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ABSTRACT

In this paper we introduce a new method for obtaining boundedness of solutions of

integral equations. From the integral equation we form an integrodifferential equation

by computing x ′ + kx to which we apply a Liapunov functional. This can be far

more effective than the usual technique of differentiating the equation. The qualitative

properties derived from that equation are then transferred to a majorizing function for

the integral equation. Schaefer’s fixed point theorem is used to conclude that there is

a periodic solution. Three kinds of integral equations are studied and they are shown

to be related through two examples.

RESUMEN

En este art́ıculo presentamos un nuevo método para obtener acotación de soluciones de

ecuaciones integrales. A partir de la ecuación integral, formamos una ecuación ı́ntegro-
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diferencial calculando x ′ + kx mediante la aplicación de un funcional de Liapunov.

Ello puede resultar bastante más efectivo que la técnica usual de diferenciación de la

ecuación. Las propiedades cualitativas derivadas de la ecuación son entonces trans-

feridas a la función mayorante para la ecuación integral. El teorema del punto fijo de

Schaefer es usado para concluir que hay una solución periódica. Se estudia tres tipos de

ecuaciones integrales y se muestra que ellas están relacionadas a través de dos ejemplos.

Keywords and Phrases: Integral Equations, Boundedness, Periodic Solutions, Liapunov Func-

tions.
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1 Introduction

In this paper we consider several nonlinear scalar integral equations of the form

x(t) = a(t) −

∫ t
α(t)

C(t, s)g(x(s))ds (1.1)

where α(t) may be zero, −∞, or t−h for some constant h > 0. In each of the problems the kernel

need not be convex, but the assumption is that there is a constant k > 0 with

D(t, s) := Ct(t, s) + kC(t, s) (1.2)

convex. For existence theory see [3], [5], [15].

In 1928 Volterra [17] noted that many physical problems were being modeled by integral and

integrodifferential equations with convex kernels. Such kernels are natural representations of fading

memory. Today we see such models in problems in biology, neural networks, viscoelasticity, nuclear

reactors, and many other places. See [4]–[8],[11], [14], [17], [19]–[20] for work on integral equations

with convex kernels.

In addition to the natural fading memory, by 1963 there arose another good reason to try

to formulate problems with such kernels. In that same paper Volterra had suggested that there

might be constructed a Liapunov functional which would yield very precise qualitative properties

of solutions, and that it would admit arbitrarily large kernels. This is in marked contrast to

so much of the theory which leaves the investigator strapped with Draconian conditions such as∫t
0
|C(t, s)|ds ≤ γ < 1. In 1963 Levin [10] followed Volterra’s suggestion and constructed a Liapunov

functional for the convolution case (see also [13]) and in 1968 [12] he constructed (1.5) below for

x ′(t) = −

∫t
0

C(t, s)g(x(s))ds, xg(x) > 0 if x 6= 0 (1.3)

where C(t, s) is convex:

C(t, s) ≥ 0, Cs(t, s) ≥ 0, Cst(t, s) ≤ 0, Ct(t, s) ≤ 0. (1.4)
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His functional has the form

V(t)=2

∫x
0

g(s)ds+

∫t
0

Cs(t, s)

(∫t
s

g(x(u))du

)2

ds+ C(t, 0)

( ∫ t
0

g(x(u))du

)2

(1.5)

with derivative along solutions of (1.3) satisfying

V ′(t) =

∫ t
0

Cst(t, s)

(∫t
s

g(x(u))du

)2

ds+ Ct(t, 0)

( ∫ t
0

g(x(u))du

)2

≤ 0 (1.6)

Much work followed in that same vein. See Zhang [19]–[20] for systems.

In 1992 (see [1] and [2]) we constructed parallel Liapunov functions for (1.1), taking into

account the various forms of α(t). Here, also, one finds much work following in the same vein. Long

before the 1992 work appeared, investigators had differentiated (1.1) to obtain an integrodifferential

equation to which they could apply Liapunov’s direct method. Miller [15] formally starts his

Chapter 6 with such a presentation. Fruitful as that approach has been, it also has significant

difficulties. A more refined approach was introduced in Chapter 9 of [5] and that has been used

with success in a number of subsequent papers, each of which features a new advantage to the

technique.

In each case, the idea is to form x ′ + kx from (1.1). For α = 0 we have

x ′ + kx = a ′(t) + ka(t) − C(t, t)g(x(t)) −

∫t
0

D(t, s)g(x(s))ds (1.7)

with D defined in (1.2). There are six important observations.

(i) x ′ + kx is a uniformly asymptotically stable operator for k > 0.

(ii) If C(t, t) ≥ 0 and if xg(x) > 0 for x 6= 0, then x ′ + kx + C(t, t)g(x) is an operator of the

same, but stronger, type.

(iii) If C and Ct differ in sign then D(t, s) is smaller than the larger of the two terms. (See

[5] and [9].)

(iv) Under general conditions if C is convex and k is large then D is convex, while the kernel

for x ′ alone has lost its convexity. (See [6].)

(v) If C(t, s) is not convex while D(t, s) is, then the combined equation (1.7) is the right form

to apply Liapunov functionals. (See Example 3.1.)

(vi) The utility of a Liapunov functional often depends on the separation of its derivative into

a difference, say |p(t)| − |h(x)|. Using C alone, that can require strong conditions on g, but when

using D there is a natural separation [6].

To be fair, one should ask if something has been lost. It has, and it introduces a new problem.

The Liapunov functional which we constructed in 1992 for (1.1) works with a more general g(t, x),

but the Levin Liapunov functional which we will use on the x ′ + kx equation needs g(x). It would

be so interesting to extend Levin’s Liapunov functional to g(t, x) for (1.3).
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That is the background and we now move along with some new problems. The first of which

is to use a combination of the two Liapunov functionals and the systems (1.1) and (1.7). First we

prove the existence of a periodic solution when α = ∞. We then study the case of α = 0 proving

boundedness properties. Finally, we take α = t− h and prove both boundedness and periodicity.

