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ABSTRACT

The main objective of this article is to give a survey on elementary functions in the

context of quaternionic analysis. We define some of their more common properties,

which as in the real and complex cases, will be familiar to the reader. This leads to the

consideration of quaternion-valued functions depending on a quaternion variable, that

is, functions whose input and output are quaternions.
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RESUMEN

El objetivo principal de este art́ıculo es dar una visión general sobre funciones elemen-

tales en el contexto de análisis cuaterniónico. Definimos algunas de sus propiedades

más comunes, que como en los casos reales y complejos, serán familiares para el lec-

tor. Esto lleva a la consideración de las funciones de valor-cuaterniónico dependiendo

de una variable cuaterniónica, esto es, funciones las cuales de entrada y salida son

cuaterniones.

Keywords and Phrases: Quaternionic analysis, elementary functions.

2010 AMS Mathematics Subject Classification: 30G35, 30A10.

1 Introduction

As is well known, quaternionic analysis generalizes the theory of holomorphic functions of one com-

plex variable and also provides the foundations to refine the theory of harmonic functions in higher

dimensions. Methods of quaternionic analysis in combination with other classical and modern

analytical methods (such as harmonic analysis, variational methods, and finite difference methods)

have been playing an increasingly active part in the treatment of problems, mainly in mathemati-

cal physics, which involve the treatment of elementary functions. Basic results were independently

discovered and rediscovered by many people, among others: Scheffers (1893), Dixon (1904), Lanc-

zos (1919), Moisil-Teodorescu (1931), Melijhzon (1948), Iftimie (1965), Hestenes (1968), Delanghe

(1970), and Sudbery (1979), Brackx, Delanghe and Sommen (1982), Gürlebeck and W. Sprößig

(1989). Meanwhile quaternionic analysis has became a well established branch in mathematics

and greatly successful in many different directions. Navigation, computer vision, robotics, signal

and image processing, or efficient description of classical mechanics and electrical engineering are

examples of fields where quaternions are used nowadays. A survey within the scope of quaternionic

analysis and its applications is given in [10], and references therein.

The organization of this paper is as follows. Section 2 begins with a review of some definitions

and basic properties of quaternionic analysis. We proceed in Section 3 to study the quaternion

exponential and logarithmic functions. Although quaternion multiplication is not commutative,

many formal properties of the complex exponential and logarithmic functions can be generalized

within this framework. In the remaining sections the quaternion trigonometric, hyperbolic, and

their inverse functions are covered. A brief discussion on the notions of multiple-valued functions

and branches is also presented. There is no attempt to cover everything related to elementary

quaternion functions and review the historical development of quaternions. General information

is contained in the books [6, 7].
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2 Basic properties and definitions for quaternions

For all what follows we will work in H, the skew field of real quaternions discovered by Hamilton in

1843. This means we can express each element p ∈ H uniquely in the form p = p0+p1i+p2j+p3k,

where pi (i = 0, 1, 2, 3) are ordinary numbers and the imaginary units i, j, and k stand for the

elements of the basis of H, subject to the multiplication rules

i2 = j2 = k2 = −1,

ij = k = −ji, jk = i = −kj, ki = j = −ik.

In this way the quaternionic algebra arises as a natural extension of the complex field C. For,

we identify C with the set of degenerate quaternions with zero coefficients of j and k. We shall

always assume the quaternion p = 0 + 0i + 0j + 0k := 0H to be the neutral element of addition,

and p = 1+ 0i+ 0j+ 0k := 1H to be the multiplicative identity quaternion in the sequel. They are

such that any quaternion added or multiplied by them remains unchanged. Further, we denote by

(i) Sc(p) = p0 the scalar part, and Vec(p) = p = p1i + p2j + p3k the vector part of p,

(ii) p = p0 − p the conjugate of p,

(iii) |p| =
√
pp =

√
pp =

√
p20 + p

2
1 + p

2
2 + p

2
3 the norm of p,

(iv) p−1 = p
|p|2

, p 6= 0H the inverse of p,

(v) sgn(p) = p
|p|

the quaternion sign.

With the intention to obtain some insight for a forthcoming study of elementary quaternion

functions, we now consider the classical polar form of a real quaternion with a modulus and an

argument.

Theorem 2.1. Every real quaternion p with p 6= (0, 0, 0) satisfies the trigonometric representation

p = |p|
(

cos θ+ sgn(p) sin θ
)

. Since p20 + |p|2 = |p|2 we find the relations:

cos θ =
p0

|p|
, and sin θ =

|p|

|p|
.

