n

resulting in the identifications listed in Table 1. Note that we have listed here only a few of these

identifications; for more details we refer the reader to [6].
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d =

n∑

i=1

(dxi∧)∂xi
+ (dyi∧)∂yi

∂X∧ =

n∑

i=1

(ei∧)∂xi
+ (en+i∧)∂yi

d∗ =

n∑

i=0

(dxi •)∂xi
+ (dyi •)∂yi

∂X• =

n∑

i=1

(ei
•)∂xi

+ (en+i
•)∂yi

d| =

n∑

i=1

(dxi∧)∂yi
− (dyi∧)∂xi

∂X|∧ =

n∑

i=1

(ei∧)∂yi
− (en+i∧)∂xi

d|∗ =

n∑

i=0

(dxi •)∂yi
− (dyi •)∂xi

∂X|• =

n∑

i=1

(ei
•)∂yi

− (en+i
•)∂xi

Table 1: Identification of the Euclidean Dirac operators

This identification is now further developed in the Hermitean setting. For the Witt basis

vectors one explicitly obtains the identifications

f†j∧ = −
1

2
(ej + ien+j)∧ = −

1

2
(ej ∧ +ien+j∧) ←→ −

1

2
(dxj ∧ +idyj∧) = −

1

2
(dzj∧)

f†j• = −
1

2
(ej + ien+j)• = −

1

2
(ej • +ien+j• ) ←→ −

1

2
(dxj • +idyj•) = −

1

2
(dzj•)

fj∧ =
1

2
(ej − ien+j)∧ =

1

2
(ej ∧ −ien+j∧) ←→

1

2
(dxj ∧ −idyj∧) =

1

2
(dzc

j ∧)

and

fj• =
1

2
(ej − ien+j)• =

1

2
(ej • −ien+j•) ←→

1

2
(dxj • −idyj•) =

1

2
(dzc

j •)

listed in Table 2. The so-called inflation operator, denoted ·⌉, is introduced below.

f†j∧ −
1

2
(dzj∧) = ∂zc

j
⌉

f†j• −
1

2
(dzj•) = ∂zc

j
⌋

fj∧
1

2
(dzc

j ∧) = −∂zj
⌉

fj•
1

2
(dzc

j •) = −∂zj
⌋

Table 2: Identification of the Witt basis vectors
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In the same order of ideas one explicitly obtains for the Hermitean Dirac operators

∂z†∧ =

n∑

j=1

∂zc
j
fj∧ ←→

n∑

j=1

∂zc
j

1

2
(dzc

j ∧) =
1

2
(∂c∧)

∂z†• =

n∑

j=1

∂zc
j
fj• ←→

n∑

j=1

∂zc
j

1

2
(dzc

j •) =
1

2
(∂∗•)

∂z∧ =

n∑

j=1

∂zj
f†j∧ ←→

n∑

j=1

∂zj
(−

1

2
)(dzj∧) = (−

1

2
)(∂∧)

∂z• =

n∑

j=1

∂zj
f†j• ←→

n∑

j=1

∂zj
(−

1

2
)(dzj•) = (−

1

2
)(∂∗c•)

as summarized in Table 3.

∂z†∧
1

2
(∂c∧)

∂z†•
1

2
(∂∗•)

∂z∧ −
1

2
(∂∧)

∂z• −
1

2
(∂∗c•)

Table 3: Identification of the Hermitean Dirac operators

Through these identifications it becomes clear that the properties of the Hermitean Dirac

operators on multivector functions listed in Section 2 and those of the Kählerian differential op-

erators on complex differential forms listed in Section 3 are two faces of the same coin. This also

implies that it suffices to prove a property in only one of these two worlds, automatically gaining

the similar property in the other. To give an example, Proposition 2.12 is transposed as follows.

