Integral composition operators between weighted Bergman spaces and weighted Bloch type spaces

Elke Wolf
University of Paderborn, Mathematical Institute, D-33095 Paderborn, Germany, email: lichte@math.uni-paderborn.de

Abstract

We characterize boundedness and compactness of integral composition operators acting between weighted Bergman spaces $A_{\nu, p}$ and weighted Bloch type spaces B_{w}.

RESUMEN

Caracterizamos la acotación y compacidad de operadores integrales compuestos actuando entre espacios de Bergman con peso $A_{v, p}$ y espacios B_{w} de tipo Bloch con peso.

Keywords and Phrases: Weighted Bergman spaces, integral composition operator, weighted Bloch type spaces

2010 AMS Mathematics Subject Classification: 47B33, 47B38.

1 Introduction

Let $\mathrm{H}(\mathbb{D})$ denote the set of all analytic functions on the open unit disk \mathbb{D} of the complex plane. A map $\mathrm{g} \in \mathrm{H}(\mathbb{D})$ induces the Volterra type or Riemann-Stieltjes operator

$$
\mathrm{J}_{\mathrm{g}}: \mathrm{H}(\mathbb{D}) \rightarrow \mathrm{H}(\mathbb{D}), \mathrm{f} \mapsto \int_{0}^{z} f(\xi) g^{\prime}(\xi) \mathrm{d} \xi, z \in \mathbb{D}
$$

This operator appears naturally in the study of pointwise multiplication operators since with the companion integral operator

$$
\mathrm{I}_{\mathrm{g}}: \mathrm{H}(\mathbb{D}) \rightarrow \mathrm{H}(\mathbb{D}), \mathrm{f} \mapsto \int_{0}^{z} \mathrm{f}^{\prime}(\xi) \mathrm{g}(\xi) \mathrm{d} \xi, z \in \mathbb{D}
$$

we have that

$$
J_{g} f+I_{g} f=M_{g} f-f(0) g(0)
$$

where M_{g} denotes the pointwise multiplication operator given by

$$
M_{g}: H(\mathbb{D}) \rightarrow H(\mathbb{D}),\left(M_{g} f\right)(z)=g(z) f(z), z \in \mathbb{D}
$$

See e.g. [1], [2], [3], [17] or [21].
Moreover, let v and w be strictly positive bounded and continuous functions (weights) on \mathbb{D}. Then the weighted Bergman space $A_{\nu, p}$ is defined as follows

$$
A_{v, p}=\left\{f \in H(\mathbb{D}) ;\|f\|_{v, p}:=\left(\int_{\mathbb{D}}|f(z)|^{p} v(z) d A(z)\right)^{\frac{1}{p}}<\infty\right\}, 1 \leq p<\infty
$$

where $\mathrm{d} A(z)$ is the area measure on \mathbb{D} normalized so that area of \mathbb{D} is 1 . Furthermore, we consider the weighted Bloch type spaces B_{w} of functions $f \in H(\mathbb{D})$ satisfying $\|f\|_{B_{w}}:=\sup _{z \in \mathbb{D}} w(z)\left|f^{\prime}(z)\right|<$ ∞. Provided we identify functions that differ by a constant, $\|\cdot\|_{\mathrm{B}_{w}}$ becomes a norm and B_{w} a Banach space.
Let ϕ be an analytic self-map of \mathbb{D}. In [13] Li characterized boundedness and compactness of Volterra composition operators

$$
\left(\mathrm{J}_{\mathrm{g}, \phi} \mathrm{f}\right)(z)=\int_{0}^{z}(\mathrm{f} \circ \phi)(\xi)(\mathrm{g} \circ \phi)^{\prime}(\xi) \mathrm{d} \xi, z \in \mathbb{D}
$$

and the integral composition operators

$$
\left(\mathrm{I}_{\mathrm{g}, \phi} \mathrm{f}\right)(z)=\int_{0}^{z}(\mathrm{f} \circ \phi)^{\prime}(\xi)(\mathrm{g} \circ \phi)(\xi) \mathrm{d} \xi, z \in \mathbb{D}
$$

acting between weighted Bergman spaces and weighted Bloch type spaces, both generated by standard weights. In [19] we generalized his results related to the Volterra composition operators $\mathrm{J}_{\mathrm{g}, \phi}$
to a more general setting. In this article our aim is to characterize boundedness and compactness of the integral composition operators $\mathrm{I}_{\mathrm{g}, \boldsymbol{\phi}}$ acting between weighted Bergman spaces and weighted Bloch type spaces generated by a quite general class of weights.