Let R+ = [0,∞), R = (−∞,∞), and C(X, Y) denote the space of continuous functions φ : X →
Y. We also denote by (PT , ‖ · ‖) the Banach space of continuous T -periodic functions φ : R → R

with the supremum norm.

For the existence of periodic solutions, we apply Schaefer’s fixed point theorem (see below)

with F(x) being the right-hand side of (1.1) so that if F has a fixed point, then this fixed point is

a periodic solution of (1.1).

Theorem 1.1 (Schaefer [16]). Let (P, ‖ · ‖) be a normed space, F a continuous mapping of P into

P which is compact on each bounded subset of P. Then either

(i) the equation φ = λFφ has a solution for λ = 1, or

(ii) the set of all such solutions φ, for 0 < λ < 1, is unbounded.

2 Boundedness and Periodicity

We consider the equation

x(t) = λ[a(t) −

∫ t
−∞ C(t, s)g(x(s))ds], 0 ≤ λ ≤ 1 (2.1)

where a : R → R, C : R × R → R, g : R → R are all continuous. Suppose that there is a positive

constant k so that

D(t, s) := Ct(t, s) + kC(t, s) is convex. (2.2)

We first want to show that there exists a constant γ > 0 such that |x(t)| ≤ γ whenever x is a

T -periodic solution of (2.1) for all 0 ≤ λ ≤ 1. We then show the existence of a T -periodic solution

of (2.1) for λ = 1 by applying Schaefer’s fixed point theorem. Our main assumptions are that there

is a T > 0 and J > 0 such that

a(t+ T) = a(t), C(t+ T, s+ T) = C(t, s) (2.3)

for all s ≤ t with a′ continuous and

sup
0≤t≤T

∫ t
−∞ D(t, s)(t− s)ds ≤ J (2.4)

and that D satisfies

D(t, s) ≥ 0, Ds(t, s) ≥ 0, Dst(t, s) ≤ 0. (2.5)
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We differentiate (2.1) and form

x ′ + kx = λ[a ′ + ka− C(t, t)g(x) −

∫t
−∞ D(t, s)g(x(s))ds]. (2.6)

Now, we define the Liapunov functional

V(t) = 2

∫x(t)
0

g(s)ds+ λ

∫t
−∞ Ds(t, s)

(∫t
s

g(x(v))dv

)2

ds (2.7)

for x ∈ (PT , ‖ · ‖).

Theorem 2.1. Suppose that (2.3), (2.4), (2.5), (2.9) and (2.10) hold. If x(t) is a T -periodic

solution of (2.1), then the derivative of V along that solution satisfies

V ′(t) ≤ 2λg(x)[a ′(t) + ka(t)] − 2g(x)[kx+ λC(t, t)g(x)]. (2.8)

If there is an L > 0 with

xg(x) ≥ 0 for |x| ≥ L (2.9)

and if, in addition, there is a µ > 0 with

g(x)[kx+ C(t, t)g(x)] ≥ µg2(x) (2.10)

for |x| ≥ L, then there is an M > 0 with

V ′(t) ≤ −|g(x)|+M. (2.11)

Proof. We first define some constants to simplify notation. Integrating by parts, we obtain∫t
b

Ds(t, s)(t− s)2ds = D(t, s)(t− s)2
∣∣∣t
b
+ 2

∫t
b

D(t, s)(t− s)ds

= −D(t, b)(t− b)2 + 2

∫ t
b

D(t, s)(t− s)ds

for each b < t. Since D(t, s) ≥ 0 and Ds(t, s) ≥ 0, letting b → −∞, we see that∫t
−∞Ds(t, s)(t− s)2ds+ lim

s→−∞D(t, s)(t− s)2 = 2

∫ t
−∞D(t, s)(t− s)ds ≤ 2J. (2.12)

Observe also that

D(t, b)(t− b)2 ≤ 2

∫t
b

D(t, s)(t− s)ds ≤ 2J
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for all b ≤ t. This then implies that D(t, s)(t− s) ≤ 2J/(t− s) for all s < t, and so we arrive at

lim
s→−∞(t− s)D(t, s) = 0 for fixed t (2.13)

and obtain

∫ t
−∞ Ds(t, s)ds = lim

b→−∞[D(t, t) −D(t, b)] ≤ sup
0≤t≤T

D(t, t) =: B. (2.14)

Now let x be a T -periodic solution of (2.1) and V(t) be defined in (2.7). It follows from (2.12)

that V(t) is well-defined and T -periodic. We then find

V ′(t) = 2g(x)x′(t) + λ

∫t
−∞ Dst(t, s)

(∫t
s

g(x(v))dv

)2

ds

+2λg(x)

∫t
−∞ Ds(t, s)

∫ t
s

g(x(v))dvds.

Integration of the last term by parts and use of (2.13) in the lower limit for that periodic solution

yields

∫t
−∞ Ds(t, s)

∫ t
s

g(x(v))dvds =

∫t
−∞ D(t, s)g(x(s))ds.

Since Dst(t, s) ≤ 0, the second term of V ′ is not positive, and thus, if we use (2.6), we obtain

V ′(t) ≤ 2g(x)

[
−kx+ λ(a′ + ka) − λC(t, t)g(x) − λ

∫t
−∞ D(t, s)g(x(s))ds

]
+2λg(x)

∫ t
−∞ D(t, s)g(x(s))ds

= 2λg(x)[a ′(t) + ka(t)] − 2g(x)[kx+ λC(t, t)g(x)]

verifying (2.8).

Next we choose N > 1 so large that −µ(N − 1) < C∗ = min{C(t, t) : 0 ≤ t ≤ T }, where µ > 0
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is defined in (2.10). If |x| ≥ L, then xg(x) ≥ 0, and by (2.10), we obtain for |x(t)| ≥ L that

V ′(t) ≤ 2λ|g(x)|[‖a ′‖+ k‖a‖] − 2g(x)[kx+ λC(t, t)g(x)]

≤ 2|g(x)|[‖a ′‖+ k‖a‖] − 2k
1

N
xg(x)

−2λ

(
1−

1

N

)
g(x)[kx+ C(t, t)g(x)] − 2λ

1

N
C(t, t)g2(x)

≤ 2|g(x)|[‖a ′‖+ k‖a‖] − 2k
1

N
xg(x)

−2λ

(
1−

1

N

)
µg2(x) − 2λ

1

N
C(t, t)g2(x)

≤ −2|g(x)|

[
1

N
k|x|− (‖a ′‖+ k‖a‖)

]
.