The angle θ := arg(p) (with positive counterclockwise orientation) is called the quaternion

argument of the quaternion p and is only determined up to an integer multiple of 2π. For p = 0H,

arg(p) cannot be defined in any way that is meaningful. In practice, when p 6= 0H we use tan θ =
|p|

p0

to find θ, where the quadrant in which p0 and |p| lie must always be specified or be clearly un-

derstood. Although the symbol arg(p) actually represents a set of values, the argument θ of a

quaternion that lies in the interval [0, π] is called the principal argument of p, and is represented
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by the symbol Arg(p).

We proceed with some fundamental definitions and notations which will be needed throughout

the text.

Definition 2.1. The sequence {pn}
∞
n=1 of real quaternions pn is called convergent to the real

quaternion p if for every ε > 0, there exists a natural number N such that for every n > N we

have |pn − p| < ε. We will use the traditional notation: lim
n−→∞pn = p.

Definition 2.2. The sequence {pn}
∞
n=1 of real quaternions is called convergent to infinity if for

every positive constant M, there exists a natural number N such that for every n > N we have

|pn| ≥M. For this one uses the notation: lim
n−→∞pn = ∞.

Definition 2.3. The sequence {pn = p0,n + p1,ni+ p2,nj+ p3,nk}
∞
n=1, pm,n ∈ R (m = 0, 1, 2, 3)

is called convergent to −∞ and we write lim
n−→∞pn = −∞ if for every constant A ∈ R, there exists

N = N(A) such that for every n > N we have pm,n < A, m = 0, 1, 2, 3.

Let us go on to the consideration of quaternion-valued functions. A quaternion function of a

quaternion variable p, or, briefly, an H-valued function is a function whose input and output are

quaternions. It is a mapping f : H −→ H such that f(p) = [f(p)]0 + [f(p)]1i + [f(p)]2j + [f(p)]3k,

where the coordinate-functions [f]i (i = 0, 1, 2, 3) are real-valued functions defined in H. As

in the case with complex functions we have the standard operations on quaternion functions.

In particular, given two functions f(p) and g(p), we define addition (subtraction), f(p) ± g(p),
conjugation f(p) = f(p), multiplication f(p)g(p), and quotient f(p)

g(p) provided with g(p) 6= 0H. We

shall always write f(p)
g(p) to mean f(p)g−1(p) in the sequel. Note that this is generally different from

g−1(p)f(p) since quaternion multiplication is not commutative. Implicit in the previous arithmetic

operations are simple but very important facts: [f]0 = 1
2

(
f+ f

)
and f = Vec(f) = 1

2

(
f− f

)
. On

occasion the modulus of a quaternion function f is defined by |f| =
√
ff =

√
ff =

√∑3
i=0[f]

2
i , and

coincides with its corresponding Euclidean norm as a vector in R4.

3 Exponents and Logarithms revisited

In this section we revisit the quaternionic analogues of the complex exponential and logarithmic

functions. It turns out that exponential and logarithmic quaternion functions can be defined be-

cause quaternions have a division algebra. The principal value of the quaternion logarithm will

be defined to be a single-valued function whose argument lies in the interval [0, π]. This principal

value quaternion function will be shown to be an inverse of the quaternion exponential function

defined on a suitably restricted domain of the quaternion space.

We therefore start our discussion with the following definition.
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Definition 3.1. The function ep defined by ep :=
∑∞
k=0

pk

k! is called the quaternion natural

exponential function.

In the case that p is a complex number, the definition of ep is naturally extended to comply

with the usual exponential function of complex numbers. Analogous to the complex case one may

derive a closed-form representation for the quaternion exponential function.

Theorem 3.1. For the quaternion natural exponential function the following representation holds:

ep = ep0
(

cos |p|+ sgn(p) sin |p|
)
.

Corollary 3.1. Let {pn}
∞
n=1 be a sequence of elements of H such that lim

n−→∞pn= p. The usual

limit representation works:

lim
n−→∞

(
1+

pn

n

)n
= ep.

We now record some useful properties of the quaternion exponential function.

Corollary 3.2. (see [6, 13, 7]) The quaternion natural exponential function satisfies the following

properties:

(1) ep 6= 0H, for all p ∈ H,

(2) e−pep = 1H, e sgn(p)π = −1H,

(3) (ep)n = enp for n = 0,±1,±2, . . . (de Moivre’s formula),

(4) ep1ep2 6= ep1+p2 in general, unless p1 and p2 commute,

(5) |ep| = eSc(p),

(6) ep = ep.

