Some Uniqueness Results On Meromorphic Functions Sharing Three Sets II

Abhijit Banerjee 1
Department of Mathematics, West Bengal State University, Barasat, 24 Parganas (North), West Bengal, Kolkata-700126, India. email: abanerjee_kal@yahoo.co.in, abanerjee_kal@rediffmail.com

Abstract

With the help of the notion of weighted sharing we investigate the uniqueness of meromorphic functions concerning three set sharing and significantly improve two results of Zhang [16] and as a corollary of the main result we improve a result of the present author [2] as well.

RESUMEN

Con la ayuda del concepto de peso repartido, investigamos la unicidad de funciones meromorfas sobre un conjunto compartido y mejoramos significativamente dos resultados de Zhang [16] y como corolario del resultado principal que mejoramos también el resultado de la autora 2].

Mathematics Subject Classification: 30D35.
Keywords. Meromorphic functions, uniqueness, weighted sharing, shared set.

[^0]
1 Introduction, Definitions and Results

In this paper by meromorphic functions we will always mean meromorphic functions in the complex plane. Let f and g be two non-constant meromorphic functions and let a be a finite complex number. We shall use the standard notations of value distribution theory :

$$
\mathrm{T}(\mathrm{r}, \mathrm{f}), \quad \mathrm{m}(\mathrm{r}, \mathrm{f}), \quad \mathrm{N}(\mathrm{r}, \infty ; f), \quad \overline{\mathrm{N}}(\mathrm{r}, \infty ; f), \ldots
$$

(see [5]). For any constant a, we define

$$
\Theta(a ; f)=1-\limsup _{r \longrightarrow \infty} \frac{\bar{N}(r, a ; f)}{T(r, f)}
$$

We say that f and g share $a C M$, provided that $f-a$ and $g-a$ have the same zeros with the same multiplicities. Similarly, we say that f and g share a IM, provided that $f-a$ and $g-a$ have the same zeros ignoring multiplicities. In addition we say that f and g share $\infty \mathrm{CM}$, if $1 / \mathrm{f}$ and $1 / g$ share $0 C M$, and we say that f and g share $\infty I M$, if $1 / f$ and $1 / g$ share $0 I M$.

Let S be a set of distinct elements of $\mathbb{C} \cup\{\infty\}$ and $E_{f}(S)=\bigcup_{a \in S}\{z: f(z)-a=0\}$, where each zero is counted according to its multiplicity. If we do not count the multiplicity the set $E_{f}(S)=\bigcup_{a \in S}\{z: f(z)-a=0\}$ is denoted by $\bar{E}_{f}(S)$. If $E_{f}(S)=E_{g}(S)$ we say that f and g share the set S CM. On the other hand if $\bar{E}_{f}(S)=\bar{E}_{g}(S)$, we say that f and g share the set S IM.

In [4] Gross posed the following question:
Can one find two finite sets $S_{j}(j=1,2)$ such that any two non-constant entire functions f and g satisfying $\mathrm{E}_{\mathfrak{f}}\left(\mathrm{S}_{\mathfrak{j}}\right)=\mathrm{E}_{\mathrm{g}}\left(\mathrm{S}_{\mathfrak{j}}\right)$ for $\mathfrak{j}=1,2$ must be identical?

In the last couple of years or so several attempts have been made in many papers to answer the above question under weaker hypothesis (see [1], [2, [3], 9], 10, [13], 15], [16])).

A recent increment to uniqueness theory has been to considering weighted sharing instead of sharing IM/CM which implies a gradual change from sharing IM to sharing CM. This notion of weighted sharing has been introduced by I. Lahiri around 2001 in [7, 8, and since then this notion played a vital role on the uniqueness of meromorphic or entire functions sharing sets concerning the question of Gross. Below we are giving the definition.

Definition 1.1. 77, 8] Let k be a nonnegative integer or infinity. For $\mathrm{a} \in \mathbb{C} \cup\{\infty\}$ we denote by $\mathrm{E}_{\mathrm{k}}(\mathrm{a} ; \mathrm{f})$ the set of all a -points of f , where an a -point of multiplicity m is counted m times if $\mathrm{m} \leq \mathrm{k}$ and $\mathrm{k}+1$ times if $\mathrm{m}>\mathrm{k}$. If $\mathrm{E}_{\mathrm{k}}(\mathrm{a} ; \mathrm{f})=\mathrm{E}_{\mathrm{k}}(\mathrm{a} ; \mathrm{g})$, we say that f, g share the value a with weight k .

We write f, g share (a, k) to mean that f, g share the value a with weight k. Clearly if f, g share (a, k) then f, g share (a, p) for any integer $p, 0 \leq p<k$. Also we note that f, g share a value a IM or CM if and only if f, g share $(a, 0)$ or (a, ∞) respectively.

Definition 1.2. 77] Let S be a set of distinct elements of $\mathbb{C} \cup\{\infty\}$ and k be a nonnegative integer or ∞. Let $\mathrm{E}_{\mathrm{f}}(\mathrm{S}, \mathrm{k})=\bigcup_{\mathrm{a} \in \mathrm{S}} \mathrm{E}_{\mathrm{k}}(\mathrm{a} ; \mathrm{f})$.

Clearly $\mathrm{E}_{\mathrm{f}}(\mathrm{S})=\mathrm{E}_{\mathrm{f}}(\mathrm{S}, \infty)$ and $\overline{\mathrm{E}}_{\mathrm{f}}(\mathrm{S})=\mathrm{E}_{\mathrm{f}}(\mathrm{S}, 0)$.

Improving the result of Lahiri-Banerjee [10] and Yi-Lin [15] the present author have recently proved the following result.