We may assume that L ≥ N(‖a′‖+ k‖a‖+ 1)/k. Thus, if |x(t)| ≥ L, then V ′(t) ≤ −|g(x(t))|. It is

clear that V ′(t) ≤ M for 0 ≤ |x(t)| ≤ L, where

M = 2gL[‖a ′‖+ k‖a‖] + 2gL[kL+ C∗gL]

with gL = sup{|g(x)| : |x| ≤ L} and C∗ = sup{|C(t, t)| : 0 ≤ t ≤ T }, and hence,

V ′(t) ≤ −|g(x(t))|+M

for all t ≥ 0. This completes the proof.

To establish an a priori bound for all possible T -periodic solutions of (2.1), we assume that

lim
s→−∞(t− s)C(t, s) = 0 and

∫ t
−∞ |Cs(t, s)|(t− s)ds ≤ J1 (2.15)

for J1 > 0.

Theorem 2.2. Suppose that (2.3)-(2.5), (2.9)-(2.10) and (2.15) hold. Then there exists a constant

γ > 0 such that ‖x‖ < γ whenever x is a T -periodic solution of (2.1).

Proof. Let x be a T -periodic solution of (2.1) and V(t) be defined in (2.7). Then (2.11) holds.

Since V(t) is T -periodic, V(t) has a global maximum at q ∈ [0, T ] and, hence, at tn = q+ nT . So

for s ≤ tn, we have

0 ≤ V(tn) − V(s) ≤ −

∫ tn
s

|g(x(v))|dv+M(tn − s).

and so ∫ tn
s

|g(x(v))|dv ≤ M(tn − s).
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Then (x(t) − λa(t))2 has a global maximum at hn := tn + p, where 0 ≤ p ≤ T , and for s ≤ hn we

have ∫hn

s

|g(x(v))|dv ≤
∫tn+1

s

|g(x(v))|dv ≤ M(tn+1 − s).

It follows from (2.1) that

(
x(hn) − λa(hn)

)2
≤

(∫hn

−∞ C(hn, s)g(x(s))ds

)2

=

(
−C(hn, s)

∫hn

s

g(x(v))dvds
∣∣∣hn

−∞ +

∫hn

−∞ Cs(hn, s)

∫hn

s

g(x(v))dvds

)2

=

(∫hn

−∞ Cs(hn, s)

∫hn

s

g(x(v))dvds

)2

≤

(∫hn

−∞ |Cs(hn, s)|

∫ tn+1

s

|g(x(v))|dvds

)2

≤ M2

(∫hn

−∞ |Cs(hn, s)|(hn + T − s)ds

)2

.

Since
∫t
−∞ |Cs(t, s)|ds is T -periodic, we see from (2.15) that

sup
0≤t≤T

∫ t
−∞ |Cs(t, s)|ds ≤ J0 (2.16)

for J0 > 0, and hence, (
x(hn) − λa(hn)

)2
≤ M2 (TJ0 + J1)

2
.

Noticing that M is a function of L, we find that

|x(hn)| < ‖a‖+M (TJ0 + J1) + 1 := γ.

This implies that ‖x‖ < γ whenever x is a T -periodic solution of (2.1) for 0 ≤ λ ≤ 1, and the proof

is complete.

We now define a mapping F on PT by

F(φ)(t) = a(t) −

∫t
−∞ C(t, s)g(φ(s))ds for φ ∈ PT . (2.17)
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Theorem 2.3. If (2.3)-(2.5), (2.9)-(2,10) and (2.15) hold, then (2.1) has a T -periodic solution

for λ = 1.

Proof. It is clear that F(φ) ∈ PT . We show that F is continuous on PT and is compact on each

bounded subset of PT . If φ̃, φ ∈ PT , then

|F(φ)(t) − F(φ̃)(t)| =

∣∣∣∣∫t
−∞ C(t, s)g(φ(s))ds−

∫ t
−∞ C(t, s)g(φ̃(s))ds

∣∣∣∣ (2.18)

=

∣∣∣∣∫t
−∞ Cs(t, s)

(∫t
s

g(φ(v))dv−

∫t
s

g(φ̃(v))dv

)
ds

∣∣∣∣ .
Since g is uniformly continuous on {x ∈ R : |x| ≤ ‖φ̃‖+ 1}, for any ε > 0,

there exists 0 < δ < 1 such that ‖φ− φ̃‖ < δ implies |g(φ(s)) − g(φ̃(s))| < ε for

all s ∈ [0, T ]. It follows from (2.18) that ‖F(φ) − F(φ̃)‖ ≤ J1ε. Thus, F is continuous on PT .

We now show that F is compact on each bounded subset of PT . Let η > 0 and define

Γ = {F(φ) : φ ∈ PT , ‖φ‖ ≤ η}. (2.19)

Since

d

dt
F(φ)(t) = a′(t)−C(t, t)g(φ(t)) −

∫t
−∞ Ct(t, s)g(φ(s))ds

= a′(t)−C(t, t)g(φ(t)) −

∫t
−∞ D(t, s)g(φ(s))ds+ k

∫ t
−∞ C(t, s)g(φ(s))ds

= a′(t)−C(t, t)g(φ(t)) −

∫ t
−∞D(t, s)g(φ(s))ds+ k

∫ t
−∞Cs(t, s)

∫ t
s

g(φ(v))dvds

we have∣∣∣∣ ddtF(φ)(t)
∣∣∣∣ ≤ ‖a′‖+ gη sup

0≤t≤T

(
|C(t, t)|+

∫ t
−∞ D(t, s)ds+ k

∫ t
−∞ |Cs(t, s)|(t− s)ds

)
where gη = {|g(x)| : |x| ≤ η}, and thus, Γ is equi-continuous. The uniform boundedness of Γ follows

from the inequality

|F(φ)(t)| ≤ ‖a‖+
∫t
−∞ |Cs(t, s)|

∫ t
s

|g(φ(v))|dv ≤ ‖a‖+ J1gη

for all φ ∈ Γ . So, by the Ascoli-Arzela theorem, Γ lies in a compact subset of PT . By combining

Schaefer’s theorem with Theorem 2.2, we see that F has a fixed point which is a T -periodic solution

of (2.1) for λ = 1. This completes the proof.