Proposition 4.1. A (p, q)-form ωp,q ∈
∧p,q

(G) is harmonic in an open region G of C
n, i.e. it

satisfies the Hodge-de Rham system {dωp,q = 0, d∗ωp,q = 0}, if and only if in G it is Hermitean

monogenic, i.e. it satisfies the system {∂ωp,q = 0, ∂cωp,q = 0, ∂∗ωp,q = 0, ∂∗cωp,q = 0}, which

implies that for a (p, q)-form ωp,q ∈
∧p,q

(G) the notions harmonic, twisted harmonic and Her-

mitean monogenic coincide.

Another nice illustration of this identification is procured by the Euler operators. The Her-

mitean Euler operators

Ez =

n∑

j=1

zj ∂zj
= 2 z • ∂z

E†
z =

n∑

j=1

zc
j ∂zc

j
= 2 z† • ∂z†
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have shown their importance in constructing the Fischer decomposition of homogeneous polyno-

mials in terms of Hermitean monogenic polynomials and the corresponding Howe dual pair (see

[16, 7]). They have a natural close connection with the traditional Euclidean Euler operators, since

Ez =
1

2
EX +

i

2
X • ∂X|

E†
z =

1

2
EX +

i

2
X| • ∂X

whence

Ez + E†
z =

n∑

j=1

(

xj ∂xj
+ yj ∂yj

)

= EX = EX| = −X • ∂X = −X| • ∂X|

Ez − E†
z = i

n∑

j=1

(

−xj ∂yj
+ yj ∂xj

)

= i X • ∂X| = −i X| • ∂X

It thus becomes clear that the Hermitean Euler operators are mutually complex conjugated scalar

operators; note that they have the same expression in both worlds. In the world of differential

forms we now focus on the contraction operators associated to the Hermitean Euler operators. To

that end recall that we tend to denote contraction of a differential form by means of a ”dot”, more

specifically ∂Xα
⌋ = −dXα•, yielding

∂X ⌋ =

m∑

α=1

eα ∂Xα
⌋ = −

m∑

α=1

eα dXα• = −dX•

and also

∂z ⌋ =

n∑

j=1

f†j ∂zj
⌋ =

n∑

j=1

f†j (−
1

2
dzc

j •) = −
1

2
dz† •

∂z† ⌋ =

n∑

j=1

fj ∂zc
j
⌋ =

n∑

j=1

fj (−
1

2
dzj•) = −

1

2
dz •

For the contracted Hermitean Euler operators we then obtain

Ez ⌋ =

n∑

j=1

zj ∂zj
⌋ = (−

1

2
)

n∑

j=1

zj (dzc
j •) or Ez ⌋ = 2z • ∂z⌋ = −z • dz† •

E†
z ⌋ =

n∑

j=1

zc
j ∂zc

j
⌋ = (−

1

2
)

n∑

j=1

zc
j (dzj•) or E†

z⌋ = 2z† • ∂z†⌋ = −z† • dz•

We could as well, for symmetry’s sake, have introduced a so-called inflation operator (see [6]),

denoted by a ”wedge”, i.e. ∂Xα
⌉ = −dXα∧, yielding

∂X⌉ =

m∑

α=1

eα ∂Xα
⌉ = −

m∑

α=1

eα dXα∧ = −dX∧
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and

∂z⌉ =

n∑

j=1

f†j ∂zj
⌉ =

n∑

j=1

f†j (−
1

2
dzc

j ∧) = −
1

2
dz† ∧

∂z†⌉ =

n∑

j=1

fj ∂zc
j
⌉ =

n∑

j=1

fj (−
1

2
dzj∧) = −

1

2
dz ∧

Note that the above notations ∂zj
⌉ and ∂zc

j
⌉ where already used in Table 2. This leads to

Ez ⌉ =

n∑

j=1

zj ∂zj
⌉ = (−

1

2
)

n∑

j=1

zj (dzc
j ∧) or Ez⌉ = 2z • ∂z⌉ = −z • dz† ∧

E†
z ⌉ =

n∑

j=1

zc
j ∂zc

j
⌉ = (−

1

2
)

n∑

j=1

zc
j (dzj∧) or E†

z⌉ = 2z† • ∂z†⌉ = −z† • dz∧

These four contracted and inflated Hermitean Euler operators enjoy the properties summarized in

the following two propositions.