2 The setting

This section is devoted to the description of the setting in which we are interested. Let v be a holomorphic function on \mathbb{D}, non-vanishing, strictly positive on $\left[0,1\right.$ [and satisfying $\lim _{r \rightarrow 1} v(r)=0$. Then we define the weight v as follows

$$
\begin{equation*}
v(z):=v\left(|z|^{2}\right) \text { for every } z \in \mathbb{D} \tag{2.1}
\end{equation*}
$$

Next, we give some illustrating examples of weights of this type:
(i) Consider $v(z)=(1-z)^{\alpha}, \alpha>0$. Then the corresponding weight is the so-called standard weight $v(z)=\left(1-|z|^{2}\right)^{\alpha}$.
(ii) Select $v(z)=e^{-\frac{1}{(1-z)^{\alpha}}}, \alpha>0$. Then we obtain the weight $v(z)=e^{-\frac{1}{\left(1-|z|^{2}\right)^{\alpha}}}$.
(iii) Choose $v(z)=\sin (1-z)$ and the corresponding weight is given by $v(z)=\sin \left(1-|z|^{2}\right)$.
(iv) Let $v(z)=(1-\log (1-z))^{\beta}$ for some $\beta<0$. Then we get $v(z)=\left(1-\log \left(1-|z|^{2}\right)\right)^{\beta}$.

For a fixed point $a \in \mathbb{D}$ we introduce a function $v_{a}(z):=v(\bar{a} z)$ for every $z \in \mathbb{D}$. Since v is holomorphic on \mathbb{D}, so is the function v_{a}.
We say that a weight v is radial if $v(z)=v(|z|)$ for every $z \in \mathbb{D}$. Moreover, radial weights are typical if additionally $\lim _{|z| \rightarrow 1} v(z)=0$ holds. Thus, we introduced a class of typical weights. In [15] Lusky studied weights satisfying the following condition (L1) which was renamed after the author:
(L1) $\inf _{n \in \mathbb{N}} \frac{v\left(1-2^{-n-1}\right)}{v\left(1-2^{-n}\right)}>0$.
Among others examples of weights satisfying condition (L1) are the standard weights (see Example (i)) and the logarithmic weights (Example (iv)). Throughout this work condition (L1) will play a great role, and we will need the following condition (\mathcal{A}) which is equivalent to (L1):
(A) there are $0<r<1$ and $1<C<\infty$ with $\frac{v(z)}{v(p)} \leq C$ for all $p, z \in \mathbb{D}$ with $\rho(p, z) \leq r$.

The equivalence of the conditions (L1) and (A) was shown in [10]. See also [14].

3 Basic facts

We need some geometric data of the open unit disk. Fix $a \in \mathbb{D}$ and consider the authomorphism $\varphi_{\mathrm{a}}(z):=\frac{z-\bar{a}}{1-\overline{\mathrm{a}} z}, z \in \mathbb{D}$, which interchanges 0 and a. Moreover, we use the fact that

$$
\varphi_{\mathrm{a}}^{\prime}(z)=\frac{|\mathrm{a}|^{2}-1}{(1-\overline{\mathrm{a}} z)^{2}}, z \in \mathbb{D}
$$

Now, the pseudohyperbolic metric is given by

$$
\rho(z, a)=\left|\varphi_{a}(z)\right|, z, a \in \mathbb{D} .
$$

One of the most important properties of the pseudohyperbolic metric is that it is Möbius invariant, that is,

$$
\rho(\sigma(z), \sigma(a))=\rho(z, a) \text { for every automorphism } \sigma \text { of } \mathbb{D}, z, a \in \mathbb{D}
$$

The pseudohyperbolic metric is a true metric. In fact, it even satisfies a stronger version of the triangle inequality, more precisely, for every $z, a, b \in \mathbb{D}$ we have that

$$
\rho(z, a) \leq \frac{\rho(z, b)+\rho(b, a)}{1+\rho(z, b) \rho(b, a)}
$$

4 Results

Before we are able to treat boundedness and compactness of operators $\mathrm{I}_{\mathrm{g}, \phi}$ we need a number of auxiliary lemmas. The first lemma is taken from [18].

Lemma 1. Let v be a weight as defined in (2.1) such that $\sup _{a \in \mathbb{D}} \sup _{z \in \mathbb{D}} \frac{v(z)\left|v_{a}\left(\varphi_{a}(z)\right)\right|}{v\left(\varphi_{a}(z)\right)} \leq C<\infty$. Then

$$
|f(z)| \leq \frac{C^{\frac{1}{p}}}{v(0)^{\frac{1}{p}}\left(1-|z|^{2}\right)^{\frac{2}{p}} v(z)^{\frac{1}{p}}}\|f\|_{v, p}
$$

for all $z \in \mathbb{D}, \mathrm{f} \in \mathcal{A}_{v, \mathrm{p}}$.

Calculations show that the examples (i) -(iv) which were listed up above satisfy the assumptions of the previous lemma. The next lemma was shown in [20].

Lemma 2. Let v be a radial weight as defined in (2.1) such that v additionally satisfies condition (L1). Then for every $\mathrm{f} \in \mathrm{A}_{v, \mathrm{p}}$ there is $\mathrm{C}_{v}>0$ such that

$$
|f(z)-f(w)| \leq C_{v}\|f\|_{v, p} \max \left\{\frac{1}{\left(1-|z|^{2}\right)^{\frac{2}{p}} v(z)^{\frac{1}{p}}}, \frac{1}{\left(1-|w|^{2}\right)^{\frac{2}{p}} v(w)^{\frac{1}{p}}}\right\} \rho(z, w)
$$

for every $z, w \in \mathbb{D}$.