Corollary 2.1. Suppose that (2.3)-(2.5) hold. If there is an L > 0 and µ > 0 with

xg(x) ≥ 0 for |x| ≥ L and C(t, t) ≥ µ, (2.20)
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then there is an M > 0 with

V ′(t) ≤ −|g(x)|+M (2.21)

whenever x is a T -periodic solution of (2.1). If, in addition, (2.15) is satisfied, then (2.1) has a

T -periodic solution for λ = 1.

3 Boundedness

We turn now to

x(t) = a(t) −

∫t
0

C(t, s)g(x(s))ds (3.1)

where a : R+ → R, C : R+ ×R+ → R, g : R → R are all continuous with a, a′ bounded. The project

here is to show that solutions of (3.1) are bounded. We define

D(t, s) := Ct(t, s) + kC(t, s) (3.2)

for a constant k > 0. Our main assumptions are that

D(t, s) is convex for t ≥ s ≥ 0 (3.3)

and there exists B > 0 with

C(t, t) ≥ −B and

∫t
0

D(t, s)(t− s)ds ≤ B (3.4)

for all t ≥ 0. We differentiate (3.1) and form

x ′ + kx = [a ′ + ka− C(t, t)g(x) −

∫t
0

D(t, s)g(x(s))ds]. (3.5)

Now, we define the Liapunov functional

V(t) = 2G(x(t))+

∫ t
0

Ds(t, s)

(∫ t
s

g(x(u))du

)2

ds+D(t, 0)

(∫t
0

g(x(u))du

)2

(3.6)

for x ∈ C(R+, R), where G(x) =
∫x
0
g(s)ds.

Theorem 3.1. Suppose that D(t, s) is convex and C(t, t) ≥ −B for a constant B > 0. If x(t) is a

solution of (3.1), then the derivative of V along that solution satisfies

V ′(t) ≤ 2g(x)[a ′(t) + ka(t)] − 2g(x)[kx+ C(t, t)g(x)]. (3.7)

If there is an L > 0 with

xg(x) ≥ 0 for |x| ≥ L (3.8)
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and if, in addition, there is a µ > 0 with

g(x)[kx+ C(t, t)g(x)] ≥ µg2(x) (3.9)

for |x| ≥ L, then there is an M > 0 with

V ′(t) ≤ −|g(x)|+M. (3.10)

Proof. We first observe that if x is a solution of (3.1), then x is also a solution of (3.5). Now let x

be a solution (3.1) and V(t) be defined in (3.6). We then find

V ′(t) = 2g(x)x′(t) +

∫t
0

Dst(t, s)

(∫t
s

g(x(u))du

)2

ds

+2g(x(t))

∫ t
0

Ds(t, s)

∫ t
s

g(x(u))duds+Dt(t, 0)

(∫ t
0

g(x(u))du

)2

+2D(t, 0)g(x(t))

∫t
0

g(x(u))du.

Integrate the third to last term by parts to obtain

2g(x(t))

∫t
0

Ds(t, s)

∫ t
s

g(x(u))duds

= 2g(x(t))

[
D(t, s)

∫ t
s

g(x(u))du
∣∣∣s=t

s=0
+

∫ t
0

D(t, s)g(x(s))ds

]

= 2g(x(t))

[
−D(t, 0)

∫ t
0

g(x(s))ds+

∫ t
0

D(t, s)g(x(s))ds

]
. (3.11)

Cancel terms, use the sign conditions, and use (3.5) in the process to unite the Liapunov functional

and the equation to obtain

V ′(t) ≤ 2g(x)

[
−kx+ (a′ + ka) − C(t, t)g(x) −

∫t
0

D(t, s)g(x(s))ds

]

+2g(x)

∫t
0

D(t, s)g(x(s))ds

= 2g(x)[a ′(t) + ka(t)] − 2g(x)[kx+ C(t, t)g(x)]

verifying (3.7).

Now we assume that (3.8) and (3.9) hold. We may choose N > 1 so large that µ(N− 1) > B,

where B and µ are defined in (3.4) and (3.9), respectively. If |x| ≥ L, then xg(x) ≥ 0, and by (3.9),
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we obtain for |x(t)| ≥ L that

V ′(t) ≤ 2|g(x)|[|a ′|+ k|a|] − 2g(x)[kx+ C(t, t)g(x)]

= 2|g(x)|[|a ′|+ k|a|] − 2k
1

N
xg(x)

−2

(
1−

1

N

)
g(x)[kx+ C(t, t)g(x)] − 2

1

N
C(t, t)g2(x)

≤ 2|g(x)|[|a ′|+ k|a|] − 2k
1

N
xg(x)

−2

(
1−

1

N

)
µg2(x) + 2

1

N
Bg2(x)

≤ −2|g(x)|

[
1

N
k|x|− (|a ′(t)|+ k|a(t)|)

]
.

We may assume that

L ≥ N[ sup
t≥0

(|a′(t)|+ k|a(t)|) + 1 ]
/
k.

Thus, if |x(t)| ≥ L, then V ′(t) ≤ −|g(x(t))|. Since −C(t, t) ≤ B, it is clear that V ′(t) ≤ M for

0 ≤ |x(t)| ≤ L, where the constant M > 0 is a function of L, and hence,

V ′(t) ≤ −|g(x(t))|+M

for all t ≥ 0. This completes the proof.

Relations related to (3.9) and (3.10) are found in [4].