Theorem A. [1] Let $\mathrm{S}_{1}=\left\{z: z^{n}+\mathrm{a} z^{n-1}+\mathrm{b}=0\right\}$, $\mathrm{S}_{2}=\{0\}$ and $\mathrm{S}_{3}=\{\infty\}$, where a , b are nonzero constants such that $z^{n}+a z^{n-1}+b=0$ has no repeated root and $n(\geq 4)$ is an integer. If for two non-constant meromorphic functions f and $g \mathrm{E}_{\mathrm{f}}\left(\mathrm{S}_{1}, 4\right)=\mathrm{E}_{\mathrm{g}}\left(\mathrm{S}_{1}, 4\right), \mathrm{E}_{\mathrm{f}}\left(\mathrm{S}_{2}, 0\right)=\mathrm{E}_{\mathrm{g}}\left(\mathrm{S}_{2}, 0\right)$ and $\mathrm{E}_{\mathrm{f}}\left(\mathrm{S}_{3}, \infty\right)=\mathrm{E}_{\mathrm{g}}\left(\mathrm{S}_{3}, \infty\right)$ and $\Theta(\infty ; \mathrm{f})+\Theta(\infty ; \mathrm{g})>0$ then $\mathrm{f} \equiv \mathrm{g}$.

In [2] the present author further improved Theorem A as follows.
Theorem B. [2] Let $S_{i}, \mathfrak{i}=1,2,3$ be defined as in Theorem A. If for two non-constant meromorphic functions f and $g \mathrm{E}_{\mathrm{f}}\left(\mathrm{S}_{1}, 4\right)=\mathrm{E}_{\mathrm{g}}\left(\mathrm{S}_{1}, 4\right), \mathrm{E}_{\mathrm{f}}\left(\mathrm{S}_{2}, 0\right)=\mathrm{E}_{\mathrm{g}}\left(\mathrm{S}_{2}, 0\right)$ and $\mathrm{E}_{\mathrm{f}}\left(\mathrm{S}_{3}, 6\right)=\mathrm{E}_{\mathrm{g}}\left(\mathrm{S}_{3}, 6\right)$ and $\Theta(\infty ; f)+\Theta(\infty ; g)>0$ then $f \equiv g$.

Now it is quite natural to ask the following question.
i) What happens in Theorem B if no conditions over the ramification indexes of f and g are imposed?

In the direction of the above question some investigations have already been carried out by Zhang [16] in the following theorems.

Theorem C. Let $\mathrm{S}_{1}=\left\{z: z^{n}(z+\mathrm{a})-\mathrm{b}=0\right\}$, $\mathrm{S}_{2}=\{0\}$ and $\mathrm{S}_{3}=\{\infty\}$, where a , b are nonzero constants such that $z^{n}(z+a)-b=0$ has no repeated root and $n(\geq 3)$ is an integer. If for two nonconstant meromorphic functions f and $g \mathrm{E}_{\mathrm{f}}\left(\mathrm{S}_{1}, \infty\right)=\mathrm{E}_{\mathrm{g}}\left(\mathrm{S}_{1}, \infty\right), \mathrm{E}_{\mathrm{f}}\left(\mathrm{S}_{2}, 0\right)=\mathrm{E}_{\mathrm{g}}\left(\mathrm{S}_{2}, 0\right)$ and $\mathrm{E}_{\mathrm{f}}\left(\mathrm{S}_{3}, \infty\right)=\mathrm{E}_{\mathrm{g}}\left(\mathrm{S}_{3}, \infty\right)$ then $\mathrm{f} \equiv \mathrm{g}$ or $\mathrm{f}=\frac{-\mathrm{ae}^{\gamma}\left(e^{n \gamma}-1\right)}{e^{(n+1) \gamma}-1}, \quad \mathrm{~g}=\frac{-\mathrm{a}\left(e^{\mathrm{n} \mathrm{\gamma}}-1\right)}{e^{(n+1) \gamma}-1}$, where γ is a non-constant entire function.

Theorem D. Let $S_{i}, \mathfrak{i}=1,2,3$ be defined as in Theorem C and $\mathfrak{n}(\geq 4)$ is an integer. If for two non-constant meromorphic functions f and $g \mathrm{E}_{\mathrm{f}}\left(\mathrm{S}_{1}, \infty\right)=\mathrm{E}_{\mathrm{g}}\left(\mathrm{S}_{1}, \infty\right), \mathrm{E}_{\mathrm{f}}\left(\mathrm{S}_{2}, 0\right)=\mathrm{E}_{\mathrm{g}}\left(\mathrm{S}_{2}, 0\right)$ and $\mathrm{E}_{\mathrm{f}}\left(\mathrm{S}_{3}, 0\right)=\mathrm{E}_{\mathrm{g}}\left(\mathrm{S}_{3}, 0\right)$ then $\mathrm{f} \equiv \mathrm{g}$ or $\mathrm{f}=\frac{-\mathrm{a}^{\gamma}\left(e^{\mathrm{n} \gamma}-1\right)}{e^{(n+1) \gamma}-1}, \quad \mathrm{~g}=\frac{-\mathrm{a}\left(e^{n \gamma}-1\right)}{e^{(n+1) \gamma}-1}$, where γ is a non-constant entire function.

The following example shows that in Theorems $A-C \mathrm{a} \neq 0$ is necessary.
Example 1.1. Let $f(z)=e^{z}$ and $g(z)=e^{-z}$ and $S_{1}=\left\{z: z^{4}-1=0\right\}, S_{2}=\{0\}, S_{3}=\{\infty\}$. Since $\mathrm{f}-\omega^{\mathrm{l}}=\mathrm{g}-\omega^{4-\mathrm{l}}$, where $\omega=\cos \frac{2 \pi}{4}+\mathrm{isin} \frac{2 \pi}{4}, 0 \leq l \leq 3$, clearly $\mathrm{E}_{\mathrm{f}}\left(\mathrm{S}_{\mathrm{i}}, \infty\right)=\mathrm{E}_{\mathrm{g}}\left(\mathrm{S}_{\mathrm{i}}, \infty\right)$ for $\mathfrak{i}=1,2,3$ but f and g do not satisfy the conclusions of Theorems $A-B$.

Regarding Theorems $A-C$ following example establishes the fact that the set S_{1} can not be replaced by any arbitrary set containing three distinct elements. However it still remains open for investigations whether the degree of the equation defining S_{1} in Theorem $A-C$ can be reduced to three or less.