Lemma 3. Let v be a radial weight as defined in (2.1) such that v additionally satisfies condition (L1) and $\sup _{\mathrm{a} \in \mathbb{D}} \sup _{z \in \mathbb{D}} \frac{v(z)\left|v_{a}\left(\varphi_{\mathrm{a}}(z)\right)\right|}{v\left(\varphi_{\mathrm{a}}(z)\right)} \leq \mathrm{C}<\infty$. Then

$$
\left|f^{\prime}(z)\right| \leq \frac{C^{\frac{1}{p}}}{v(0)^{\frac{1}{p}}\left(1-|z|^{2}\right)^{\frac{2}{p}+1} v(z)^{\frac{1}{p}}}\|f\|_{v, p}
$$

for every $z \in \mathbb{D}$ and every $\mathrm{f} \in \mathcal{A}_{v, \mathrm{p}}$.

Proof. Lemma 2 yields that for every $f \in A_{v, p}$ and every $h, z \in \mathbb{D}$ with $z+h \in \mathbb{D}$, we have
$|f(z+h)-f(z)| \leq C_{v}\|f\|_{\nu, p} \max \left\{\frac{1}{\left(1-|z+h|^{2}\right)^{\frac{2}{p}} v(z+h)^{\frac{1}{p}}}, \frac{1}{\left(1-|z|^{2}\right)^{\frac{2}{p}} v(z)^{\frac{1}{p}}}\right\} \frac{|h|}{|1-\bar{z}(z+h)|}$.
Hence
$\left|\frac{f(z+h)-f(z)}{h}\right| \leq C_{v}\|f\|_{v, p} \max \left\{\frac{1}{\left(1-|z+h|^{2}\right)^{\frac{2}{p}} v(z+h)^{\frac{1}{p}}}, \frac{1}{\left(1-|z|^{2}\right)^{\frac{2}{p}} v(z)^{\frac{1}{p}}}\right\} \frac{1}{|1-\bar{z}(z+h)|}$
and finally

$$
\begin{aligned}
\left|f^{\prime}(z)\right| & =\left|\lim _{h \rightarrow 0} \frac{f(z+h)-f(z)}{h}\right| \\
& \leq \lim _{h \rightarrow 0} C_{v}\|f\|_{v, p} \max \left\{\frac{1}{\left(1-|z+h|^{2}\right)^{\frac{2}{p}} v(z+h)^{\frac{1}{p}}}, \frac{1}{\left(1-|z|^{2}\right)^{\frac{2}{p}} v(z)^{\frac{1}{p}}}\right\} \frac{1}{|1-\bar{z}(z+h)|} \\
& =C_{v}\|f\|_{v, p} \frac{1}{\left(1-|z|^{2}\right)^{\frac{2}{p}+1} v(z)^{\frac{1}{p}}}
\end{aligned}
$$

for every $z \in \mathbb{D}$, as desired.
Lemma 4. Let v be a radial weight as in Lemma 3. Then there exist $0<\mathrm{r}<1$ and a constant $M>0$ such that for $\mathrm{f} \in \mathrm{A}_{v, \mathrm{p}}$

$$
\left|f^{\prime}(z)-f^{\prime}(w)\right| \leq \frac{4 M C^{\frac{1}{p}}}{v(0)^{\frac{1}{p}}} \frac{\|f\|_{v, p}}{r\left(1-|z|^{2}\right)^{\frac{2}{p}+1} v(z)^{\frac{1}{p}}} \rho(z, w)
$$

for every $z, w \in \mathbb{D}$ with $\rho(z, w) \leq \frac{r}{2}$.

Proof. By hypotesis, v has condition (L1), and, moreover, we know that (L1) is equivalent to condition (A). Since the weight $u(z)=1-|z|^{2}$ also satisfies condition (L1), we can find $0<r<1$ and constants $M_{1}<\infty$ and $M_{2}<\infty$ such that

$$
\frac{v(z)}{v(w)} \leq M_{1} \text { and } \frac{1-|z|^{2}}{1-|w|^{2}} \leq M_{2} \text { for every } z, w \in \mathbb{D} \text { with } \rho(z, w) \leq r
$$

Let $w \in \mathbb{D}$ be fixed. Since

$$
\varphi_{w}\left(\varphi_{w}(z)\right)=z \text { and } \varphi_{w}(0)=w
$$

we get that

$$
\left|f^{\prime}(z)-f^{\prime}(w)\right|=\mid f^{\prime}\left(\varphi_{w}\left(\varphi_{w}(z)\right)-f^{\prime}\left(\varphi_{w}\left(\varphi_{w}(w)\right) \mid\right.\right.
$$