Proposition 4.2. One has

(i) Ez⌋ + E
†
z⌋ = EX⌋ = X • dX•

(ii) Ez⌉ + E
†
z⌉ = EX⌉ = X • dX∧

(iii) Ez⌋ − E
†
z⌋ = iX| • dX• = −iX • dX|•

(iv) Ez⌉ − E
†
z⌉ = iX| • dX∧ = −iX • dX|∧

(v) Ez⌋ + Ez⌉ = (−
1

2
)

n∑

j=1

zj dzc
j = −z • dz†

(vi) E†
z⌋ + E†

z⌉ = (−
1

2
)

n∑

j=1

zc
j dzj = −z† • dz

Proposition 4.3. One has

(i)
(

Ez⌋ + E
†
z⌋
)2

=
(

EX⌋
)2

= 0

(ii)
(

Ez⌉ + E
†
z⌉
)2

=
(

EX⌉
)2

= 0

(iii) (Ez⌋ + Ez⌉)
2

= 0

(iv)
(

E
†
z⌋ + E

†
z⌉
)2

= 0

(v) (Ez⌋ + Ez⌉)
(

E
†
z⌋ + E

†
z⌉
)

+
(

E
†
z⌋ + E

†
z⌉
)

(Ez⌋ + Ez⌉) = −|z2|
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(vi)
(

Ez⌋ + E
†
z⌋
)(

Ez⌉ + E
†
z⌉
)

+
(

Ez⌉ + E
†
z⌉
)(

Ez⌋ + E
†
z⌋
)

= −|z2|

These properties may be proven by direct calculation, but things become more transparent

after identification in the multivector setting; to that end we look at the analogues of the operators

involved, given by

Ez ⌋ = (−
1

2
)

n∑

j=1

zj (dzc
j • )←→ (−

1

2
)

n∑

j=1

zj (2fj•) = −z •

E†
z ⌋ = (−

1

2
)

n∑

j=1

zc
j (dzj• )←→ (−

1

2
)

n∑

j=1

zc
j (−2f†j•) = z† •

Ez ⌉ = (−
1

2
)

n∑

j=1

zj (dzc
j ∧)←→ (−

1

2
)

n∑

j=1

zj (2fj∧) = −z ∧

E†
z ⌉ = (−

1

2
)

n∑

j=1

zc
j (dzj∧)←→ (−

1

2
)

n∑

j=1

zc
j (−2f†j∧) = z†∧

Propositions 4.2 and 4.3 now take a rather trivial form and are easily proven (see also [6]), as may

be observed from their reformulation in the propositions below.

Proposition 4.4. One has

(i) (−z•) + (z†•) = −X•

(ii) (−z∧) + (z†∧) = −X∧

(iii) (−z•) − (z†•) = −iX|•

(iv) (−z∧) − (z†∧) = −iX|∧

(v) (−z•) + (−z∧) = −z

(vi) (z†•) + (z†∧) = z†

Proposition 4.5. One has

(i) (−X•)(X•) = 0

(ii) (−X∧)(X∧) = 0

(iii) (−z • −z∧)
2

= (−z)
2

= 0

(iv)
(

z† • +z†∧
)2

=
(

z†
)2

= 0

(v) (−z)
(

z†
)

+
(

z†
)

(−z) = −|z2|

(vi)
(

−z • +z†•
) (

−z ∧ +z†∧
)

+
(

−z ∧ +z†∧
) (

−z • +z†•
)

= −|z2|
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In the same order of ideas, starting from the operators d and d∗, we introduce the contraction

and inflation operators

d⌋ =

m∑

j=1

(dXj∧)∂Xj
⌋ =

m∑

j=1

(dXj∧)(−dXj •)

d∗⌉ =

m∑

j=1

(dXj •)∂Xj
⌉ =

m∑

j=1

(dXj •)(−dXj∧)