In what follows we introduce the quaternion natural logarithm function ln(p), which is moti-

vated as defining the ”inverse” of the quaternion natural exponential function ep. More precisely,

we define ln(p) to be any quaternion number such that eln(p) = p and ln(ep) = p. This is too

much to hope for. We shall discuss this matter in further detail in the remainder of the section.

Definition 3.2. The multiple-valued quaternion natural logarithm function ln(p) is defined by

ln(p) = loge |p|+ sgn(p) arg(p). (3.1)
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Here loge |p| is the usual real natural logarithm of the positive number |p|. By switching to polar

form in (3.1), we obtain the following alternative description of the quaternion logarithm:

ln(p) =

 loge |p|+ sgn(p)
(

arccos p0
|p|

+ 2πn
)

, |p| 6= 0

loge |p0| , |p| = 0

=

 loge |p|+ sgn(p)
(

arctan
|p|

p0
+ 2πn

)
, p0 > 0

loge |p|+ sgn(p)
(
π
2
+ 2πn

)
, p0 = 0

where n = 0,±1,±2, . . . .

Theorem 3.2. Let {pn}
∞
n=1 be a sequence of elements of H and n ∈ N. The following statements

are valid:

(1) If lim
n−→∞pn = ∞ then lim

n−→∞ epn = ∞,

(2) If lim
n−→∞pn = ∞ then lim

n−→∞ ln(pn) = ∞ and lim
n−→∞ ln(pn)

pn
= 0,

(3) If lim
n−→∞pn = 0 then lim

n−→∞ ln(pn) = −∞,

(4) If lim
n−→∞pn = p then lim

n−→∞ ln(pn) = ln(p).

Proof. These statements follow from Definitions 3.1 and 3.2.

If we wish to define single-valued branches of ln(p), it would be more satisfactory to restrict

arg(p) to its principal value Arg(p). This yields to the following definition.

Definition 3.3. The principal value of the quaternion logarithm is denoted by the symbol Ln(p),

and is defined as

Ln(p) = loge |p|+ sgn(p)Arg(p). (3.2)

At this stage we return to the principle mentioned at the beginning of the section. Since Ln(p)

is one of the values of the quaternion logarithm ln(p), it follows from (3.2) that: eLn(p) = p and

Ln(ep) = p for all nonzero quaternion p defined on the so-called fundamental region p0 > 0 and

|p| < π. This suggests that the quaternion function Ln(p) plays the role of an inverse function

of the exponential quaternion function ep. To justify this claim, observe that for the quaternion

p = πk, which is clearly not in the fundamental region, we have: eLn(πk) = eloge |π|k = πk, but

Ln(eπk) = Ln(−1) = 0.

Corollary 3.3. The principal value of the quaternion logarithm function retains the following

properties:
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(1) eLn(p) = p and Ln(ep) = p, for all nonzero quaternion p defined on the fundamental region

p0 > 0 and |p| < π,

(2) Ln(1) = 0, Ln(i) = π
2
i, Ln(j) = π

2
j, and Ln(k) = π

2
k,

(3) Ln(p1p2) 6= Ln(p1) + Ln(p2) in general, unless p1 and p2 commute,

(4) Ln(pn) = nLn(p), for n = 0,±1,±2, . . . (de Moivre’s formula).

Proof. The proofs follow immediately from Definition 3.3.

In this connection it is of interest to note:

Theorem 3.3. Let p be a real quaternion such that |p| ≥ 1. The following inequalities are valid:

(1) |Ln(p)| ≤ |p|− 1+ π,

(2) |Ln(p)| ≤ 2|p|3−9|p|2+18|p|−11
6

+ π,

(3) |Ln(p)| ≤
2n−1∑
k=1

(|p|− 1)k

k
+ π, n ∈ N.

Proof. For the proof of Statement 1. a first straightforward computation shows that

|Ln(p)| ≤ | loge(1+ |p|− 1)|+ |sgn(p)Arg(p)| ≤ |p|− 1+ π.

The last step follows from the standard inequality ln(1 + x) ≤ x for every x ≥ 0. In a similar

manner, to prove Statement 2. we shall use the inequality ln(1+ x) ≤ x− x2

2
+ x3

3
for every x ≥ 0.