For $|z|=\rho\left(\varphi_{w}(z), w\right) \leq r$ we obtain by using Lemma 3

$$
\begin{aligned}
\left|f^{\prime}\left(\varphi_{w}(z)\right)\right| & \leq \frac{C^{\frac{1}{p}}\|f\|_{v, p}}{v(0)^{\frac{1}{p}}\left(1-\left|\varphi_{w}(z)\right|^{2}\right)^{\frac{2}{p}+1} v\left(\varphi_{w}(z)\right)^{\frac{1}{p}}} \\
& =\frac{C^{\frac{1}{p}}\|f\|_{v, p}}{v(0)^{\frac{1}{p}}\left(1-|w|^{2}\right)^{\frac{2}{p}+1} v(w)^{\frac{1}{p}}} \frac{\left(1-|w|^{2}\right)^{\frac{2}{p}+1} v(w)^{\frac{1}{p}}}{\left(1-\left|\varphi_{w}(z)\right|^{2}\right)^{\frac{2}{p}+1} v\left(\varphi_{w}(z)\right)^{\frac{1}{p}}} \\
& \leq \frac{C^{\frac{1}{p}} M_{1}^{\frac{1}{p}} M_{2}^{\frac{2}{p}+1}}{v(0)^{\frac{1}{p}}} \frac{\|f\|_{v, p}}{\left(1-|w|^{2}\right)^{\frac{2}{p}+1} v(w)^{\frac{1}{p}}}
\end{aligned}
$$

Let us now consider $g_{w}(z):=f^{\prime}\left(\varphi_{w}(z)\right)$ for every $z \in \mathbb{D}$. Thus, for $\rho(z, w)=\left|\varphi_{w}(z)\right| \leq \frac{r}{2}$ we can find $\Theta \in \mathbb{D}$ with $|\Theta| \leq\left|\varphi_{w}(z)\right| \leq \frac{r}{2}$ such that

$$
\begin{aligned}
\left|f^{\prime}(z)-f^{\prime}(w)\right| & =\left|g_{w}\left(\varphi_{w}(z)\right)-g_{w}(0)\right| \\
& \leq\left|\varphi_{w}(z)\right|\left|\int_{0}^{1}\left[\frac{\partial}{\partial t} g_{w}\right]\left(t \varphi_{w}(z)\right) d t\right| \\
& \leq\left|\varphi_{w}(z)\right|\left|\frac{\partial}{\partial z} g_{w}(\Theta)\right| \\
& =\left|\varphi_{w}(z)\right| \frac{1}{2 \pi}\left|\int_{|\xi|=r} \frac{g_{w}(\xi)}{(\xi-\Theta)^{2}} d \Theta\right|
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\left|f^{\prime}(z)-f^{\prime}(w)\right| \leq \frac{C^{\frac{1}{p}} M_{1}^{\frac{1}{p}}}{v(0)^{\frac{1}{p}}} \frac{\left|\varphi_{w}(z)\right| r\|f\|_{v, p}}{} & \frac{\left(r-\left|\varphi_{w}(z)\right|\right)^{2}\left(1-|w|^{2}\right)^{\frac{2}{p}+1} v(w)^{\frac{1}{p}}}{(r)} \\
& \leq \frac{4 C^{\frac{1}{p}} M_{1}^{\frac{1}{p}} M_{2}^{\frac{2}{p}+1}}{v(0)^{\frac{1}{p}}} \frac{\rho(z, w)\|f\|_{v, p}}{r\left(1-|w|^{2}\right)^{\frac{2}{p}+1} v(w)^{\frac{1}{p}}}
\end{aligned}
$$

We select $M:=M_{1}^{\frac{1}{p}} M_{2}^{\frac{2}{p}+1}$ and obtain the claim.
Lemma 5. Let v be a weight as in Lemma 3. Then, there is $\mathrm{C}_{v}>0$ such that for every $\mathrm{f} \in \mathcal{A}_{v, \mathrm{p}}$

$$
\left|f^{\prime}(z)-f^{\prime}(w)\right| \leq C_{v}\|f\|_{v, p} \max \left\{\frac{1}{\left(1-|z|^{2}\right)^{\frac{2}{p}+1} v(z)^{\frac{1}{p}}}, \frac{1}{\left(1-|w|^{2}\right)^{\frac{2}{p}+1} v(w)^{\frac{1}{p}}}\right\} \rho(z, w)
$$

for every $z, w \in \mathbb{D}$.