The operators d⌋ and d∗⌉ have Er(Ω) as an eigenspace since

d⌋ωr = rωr and d∗⌉ωr = (m − r)ωr

In other words: they measure the order of a differential form. They are sometimes called fermionic

Euler operators. In the Clifford analysis setting they read

∂X∧⌋ =

m∑

j=1

(ej∧)(−ej
•) and ∂X•⌉ =

m∑

j=1

(ej
•)(−ej∧)

for which it indeed holds that

∂X∧⌋Fr = r Fr and ∂X•⌉Fr = (m − r) Fr

Note that d⌉, d∗⌋, ∂X∧⌉ and ∂X•⌋ are zero operators. The same can be done now with the

Kählerian derivatives, leading to

∂⌋ = (−
1

2
)

n∑

j=1

dzj ∧ dzc
j •

∂c⌋ = (−
1

2
)

n∑

j=1

dzc
j ∧ dzj •

∂∗⌋ = (−
1

2
)

n∑

j=1

dzc
j • dzj •

∂∗c⌋ = (−
1

2
)

n∑

j=1

dzj • dzc
j •

and

∂⌉ = (−
1

2
)

n∑

j=1

dzj ∧ dzc
j ∧

∂c⌉ = (−
1

2
)

n∑

j=1

dzc
j ∧ dzj ∧

∂∗⌉ = (−
1

2
)

n∑

j=1

dzc
j • dzj ∧

∂∗c⌉ = (−
1

2
)

n∑

j=1

dzj • dzc
j ∧
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while their Hermitean multivector analogues are given by

∂z∧⌋ = −

n∑

j=1

f†j ∧ fj •

∂z†∧⌋ =

n∑

j=1

fj ∧ f†j •

∂z†•⌋ =

n∑

j=1

fj • f†j •

∂z•⌋ = −

n∑

j=1

f†j • fj •

and by

∂z∧⌉ = −

n∑

j=1

f†j ∧ fj ∧

∂z†∧⌉ =

n∑

j=1

fj ∧ f†j ∧

∂z†•⌉ =

n∑

j=1

fj • f†j ∧

∂z•⌉ = −

n∑

j=1

f†j • fj ∧

The spaces Ep,q of smooth vector functions of bidegree (p, q) are eigenspaces of the operators

∂z∧⌋, ∂z†∧⌋, ∂z†•⌋ and ∂z•⌋. More precisely we have the following.

Proposition 4.6. For Fp,q ∈ Ep,q, one has

(i)
(

∂z∧⌋
)

Fp,q =
(

−
p

2

)

Fp,q

(ii)
(

∂z†∧⌋
)

Fp,q =
(q

2

)

Fp,q

(iii)
(

∂z†•⌉
)

Fp,q =

(

n − p

2

)

Fp,q

(iv)
(

∂z•⌉
)

Fp,q =

(

−n + q

2

)

Fp,q

Note that, by similarity, the same eigenvalue equations hold for the operators ∂⌋, ∂c⌋, ∂∗⌉ and

∂∗c⌉. Moreover observe that the eigenvalue equations for the operators d⌋ or ∂X∧⌋ and d∗⌉ or
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∂X•⌉ are refined by the ones of Proposition 4.6, and may be recovered from them:

(

∂X∧⌋
)

Fp,q = 2
(

∂z†∧⌋ − ∂z∧⌋
)

Fp,q = 2
(q

2
+

p

2

)

Fp,q

= (p + q)Fp,q

(

∂X•⌉
)

Fp,q = 2
(

∂z†•⌉ − ∂z• ⌉
)

Fp,q = 2

(

n − p

2
−

−n + q

2

)

Fp,q

= (2n − (p + q)) Fp,q

Furthermore, it may be verified that ∂X∧⌉ and ∂X•⌋ indeed are zero operators:

∂X∧⌉ = 2
(

∂z†∧⌉ − ∂z∧⌉
)