Example 1.2. Let $f(z)=\sqrt{a b} e^{\sqrt{a b} z}$ and $g(z)=\sqrt{a b} e^{-\sqrt{a b} z}$ and $S_{1}=\{a, b, \sqrt{a b}\}, S_{2}=\{0\}$, $S_{3}=\{\infty\}$, where a and b are nonzero complex numbers. Clearly $\mathrm{E}_{\mathrm{f}}\left(\mathrm{S}_{\mathrm{i}}, \infty\right)=\mathrm{E}_{\mathfrak{g}}\left(\mathrm{S}_{\mathfrak{i}}, \infty\right)$ for $\mathfrak{i}=1,2,3$ but f and g do not satisfy the conclusions of Theorems A-C.

In the paper we also concentrate our attention to the above problem as investigated by Zhang [16] and provide a better solution in this direction. We now state the following two theorems which are the main results of the paper.

Theorem 1.1. Let $S_{1}=\left\{z: z^{\mathfrak{n}}(z+\mathrm{a})-\mathrm{b}=0\right\}, \mathrm{S}_{2}=\{0\}$ and $\mathrm{S}_{3}=\{\infty\}$, where a , b are nonzero constants such that $z^{n}(z+a)-b=0$ has no repeated root and $n(\geq 3)$ is an integer. If for two non-constant meromorphic functions f and $g \mathrm{E}_{\mathrm{f}}\left(\mathrm{S}_{1}, 3\right)=\mathrm{E}_{\mathrm{g}}\left(\mathrm{S}_{1}, 3\right), \mathrm{E}_{\mathrm{f}}\left(\mathrm{S}_{2}, 0\right)=\mathrm{E}_{\mathrm{g}}\left(\mathrm{S}_{2}, 0\right)$ and $\mathrm{E}_{\mathrm{f}}\left(\mathrm{S}_{3}, 6\right)=\mathrm{E}_{\mathrm{g}}\left(\mathrm{S}_{3}, 6\right)$ then $\mathrm{f} \equiv \mathrm{g}$ or $\mathrm{f}=\frac{-\mathrm{ae}^{\gamma}\left(e^{n \gamma}-1\right)}{e^{(n+1) \gamma}-1}, \quad \mathrm{~g}=\frac{-\mathrm{a}\left(e^{\mathrm{n} \mathrm{\gamma} \gamma}-1\right)}{e^{(n+1) \gamma}-1}$, where γ is a non-constant entire function.

Corollary 1.1. Let $\mathrm{S}_{1}, \mathrm{~S}_{2}$ and S_{3} be defined as in Theorem 1.1 and $\mathfrak{n}(\geq 3)$ be an integer. If for two non-constant meromorphic functions f and $g \mathrm{E}_{\mathrm{f}}\left(\mathrm{S}_{1}, 3\right)=\mathrm{E}_{\mathrm{g}}\left(\mathrm{S}_{1}, 3\right), \mathrm{E}_{\mathrm{f}}\left(\mathrm{S}_{2}, 0\right)=\mathrm{E}_{\mathrm{g}}\left(\mathrm{S}_{2}, 0\right)$ and $\mathrm{E}_{\mathrm{f}}\left(\mathrm{S}_{3}, 6\right)=\mathrm{E}_{\mathrm{g}}\left(\mathrm{S}_{3}, 6\right)$ and $\Theta(\infty ; \mathrm{f})+\Theta(\infty ; \mathrm{g})>0$ then $\mathrm{f} \equiv \mathrm{g}$

Theorem 1.2. Let S_{1}, S_{2} and S_{3} be defined as in Theorem 1.1 and $\mathfrak{n}(\geq 4)$ be an integer. If for two non-constant meromorphic functions f and $g \mathrm{E}_{\mathrm{f}}\left(\mathrm{S}_{1}, 3\right)=\mathrm{E}_{\mathrm{g}}\left(\mathrm{S}_{1}, 3\right), \mathrm{E}_{\mathrm{f}}\left(\mathrm{S}_{2}, 0\right)=\mathrm{E}_{\mathrm{g}}\left(\mathrm{S}_{2}, 0\right)$ and $\mathrm{E}_{\mathrm{f}}\left(\mathrm{S}_{3}, 0\right)=\mathrm{E}_{\mathrm{g}}\left(\mathrm{S}_{3}, 0\right)$ then the conclusion of Theorem 1.1 holds.

Remark 1. Theorem [1.1, Corollary 1.1 and Theorem 1.2 are respectively the improvements of Theorems C, B and D respectively.

We now explain some notations which are used in the paper.
Definition 1.3. [6] After $\mathrm{a} \in \mathbb{C} \cup\{\infty\}$, we denote by $\mathrm{N}(\mathrm{r}, \mathrm{a} ; \mathrm{f} \mid=1)$ the counting function of simple a points of f. For a positive integer m we denote by $N(r, a ; f \mid \leq m)(N(r, a ; f \mid \geq m)$ the counting function of those a points of f whose multiplicities are not greater(less) than m where each a point is counted according to its multiplicity.
$\overline{\mathrm{N}}(\mathrm{r}, \mathrm{a} ; \mathrm{f} \mid \leq \mathrm{m})(\overline{\mathrm{N}}(\mathrm{r}, \mathrm{a} ; \mathrm{f} \mid \geq \mathrm{m}))$ are defined similarly, where in counting the a-points of f we ignore the multiplicities.

Also $\mathrm{N}(\mathrm{r}, \mathrm{a} ; \mathrm{f} \mid<\mathrm{m}), \mathrm{N}(\mathrm{r}, \mathrm{a} ; \mathrm{f} \mid>\mathrm{m}), \overline{\mathrm{N}}(\mathrm{r}, \mathrm{a} ; \mathrm{f} \mid<\mathrm{m})$ and $\overline{\mathrm{N}}(\mathrm{r}, \mathrm{a} ; \mathrm{f} \mid>\mathrm{m})$ are defined analogously.

Definition 1.4. [2] We denote by $\overline{\mathrm{N}}(\mathrm{r}, \mathrm{a} ; \mathrm{f} \mid=\mathrm{k})$ the reduced counting function of those a-points of f whose multiplicities is exactly k , where $\mathrm{k} \geq 2$ is an integer.