Proof. By Lemma 4 we can find $0<s<1$ and a constant $M<\infty$ such that

$$
\left|f^{\prime}(z)-f^{\prime}(w)\right| \leq \frac{4 M C^{\frac{1}{p}}}{v(0)^{\frac{1}{p}}} \frac{\|f\|_{v, p}}{s\left(1-|z|^{2}\right)^{\frac{2}{p}+1} v(z)^{\frac{1}{p}}} \rho(z, w)
$$

for every $z, w \in \mathbb{D}$ with $\rho(z, w) \leq \frac{s}{2}$. Next, if $\rho(z, w)>\frac{s}{2}$, then

$$
\begin{aligned}
\mid f^{\prime}(z) & -f^{\prime}(w) \left\lvert\, \leq 2 \frac{C^{\frac{1}{p}}}{v(0)^{\frac{1}{p}}}\|f\|_{v, p} \max \left\{\frac{1}{\left(1-|z|^{2}\right)^{\frac{2}{p}+1} v(z)^{\frac{1}{p}}}, \frac{1}{\left(1-|w|^{2}\right)^{\frac{2}{p}+1} v(w)^{\frac{1}{p}}}\right\}\right. \\
& \leq \frac{4}{s} \frac{C^{\frac{1}{p}}}{v(0)^{\frac{1}{p}}}\|f\|_{v, p} \max \left\{\frac{1}{\left(1-|z|^{2}\right)^{\frac{2}{p}+1} v(z)^{\frac{1}{p}}}, \frac{1}{\left(1-|w|^{2}\right)^{\frac{2}{p}+1} v(w)^{\frac{1}{p}}}\right\} \rho(z, w)
\end{aligned}
$$

Hence, with $C_{v}:=\max \left\{\frac{4 M C^{\frac{1}{p}}}{v(0)^{\frac{1}{p}} s}, \frac{4 C^{\frac{1}{p}}}{s v(0)^{\frac{1}{p}}}\right\}$, we conclude

$$
\left|f^{\prime}(z)-f^{\prime}(w)\right| \leq C_{v} \max \left\{\frac{1}{\left(1-|z|^{2}\right)^{\frac{2}{p}+1} v(z)^{\frac{1}{p}}}, \frac{1}{\left(1-|w|^{2}\right)^{\frac{2}{p}+1} v(w)^{\frac{1}{p}}}\right\} \rho(z, w)
$$

for every $z, w \in \mathbb{D}$ and the claim follows.

Inductively, we can show the following lemmas:
Lemma 6. Let v be a weight as in Lemma 3. Then there is $\mathrm{C}_{v}>0$ such that for every $\mathrm{f} \in \mathcal{A}_{v, \mathrm{p}}$

$$
\left|f^{(n)}(z)\right| \leq \frac{C_{v}}{\left(1-|z|^{2}\right)^{\frac{2}{p}+n} v(z)^{\frac{1}{p}}}\|f\|_{v, p}
$$

for every $z \in \mathbb{D}$ and every $\mathrm{n} \in \mathbb{N}_{0}$.
Lemma 7. Let v be a weight as in Lemma 3. Then there exists $C_{v}>0$ such that for every $f \in A_{v, p}$

$$
\left|f^{(n)}(z)-f^{(n)}(w)\right| \leq C_{v}\|f\|_{v, p} \max \left\{\frac{1}{\left(1-|z|^{2}\right)^{\frac{2}{p}+n} v(z)^{\frac{1}{p}}}, \frac{1}{\left(1-|w|^{2}\right)^{\frac{2}{p}+n} v(w)^{\frac{1}{p}}}\right\} \rho(z, w)
$$

for every $\boldsymbol{z}, \boldsymbol{w} \in \mathbb{D}$ and every $\mathfrak{n} \in \mathbb{N}_{0}$.

Now, we turn our attention to the operators $I_{g, \phi}$ and start with characterizing when they are bounded.

Theorem 8. Let w be a weight and v be a weight as in Lemma 3 with $M:=\sup _{a \in \mathbb{D}} \sup _{z \in \mathbb{D}} \frac{v(z)}{|v(\bar{a})|}<$ ∞. If

$$
\begin{equation*}
\sup _{z \in \mathbb{D}} \frac{w(z)\left|\phi^{\prime}(z) g(\phi(z))\right|}{\left(1-|\phi(z)|^{2}\right)^{\frac{2}{p}+1} v(\phi(z))^{\frac{1}{p}}}<\infty \tag{4.1}
\end{equation*}
$$

then the operator $\mathrm{I}_{\mathfrak{g}, \phi}: \mathrm{A}_{v, \mathrm{p}} \rightarrow \mathrm{B}_{w}$ is bounded. If we assume additionally that

$$
\begin{equation*}
\sup _{z \in \mathbb{D}} \frac{\left|v^{\prime}\left(|\phi(z)|^{2}\right)\right| w(z)\left|\phi^{\prime}(z) g(\phi(z))\right|}{v(\phi(z))^{\frac{1}{p}+1}\left(1-|\phi(z)|^{2}\right)^{\frac{2}{p}}}<\infty \tag{4.2}
\end{equation*}
$$

then the converse is also true.