To establish the boundedness of solutions, we assume that there is a B1 > 0 with

|C(t, 0)| t ≤ B1 and

∫ t
0

|Cs(t, s)|(t− s+ 1)ds ≤ B1 (3.12)

for t ≥ 0. We also observe that∫t
0

Ds(t, s)(t− s)2ds = D(t, s)(t− s)2
∣∣∣t
0
+ 2

∫ t
0

D(t, s)(t− s)ds

= −D(t, 0) t2 + 2

∫t
0

D(t, s)(t− s)ds.

By (3.4), we now have∫t
0

Ds(t, s)(t− s)2ds+D(t, 0) t2 = 2

∫t
0

D(t, s)(t− s)ds ≤ 2B (3.13)

for all t ≥ 0.
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Theorem 3.2. If (3.3)-(3.4), (3.8)-(3.9), and (3.12) hold, then any solution of (3.1) is bounded.

Proof. Let x be a solution of (3.1) and V(t) be defined in (3.6). Then V(t) is bounded below and

satisfies (3.10). We now show that V(t) is bounded above. If V(t) is unbounded, then there exists

a sequence {tn} ↑ ∞ with V(tn) → ∞ as n → ∞ and

V(tn) ≥ V(s) for 0 ≤ s ≤ tn.

It then follows from (3.10) that

0 ≤ V(tn) − V(s) ≤ −

∫tn
s

|g(x(u))|du+M(tn − s).

This implies that ∫tn
s

|g(x(u))|du ≤ M(tn − s). (3.14)

Applying (3.14) to V(tn) and taking into account (3.13), we find that

V(tn) ≤ 2G(x(tn)) +M2

[∫tn
0

Ds(tn, s)(tn − s)2ds+D(tn, 0) t
2

]
≤ 2G(x(tn)) + 2BM2. (3.15)

We now use (3.1), (3.12), and (3.14) to obtain

(x(tn) − a(tn))
2 =

(∫ tn
0

C(tn, s)g(x(s))ds

)2

=

(
−C(tn, s)

∫tn
s

g(x(u))du
∣∣∣s=tn

s=0
+

∫ tn
0

Cs(tn, s)

∫ tn
s

g(x(u))duds

)2

=

(
C(tn, 0)

∫tn
0

g(x(s))ds+

∫tn
0

Cs(tn, s)

∫ tn
s

g(x(u))duds

)2

≤
(
|C(tn, 0)|M tn +M

∫ tn
0

|Cs(tn, s)|(tn − s)ds

)2

≤ M2(2B1)
2.

This implies that

|x(tn)| ≤ sup
s≥0

|a(s)|+ 2B1M := B2 (3.16)

and that |G(x(tn))| ≤ B3 for a B3 > 0. We now find that

V(tn) ≤ 2G(x(tn)) + 2BM2 ≤ 2B3 + 2BM2 := B4,
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a contradiction. Thus, V(t) is bounded. In fact, we have

2G(x(t)) ≤ V(t) ≤ 2G(x(0)) + B4 (3.17)

and hence

|V(t)| ≤ K for all t ≥ 0 (3.18)

where K := 2|η|+ 2|G(x(0))|+ B4 where η = inf{G(u) : u ∈ R}. We also observe that |C(t, 0)| ≤ B5

for a B5 > 0 whenever (3.12) holds.

We now integrate (3.10) from s to t and use (3.18) to obtain∫t
s

|g(x(u))|du ≤ V(s) − V(t) +M(t− s) ≤ 2K+M(t− s). (3.19)

Applying (3.19) to (3.1) we find

|x(t)| ≤ |a(t)|+

∣∣∣∣∫ t
0

C(t, s)g(x(s))ds

∣∣∣∣
≤ |a(t)|+

∣∣∣∣C(t, 0) ∫ t
0

g(x(s))ds+

∫t
0

Cs(t, s)

∫t
s

g(x(u))duds

∣∣∣∣
≤ |a(t)|+ |C(t, 0)|(Mt+ 2K) +

∫t
0

|Cs(t, s)|[M(t− s) + 2K]ds

≤ sup
s≥0

|a(s)|+ B1M+ 2KB5 + B1(M+ 2K).

This implies that x is bounded. The proof is complete.

Corollary 3.1. Suppose that (3.3)-(3.4) hold. If there is an L > 0 and µ > 0 with

xg(x) ≥ 0 for |x| ≥ L and C(t, t) ≥ µ, (3.20)

then there is an M > 0 with

V ′(t) ≤ −|g(x)|+M (3.21)

whenever x is a solution of (3.1). If, in addition, (3.12) holds, then V(t) satisfies (3.17) and any

solution of (3.1) is bounded.

Remark 3.1. Inequalities related to (3.17) and (3.21) are of fundamental importance in the study

of boundedness and periodic solutions in differential equations by Liapunov’s direct method (see

Burton [3] and Yoshizawa [18]). Not only are these practical inequalities with many applications,

but such combined relations are directly linked to the right-hand side of the equations, and hence,
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much of the qualitative properties of solutions can be derived by taking full advantage of the

Liapunov functions.

The following example shows that if C(t, s) is not convex while D(t, s) is, then the combined

equation (1.7) is the right form to apply Liapunov functionals.

Example 3.1. We consider the equation

x(t) = a(t) −

∫t
0

C(t, s)g(x(s))ds (3.22)

where a : R+ → R and g : R → R are continuous with a, a′ bounded, and

C(t, s) = C(t− s) = −e−(t−s+3)2 for t ≥ s ≥ 0.

It is clear that C(t, s) is not convex (even not positive). If we choose k = 4, then

D(t, s) = Ct(t, s) + kC(t, s) = 2(t− s+ 1)e−(t−s+3)2 .

A straightforward calculation shows that D(t, s) is convex and (3.4) holds. We also see that C(t, s)

satisfies (3.12). Thus, if there exist constants L > 0 and µ > 0 with xg(x) ≥ 0 for |x| ≥ L and

g(x)[kx+ C(t, t)g(x)] = g(x)[4x− e−9g(x)] ≥ µg2(x)

for |x| ≥ L, then any solution of (3.22) is bounded by Theorem 3.2.

