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ABSTRACT

We study the existence and uniqueness of weak and entropy solutions for the nonlinear

inhomogeneous Neumann boundary value problem involving the p(x)-Laplace of the

form − div a(x,∇u) + |u|p(x)−2 u = f in Ω, a(x,∇u).η = ϕ on ∂Ω, where Ω is a

smooth bounded open domain in R
N, N ≥ 3, p ∈ C(Ω) and p(x) > 1 for x ∈ Ω.

We prove the existence and uniqueness of a weak solution for data ϕ ∈ L(p−) ′

(∂Ω)

and f ∈ L(p−) ′

(Ω), the existence and uniqueness of an entropy solution for L1−data f

and ϕ independent of u and the existence of weak solutions for f dependent on u and

ϕ ∈ L(p−) ′

(Ω).

RESUMEN

Estudiamos la existencia y unicidad de soluciones y entroṕıa débil para el problema no

lineal inhomogéneos de Neumann con valores de frontera que involucra el p(x)- Laplace

de la forma − div a(x,∇u) + |u|p(x)−2 u = f en Omega, a(x,∇u).η = ϕ sobre ∂Ω,

donde Omega es en un dominio abierto suave y acotado en R
N, N ≥ 3, p ∈ C(Ω)

y p(x) > 1 para x ∈ Ω. Probamos la existencia y unicidad de una solución débil

para ϕ ∈ L(p−) ′

(∂Ω) and f ∈ L(p−) ′

(Ω), la existencia y unicidad de una solución de

entroṕıa para L1−data f y ϕ independiente de u y la existencia de soluciones débiles

para f dependiente sobre u y ϕ ∈ L(p−) ′

(Ω).
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1 Introduction

The purpose of this paper is to study the existence and uniqueness of weak and entropy solutions

to the following nonlinear inhomogeneous Neumann problem involving the p(x)-Laplace






−div a(x,∇u) + |u|p(x)−2 u = f in Ω,

a(x,∇u).η = ϕ on ∂Ω,

(1.1)

where Ω ⊂ R
N (N ≥ 3) is a bounded open domain with smooth boundary and η is the unit

outward normal on ∂Ω.

The study of various mathematical problems with variable exponent has recieved considerable

attention in recent years (see [4,7,8-15,17,19,24-27,29,30,33,34]). These problems concern applica-

tions (see [21,22,31,32,35]) and raise many difficult mathematical problems.

The operator −div a(x,∇u) is called p(x)-Laplace, which becomes p-Laplace when p(x) ≡ p (a

constant). It possesses more complicated nonlinearities than the p-Laplace. For related results

involving the p-Laplace, see [2,3]. In [2], the authors studied the problem






−div a(x,∇u) + γ(u) ∋ φ in Ω,

a(x,∇u).η+ β(u) ∋ ψ on ∂Ω,

(1.2)

where η is the unit outward normal on ∂Ω, ψ ∈ L1(∂Ω) and φ ∈ L1(Ω). The nonlinearities γ and

β are maximal monotone graphs in R
2 such that 0 ∈ γ(0) and 0 ∈ β(0). They proved under a

range condition the existence and uniqueness of weak and entropy solutions to the problem (1.2).

Following these ideas, Ouaro and Soma [24] proved the existence and uniqueness of weak and

entropy solutions for a class of homogeneous nonlinear Neumann boundary value problem of the

form 




−div a(x,∇u) + |u|p(x)−2 u = f in Ω,

∂u
∂ν

= 0 on ∂Ω,

(1.3)

where Ω ⊂ R
N (N ≥ 3) is a bounded open domain with smooth boundary and ∂u

∂ν
is the outer

unit normal derivative on ∂Ω.

In this paper, our aim is to prove the existence and uniqueness of weak and entropy solutions to

the nonlinear Neumann boundary value problem (1.1) in order to generalize the results in [24].

The paper is presented as follows. In section 2, we introduce some fundamental preliminary results

that we use in this work. The existence and the uniqueness of weak solution for (1.1) is proved in

section 3 when the data f and ϕ belongs to L(p−) ′

. In section 4, we prove some existence results

of weak solution to the problem (1.1) for an f assumed to depend on u and for a boundary datum

ϕ ∈ L(p−) ′

(∂Ω). Finally, in section 5, we prove the existence and the uniqueness of an entropy

solution of (1.1) when the data f and ϕ belongs to L1.