Proof. We start with assuming that the operator $\mathrm{I}_{\mathrm{g}, \boldsymbol{\phi}}$ is bounded and that the condition (4.2) is satisfied. Fix a point $a \in \mathbb{D}$ and set

$$
\mathrm{f}_{\mathrm{a}}(z):=\frac{\varphi_{\mathrm{a}}^{\prime}(z)^{\frac{2}{p}}}{v(\overline{\mathrm{a}} z)^{\frac{1}{p}}} \text { for every } z \in \mathbb{D} .
$$

Then

$$
\|f\|_{v, p}^{p}=\int_{\mathbb{D}} \frac{\left|\varphi_{\mathrm{a}}^{\prime}(z)\right|^{2}}{|v(\overline{\mathrm{a}} z)|} v(z) \mathrm{d} A(z) \leq \sup _{z \in \mathbb{D}} \frac{v(z)}{|v(\overline{\mathrm{a}} z)|} \int_{\mathbb{D}}\left|\varphi_{\mathrm{a}}^{\prime}(z)\right|^{2} \mathrm{~d} A(z) \leq \sup _{z \in \mathbb{D}} \frac{v(z)}{|v(\overline{\mathrm{a}} z)|} \leq M
$$

and the constant M is independent of the choice of the point a. For the derivative we have

$$
f_{a}^{\prime}(z)=\frac{2}{p} \frac{\varphi_{a}^{\prime}(z)^{\frac{2}{p}-1} \varphi_{a}^{\prime \prime}(z)}{v(\bar{a} z)^{\frac{1}{p}}}-\frac{1}{p} \frac{\bar{a} v^{\prime}(\bar{a} z) \varphi_{a}^{\prime}(z)^{\frac{2}{p}}}{v(\bar{a} z)^{\frac{1}{p}+1}}
$$

for every $z \in \mathbb{D}$. Hence we can find a constant $C^{*}>0$ such that

$$
\begin{aligned}
\left|\frac{w(a)\left|\phi^{\prime}(a) \| g(\phi(a))\right|}{\left(1-|\phi(a)|^{2}\right)^{\frac{2}{p}+1} v(\phi(a))^{\frac{1}{p}}}-\frac{\left|v^{\prime}\left(|\phi(a)|^{2}\right)\right| w(a)\left|\phi^{\prime}(a) g(\phi(a))\right|}{v(\phi(a))^{\frac{1}{p}+1}\left(1-|\phi(a)|^{2}\right)^{\frac{2}{p}}}\right| & \leq\left|f_{\phi(a)}^{\prime}(\phi(a))\right| w(a)\left|g(\phi(a)) \| \phi^{\prime}(a)\right| \mid \\
& \leq\left|\left(I_{g, \phi} f_{\phi(a)}\right)^{\prime}(a)\right| w(a) \\
& \leq C^{*}\left\|J_{g, \phi}\right\|\left\|f_{\phi(a)}\right\|_{v, p}
\end{aligned}
$$

Finally, since (4.2) is fulfilled and the operator $\mathrm{I}_{\mathrm{g}, \phi}$ is bounded, the claim follows. Conversely, an application of Lemma 3 yields for $\mathrm{f} \in \mathcal{A}_{v, \mathrm{p}}$

$$
\begin{aligned}
\sup _{z \in \mathbb{D}}\left|\left(\mathrm{I}_{g, \phi} f\right)^{\prime}(z)\right| w(z) & =\sup _{z \in \mathbb{D}}\left|f^{\prime}(\phi(z))\|g(\phi(z))\| \phi^{\prime}(z)\right| w(z) \\
& \leq \sup _{z \in \mathbb{D}} \frac{C^{\frac{1}{p}}\|f\|_{v, p} w(z)\left|g(\phi(z)) \| \phi^{\prime}(z)\right|}{v(0)^{\frac{1}{p}}\left(1-\left.\phi(z)\right|^{2}\right)^{\frac{2}{p}+1} v(\phi(z))^{\frac{1}{p}}}
\end{aligned}
$$

Hence the claim follows.

Next, we study, when such operators are compact. To do this we need a lemma which can easily be derived from [9] Proposition 3.11.

Lemma 9. Let v and w be weights. Then the operator $\mathrm{I}_{\mathfrak{g}, \phi}: \mathrm{A}_{v, \mathrm{p}} \rightarrow \mathrm{B}_{w}$ is compact if and only if it is bounded and for every bounded sequence $\left(f_{n}\right)_{n}$ in $A_{v, p}$ which converges to zero uniformly on the compact subsets of $\mathbb{D}, \mathrm{I}_{\mathrm{g}, \phi} \mathrm{f}_{\mathrm{n}}$ tends to zero in B_{w} if $\mathrm{n} \rightarrow \infty$.