Definition 1.5. [2] Let f and g be two non-constant meromorphic functions such that f and g share (a, k) where $\mathrm{a} \in \mathbb{C} \cup\{\infty\}$. Let z_{0} be a a-point of f with multiplicity p , a a-point of g with multiplicity q . We denote by $\overline{\mathrm{N}}_{\mathrm{L}}(\mathrm{r}, \mathrm{a} ; \mathrm{f})$ the counting function of those a -points of f and g where $\mathrm{p}>\mathrm{q}$, by $\overline{\mathrm{N}}_{\mathrm{E}}^{(\mathrm{k}+1}(\mathrm{r}, \mathrm{a} ; \mathrm{f})$ the counting function of those a -points of f and g where $\mathrm{p}=\mathrm{q} \geq \mathrm{k}+1$; each point in these counting functions is counted only once. In the same way we can define $\overline{\mathrm{N}}_{\mathrm{L}}(\mathrm{r}, \mathrm{a} ; \mathrm{g})$ and $\overline{\mathrm{N}}_{\mathrm{E}}^{(\mathrm{k}+1}(\mathrm{r}, \mathrm{a} ; \mathrm{g})$.

Definition 1.6. [8] We denote by $N_{2}(r, a ; f)=\bar{N}(r, a ; f)+\bar{N}(r, a ; f \mid \geq 2)$
Definition 1.7. [7, 8] Let f, g share a value a $I M$. We denote by $\overline{\mathrm{N}}_{*}(\mathrm{r}, \mathrm{a} ; \mathrm{f}, \mathrm{g})$ the reduced counting function of those a -points of f whose multiplicities differ from the multiplicities of the corresponding a-points of g .

$$
\text { Clearly } \overline{\mathrm{N}}_{*}(\mathrm{r}, \mathrm{a} ; \mathrm{f}, \mathrm{~g}) \equiv \overline{\mathrm{N}}_{*}(\mathrm{r}, \mathrm{a} ; \mathrm{g}, \mathrm{f}) \text { and } \overline{\mathrm{N}}_{*}(\mathrm{r}, \mathrm{a} ; \mathrm{f}, \mathrm{~g})=\overline{\mathrm{N}}_{\mathrm{L}}(\mathrm{r}, \mathrm{a} ; \mathrm{f})+\overline{\mathrm{N}}_{\mathrm{L}}(\mathrm{r}, \mathrm{a} ; \mathrm{g})
$$

Definition 1.8. [11] Let $\mathrm{a}, \mathrm{b} \in \mathbb{C} \cup\{\infty\}$. We denote by $\mathrm{N}(\mathrm{r}, \mathrm{a} ; \mathrm{f} \mid \mathrm{g}=\mathrm{b})$ the counting function of those a-points of f , counted according to multiplicity, which are b -points of g .

Definition 1.9. [11] Let $\mathrm{a}, \mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{\mathrm{q}} \in \mathbb{C} \cup\{\infty\}$. We denote by $\mathrm{N}\left(\mathrm{r}, \mathrm{a} ; \mathrm{f} \mid \mathrm{g} \neq \mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{\mathrm{q}}\right)$ the counting function of those a-points of f , counted according to multiplicity, which are not the b_{i}-points of g for $\mathfrak{i}=1,2, \ldots, \mathrm{q}$.

2 Lemmas

In this section we present some lemmas which will be needed in the sequel. Let F and G be two non-constant meromorphic functions defined as follows.

$$
\begin{equation*}
F=\frac{f^{n}(f+a)}{b}, \quad G=\frac{g^{n}(g+a)}{b} \tag{2.1}
\end{equation*}
$$

Henceforth we shall denote by H, Φ and V the following three functions

$$
\begin{gathered}
H=\left(\frac{\mathrm{F}^{\prime \prime}}{\mathrm{F}^{\prime}}-\frac{2 \mathrm{~F}^{\prime}}{\mathrm{F}-1}\right)-\left(\frac{\mathrm{G}^{\prime \prime}}{\mathrm{G}^{\prime}}-\frac{2 \mathrm{G}^{\prime}}{\mathrm{G}-1}\right) \\
\Phi=\frac{\mathrm{F}^{\prime}}{\mathrm{F}-1}-\frac{\mathrm{G}^{\prime}}{\mathrm{G}-1}
\end{gathered}
$$

and

$$
V=\left(\frac{F^{\prime}}{F-1}-\frac{F^{\prime}}{F}\right)-\left(\frac{G^{\prime}}{G-1}-\frac{G^{\prime}}{G}\right)=\frac{F^{\prime}}{F(F-1)}-\frac{G^{\prime}}{G(G-1)}
$$

Lemma 2.1. Let F, G share $(1,1)$ and $\mathrm{H} \not \equiv 0$. Then

$$
N(r, 1 ; F \mid=1)=N(r, 1 ; G \mid=1) \leq N(r, H)+S(r, F)+S(r, G)
$$

Proof. The lemma can be proved in the line of proof of Lemma 1 [8.
Lemma 2.2. Let $\mathrm{S}_{1}, \mathrm{~S}_{2}$ and S_{3} be defined as in Theorem 1.1 and F, G be given by (2.1). If for two non-constant meromorphic functions f and $g \mathrm{E}_{\mathrm{f}}\left(\mathrm{S}_{1}, 0\right)=\mathrm{E}_{\mathrm{g}}\left(\mathrm{S}_{1}, 0\right), \mathrm{E}_{\mathrm{f}}\left(\mathrm{S}_{2}, 0\right)=\mathrm{E}_{\mathrm{g}}\left(\mathrm{S}_{2}, 0\right)$, $\mathrm{E}_{\mathrm{f}}\left(\mathrm{S}_{3}, 0\right)=\mathrm{E}_{\mathrm{g}}\left(\mathrm{S}_{3}, 0\right)$ and $\mathrm{H} \not \equiv 0$ then

$$
\begin{aligned}
N(r, H) \leq & \bar{N}_{*}(r, 0, f, g)+\bar{N}(r, 0 ; f+a \mid \geq 2)+\bar{N}(r, 0 ; g+a \mid \geq 2)+\bar{N}_{*}(r, 1 ; F, G) \\
& +\bar{N}_{*}(r, \infty ; f, g)+\bar{N}_{o}\left(r, 0 ; F^{\prime}\right)+\bar{N}_{o}\left(r, 0 ; G^{\prime}\right)
\end{aligned}
$$

where $\bar{N}_{0}\left(r, 0 ; F^{\prime}\right)$ is the reduced counting function of those zeros of F^{\prime} which are not the zeros of $\mathrm{F}(\mathrm{F}-1)$ and $\overline{\mathrm{N}}_{\mathrm{O}}\left(\mathrm{r}, \mathrm{0} ; \mathrm{G}^{\prime}\right)$ is similarly defined.