CUBO
14, 2 (2012)

Weak and entropy solutions for a class of nonlinear ... 17

2 Assumptions and preliminaries

In this work, we study the problem (1.1) for a variable exponent p(.) which is continuous, more

precisely, we assume that






p(.) : Ω→ R is a continuous function such that

1 < p− ≤ p+ < +∞,

(2.1)

where p− := ess inf
x∈Ω

p(x).

We denote p+ := ess sup
x∈Ω

p(x).

For the vector fields a(., .), we assume that a(x, ξ) : Ω × R
N → R

N is Carathéodory and is the

continuous derivative with respect to ξ of the mapping A : Ω × R
N → R, A = A(x, ξ), i.e.

a(x, ξ) = ∇ξA(x, ξ) such that:

• The following equality holds true

A(x, 0) = 0, (2.2)

for almost every x ∈ Ω.

• There exists a positive constant C1 such that

|a(x, ξ)| ≤ C1(j(x) + |ξ|
p(x)−1

) (2.3)

for almost every x ∈ Ω and for every ξ ∈ R
N where j is a nonnegative function in Lp

′(.)(Ω), with

1/p(x) + 1/p ′(x) = 1.

• There exists a positive constant C2 such that for almost every x ∈ Ω and for every ξ, η ∈ R
N

with ξ 6= η,

(a(x, ξ) − a(x, η)).(ξ− η) > 0. (2.4)

• The following inequalities hold true

|ξ|
p(x)

≤ a(x, ξ).ξ ≤ p(x)A(x, ξ) (2.5)

for almost every x ∈ Ω and for every ξ ∈ R
N.

Remark 2.1. Since for almost every x ∈ Ω, a(x, .) is a gradient and is monotone then the

primitive A(x, .) of a(x, .) is necessarily convex.

As the exponent p(.) appearing in (2.3) and (2.5) depends on the variable x, we must work with

Lebesgue and Sobolev spaces with variable exponents.
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We define the Lebesgue space with variable exponent Lp(.)(Ω) as the set of all measurable function

u : Ω→ R for which the convex modular

ρp(.)(u) :=

∫

Ω

|u|
p(x)

dx

is finite. If the exponent is bounded, i.e., if p+ <∞, then the expression

|u|p(.) := inf
{
λ > 0 : ρp(.)(u/λ) ≤ 1

}

defines a norm in Lp(.)(Ω), called the Luxembourg norm. The space (Lp(.)(Ω), |.|p(.)) is a separable

Banach space. Moreover, if 1 < p− ≤ p+ < +∞, then Lp(.)(Ω) is uniformly convex, hence reflexive,

and its dual space is isomorphic to Lp
′(.)(Ω), where 1

p(x)
+ 1

p ′(x)
= 1. Finally, we have the Hölder

type inequality:
∣

∣

∣

∣

∫

Ω

uvdx

∣

∣

∣

∣

≤

(

1

p−
+
1

p ′
−

)

|u|p(.) |v|p ′(.) , (2.6)

for all u ∈ Lp(.)(Ω) and v ∈ Lp
′(.)(Ω).

Now, let

W1,p(.)(Ω) :=
{
u ∈ Lp(.)(Ω) : |∇u| ∈ Lp(.)(Ω)

}
,

which is a Banach space equipped with the following norm

‖u‖1,p(.) := |u|p(.) + |∇u|p(.) .

The space
(

W1,p(.)(Ω), ‖u‖1,p(.)

)

is a separable and reflexive Banach space; more details can be

found in [17].