4 A Truncated Equation and Unification

We consider the finite delay equation

x(t) = a(t) −

∫ t
t−h

C(t, s)g(x(s))ds (4.1)

in which h > 0 is a constant, a : R+ → R, C : R+ × [−h,∞) → R, g : R → R are all continuous

with a, a′ bounded. We write

D(t, s) := Ct(t, s) + kC(t, s) (4.2)

for a positive constant k and assume that D(t, s) is convex:

D(t, s) ≥ 0, Ds(t, s) ≥ 0, Dst(t, s) ≤ 0, Dt(t, s) ≤ 0 (4.3)

for t ≥ s ≥ −h and that

C(t, t− h) = 0, Ct(t, t− h) = 0, C(t, t) ≥ −B (4.4)
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for all t ≥ 0 and a constant B > 0, where Ct(t, t−h) is the partial derivative of C(t, s) with respect

the first variable for s = t− h.

Before we get too far into the work, it is interesting to point out classical forms for C. Let

C(t, s) = C(t− s) = (−1)n(t− s− h)n, n > 2.

Not only does it satisfy (4.4), but it is a convex kernel for 0 ≤ s ≤ t ≤ h. Moreover, if we let

C(t) = 0 for t > h then that kernel will satisfy our work in both Sections 2 and 3. In Section 3

something very interesting happens. In the linear case we have

x(t) = a(t) −

∫ t
0

C(t− s)x(s)ds,

an equation about which there is a very straightforward theory. However, for t ≥ h it becomes

x(t) = a(t) −

∫ t
t−h

C(t− s)x(s)ds

and that belongs to a class of far more complex structure.

We differentiate (4.1) and take into account (4.4) to form

x ′ + kx =

[
a ′ + ka− C(t, t)g(x) −

∫t
t−h

D(t, s)g(x(s))ds

]
. (4.5)

Now, we define the Liapunov functional

V(t) = 2G(x(t)) +

∫t
t−h

Ds(t, s)

(∫ t
s

g(x(u))du

)2

ds (4.6)

for x ∈ C([−h,∞), R), where G(x) =
∫x
0
g(s)ds.

Theorem 4.1. Suppose that (4.3) and (4.4) hold. If x(t) is a solution of (4.1), then the derivative

of V along that solution satisfies

V ′(t) ≤ 2g(x)[a ′(t) + ka(t)] − 2g(x)[kx+ C(t, t)g(x)]. (4.7)

If there is an L > 0 with

xg(x) ≥ 0 for |x| ≥ L (4.8)

and if, in addition, there is a µ > 0 with

g(x)[kx+ C(t, t)g(x)] ≥ µg2(x) (4.9)

for |x| ≥ L, then there is an M > 0 with

V ′(t) ≤ −|g(x)|+M (4.10)



CUBO
14, 1 (2012)

Bounded and Periodic Solutions of Integral Equations 71

for all t ≥ 0.

Proof. We first observe that if x is a solution of (4.1), then x is also a solution of (4.5). Now let x

be a solution (4.1) and V(t) be defined in (4.6). We then find that

V ′(t) = 2g(x)x′(t) +

∫t
t−h

Dst(t, s)

(∫t
s

g(x(u))du

)2

ds

−Ds(t, t− h)

(∫t
t−h

g(x(u))du

)2

+ 2g(x(t))

∫t
t−h

Ds(t, s)

∫ t
s

g(x(u))duds.

Integration of the last term by parts and use of (4.4) yield

2g(x(t))

∫ t
t−h

Ds(t, s)

∫t
s

g(x(u))duds

= 2g(x(t))

[
D(t, s)

∫t
s

g(x(u))du
∣∣∣s=t

s=t−h
+

∫ t
t−h

D(t, s)g(x(s))ds

]

= 2g(x(t))

∫ t
t−h

D(t, s)g(x(s))ds. (4.11)

Since Dst(t, s) ≤ 0 and Ds(t, t − h) ≥ 0, the middle two terms of V ′ are not positive, and if we

use (4.5) and (4.11), we obtain

V ′(t) ≤ 2g(x)

[
−kx+ (a′ + ka) − C(t, t)g(x) −

∫ t
t−h

D(t, s)g(x(s))ds

]

+2g(x)

∫ t
t−h

D(t, s)g(x(s))ds

= 2g(x)[a ′(t) + ka(t)] − 2g(x)[kx+ C(t, t)g(x)]

verifying (4.7).

Now we assume that (4.8) and (4.9) hold. We may choose N > 1 so large that µ(N−1) > −B,

where B and µ are defined in (4.4) and (4.9), respectively. If |x| ≥ L, then xg(x) ≥ 0, and by (4.9),
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we obtain for |x(t)| ≥ L that

V ′(t) ≤ 2|g(x)|[|a ′|+ k|a|] − 2g(x)[kx+ C(t, t)g(x)]

= 2|g(x)|[|a ′|+ k|a|] − 2k
1

N
xg(x)

−2

(
1−

1

N

)
g(x)[kx+ C(t, t)g(x)] − 2

1

N
C(t, t)g2(x)

≤ 2|g(x)|[|a ′|+ k|a|] − 2k
1

N
xg(x)

−2

(
1−

1

N

)
µg2(x) + 2

1

N
Bg2(x)

≤ −2|g(x)|

[
1

N
k|x|− (|a ′(t)|+ k|a(t)|)

]
.

We may assume that

L ≥ N[ sup
t≥0

(|a′(t)|+ k|a(t)|) + 1 ]
/
k.

Thus, if |x(t)| ≥ L, then V ′(t) ≤ −|g(x(t))|. Since −C(t, t) ≤ B, it is clear that V ′(t) ≤ M for

0 ≤ |x(t)| ≤ L, where the constant M > 0 is a function of L, and hence,

V ′(t) ≤ −|g(x(t))|+M

for all t ≥ 0. This completes the proof.