Proof. The lemma can be proved in the line of proof of Lemma 2.2 [2].
Lemma 2.3. [12] Let f be a nonconstant meromorphic function and let

$$
R(f)=\frac{\sum_{k=0}^{n} a_{k} f^{k}}{\sum_{j=0}^{m} b_{j} f^{j}}
$$

be an irreducible rational function in f with constant coefficients $\left\{\mathrm{a}_{\mathrm{k}}\right\}$ and $\left\{\mathrm{b}_{\mathrm{j}}\right\}$ where $\mathrm{a}_{\mathrm{n}} \neq 0$ and $\mathrm{b}_{\mathrm{m}} \neq 0$. Then

$$
\mathrm{T}(\mathrm{r}, \mathrm{R}(\mathrm{f}))=\mathrm{dT}(\mathrm{r}, \mathrm{f})+\mathrm{S}(\mathrm{r}, \mathrm{f}),
$$

where $\mathrm{d}=\max \{\mathrm{n}, \mathrm{m}\}$.
Lemma 2.4. Let F and G be given by (2.1), $\mathrm{n} \geq 3$ an integer and $\mathrm{F} \not \equiv \mathrm{G}$. If F , G share ($1, \mathrm{~m}$), f , g share $(0, \mathrm{p}),(\infty, k)$, where $0 \leq p<\infty$ then

$$
[n p+n-1] \bar{N}(r, 0 ; f \mid \geq p+1) \leq \bar{N}_{*}(r, 1 ; F, G)+\bar{N}_{*}(r, \infty ; F, G)+S(r, f)+S(r, g)
$$

Proof. Suppose 0 is an e.v.P. (Picard exceptional value) of f and g then the lemma follows immediately.

Next suppose 0 is not an e.v.P. of f and g. If $\Phi \equiv 0$, then by integration we obtain

$$
F-1 \equiv C(G-1)
$$

It is clear that if z_{0} is a zero of f then it is a zero of g. So it follows that $F\left(z_{0}\right)=G\left(z_{0}\right)=0$. So $C=1$ which contradicts $F \not \equiv G$. So $\Phi \not \equiv 0$. Since f, g share $(0, p)$ it follows that a common zero of f and g of order $r \leq p$ is a zero of Φ of order exactly $n r-1$ where as a common zero of f and g of order $r>p$ is a zero of Φ of order at least $n p+n-1$. Let z_{0} is a zero of f with multiplicity q and a zero of g with multiplicity t. From (2.1) we know that z_{0} is a zero of F with multiplicity nq and a zero of G with multiplicity nt . So from the definition of Φ it is clear that

$$
\begin{aligned}
& {[n p+n-1] \bar{N}(r, 0 ; f \mid \geq p+1) } \\
= & {[n p+n-1] \bar{N}(r, 0 ; g \mid \geq p+1) } \\
= & {[n p+n-1] \bar{N}(r, 0 ; F \mid \geq n(p+1)) } \\
\leq & N(r, 0 ; \Phi) \\
\leq & N(r, \infty ; \Phi)+S(r, f)+S(r, g) \\
\leq & \bar{N}_{*}(r, \infty ; F, G)+\bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g) .
\end{aligned}
$$

The lemma follows from above.

Lemma 2.5. Let F , G be given by (2.1), F , G share ($1, \mathrm{~m}$), $0 \leq \mathrm{m}<\infty$ and $\omega_{1}, \omega_{2}, \ldots, \omega_{\mathrm{n}}$ are the distinct roots of the equation $z^{n}+a z^{n-1}+b=0$ and $n \geq 3$. Then

$$
\bar{N}_{*}(r, 1 ; F, G) \leq \frac{1}{m}\left[\bar{N}(r, 0 ; f)+\bar{N}(r, \infty ; f)-N_{\otimes}\left(r, 0 ; f^{\prime}\right)\right]+S(r, f)
$$

where $N_{\otimes}\left(r, 0 ; f^{\prime}\right)=N\left(r, 0 ; f^{\prime} \mid f \neq 0, \omega_{1}, \omega_{2}, \ldots, \omega_{n}\right)$

Proof. We omit the proof since it can be proved in the line of proof of Lemma 2.15 [2].
Lemma 2.6. Let F and G be given by (2.1), $\mathfrak{n} \geq 3$ an integer and $\mathrm{F} \not \equiv \mathrm{G}$. If F , G share ($1, \mathfrak{m}$), f , g share $(0,0),(\infty, k)$ then

$$
\begin{aligned}
\bar{N}(r, 0 ; f) \leq & \frac{m}{m n-m-1} \bar{N}(r, \infty ; f \mid \geq k+1)+\frac{1}{m n-m-1} \bar{N}(r, \infty ; f)+S(r, f) \\
& +S(r, g) .
\end{aligned}
$$