Theorem 10. Let w be a weight and v be a weight as in Theorem 8. Moreover, we assume that $\mathrm{I}_{\mathrm{g}, \phi}: \mathrm{A}_{v, \mathrm{p}} \rightarrow \mathrm{B}_{w}$ is bounded. If

$$
\begin{equation*}
\lim _{r \rightarrow 1} \sup _{|\phi(z)|>r} \frac{w(z)\left|\phi^{\prime}(z) g(\phi(z))\right|}{\left(1-|\phi(z)|^{2}\right)^{\frac{2}{p}+1} v(\phi(z))^{\frac{1}{p}}}=0 \tag{4.3}
\end{equation*}
$$

then the operator $\mathrm{I}_{\mathrm{g}, \Phi}: \mathrm{A}_{v, \mathrm{p}} \rightarrow \mathrm{B}_{w}$ is compact. If we assume additionally

$$
\begin{equation*}
\lim _{r \rightarrow 1} \sup _{|\phi(z)|>r} \frac{\left|v^{\prime}\left(|\phi(z)|^{2}\right)\right| w(z)\left|\phi^{\prime}(z) g(\phi(z))\right|}{v(\phi(z))^{\frac{1}{p}+1}\left(1-|\phi(z)|^{2}\right)^{\frac{2}{p}}}=0 \tag{4.4}
\end{equation*}
$$

then the converse is also true.

Proof. Assume that the operator $\mathrm{I}_{\mathrm{g}, \phi}: \mathrm{A}_{v, \mathrm{p}} \rightarrow \mathrm{B}_{w}$ is compact and that (4.4) is satisfied. To show (4.3) let $\left(z_{n}\right)_{n}$ be a sequence with $\left|\phi\left(z_{n}\right)\right| \rightarrow 1$ and put

$$
\mathrm{f}_{\mathrm{k}}(z):=\frac{\varphi_{\phi\left(z_{k}\right)}^{\prime}(z)^{\frac{2}{p}}}{v\left(\overline{\left.\phi\left(z_{\mathrm{k}}\right) z\right)^{\frac{1}{p}}}\right.} \text { for every } z \in \mathbb{D} \text { and every } k \in \mathbb{N} .
$$

Analogously to the proof of Theorem 8 we can show that $\left(f_{n}\right)_{n}$ is a bounded sequence which tends to zero uniformly on the compact subsets of \mathbb{D}. Since $I_{g, \phi}$ is compact, by Lemma 9

$$
\left\|\mathrm{I}_{\mathrm{g}, \phi} \mathrm{f}_{\mathrm{n}}\right\|_{\mathrm{B}_{w}} \rightarrow 0 \text { if } \mathrm{n} \rightarrow \infty
$$

Thus,

$$
\left\|\mathrm{I}_{\mathrm{g}, \phi} \mathrm{f}_{\mathrm{n}}\right\|_{\mathrm{B}_{w}} \geq\left|\frac{w\left(z_{n}\right) \mid \phi^{\prime}\left(z_{n}\right) \| \mathrm{g}\left(\phi\left(z_{n}\right) \mid\right.}{\left(1-\left|\phi\left(z_{n}\right)\right|^{2}\right)^{\frac{2}{p}+1} v\left(\phi\left(z_{n}\right)\right)^{\frac{1}{p}}}-\frac{\left|v^{\prime}\left(\left|\phi\left(z_{n}\right)\right|^{2}\right)\right| w\left(z_{n}\right)\left|\phi^{\prime}\left(z_{n}\right) \mathrm{g}\left(\phi\left(z_{\mathrm{n}}\right)\right)\right|}{v\left(\phi\left(z_{n}\right)\right)^{\frac{1}{p}+1}\left(1-\left|\phi\left(z_{n}\right)\right|^{2}\right)^{\frac{2}{p}}}\right|
$$

and, since (4.4) holds, condition (4.3) follows.
Conversely, suppose that (4.3) is satisfied. Let $\left(f_{n}\right)_{n}$ be a bounded sequence in $A_{v, p}$ such that $\left\|f_{n}\right\|_{\nu, p} \leq M_{1}<\infty$ for every $n \in \mathbb{N}$ and such that $\left(f_{n}\right)_{n}$ converges uniformly to zero on the compact subsets of \mathbb{D} if $n \rightarrow \infty$. For a fixed $\varepsilon>0$ we can find $0<r_{0}<1$ such that if $|\phi(z)|>r_{0}$, then

$$
\frac{w(z)\left|g(\phi(z)) \| \phi^{\prime}(z)\right|}{\left(1-|\phi(z)|^{2}\right)^{\frac{2}{p}+1} v(\phi(z))^{\frac{1}{p}}}<\frac{\varepsilon v(0)^{\frac{1}{p}}}{2 C^{\frac{1}{p}} M_{1}}
$$

Moreover, we can find $M_{2}>0$ such that

$$
\sup _{|\phi(z)| \leq r_{0}} w(z)\left|g(\phi(z)) \| \phi^{\prime}(z)\right| \leq M_{2} .
$$

There is $n_{0} \in \mathbb{N}$ such that

$$
\sup _{|\phi(z)| \leq r_{0}}\left|f_{n}^{\prime}(\phi(z))\right| \leq \frac{\varepsilon}{2 M_{2}} \text { for every } n \geq \mathfrak{n}_{0}
$$