An important role in manipulating the generalized Lebesgue and Sobolev spaces is played by the

modular ρp(.) of the space Lp(.)(Ω). We have the following result (cf. [15]):

Lemma 2.2. If un, u ∈ Lp(.)(Ω) and p+ < +∞, then the following properties hold:

(i) |u|p(.) > 1⇒ |u|
p−

p(.) ≤ ρp(.)(u) ≤ |u|
p+

p(.) ;

(ii) |u|p(.) < 1⇒ |u|
p+

p(.) ≤ ρp(.)(u) ≤ |u|
p−

p(.) ;

(iii) |u|p(.) < 1 (respectively = 1;> 1) ⇔ ρp(.)(u) < 1 (respectively = 1;> 1);

(iv) |un|p(.) → 0 (respectively → +∞) ⇔ ρp(.)(un) → 0 (respectively → +∞);

(v) ρp(.)

(

u/ |u|p(.)

)

= 1.

For a measurable function u : Ω −→ R, we introduce the following notation:

ρ1,p(.)(u) :=

∫

Ω

|u|
p(x)

dx +

∫

Ω

|∇u|
p(x)

dx.

We have the following lemma (cf. [33]):

Lemma 2.3. If u ∈W1,p(.)(Ω), then the following properties hold true:

(i) ‖u‖1,p(.) < 1(respectively = 1;> 1) ⇔ ρ1,p(.)(u) < 1(respectively = 1;> 1);

(ii) ‖u‖1,p(.) < 1⇔ ‖u‖p+

1,p(.)
≤ ρ1,p(.)(u) ≤ ‖u‖p−

1,p(.)
;

(iii) ‖u‖1,p(.) > 1⇔ ‖u‖p−

1,p(.)
≤ ρ1,p(.)(u) ≤ ‖u‖p+

1,p(.)
.
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Put

p∂(x) := (p(x))∂ :=






(N−1)p(x)
N−p(x)

, if p(x) < N

∞, if p(x) ≥ N.

We have the following useful result (cf. [13,34]).

Proposition 2.4. Let p ∈ C(Ω) and p− > 1. If q ∈ C(∂Ω) satisfies the condition

1 ≤ q(x) < p∂(x), ∀x ∈ ∂Ω,

then, there is a compact embedding W1,p(x)(Ω) →֒ Lq(x)(∂Ω). In particular, there is a compact

embedding W1,p(x)(Ω) →֒ Lp(x)(∂Ω).

Let us introduce the following notation: given two bounded measurable functions

p(.), q(.) : Ω→ R, we write

q(.) ≪ p(.) if ess inf
x∈Ω

(p(x) − q(x)) > 0.

3 Weak solution

In this section, we study the existence and uniqueness of a weak solution of (1.1) where the data

ϕ ∈ L(p−) ′

(∂Ω) and f ∈ L(p−) ′

(Ω). The definition of weak solution is the following:

Definition 3.1. A weak solution of (1.1) is a measurable function u : Ω −→ R such that

u ∈W1,p(.)(Ω),

and
∫

Ω

a(x,∇u).∇vdx+

∫

Ω

|u|p(x)−2 uvdx−

∫

∂Ω

ϕvdσ =

∫

Ω

fvdx, ∀ v ∈W1,p(.)(Ω), (3.1)

where dσ is the surface measure on ∂Ω.

Let E denote the generalized Sobolev space W1,p(.)(Ω).

If we denote the functional J : E→ R by

J(u) =

∫

Ω

A(x,∇u)dx +

∫

Ω

1

p(x)
|u|p(x)dx−

∫

∂Ω

ϕudσ−

∫

Ω

fudx,

then

〈J ′(u), v〉 =

∫

Ω

a(x,∇u).∇vdx +

∫

Ω

|u|p(x)−2 uvdx−

∫

∂Ω

ϕvdσ−

∫

Ω

fvdx, for all u, v ∈ E.

Therefore, the weak solution of (1.1) corresponds to the critical point of the functional J.

The main result of this section is the following:

Theorem 3.2. Assume that (2.1)-(2.5) hold. Then there exists a unique weak solution of (1.1).

Proof. * Existence. With the techniques that became standard by now, it is not difficult to
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verify that J is well-defined on E, is of class C1(E,R) and is weakly lower semi-continuous (see for

example [6,19,24,25,26,28]). To end the proof of the existence part, we just have to prove that J is

bounded from below and coercive.