Equally clear is the following

|Ln(p)| ≤ (|p|− 1) −
(|p|− 1)2

2
+

(|p|− 1)3

3
+ π =

2|p|3 − 9|p|2 + 18|p|− 11

6
+ π.

Lastly, the proof of Statement 3. is a consequence of the classical inequality ln(1+x) ≤
2n−1∑
k=1

(−1)k+1
xk

k

for every x ≥ 0.

To supplement our investigations, we shall now introduce a general quaternion power function.

Definition 3.4. If q is a real quaternion and p 6= 0H, then the quaternion power function pq is

defined to be:

pq = eln(p)q.
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One fact that should be stressed here is that depending on q the quaternion power function

will have either one, finitely many or infinitely many values: If q = n is an integer then pn

assumes only one value. If q = a
b

is a rational number, where a and b are common factors, then

p
a
b = |p|

a
b esgn(p)arg(p)

a
b may have a finite number of values. If q is a nonzero real quaternion, then

pq may always have an infinite number of values.

Corollary 3.4. Quaternion powers satisfy the following properties:

(1) (pq)n = pnq for n = 0,±1,±2, . . . ,

(2) pq1pq2 6= pq1+q2 in general, unless ln(p)q1 and ln(p)q2 commute.

Proof. The proof follows immediately from Definition 3.4.

We shall conclude our considerations with some of the more common properties of the above-

mentioned elementary quaternion functions, which as in the real and complex cases, will be familiar

to the reader.

Theorem 3.4. Let p be a real quaternion, and n ∈ N. Then

lim
n−→∞n

(
n
√
p− 1

)
= loge |p|.

Proof. Using previous definitions a first straightforward computation shows that

n
√
p = e

1
n

loge |p|

[
cos
∣∣∣ 1
n

sgn(p)arg(p)
∣∣∣+ sgn

( 1
n

sgn(p)arg(p)
)

sin
∣∣∣ 1
n

sgn(p)arg(p)
∣∣∣]

= e
1
n

loge |p|

[
cos
∣∣∣arg(p)

n

∣∣∣+ sgn(p) sin
∣∣∣arg(p)

n

∣∣∣] .
This yields

lim
n−→∞n

(
n
√
p− 1

)
= lim

n−→∞
e
1
n

loge |p|
[
cos
∣∣∣ arg(p)n

∣∣∣+ sgn(p) sin
∣∣∣ arg(p)n

∣∣∣]− 1
1
n

= loge |p|.

Theorem 3.5. Let p be a real quaternion, and n ∈ N. Then

lim
n−→∞

(1+ n
√
p

2

)n
=
√
|p|.
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Proof. Obviously, one has

1+ n
√
p

2
= 1+

n
(
n
√
p− 1

)
2n

.

Hence in accordance with the previous result, it follows

lim
n−→∞

(1+ n
√
p

2

)n
= lim
n−→∞

(
1+

n( n
√
p− 1)

2n

)n
= e

loge |p|

2 =
√
|p|.

Having treated these special cases, we may now pass to a somewhat more general case in which

a finite sequence of quaternions takes a part in the definitions of the above-mentioned quaternion

elementary functions.

Theorem 3.6. Let k ∈ N, and {pν}
k
ν=1 be a sequence of elements of H. Then

lim
n−→∞

(1
k

k∑
ν=1

n
√
pν

)n
= k

√√√√ k∏
ν=1

|pν|.

Proof. We have clearly

1

k

k∑
ν=1

n
√
pν = 1+

1

kn

[
n

k∑
ν=1

(
n
√
pν − 1

)]
,

and, as the above discussion shows, it follows

lim
n−→∞ 1

k

[
n

k∑
ν=1

(
n
√
pν − 1

)]
=
1

k

k∑
ν=1

loge |pν| = loge
k

√√√√ k∏
ν=1

|pν|.

With these calculations at hand, we set

lim
n−→∞

(1
k

k∑
ν=1

n
√
pν

)n
= eloge

k
√∏

k
ν=1 |pν| = k

√√√√ k∏
ν=1

|pν|.

As concerns the definition of quaternion power function, we can formulate the next theorems.