= 2





n∑

j=1

fj ∧ f†j ∧ +

n∑

j=1

f†j ∧ fj∧



 = 0

∂X•⌋ = 2
(

∂z†•⌋ − ∂z• ⌋
)

= 2





n∑

j=1

fj • f†j • +

n∑

j=1

f†j • fj•



 = 0

Finally, also the original expressions for ∂X∧⌋ and ∂X•⌉ as obtained in [6] may be recovered:

∂X∧⌋ = 2
(

∂z†∧⌋ − ∂z∧⌋
)

= 2





n∑

j=1

fj ∧ f†j • +

n∑

j=1

f†j ∧ fj•





= −

n∑

j=1

ej ∧ ej • + en+j ∧ en+j• = −

2n∑

α=1

eα ∧ eα •

∂X•⌉ = 2
(

∂z†•⌉ − ∂z• ⌉
)

= 2





n∑

j=1

fj • f†j ∧ +

n∑

j=1

f†j • fj∧





= −

n∑

j=1

ej • ej ∧ + en+j • en+j∧ = −

2n∑

α=1

eα • eα∧

We shall encounter the operators ∂z∧⌉ and ∂z•⌋ again in the next section in a different context.

5 The Kählerian metric

We will now use known results from Kählerian geometry, however restricted to the flat Kählerian

manifold C
n, and transpose them to obtain results, not yet known in the Hermitean Clifford

analysis setting. Our guides are [21, 20]. Each Kählerian metric induces a fundamental form Ω,

which is a 2-form derived from the corresponding Kähler potential U, i.e.

Ω∧ =
i

2
∂∂cU

The potential of the flat metric or the canonical Hermitean metric is given by

U =
1

2
|z|2 =

1

2
|z†|2 =

1

2

n∑

i=1

ziz
c
i = z • z† =

1

2
(zz† + z†z) =

1

2
|X|2 =

1

2
|X||2
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yielding the flat fundamental form

Ω∧ =
i

2
(−2∂z∧)(2∂z†∧)|z|2 = (−2i)





n∑

j=1

∂zj
f†j∧





(

n∑

k=1

∂zc
k
fk∧

)

|z|2

= (−2i)

n∑

j=1

f†j ∧ fj∧ = 2i∂z∧⌉

or, in terms of the original basis vectors,

Ω∧ =

n∑

j=1

ej ∧ en+j∧

Introducing the so-called spin-Euler operator, which is a parabivector valued multiplicative con-

stant, i.e. the sum of a scalar and a bivector,

β =

n∑

j=1

f†j fj =

n∑

j=1

(

f†j • fj + f†j ∧ fj

)

=
n

2
+

n∑

j=1

f†j ∧ fj

we find that the fundamental form appears as the bivector part of that spin-Euler operator, meaning

that we may write

β =
n

2
+

i

2
Ω

Its complex conjugate is then given by

βc =

n∑

j=1

fjf
†
j =

n∑

j=1

(

fj • f†j + fj ∧ f†j

)

=
n

2
−

n∑

j=1

f†j ∧ fj =
n

2
−

i

2
Ω

Usually, one also introduces the associated fundamental form

ω =
1

2i
Ω =

n

2
− β = βc −

n

2
=

n∑

j=1

fj ∧ f†j

For the sake of completeness we recall the following intertwining relations of the spin-Euler operator

and its complex conjugate with the Witt basis vectors; for more of these intertwining relations we

refer to [9].

Proposition 5.1. One has

(i) [fk, β] = fk, [f†k, β] = −f†k

(ii) [f†k, βc] = f†k, [fk, βc] = −fk

An important operator in Kähler geometry is the so-called L-operator, which is defined by

means of the fundamental form.