Using (2.5) and since E is continuously embedded in Lp−(Ω), we have

J(u) =

∫

Ω

A(x,∇u)dx +

∫

Ω

1

p(x)
|u|p(x)dx −

∫

∂Ω

ϕudσ −

∫

Ω

fudx

≥

∫

Ω

1

p(x)
|∇u|p(x)dx+

∫

Ω

1

p(x)
|u|p(x)dx− ‖ϕ‖(p−) ′,∂Ω ‖u‖p−,∂Ω − ‖f‖(p−) ′,Ω ‖u‖p−,Ω

≥
1

p+
ρ1,p(.)(u) − c ‖ϕ‖(p−) ′,∂Ω ‖u‖1,p(.) − C‖u‖1,p(.),

where ‖u‖p−,Ω =

(∫

Ω

|u|p−dx

)
1

p−

and ‖u‖p−,∂Ω =

(∫

∂Ω

|u|p−dσ

)
1

p−

.

As ϕ ∈ L(p−) ′

(∂Ω), then ‖ϕ‖(p−) ′,∂Ω < +∞. Also, for the coercivity of J, we will work with u

such that ‖u‖1,p(.) > 1. Then, by Lemma 2.3 we obtain that

J(u) ≥
1

p+
‖u‖p−

1,p(.)
− C3‖u‖1,p(.).

As p− > 1, then J is coercive.

If ‖u‖1,p(.) < 1, we have that

J(u) ≥
1

p+
‖u‖p+

1,p(.)
− C3‖u‖1,p(.)

≥ −C3 > −∞.

Therefore, J is bounded from below.

Since the functional J is proper, lower semi-continuous and coercive, then it has a minimizer which

is a weak solution of (1.1).

∗ Uniqueness. Let u1 and u2 be two weak solutions of (1.1).

With u1 as weak solution, we take v = u1 − u2 in (3.1) to get

∫

Ω

a(x,∇u1).∇(u1−u2)dx+

∫

Ω

|u1|
p(x)−2 u1(u1−u2)dx−

∫

∂Ω

ϕ(u1−u2)dσ =

∫

Ω

f(x)(u1−u2)dx.

(3.2)

Similarly, with u2 as weak solution, we take ϕ = u2 − u1 to obtain

∫

Ω

a(x,∇u2).∇(u2−u1)dx+

∫

Ω

|u2|
p(x)−2 u2(u2−u1)dx−

∫

∂Ω

ϕ(u2−u1)dσ =

∫

Ω

f(x)(u2−u1)dx.

(3.3)

After adding (3.2) and (3.3), we obtain

∫

Ω

(a(x,∇u1) − a(x,∇u2)) .(∇u1−∇u2)+

∫

Ω

(

|u1|
p(x) u1 − |u2|

p(x) u2

)

(u1−u2)dx = 0. (3.4)
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Using (2.4), we deduce from (3.4) that
∫

Ω

(

|u1(x)|
p(x) u1(x) − |u2(x)|

p(x) u2(x)
)

(u1(x) − u2(x))dx = 0. (3.5)

Since p− > 1, the following relation is true for any ξ, η ∈ R, ξ 6= η (cf. [14])

(

|ξ|p(x)−2ξ− |η|p(x)−2η
)

(ξ− η) > 0. (3.6)

Therefore, from (3.5), we get

(

|u1(x)|
p(x) u1(x) − |u2(x)|

p(x) u2(x)
)

(u1(x) − u2(x)) = 0, a.e. x ∈ Ω. (3.7)

Now, we use (3.6) to get

u1(x) = u2(x) a.e. x ∈ Ω. (3.8)

and uniqueness is true �

4 Weak solutions for a right-hand side dependent on u

In this section, we show the existence result of weak solution to some general problem. More

precisely, we prove that there exists at least one weak solution to the problem





− div a(x,∇u) + |u|p(x)−2 u = f(x, u) in Ω,

a(x,∇u).η = ϕ on ∂Ω,

(4.1)

where ϕ ∈ L(p−) ′

(∂Ω).

We study (4.1) under the assumptions (2.1)-(2.5) and the following additional assumptions on

f.

f(x, t) : Ω× R −→ R is Carathéodory and there exists two positive constants C4, C5 such that

|f(x, t)| ≤ C4 + C5|t|
β(x)−1, (4.2)

for every t ∈ R and for almost every x ∈ Ω with 0 ≤ β(.) ≪ p(.).