Theorem 3.7. Let p1 and p2 be two real quaternions, and n ∈ N. Then

lim
n−→∞

(
n2
√
p1 + n3

√
p2

)n
2n

= 1.
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Proof. From Definition 3.4, a direct computation shows that

n2
√
p1 = e

1

n2
loge |p1|

[
cos
∣∣∣arg(p1)

n2

∣∣∣+ sgn(p1) sin
∣∣∣arg(p1)

n2

∣∣∣] ,
n3
√
p2 = e

1

n3
loge |p2|

[
cos
∣∣∣arg(p2)

n3

∣∣∣+ sgn(p2) sin
∣∣∣arg(p2)

n3

∣∣∣] ,
and therefore, it follows

lim
n−→∞n

(
n2
√
p1 − 1

)
= 0, and lim

n−→∞n
(
n3
√
p2 − 1

)
= 0.

Accordingly, this leads to

lim
n−→∞

(
n2
√
p1 + n3

√
p2

)n
2n

= lim
n−→∞

1+ n
(
n2
√
p1 − 1

)
+ n

(
n3
√
p2 − 1

)
2n

n = 1.

Theorem 3.8. Let {pn}
∞
n=1 and {qn}

∞
n=1 be two sequences of elements of H (n ∈ N) such that

lim
n−→∞pn = p, and lim

n−→∞qn = q. Then

lim
n−→∞ 1

2n

(
n
√
pn + n

√
qn

)n
=
√
|p||q|.

Proof. The proof follows immediately from Theorem 3.6.

Theorem 3.9. Let {pkn}
∞
n=1 be a sequence of elements of H (n, k ∈ N) such that lim

n−→∞pkn = pk.

Then

lim
n−→∞

(1
k

k∑
ν=1

n
√
pνn

)
= k

√√√√ k∏
ν=1

|pν|.

Proof. The proof is a consequence of Theorem 3.6.

4 Trigonometry revisited

In this section we define quaternion trigonometric functions. Analogously to the quaternion func-

tions ep and ln(p), these functions will agree with their counterparts for complex input. In addition,

we will notice that the quaternion trigonometric functions satisfy various of the same identities as

the real and complex trigonometric functions.

With the help of the exponential function, quaternionic analogues of the trigonometric func-

tions can be introduced.
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Definition 4.1. The functions sin(p) and cos(p) defined respectively by

sin(p) =

 −1
2

sgn(p)
(
ep sgn(p) − e−p sgn(p)

)
, |p| 6= 0

sin(p0) , |p| = 0

cos(p) =


1
2

(
ep sgn(p) + e−p sgn(p)

)
, |p| 6= 0

cos(p0) , |p| = 0

are called the quaternion sine and cosine functions.

Corollary 4.1. (see [6, 7]) The quaternion sine and cosine functions admit the following repre-

sentations:

sin(p) = sin(p0) cos(p) + cos(p0) sin(p),

cos(p) = cos(p0) cos(p) − sin(p0) sin(p).

The usual identities obey, such as sin(p) = − sin(−p) and cos(p) = cos(−p). A straightforward

computation shows that sin2(p)+cos2(p) = 1H. However, one has to pay attention to the fact that

the quaternion trigonometric functions do in general not satisfy the sum and difference formulae:

Take for example p = i+ j, and sin(i+ j) = (i+j)√
2

sinh(
√
2) 6= (i+ j) sinh(1) cosh(1) = sin(i) cos(j)+

cos(i) sin(j).

We may now have a look to the zeros of the quaternion sine and cosine functions. Since

sgn(p) = −sgn(p), it can be easily shown that

| sin(p)|2 = sin2(p0) + sinh2 |p| (4.1)

and

| cos(p)|2 = cos2(p0) + cosh2 |p|− 1. (4.2)

Since sin2(p0) (resp. cos2(p0) ) and sinh2 |p| are both nonnegative real numbers, it is evident

that the structural equations are satisfied if and only if sin(p0) = 0 (resp. cos(p0) = 0) and

sinh |p| = 0. As is well known, sin(p0) = 0 when p0 = nπ, n = 0,±1,±2, . . . (resp. cos(p0) = 0

when p0 =
(2n+1)π

2
, n = 0,±1,±2, . . . ), and sinh |p| = 0 only when |p| = 0. Therefore the quater-

nion trigonometric functions have only the zeros known for the real functions.

Now we turn our attention to inequalities involving the quaternion trigonometric functions.

Theorem 4.1. Let p be a real quaternion such that |p| ≤ ln(1+
√
2). Then

| sin(p)| ≤
√
p20 + 1.
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Proof. Notice that sin2(p0) ≤ p20, and sinh2(|p|) ≤ 1 for every |p| ∈ [0, ln(1 +
√
2)]. Based on the

representation (4.1), it follows | sin(p)|2 ≤ p20 + 1.