112 F. Brackx, H. De Schepper and V. Souček CUBO
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Definition 5.2. The L-operator is defined as L : Ep,q −→ Ep+1,q+1 : Fp,q 7→ Ω ∧ Fp,q, where,

explicitly

Ω ∧ Fp,q =

n∑

j=1

ej ∧ en+j ∧ Fp,q = (−2i)

n∑

j=1

f†j ∧ fj ∧ Fp,q = 2i∂z∧⌉Fp,q

The L-operator enjoys the properties listed in the proposition below (see also [21]).

Proposition 5.3. One has

(i) [L, ∂X∧] = 0, [L, ∂X•] = −∂X|∧

and also

(ii) [L, ∂z†∧] = 0, [L, ∂z∧] = 0

(iii) [L, ∂z†•] = i∂z†∧, [L, ∂z•] = −i∂z∧

The counterpart of the L-operator is the Λ-operator.

Definition 5.4. The Λ-operator is defined as Λ : Ep,q −→ Ep−1,q−1 : Fp,q 7→ ΛFp,q, where,

explicitly

ΛFp,q =

n∑

j=1

ej • en+j • Fp,q = (−2i)

n∑

j=1

f†j • fj • Fp,q = 2i∂z•⌋F
p,q

It shows the following properties (see also [21]).

Proposition 5.5. One has

(i) [Λ, ∂X∧] = −∂X|•, [Λ, ∂X•] = 0

and also

(ii) [Λ, ∂z†∧] = i∂z†•, [Λ, ∂z∧] = −i∂z•

(iii) [Λ, ∂z†•] = 0, [Λ, ∂z•] = 0

A rather tedious computation leads to the commutator of the L and Λ operators.

Proposition 5.6. One has

[L , Λ] Fp,q = (n − p − q)Fp,q

Finally, putting for an arbitrary multivector function F ≡
n∑

p=0

n∑

q=0

Fp,q:

H [F] =

n∑

p=0

n∑

q=0

(n − p − q)Fp,q =
(

n − 2
(

∂z†∧⌋ − ∂z∧⌋
))

F

we obtain the following relations (see also [20]).
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Proposition 5.7. One has

(i) [L , Λ] = H

(ii) [H , Λ] = 2Λ

(iii) [H , L] = −2L

meaning that the operators (L,Λ,H) generate the Lie algebra slC(2)

6 The Hodge “star”-operator

The Hodge ∗-operator for smooth real differential forms in R
m may be defined as follows (see e.g.

[19, 24]).

Definition 6.1. Let {j1, . . . , jr} ∪ {jr+1, . . . , jm} = {1, . . . ,m} and {j1, . . . , jr} ∩ {jr+1, . . . , jm} = ∅,

with j1 < . . . < jr. Then

∗ (dXj1
∧ · · · ∧ dXjr

) = σdXjr+1
∧ · · ·dXjm

where σ is the signature of the permutation (jr+1, . . . , jm, j1, . . . , jr).

It constitutes an isomorphism ∗ :
∧r −→

∧m−r
, its inverse being given by

∗−1 = (−1)r(m−r)∗

which implies that

∗2 = (−1)r(m−r)

By means of this ∗-operator the Hodge co-derivative d∗ may be expressed in terms of the derivative

d as

d∗ ωr = (−1)r ∗ d ∗−1 ωr = (−1)r(m+1−r) ∗ d ∗ ωr

In the actual case of even dimension (m = 2n) we find that the Hodge star-operator is an isomor-

phism ∗ :
∧p,q −→

∧n−q,n−p
for which ∗−1 = (−1)(p+q)2

∗ and thus ∗2 = (−1)(p+q)2

. For the

Hodge derivative and co-derivative we then obtain

d∗ = ∗d ∗ and d = ∗d∗ ∗

and similarly for the twisted versions

d|∗ = ∗d| ∗ and d| = ∗d∗| ∗

Simply applying the conversion rules of the foregoing section we obtain the counterparts of these

relations in the setting of multivector functions, involving then the Dirac operators.