Proof. Since using Lemma 2.5 in Lemma 2.4 we get for $p=0$ that

$$
\begin{aligned}
(n-1) \bar{N}(r, 0 ; f) \leq & \bar{N}(r, \infty ; f \mid \geq k+1)+\frac{1}{m}[\bar{N}(r, 0 ; f)+\bar{N}(r, \infty ; f)] \\
& +S(r, f)+S(r, g)
\end{aligned}
$$

the lemma follows.
Lemma 2.7. Let F , G be given by (2.1), $\mathrm{n} \geq 3$ an integer and $\mathrm{F} \not \equiv \mathrm{G}$. If f, g share $(0,0),(\infty, \mathrm{k})$, where $0 \leq \mathrm{k}<\infty$, and F , G share $(1, \mathrm{~m})$ then the poles of F and G are the zeros of V and
(i) $\quad n \bar{N}(r, \infty ; f \mid=1)+(2 n+1) \bar{N}(r, \infty ; f \mid=2)+\ldots+[(n+1) k-1] \bar{N}(r, \infty ; f \mid=k)$

$$
\begin{aligned}
& +[(n+1) k+n] \bar{N}(r, \infty ; f \mid \geq k+1) \leq \frac{1}{n-1} \bar{N}(r, \infty ; f \mid \geq k+1)+\bar{N}(r, 0 ; f+a) \\
& +\bar{N}(r, 0 ; g+a)+\frac{n}{n-1} \bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g)
\end{aligned}
$$

(ii) $\bar{N}(r, \infty ; f \mid \geq k+1) \leq \frac{n-1}{(n-1)[(n+1) k+n]-1}[\bar{N}(r, 0 ; f+a)+\bar{N}(r, 0 ; g+a)]$

$$
+\frac{n}{(n-1)[(n+1) k+n]-1} \bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g)
$$

Proof. Suppose ∞ is an e.v.P. of f and g then the lemma follows immediately.
Next suppose ∞ is not an e.v.P. of f and g. If $V \equiv 0$, then by integration we obtain $1-\frac{1}{F} \equiv$ $A\left(1-\frac{1}{G}\right)$. If z_{0} is a pole of f then it is a pole of g. Hence from the definition of F and G we have $\frac{1}{F\left(z_{0}\right)}=0$ and $\frac{1}{G\left(z_{0}\right)}=0$. So $A=1$ which contradicts $F \not \equiv G$. So $V \not \equiv 0$. Since f, g share (∞, k), we note that F and G have no pole of multiplicity q where $(n+1) k<q<(n+1)(k+1)$ and so it
follows that F, G share $(\infty,(n+1) k+n)$. So using Lemma 2.3 and Lemma 2.4 for $p=0$ we get from the definition of V

$$
\begin{aligned}
& n \bar{N}(r, \infty ; f \mid=1)+(2 n+1) \bar{N}(r, \infty ; f \mid=2)+\ldots+[(n+1) k-1] \bar{N}(r, \infty ; f \mid=k) \\
& +[(n+1) k+n] \bar{N}(r, \infty ; f \mid \geq k+1) \\
\leq & N(r, 0 ; V) \\
\leq & N(r, \infty ; V)+S(r, f)+S(r, g) \\
\leq & \bar{N}_{*}(r, 0 ; f, g)+\bar{N}(r, 0 ; f+a)+\bar{N}(r, 0 ; g+a)+\bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g) \\
\leq & \frac{1}{n-1} \bar{N}(r, \infty ; f \mid \geq k+1)+\bar{N}(r, 0 ; f+a)+\bar{N}(r, 0 ; g+a)+\frac{n}{n-1} \bar{N}_{*}(r, 1 ; F, G) \\
& +S(r, f)+S(r, g),
\end{aligned}
$$

from which (i) follows. Again from (2.2) we note that

$$
\begin{aligned}
& \frac{(n-1)[(n+1) k+n]-1}{n-1} \bar{N}(r, \infty ; f \mid \geq k+1) \\
\leq & \bar{N}(r, 0 ; f+a)+\bar{N}(r, 0 ; g+a)+\frac{n}{n-1} \bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g),
\end{aligned}
$$

from which (ii) follows.

Lemma 2.8. ([2], Lemma 2.9) Let F, G be given by (2.1) and they share (1, m$)$. If f, g share $(0, p),(\infty, k)$ where $2 \leq m<\infty$ and $\mathrm{H} \not \equiv 0$. Then

$$
\begin{aligned}
\mathrm{T}(\mathrm{r}, \mathrm{~F}) \leq & \overline{\mathrm{N}}(\mathrm{r}, 0 ; f)+\overline{\mathrm{N}}(\mathrm{r}, 0 ; g)+\overline{\mathrm{N}}_{*}(\mathrm{r}, 0 ; f, g)+\mathrm{N}_{2}(\mathrm{r}, 0 ; f+\mathrm{a})+\mathrm{N}_{2}(\mathrm{r}, 0 ; g+a) \\
& +\overline{\mathrm{N}}(\mathrm{r}, \infty ; f)+\overline{\mathrm{N}}(\mathrm{r}, \infty ; g)+\bar{N}_{*}(\mathrm{r}, \infty ; f, g)-m(r, 1 ; G)-\overline{\mathrm{N}}(\mathrm{r}, 1 ; F \mid=3) \\
& -\ldots-(m-2) \bar{N}(r, 1 ; F \mid=m)-(m-2) \bar{N}_{L}(r, 1 ; F)-(m-1) \bar{N}_{L}(r, 1 ; G) \\
& -(m-1) \bar{N}_{E}^{(m+1}(r, 1 ; F)+S(r, F)+S(r, G)
\end{aligned}
$$

Lemma 2.9. (14], Lemma 6) If $\mathrm{H} \equiv 0$, then F , G share $(1, \infty)$. If further F, G share $(\infty, 0)$ then F, G share (∞, ∞).

3 Proofs of the theorems

Proof of Theorem [1.1. Let F, G be given by (2.1). Then F and G share (1,3), $(\infty, 7 n+6)$. We consider the following cases.