Theorem 4.2. Let p be a real quaternion such that |p| ≥ ln(1+
√
2), and p0 ≤ −

√
6 or p0 ∈ [0,

√
6].

Then

| sin(p)| ≥
√
1+
(
p0 −

p30
6

)2
.

Proof. Note, in passing, that sin2(p0) ≥
(
p0 −

p30
6

)2
when p0 ≤ −

√
6 or p0 ∈ [0,

√
6], and

sinh2(|p|) ≥ 1 for |p| ≤ ln(1+
√
2). In summary, we set

| sin(p)|2 ≥ 1+
(
p0 −

p30
6

)2
.

Theorem 4.3. Let p be a real quaternion such that p0 ∈ [0,
√
2]. Then

| cos(p)| ≥ 1− p20
2
.

Proof. Let p0 ∈ [0,
√
2], it is clear that cos2(p0) ≥

(
1 −

p20
2

)2
. Based on the relation (4.2), we

conclude that

| cos(p)|2 ≥
(
1−

p20
2

)2
+ 1− 1 =

(
1−

p20
2

)2
.

In closing this section, we note that the usual definitions of the other trigonometric functions

are taken:

Definition 4.2. For p ∈ H \ {(n + 1/2)π : n = 0,±1,±2, . . . }, the functions tan(p) and sec(p)

defined respectively by

tan(p) =
sin(p)

cos(p)
, and sec(p) =

1

cos(p)
,

are called the quaternion tangent and secant functions.

Definition 4.3. For p ∈ H \ {nπ : n = 0,±1,±2, . . . }, the functions cot(p) and csc(p) defined

respectively by

cot(p) =
cos(p)

sin(p)
, and csc(p) =

1

sin(p)
,

are called the quaternion cotangent and cosecant functions.
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Theorem 4.4. Let p be a real quaternion such that |p| ≤ ln(1+
√
2), and p0 ∈ [0,

√
2). Then

| tan(p)| ≤
2
√
1+ p20

2− p20
.

Proof. The proof follows from Theorems 4.1 and 4.3.

Theorem 4.5. Let p be a real quaternion such that |p| ≤ ln(1+
√
2), and p0 ∈ [0,

√
2]. Then

| cot(p)| ≥ 2− p20

2
√
p20 + 1

.

Proof. It follows from Theorems 4.1 and 4.3.

5 Hyperbolic revisited

The quaternion hyperbolic sine and cosine functions may be defined using the quaternion expo-

nential function as follows:

Definition 5.1. The functions sinh(p) and cosh(p) defined respectively by

sinh(p) =
ep − e−p

2
, cosh(p) =

ep + e−p

2
,

are called the quaternion sine and cosine hyperbolic functions.

Similarly to their counterparts for real and complex input the quaternion hyperbolic sine

and cosine are respectively, odd and even functions. A straightforward computation shows that

cosh2(p) − sinh2(p) = 1H. However, we must keep clearly in mind that the quaternion hyperbolic

functions do in general not satisfy the sum and difference formulae, unless p1 and p2 commute.

It can be settled by a simple example which we sketch briefly. Take for example p = i − j, then

sinh(i− j) = (i−j)√
2

sin(
√
2) 6= (i− j) cos(1) sin(1) = sinh(i) cosh(j) − cosh(i) sinh(j).

Remark 5.1. The zeros of the function sinh(p) are the solutions for p of the equation ep = e−p,

which can be rewritten as e2p = 1H. Since e2p = 1H only when 2p is an integer multiple of

2πsgn(p), we conclude that the zeros of sinh(p) are the numbers nπsgn(p), n = 0,±1,±2, . . . .
Similarly, the zeros of cosh(p) are the solutions for p of the equation ep = −e−p, which can be

rewritten as e2p = −1H, or as e2p−sgn(p)π = 1H (since esgn(p)π = −1H). It follows that the zeros

of cosh(p) are the numbers
(
n+ 1

2

)
πsgn(p) with n = 0,±1,±2, . . . .

We proceed to study inequalities involving the quaternion sine and cosine hyperbolic functions.
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Theorem 5.1. Let p be a real quaternion. Then

| sinh(p)| ≤ 2 cosh(p0), and | cosh(p)| ≤ 2 cosh(p0).