We obtain applying Lemma 3

$$
\begin{aligned}
\sup _{z \in \mathbb{D}}\left|\left(I_{g, \phi} f_{n}\right)^{\prime}(z)\right| w(z) & =\sup _{z \in \mathbb{D}} w(z)\left|f_{n}^{\prime}(\phi(z))\|g(\phi(z))\| \phi^{\prime}(z)\right| \\
& \leq \sup _{|\phi(z)| \leq r_{0}} w(z)\left|f_{n}^{\prime}(\phi(z))\|g(\phi(z))\| \phi^{\prime}(z)\right| \\
& +\sup _{|\phi(z)|>r_{0}} w(z)\left|f_{n}^{\prime}(\phi(z))\|g(\phi(z))\| \phi^{\prime}(z)\right| \\
& \leq \sup _{|\phi(z)| \leq r_{0}}\left|f_{n}^{\prime}(\phi(z))\right| \sup _{|\phi(z)| \leq r_{0}} w(z)\left|g(\phi(z)) \| \phi^{\prime}(z)\right| \\
& +\sup _{|\phi(z)|>r_{0}} \frac{C^{\frac{1}{p}}\left\|f_{n}\right\|\left\|_{v, p} w(z)\left|g(\phi(z)) \| \phi^{\prime}(z)\right|\right.}{v(0)^{\frac{1}{p}}\left(1-|\phi(z)|^{2}\right)^{\frac{2}{p}+1} v(\phi(z))^{\frac{1}{p}}} \\
& \leq \varepsilon,
\end{aligned}
$$

and the claim follows.

Received: March 2011. Revised: April 2011.

References

[1] A. Aleman, J.A. Cima, An integral operator on H^{p} and Hardy's inequality, J. Anal. Math. 85 (2001), 157-176
[2] A. Aleman, A. G. Siskakis, An integral operator on H^{p}, Complex Variables Theory Appl. 28 (1995), no. 2, 149-158.
[3] A. Aleman, A. G. Siskakis, Integration operators on Bergman spaces, Indiana University Math. J. 46 (1997), no. 2, 337-356.
[4] J. Bonet, P. Domański, M. Lindström, Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions, Canad. Math. Bull. 42, no. 2, (1999), 139-148.
[5] J. Bonet, P. Domański, M. Lindström, J. Taskinen, Composition operators between weighted Banach spaces of analytic functions, J. Austral. Math. Soc. (Serie A) 64 (1998), 101-118.
[6] J. Bonet, M. Friz, E. Jordá, Composition operators between weighted inductive limits of spaces of holomorphic functions, Publ. Math. 67 (2005), no. 3-4, 333-348.
[7] J. Bonet, M. Lindström, E. Wolf, Differences of composition operators between weighted Banach spaces of holomorphic functions, to appear in J. Austr. Math. Soc.
[8] M.D. Contreras, A.G. Hernández-Díaz, Weighted composition operators in weighted Banach spaces of analytic functions, J. Austral. Math. Soc. (Serie A) 69 (2000), 41-60.
[9] C. Cowen, B. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995.
[10] P. Domański, M. Lindström, Sets of interpolation and sampling for weighted Banach spaces of holomorphic functions, Ann. Pol. Math (2002) 79, 233-264.
[11] P. Duren, A. Schuster, Bergman spaces, Mathematical Surveys and Monographs 100, American Mathematical Society, Providence, RI, 2004.
[12] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman spaces, Graduate Texts in Mathematics 199, Springer-Verlag, New York, 2000.
[13] S. Li, Volterra composition operators between weighted Bergman spaces and Bloch type spaces, J. Korean Math. Soc. 45(2008), no. 1, 229-248.
[14] M. Lindström, E. Wolf, Essential norm of the difference of weighted composition operators, Monatsh. Math (2008) 153, 133-143.
[15] W. Lusky, On the structure of $\mathrm{H} v_{0}(\mathrm{D})$ and $\mathrm{h} \nu_{0}(\mathrm{D})$, Math. Nachr. 159 (1992), 279-289.
[16] J.H. Shapiro, Composition Operators and Classical Function Theory, Springer, 1993.
[17] A. G. Sisakis, R. Zhao, A Volterra type oprator on spaces of analytic functions, Functions spaces (Edwardville IL, 1998), 299-311, Contemp. Math. 232, Amer. Math. Soc. Providence, RI, 1999.
[18] E. Wolf, Weighted composition operators between weighted Bergman spaces, RACSAM Rev. R. Acad. Cien. Serie A Mat. 103, no. 1, 11-15.
[19] E. Wolf, Volterra composition operators between weighted Bergman spaces and weighted Bloch type spaces, Collect Math. 61 (2010), no. 1, 57-63.
[20] E. Wolf, Differences of weighted compostiion operators between Bergman spaces and weighted Banach spaces of holomorphic functions, Glasgow Math. J. 52 (2010), 325-332.
[21] J. Xiao, Riemann-Stieltjes operators on weighted Bloch and Bergman spaces of the unit ball, J. London, Math. Soc. (2), 70 (2004), no. 1, 199-214.