Case 1. Let $H \not \equiv 0$. Then $F \not \equiv G$. Noting that f, g share $(0,0)$ and $(\infty, 6)$ implies $\bar{N}_{*}(r, 0 ; f, g) \leq \bar{N}(r, 0 ; f)=\bar{N}(r, 0 ; g)$ and $\bar{N}_{*}(r, \infty ; f, g) \leq \bar{N}(r, \infty ; f \mid \geq 7)=\bar{N}(r, \infty ; g \mid \geq 7)$,
using Lemmas 2.3 and 2.6 for $\mathrm{m}=3$ in Lemma 2.8 we obtain

$$
\begin{align*}
& (\mathrm{n}+1)\{\mathrm{T}(\mathrm{r}, \mathrm{f})+\mathrm{T}(\mathrm{r}, \mathrm{~g})\} \tag{3.1}\\
\leq & 6 \overline{\mathrm{~N}}(\mathrm{r}, 0 ; \mathrm{f})+2 \mathrm{~T}(\mathrm{r}, \mathrm{f})+2 \mathrm{~T}(\mathrm{r}, \mathrm{~g})+4 \overline{\mathrm{~N}}(\mathrm{r}, \infty ; \mathrm{f})+2 \overline{\mathrm{~N}}(\mathrm{r}, \infty ; \mathrm{f} \mid \geq 7) \\
& -3 \overline{\mathrm{~N}}_{*}(\mathrm{r}, 1 ; \mathrm{F}, \mathrm{G})+\mathrm{S}(\mathrm{r}, \mathrm{f})+\mathrm{S}(\mathrm{r}, \mathrm{~g}) \\
\leq & 2 \mathrm{~T}(\mathrm{r}, \mathrm{f})+2 \mathrm{~T}(\mathrm{r}, \mathrm{~g})+\left(\frac{6 \mathrm{n}+10}{3 n-4}\right) \overline{\mathrm{N}}(\mathrm{r}, \infty ; \mathrm{f} \mid \geq 7)+\left(\frac{12 \mathrm{n}-10}{3 n-4}\right) \\
& \overline{\mathrm{N}}(\mathrm{r}, \infty ; \mathrm{f})-3 \bar{N}_{*}(\mathrm{r}, 1 ; \mathrm{F}, \mathrm{G})+\mathrm{S}(\mathrm{r}, \mathrm{f})+\mathrm{S}(\mathrm{r}, \mathrm{~g})
\end{align*}
$$

So using Lemma 2.7 (i) for $k=6$ in (3.1) we get

$$
\begin{align*}
& (n-1)\{T(r, f)+T(r, g)\} \tag{3.2}\\
\leq & \left(\frac{6 n+10}{(3 n-4)(7 n+6)}\right)\left[T(r, f)+T(r, g)+\frac{1}{n-1}\left\{\bar{N}(r, \infty ; f \mid \geq 7)+n \bar{N}_{*}(r, 1 ; F, G)\right\}\right] \\
& +\left(\frac{12 n-10}{n(3 n-4)}\right)\left[T(r, f)+T(r, g)+\frac{1}{n-1}\left\{\bar{N}(r, \infty ; f \mid \geq 7)+n \bar{N}_{*}(r, 1 ; F, G)\right\}\right] \\
& -3 \bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g) \\
\leq & {\left[\frac{6 n+10}{(3 n-4)(7 n+6)}+\frac{12 n-10}{n(3 n-4)}\right]\{T(r, f)+T(r, g)\}+\frac{1}{n-1}\left[\frac{n(6 n+10)}{(3 n-4)(7 n+6)}\right.} \\
& \left.+\frac{12 n-10}{3 n-4}\right] \bar{N}_{*}(r, 1 ; F, G)+\frac{1}{(n-1)}\left[\frac{6 n+10}{(3 n-4)(7 n+6)}+\frac{12 n-10}{n(3 n-4)}\right] \bar{N}(r, \infty ; f \mid \geq 7) \\
& -3 \bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g) .
\end{align*}
$$

Now using Lemma 2.7 (ii) for $\mathrm{k}=6$ in (3.2) we get

$$
\begin{aligned}
& {\left[n-1-\frac{6 n+10}{(3 n-4)(7 n+6)}-\frac{12 n-10}{n(3 n-4)}\right]\{T(r, f)+T(r, g)\} } \\
\leq & {\left[\frac{n(6 n+10)}{(n-1)(3 n-4)(7 n+6)}+\frac{12 n-10}{(n-1)(3 n-4)}\right] \bar{N}_{*}(r, 1 ; F, G) } \\
& +\left[\frac{6 n+10}{(3 n-4)(7 n+6)}+\frac{12 n-10}{n(3 n-4)}\right]\left[\frac{1}{7 n^{2}-n-7}\{T(r, f)+T(r, g)\}\right. \\
& \left.+\frac{n}{(n-1)\left(7 n^{2}-n-7\right)} \bar{N}_{*}(r, 1 ; F, G)\right]-3 \bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g)
\end{aligned}
$$

from which we get a contradiction for $n \geq 3$.
Case 2. Let $H \equiv 0$. Now from Lemma 2.9 we have F and G share $(1, \infty)$ and (∞, ∞). This implies $E_{f}\left(S_{1}, \infty\right)=E_{g}\left(S_{1}, \infty\right), E_{f}\left(S_{2}, 0\right)=E_{g}\left(S_{2}, 0\right)$ and $E_{f}\left(S_{3}, \infty\right)=E_{g}\left(S_{3}, \infty\right)$. Now the theorem follows from Theorem C.

Proof of Corollary 1.1, Let F, G be given by (2.1). Then F and G share (1,3), $(\infty, 7 n+6)$. By Theorem 1.1 we get either $\mathrm{f} \equiv \mathrm{g}$ or $\mathrm{f}=\frac{-\mathrm{a} e^{\gamma}\left(e^{\mathrm{n} \gamma}-1\right)}{e^{(n+1) \gamma}-1}, \mathrm{~g}=\frac{-\mathrm{a}\left(e^{\mathrm{n} \mathrm{\gamma}}-1\right)}{\mathrm{e}^{(\mathrm{n}+1) \gamma}-1}$, where γ is a nonconstant entire function. If $f \not \equiv g$ then using Lemma 2.3 clearly $\Theta(\infty ; f)=\Theta(\infty ; g)=1-$
$\limsup _{r \longrightarrow \infty} \frac{\sum_{k=1}^{n} \bar{N}\left(r, u_{k} ; e^{\gamma}\right)}{n T\left(r, e^{\gamma}\right)}=0$, where $u_{k}=\exp \left(\frac{2 k \pi i}{n+1}\right)$ for $k=1,2, \ldots, n$ and hence we deduce a contradiction. This proves the corollary.