Proof. From Theorem 3.1, we set |ep| ≤ 2ep0 . In particular, it holds |e−p| ≤ 2e−p0 . Now, relying

on Defintion 5.1 it follows | sinh(p)| ≤ 2 cosh(p0). In a similar manner, we obtain the second

inequality of our theorem.

Analogously to quaternion trigonometric functions, we next define the quaternion tangent,

cotangent, secant, and cosecant hyperbolic functions using the quaternion hyperbolic sine and

cosine.

Definition 5.2. For p ∈ H \ {(n + 1
2
)πsgn(p) : n = 0,±1,±2, . . . }, the functions tanh(p) and

sech(p) defined respectively by

tanh(p) =
sinh(p)

cosh(p)
, and sech(p) =

1

cosh(p)
,

are called the quaternion tangent and secant hyperbolic functions.

Definition 5.3. For p ∈ H \ {nπsgn(p) : n = 0,±1,±2, . . . }, the functions coth(p) and csch(p)

defined respectively by

coth(p) =
cosh(p)

sinh(p)
, and csch(p) =

1

sinh(p)
,

are called the quaternion cotangent and cosecant functions.

6 Inverse hyperbolic and trigonometric functions revisited

The main focus of this section is to study the inverses of the quaternion trigonometric and hy-

perbolic functions, and their properties. Since the quaternion trigonometric and hyperbolic func-

tions are defined in terms of the quaternion exponential function ep, their inverses are necessarily

multiple-valued and may be computed via the quaternion natural logarithm function ln(p). We

summarize this discussion in the following definition.

Definition 6.1. The multiple-valued functions sinh−1(p) and cosh−1(p) defined respectively by

sinh−1(p) = ln
(
p+

√
p2 + 1

)
, cosh−1(p) = ln

(
p+

√
p2 − 1

)
are called the quaternion inverse hyperbolic sine and cosine.

These functions have two sources of multivaluedness; one due to the quaternion natural loga-

rithm function ln(p), the other due to the involved quaternion power functions. It is evident that
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the quaternion inverse hyperbolic sine and cosine can be made single-valued by specifying a single

value of the quaternion logarithm and a single value of the functions (p2 + 1)1/2 and (p2 − 1)1/2,

respectively. We see at the same time that a branch of a quaternion inverse hyperbolic function

may be obtained by choosing a branch of the quaternion logarithm and a branch of a quaternion

power function. In spite of its local multiplevaluedness, the ln(p) function has an infinite num-

ber of branches, hence so do the quaternion inverse hyperbolic sine and cosine. In addition, the

quaternion inverse hyperbolic functions have branch point-solutions to the equations p2 ± 1 = 0H,

because the functions (p2 + 1)1/2 and (p2 − 1)1/2 have no solutions of (p2 + 1)1/2 = 0H and

(p2 − 1)1/2 = 0H, respectively.

Theorem 6.1. Let p be a real quaternion such that |p|4− |p|2+2p20 ≥ 0. The following inequalities

are valid:

(1) | sinh−1(p)| ≤
√
1+ 2(|p|4 − |p|2 + 2p20) + π,

(2) | cosh−1(p)| ≤
√
1+ 2(|p|4 − |p|2 + 2p20) + π,

(3) | sinh−1(p)| ≤ 1+ 2(|p|4 − |p|2 + 2p20) −
(
√
1+2(|p|4−|p|2+2p2

0
))2

2

+
(
√
1+2(|p|4−|p|2+2p2

0
))3

3
+ π,

(4) | cosh−1(p)| ≤ 1+ 2(|p|4 − |p|2 + 2p20) −
(
√
1+2(|p|4−|p|2+2p2

0
))2

2

+
(
√
1+2(|p|4−|p|2+2p2

0
))3

3
+ π,

(5) | sinh−1(p)| ≤
2n−1∑
k=1

(−1)k+1
(
√
1+ 2(|p|4 − |p|2 + 2p20))

k

k
+ π, n ∈ N,

(6) | cosh−1(p)| ≤
2n−1∑
k=1

(−1)k+1
(
√
1+ 2(|p|4 − |p|2 + 2p20))

k

k
+ π, n ∈ N.