To establish boundedness of solutions, we assume that there is a B1 > 0 with

D(t, t) ≤ B1 and

∫ t
t−h

|Cs(t, s)|ds ≤ B1 (4.12)

for t ≥ 0. We then see that∫ t
t−h

Ds(t, s)ds = D(t, t) ≤ B1 and |C(t, t)| ≤
∫t
t−h

|Cs(t, s)|ds ≤ B1.

Theorem 4.2. If (4.3)-(4.4), (4.8)-(4.9), and (4.12) hold, then any solution of (4.1) is bounded.

Proof. Let x be a solution of (4.1) and V(t) be defined in (4.6). Then V(t) is bounded below and

satisfies (4.10). We now show that V(t) is bounded above. If V(t) is unbounded, then there exists

a sequence {tn} ↑ ∞ with V(tn) → ∞ as n → ∞ and

V(tn) ≥ V(s) for 0 ≤ s ≤ tn.
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It then follows from (4.10) that

0 ≤ V(tn) − V(s) ≤ −

∫tn
s

|g(x(u))|du+M(tn − s).

This implies that ∫ tn
s

|g(x(u))|du ≤ M(tn − s) (4.13)

and, in particular, that ∫ tn
s

|g(x(u))|du ≤ M(tn − s) ≤ hM (4.14)

for all tn − h ≤ s ≤ tn. Applying (4.14) to (4.1), We see that

(x(tn)−a(tn))
2 =

(∫tn
tn−h

C(tn, s)g(x(s))ds

)2

=

(
−C(tn, s)

∫ tn
s

g(x(s))ds
∣∣∣s=tn

s=tn−h
+

∫tn
tn−h

Cs(tn, s)

∫tn
s

g(x(u))duds

)2

=

(∫tn
tn−h

Cs(tn, s)

∫tn
s

g(x(u))duds

)2

≤
(
hM

∫ tn
tn−h

|Cs(tn, s)|ds

)2

≤ h2B2
1M

2.

This implies that

|x(tn)| ≤ sup
s≥0

|a(s)|+ hB1M := B2 (4.15)

and that |G(x(tn))| ≤ B3 for a B3 > 0. We now arrive at

V(tn) = 2G(x(tn)) +

∫ tn
tn−h

Ds(tn, s)

(∫ tn
s

g(x(u))du

)2

ds

≤ 2G(x(tn)) + h2M2

∫ tn
tn−h

Ds(tn, s)ds

≤ 2B3 + B1h
2M2 := B4, (4.16)

a contradiction. Thus, V(t) is bounded. In fact, we have

2G(x(t)) ≤ V(t) ≤ max{V(0), B4}

and hence

|V(t)| ≤ K for all t ≥ 0 (4.17)
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where K := 2|η|+ 2|G(x(0))|+ B4 with η = inf{G(u) : u ∈ R}.

We now integrate (4.10) from s to t and use (4.17) to obtain∫ t
s

|g(x(u))|du ≤ V(s) − V(t) +M(t− s) ≤ 2K+M(t− s)

and hence ∫ t
s

|g(x(u))|du ≤ 2K+ hM for tn − h ≤ s ≤ tn. (4.18)

Applying (4.18) to (4.1) we find that

|x(t)| ≤ |a(t)|+

∣∣∣∣∫ t
t−h

C(t, s)g(x(s))ds

∣∣∣∣
≤ |a(t)|+

∣∣∣∣C(t, t− h)

∫ t
t−h

g(x(s))ds+

∫t
t−h

Cs(t, s)

∫ t
s

g(x(u))duds

∣∣∣∣
≤ |a(t)|+

∫ t
t−h

|Cs(t, s)|[2K+ hM]ds

≤ sup
s≥0

|a(s)|+ B1(2K+ hM). (4.19)

This implies that x is bounded. The proof is complete.

We now consider the existence of periodic solutions of (4.1). We assume that a : R → R, C :

R× R → R, and g : R → R are continuous and that there is a T > 0 with

a(t+ T) = a(t), C(t+ T, s+ T) = C(t, s) (4.20)

for all t ≥ s. If (4.20) holds, then C(t, t) and
∫t
t−h

|Cs(t, s)|ds are T -periodic, and so there are B

and B1 with

C(t, t) ≥ −B,

∫ t
t−h

|Cs(t, s)|ds ≤ B1;

then part of (4.4) and (4.12) are satisfied. We define a companion of (4.1) by

x(t) = λ

[
a(t) −

∫t
t−h

C(t, s)g(x(s))ds

]
, 0 ≤ λ ≤ 1 (4.21)

for t ∈ R and form a differential equation

x ′ + kx = λ

[
a ′ + ka− C(t, t)g(x) −

∫ t
t−h

D(t, s)g(x(s))ds

]
. (4.22)
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To obtain an a priori bound for all T -periodic solutions of (4.21), we define

V1(t) = 2G(x(t)) + λ

∫ t
t−h

Ds(t, s)

(∫ t
s

g(x(u))du

)2

ds (4.23)

for t ∈ R and x ∈ (PT , ‖ · ‖).

Theorem 4.3. If (4.3)-(4.4), (4.8)-(4.9), and (4.20) hold for t ≥ s, then (4.1) has a T -periodic

solution.

Proof. Let x be a T -periodic solution of (4.21) and V1(t) be defined in (4.23). Then we have

V ′
1(t) ≤ −|g(x)|+M (4.24)

for t ≥ 0 and for an M > 0 independent of x and λ. Since V1(t) is T -periodic, V1(t) has a global

maximum at q ∈ [0, T ], and hence, at tn = q+ nT . We then have

0 ≤ V1(tn) − V1(s) ≤ −

∫ tn
s

|g(x(u))|du+M(tn − s)

for all s ≤ tn. An argument similar to that of (4.13)-(4.16) shows that V1(tn) ≤ B4 with B4

defined just after (4.16). Observing that

V1(0) ≤ V1(tn) ≤ B4,

we see that |V1(t)| ≤ K with K = 2|η| + B4, where η = inf{G(u) : u ∈ R}. We then follow the

argument in (4.19) to arrive at

|x(t)| < sup
s≥0

|a(s)|+ B1(2K+ hM)) + 1 := B∗ (4.25)

for all t ∈ R. This implies that ‖x‖ < B∗ whenever x is a T -periodic solution of (4.21) for 0 ≤ λ ≤ 1.