Proof of Theorem 1.2. Let F, G be given by (2.1). Then F and G share $(1,3),(\infty, n)$. We consider the following cases.

Case 1. Let $H \not \equiv 0$. Then $F \not \equiv G$. Noting that f, g share $(0,0)$ and $(\infty, 0)$ implies $\bar{N}_{*}(r, 0 ; f, g) \leq \bar{N}(r, 0 ; f)=\bar{N}(r, 0 ; g)$ and $\bar{N}_{*}(r, \infty ; f, g) \leq \bar{N}(r, \infty ; f \mid \geq 7)=\bar{N}(r, \infty ; g \mid \geq 7)$, using Lemmas 2.3 and 2.6 for $\mathrm{m}=3$ and $\mathrm{k}=0$ in Lemma 2.8 we obtain

$$
\begin{align*}
& (n+1)\{T(r, f)+T(r, g)\} \tag{3.3}\\
\leq & 6 \bar{N}(r, 0 ; f)+2 T(r, f)+2 T(r, g)+6 \bar{N}(r, \infty ; f)-3 \bar{N}_{*}(r, 1 ; F, G) \\
& +S(r, f)+S(r, g) \\
\leq & 2 T(r, f)+2 T(r, g)+\left(\frac{18 n}{3 n-4}\right) \bar{N}(r, \infty ; f)-3 \bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g)
\end{align*}
$$

So using Lemma 2.7 (ii) for $\mathrm{k}=0$ and Lemma 2.5 in (3.3) we get

$$
\begin{aligned}
& (n-1)\{T(r, f)+T(r, g)\} \\
\leq & \left(\frac{18 n(n-1)}{(3 n-4)\left(n^{2}-n-1\right)}\right)[T(r, f)+T(r, g)]+\left(\frac{18 n^{2}}{(3 n-4)\left(n^{2}-n-1\right)}\right) \bar{N}_{*}(r, 1 ; F, G) \\
& -3 \bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g) \\
\leq & \left(\frac{18 n(n-1)}{(3 n-4)\left(n^{2}-n-1\right)}\right)[T(r, f)+T(r, g)]+\left(\frac{18 n^{2}}{6(3 n-4)\left(n^{2}-n-1\right)}-\frac{1}{2}\right) \\
& \{\bar{N}(r, 0 ; f)+\bar{N}(r, \infty ; f)+\bar{N}(r, 0 ; g)+\bar{N}(r, \infty ; g)\}+S(r, f)+S(r, g) \\
\leq & \left(\frac{18 n(n-1)}{(3 n-4)\left(n^{2}-n-1\right)}+\frac{18 n^{2}}{3(3 n-4)\left(n^{2}-n-1\right)}-1\right)[T(r, f)+T(r, g)] \\
& +S(r, f)+S(r, g) .
\end{aligned}
$$

Clearly (3.4) implies a contradiction for $\mathfrak{n} \geq 4$.
Case 2. Let $\mathrm{H} \equiv 0$. Now from Lemma 2.9 we have F and G share $(1, \infty)$ and (∞, ∞). This implies $E_{f}\left(S_{1}, \infty\right)=E_{g}\left(S_{1}, \infty\right), E_{f}\left(S_{2}, 0\right)=E_{g}\left(S_{2}, 0\right)$ and $E_{f}\left(S_{3}, \infty\right)=E_{g}\left(S_{3}, \infty\right)$. Now the theorem follows from Theorem C.

Received: January 2010. Revised: August 2010.

References

[1] A.Banerjee, On a question of Gross, J. Math. Anal. Appl. 327(2) (2007) 1273-1283.
[2] A.Banerjee, Some uniqueness results on meromorphic functions sharing three sets, Ann. Polon. Math., 92(3)(2007), 261-274.
[3] M.Fang and W. Xu, A note on a problem of Gross, Chinese J. Contemporary Math., 18(4)(1997), 395-402.
[4] F.Gross, Factorization of meromorphic functions and some open problems, Proc. Conf. Univ. Kentucky, Leixngton, $\mathrm{Ky}(1976)$; Lecture Notes in Math., 599(1977), 51-69, Springer(Berlin).
[5] W.K.Hayman, Meromorphic Functions, The Clarendon Press, Oxford (1964).
[6] I.Lahiri, Value distribution of certain differential polynomials. Int. J. Math. Math. Sci., 28(2)(2001), 83-91.
[7] I.Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J., 161(2001), 193-206.
[8] I.Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Var. Theory Appl., 46(2001), 241-253.
[9] I.Lahiri, On a question of Hong Xun Yi, Arch. Math. (Brno), 38(2002), 119-128.
[10] I.Lahiri and A.Banerjee, Uniqueness of meromorphic functions with deficient poles, Kyungpook Math. J., 44(2004), 575-584.
[11] I.Lahiri and A.Banerjee, Weighted sharing of two sets, Kyungpook Math. J., 46(1) (2006), 79-87.
[12] A.Z.Mohon'ko, On the Nevanlinna characteristics of some meromorphic functions,. Theory of Functions. Functional Analysis and Their Applications, 14 (1971), 83-87.
[13] H.Qiu and M. Fang, A unicity theorem for meromorphic functions, Bull. Malaysian Math. Sci. Soc., 25(2002) 31-38.
[14] H.X.Yi, Meromorphic functions that share one or two values II, Kodai Math. J., 22 (1999), 264-272.
[15] H.X.Yi and W.C.Lin, Uniqueness theorems concerning a question of Gross, Proc. Japan Acad., 80, Ser.A(2004), 136-140.
[16] Q. Zhang, Meromorphic Functions That Share Three Sets, Northeast Math. J., 23(2)(2007), 103-114.

[^0]: ${ }^{1}$ The author dedicates the paper to the memory of his respected teacher Late Prof. B. K. Lahiri who first germinated the inquisition for research work in the author's mind.