Proof. Let p := p0 + p1i+ p2j+ p3k be a real quaternion. By Definition 3.4 we find the following

representation for p+
√
p2 + 1:

p+
√
(p20 + 1− |p|2)2 + 4p20|p|

2
(

cos
∣∣∣1
2

arccos
p20 + 1− |p|2

(p20 + 1− |p|2)2 + 4p20|p|
2

∣∣∣
+ sgn(p) sin

∣∣∣1
2

arccos
p20 + 1− |p|2

(p20 + 1− |p|2)2 + 4p20|p|
2

∣∣∣). (6.1)
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With A denoting the term
√
(p20 + 1− |p|2)2 + 4p20|p|

2, we have, on account of (6.1):

|p+
√
p2 + 1|2 =

(
p0 +A cos

∣∣∣1
2

arccos
p20 + 1− |p|2

(p20 + 1− |p|2)2 + 4p20|p|
2

∣∣∣)2
+

(
p1 +A

p1√
p21 + p

2
2 + p

2
3

sin
∣∣∣1
2

arccos
p20 + 1− |p|2

(p20 + 1− |p|2)2 + 4p20|p|
2

∣∣∣)2
+

(
p2 +A

p2√
p21 + p

2
2 + p

2
3

sin
∣∣∣1
2

arccos
p20 + 1− |p|2

(p20 + 1− |p|2)2 + 4p20|p|
2

∣∣∣)2
+

(
p3 +A

p3√
p21 + p

2
2 + p

2
3

sin
∣∣∣1
2

arccos
p20 + 1− |p|2

(p20 + 1− |p|2)2 + 4p20|p|
2

∣∣∣)2

Now we make use of the standard inequality: (a+ b)2 ≤ 2(a2 + b2). Hence we obtain

|p+
√
p2 + 1|2 ≤ 2

[
p20 +

(
A cos

∣∣∣1
2

arccos
p20 + 1− |p|2

(p20 + 1− |p|2)2 + 4p20|p|
2

∣∣∣)2
+ p21 +

(
A

p1√
p21 + p

2
2 + p

2
3

sin
∣∣∣1
2

arccos
p20 + 1− |p|2

(p20 + 1− |p|2)2 + 4p20|p|
2

∣∣∣)2
+ p22 +

(
A

p2√
p21 + p

2
2 + p

2
3

sin
∣∣∣1
2

arccos
p20 + 1− |p|2

(p20 + 1− |p|2)2 + 4p20|p|
2

∣∣∣)2

+ p23 +
(
A

p3√
p21 + p

2
2 + p

2
3

sin
∣∣∣1
2

arccos
p20 + 1− |p|2

(p20 + 1− |p|2)2 + 4p20|p|
2

∣∣∣)2


= 2
(
|p|4 − |p|2 + 2p20 + 1

)
,

that is,

|p+
√
p2 + 1|2 ≤ 1+ 1+ 2

(
|p|4 − |p|2 + 2p20

)
.

Furthermore, using the inequality
√
a+ b ≤

√
a +
√
b for a ≥ 0 and b ≥ 0, the following

further inequality is now immediate:

loge |p+
√
p2 + 1| ≤ loge

(
1+

√
1+ 2(|p|4 − |p|2 + 2p20)

)
.

We may now use the inequality ln(1+ x) ≤ x for x ≥ 0 to obtain:

loge |p+
√
p2 + 1| ≤

√
1+ 2

(
|p|4 − |p|2 + 2p20

)
,
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from which we find,

|Ln(p+
√
p2 + 1)| ≤

√
1+ 2

(
|p|4 − |p|2 + 2p20

)
+ π.

We have thus obtain the following further inequality:

| sinh−1(p)| ≤
√
1+ 2

(
|p|4 − |p|2 + 2p20

)
+ π.

In a similar way we obtain the inequality for cosh−1(p). The proofs of the remaining statements

follow from the aforementioned inequalities used in the proof of Theorem 3.3.

The quaternion inverse hyperbolic tangent can be now introduced.

Definition 6.2. The multiple-valued function tanh−1(p) defined respectively by

tanh−1(p) =
ln(1+ p) − ln(1− p)

2
,

is called the quaternion inverse hyperbolic tangent.

All this being established, we can now introduce the inverse trigonometric sine, cosine and

tangent quaternion functions.

Definition 6.3. The multiple-valued functions sin−1(p) and cos−1(p) defined respectively by

sin−1(p) = sgn(p) sinh−1
(
p sgn(p)

)
,

cos−1(p) = sgn(p) cosh−1(p)

are called the quaternion inverse sine and cosine.

Definition 6.4. The multiple-valued function tan−1(p) defined respectively by

tan−1(p) = sgn(p) tanh−1
(
p sgn(p)

)
is called the quaternion inverse tangent.
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