Proposition 6.2. One has
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(i) ∂X• = ∗
(

∂X∧
)

∗ and ∂X∧ = ∗
(

∂X•
)

∗

(ii) ∂X|• = ∗
(

∂X|∧
)

∗ and ∂X|∧ = ∗
(

∂X|•
)

∗

and also

(iii) ∂z• = ∗
(

∂z∧
)

∗ and ∂z∧ = ∗
(

∂z•
)

∗

(iv) ∂z†• = ∗
(

∂z†∧
)

∗ and ∂z†∧ = ∗
(

∂z†•
)

∗

Clearly, we may convert Proposition 6.2 back to the differential form setting.

Proposition 6.3. One has

(i) ∂∗c• = ∗ (∂∧) ∗ and ∂∧ = ∗ (∂∗c•) ∗

(ii) ∂∗• = ∗ (∂c∧) ∗ and ∂c∧ = ∗ (∂∗•) ∗

Of course, it is also possible to express the Hodge star operator in R
m directly in the Clifford

algebra setting; Definition 6.1 is then converted as follows (see [6]):

∗(ej1
· · · ejr

) = (−1)
r(r+1)

2 eM ej1
· · · ejr

where eM is the so-called pseudoscalar given by eM = e1 · · · em, of which the square equals

e2
M = (−1)

m(m+1)

2 . It follows that for 1-vectors the ∗-operation reduces to a multiplication from

the left by −eM. Also ∗ 1 = eM and ∗ eM = 1.

In the Hermitean case with even dimension m = 2n, let us compute eM in terms of the Witt

basis vectors. We consecutively obtain

eM =

2n∏

α=1

eα =

n∏

j=1

(fj − f†j)

n∏

j=1

i(fj + f†j)

= in (−1)
n(n−1)

2

n∏

j=1

(fj − f†j)(fj + f†j) = in (−1)
n(n−1)

2

n∏

j=1

(fjf
†
j − f†j fj)

= 2n in (−1)
n(n−1)

2 f1 ∧ f†1 ∧ f2 ∧ f†2 ∧ · · · ∧ fn ∧ f†n

showing that the pseudoscalar has bidegree (n,n).

As an example we have, for m = 4, n = 2, that the images under the ∗-operation of the

Euclidean basis vectors are 3-vectors given by

∗ e1 = −e2e3e4, ∗ e2 = e1e3e4, ∗ e3 = −e1e2e4, ∗ e4 = e1e2e3
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The Witt basis vectors f1 and f2, of bidegree (0, 1), transform into (1, 2)-multivectors:

∗ f1 = −2 f1 ∧ f2 ∧ f†2

∗ f2 = −2 f1 ∧ f†1 ∧ f2

while f†1 and f†2, of bidegree (1, 0), transform into (2, 1)-multivectors:

∗ f†1 = 2 f†1 ∧ f2 ∧ f†2

∗ f†2 = 2 f1 ∧ f2 ∧ f†2

7 Afterword

In the previous sections we established and illustrated a ”natural” isomorphism between on the

one hand the algebra of complex differential forms (extended with the Hodge star operator and the

inner product or dot product) with the underlying structure of a Grassmann algebra, and on the

other hand the algebra of multi-vector functions in Hermitean Clifford analysis with the underlying

structure of a complex Clifford algebra. The Hermitean Dirac operators, underlying the notion

of Hermitean monogenicity, may well be identified with the Kählerian derivatives for complex

differential forms, one of which is the famous ∂ operator from several complex variables theory. It

should be emphasized, as was done from the beginning, that only differential forms in C
n or in

open regions thereof were considered, and that actually Hermitean Clifford analysis was developed

only in flat space C
n. As was also mentioned Hermitean Clifford analysis on curved Kählerian

manifolds is the subject of the forthcoming paper [11]. Finally this paper is by no means a plea

for substituting Hermitean multivector functions for complex differential forms. Both worlds, how

convincing the similarities might be, have their own interest en properties; this paper intended to

illustrate the very close connections between Hermitean Clifford analysis and complex analysis and

the benefits obtained from exchanging knowledge between both.

Received: December 2009. Revised: April 2010.
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