Define a mapping F on PT by

F(φ)(t) = a(t) −

∫ t
t−h

C(t, s)g(φ(s))ds (4.26)

for each φ ∈ PT . It is clear that F(φ) ∈ PT . We will show that F is continuous on PT and is

compact on each bounded subset of PT . If φ̃, φ ∈ PT , then

|F(φ)(t) − F(φ̃)(t)| =

∣∣∣∣∫ t
t−h

C(t, s)g(φ(s))ds−

∫t
t−h

C(t, s)g(φ̃(s))ds

∣∣∣∣ (4.27)

=

∣∣∣∣∫ t
t−h

Cs(t, s)

(∫ t
s

g(φ(v))dv−

∫t
s

g(φ̃(v))dv

)
ds

∣∣∣∣ .
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Since g is uniformly continuous on {x ∈ R : |x| ≤ ‖φ̃‖+1}, then for any ε > 0, there exists 0 < δ < 1

such that ‖φ− φ̃‖ < δ implies |g(φ(s)) − g(φ̃(s))| < ε for all s ∈ [0, T ]. It follows from (4.27) that

‖F(φ) − F(φ̃)‖ ≤ hB1ε. Thus, F is continuous on PT .

We now show that F is compact on each bounded subset of PT . Let η > 0 and define

Γ = {F(φ) : φ ∈ PT , ‖φ‖ ≤ η}. (4.28)

Observe that

d

dt
F(φ)(t) = a′(t) − C(t, t)g(φ(t)) −

∫ t
t−h

Ct(t, s)g(φ(s))ds

= a′(t)−C(t, t)g(φ(t))−

∫ t
t−h

D(t, s)g(φ(s))ds+ k

∫ t
t−h

C(t, s)g(φ(s))ds

= a′(t)−C(t, t)g(φ(t))−

∫ t
t−h

D(t, s)g(φ(s))ds+ k

∫ t
t−h

Cs(t, s)

∫ t
s

g(φ(v))dvds

and that

|
d

dt
F(φ)(t)| ≤ ‖a′‖+ g∗ sup

0≤t≤T

[
|C(t, t)|+

∫t
t−h

D(t, s)ds+ k

∫t
t−h

|Cs(t, s)|(t− s)ds

]
≤ ‖a′‖+ g∗[ sup

0≤t≤T

|C(t, t)|+ hB1 + hkB1]

where g∗ = sup{|g(u)| : |u| ≤ η}; thus, Γ is equi-continuous. The uniform boundedness of Γ follows

from the inequality

|F(φ)(t)| ≤ ‖a‖+
∫t
t−h

|Cs(t, s)|

∫ t
s

|g(φ(v))|dv ≤ ‖a‖+ hB1g
∗

for all φ ∈ Γ . So, by the Ascoli-Arzela theorem, Γ lies in a compact subset of PT . By Schaefer’s

theorem, we see F has a fixed point which is a T -periodic solution of (4.1). The proof is complete.

We now give two examples which show a connection between this section and Sections 2 and

3.

Example 1. Consider the scalar equation

x(t) = a(t) −

∫ t
−∞ C(t− s)g(x(s))ds (4.29)

where

C(t) = (−1)n(t− h)n, 0 ≤ t ≤ h, n = 3, 4, .. (4.30)

= 0, t ≥ h
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for some h > 0. It is readily verified that C ′′ is continuous for 0 ≤ t < ∞ and that C(t − s) is

convex. Moreover, using two changes of variable we find that

x(t) = a(t) −

∫∞
0

C(u)g(x(t− u))du (4.31)

= a(t) −

∫h
0

C(u)g(x(t− u))du

= a(t) −

∫ t
t−h

C(t− s)g(x(s))ds

and C(h) = C ′(h) = C ′′(h) = 0. All of the work in Sections 2 and 4 hold for this equation.

Example 2. Consider

x(t) = a(t) −

∫t
0

C(t− s)g(x(s))ds (4.32)

with solution φ on [0, h] where C satisfies (4.30). Then for t ≥ h we have

x(t) = a(t) −

∫ t
t−h

C(t− s)g(x(s))ds, t ≥ h, (4.33)

with initial function φ on [0, h].

Theorem 4.4 Let dg(x)
dx

be continuous, let x(t) be the unique solution of (4.32), and let y(t)

be any continuous solution of (4.33). Suppose that there is an L > 0 with dg(x)
dx

≥ L. Then

z(t) := x(t) − y(t) ∈ L2[h,∞). If, in addition, there is an M > 0 with dg(x)
dx

≤ M, then z(t) → 0

as t → ∞.

Proof. We have for t ≥ h that

z(t) = −

∫ t
t−h

C(t− s)[g(x(s) − g(y(s))]ds (4.34)

= −

∫ t
t−h

C(t− s)
dg(ξ(s))

dx
z(s)ds (4.35)

where ξ(s) is between x(s) and y(s). Define a Liapunov functional by

V(t) =

∫ t
t−h

Cs(t− s)

( ∫ t
s

[g(x(u)) − g(y(u))]du

)2

ds (4.36)

with derivative satisfying

V ′(t) ≤ −2[g(x(t)) − g(y(t))][x(t) − y(t)] = −2
dg(ξ(t))

dx
z2(t) ≤ −2Lz2(t). (4.37)
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This yields the first conclusion. With the last assumption, note that

|z(t)| ≤ M

∫ t
t−h

|C(t− s)||z(s)|ds (4.38)

≤ M

√∫ t
t−h

C2(t− s)ds

∫ t
t−h

z2(s)ds (4.39)

≤ M

√
h2n+1

∫ t
t−h

z2(s)ds (4.40)

and ∫t
t−h

z2(s)ds → 0 as t → ∞. (4.41)

Under the conditions here, with C defined by (4.30) we see that the solutions of the equations

in Sections 2, 3, and 4 all converge to the same function both pointwise and in L2.

Received: April 2011. Revised: May 2011.
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