Let

F(x, t) =

∫t

0

f(x, s)ds.

As mentioned before, we look for distributional solution of (4.1) in the following sense:

Definition 4.1. A weak solution of (4.1) is a measurable function u : Ω −→ R such that u ∈

W1,p(.)(Ω) and for all v ∈W1,p(.)(Ω)

∫

Ω

a(x,∇u).∇vdx +

∫

Ω

|u|p(x)−2 uvdx−

∫

∂Ω

ϕvdσ =

∫

Ω

f(x, u)vdx. (4.3)
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We have the following existence result:

Theorem 4.2. Assume that (2.1)-(2.5) and (4.2) hold. Then, the problem (4.1) admits at least

one weak solution.

Proof. Let g(u) =

∫

Ω

F(x, u)dx, for all u ∈ E. The functional g is of class C1(E,R) with the

derivative given by
〈

g ′(u), v
〉

=

∫

Ω

f(x, u)vdx, ∀u, v ∈ E.

Consequently,

J(u) =

∫

Ω

A(x,∇u)dx+

∫

Ω

1

p(x)
|u|p(x)dx−

∫

∂Ω

ϕudσ −

∫

Ω

F(x, u)dx, u ∈ E

is such that J is of class C1(E,R) and is lower semi-continuous.

We then have to prove that J is bounded from below and coercive in order to complete the proof.

From (4.2), we have |F(x, t)| ≤ C
(

1+ |t|β(x)
)

and then

J(u) ≥
1

p+

∫

Ω

|∇u|p(x)dx+
1

p+

∫

Ω

|u|p(x)dx−

∫

∂Ω

ϕudσ − C

∫

Ω

|u|β(x)dx− Cmeas(Ω).

Let M > 1 be a fixed real number (to be chosen later) and ǫ := ess inf
x∈Ω

(p(x) − β(x)). We have

J(u) ≥
1

2p+
ρ1,p(.)(u) +

∫

{|u|≤M}

(

1

2p+
|u|p(x) − C|u|β(x)

)

dx+

∫

{|u|>M}

(

1

2p+
|u|p(x) − C|u|β(x)

)

dx− Cmeas(Ω) − C ′′‖u‖1,p(.)

≥
1

2p+
ρ1,p(.)(u) +

∫

{|u|>M}

(

1

2p+
|u|p(x) − C|u|β(x)

)

dx− C ′′‖u‖1,p(.) − (Mβ+ + 1)Cmeas(Ω)

≥
1

2p+
ρ1,p(.)(u) +

∫

{|u|>M}

|u|β(x)

(

1

2p+
|u|p(x)−β(x) − C)

)

dx− C ′′‖u‖1,p(.) − (Mβ+ + 1)Cmeas(Ω)

≥
1

2p+
ρ1,p(.)(u) +

(

1

2p+
Mǫ − C

) ∫

{|u|>M}

|u|β(x)dx− C ′′‖u‖1,p(.) − (Mβ+ + 1)Cmeas(Ω)

≥
1

p+
‖u‖p−

1,p(.)
− C ′′‖u‖1,p(.) − (Mβ+ + 1)Cmeas(Ω),

For all M> max((2p+C)
1
ǫ , 1) and all u ∈ E with ‖u‖1,p(.) > 1.

Since 1 < p− it follows that J(u) −→ +∞ as ‖u‖E −→ +∞.
Consequently, J is bounded from below and coercive. The proof is then complete.

Assume now that F+(x, t) =

∫t

0

f+(x, s)ds is such that there exists C6 > 0, C7 > 0 such that

|f+(x, t)| ≤ C6 + C7|t|
β(x)−1, (4.4)

where 0 ≤ β(.) ≪ p(.).

Then we have the following result:
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Theorem 4.3 Under assumptions (2.1)-(2.5) and (4.4), the problem (4.1) admits at least one

weak solution.

Proof. As f = f+ − f−, let F−(x, t) =

∫t

0

f−(x, s)ds.

Then

J(u) =

∫

Ω

A(x,∇u)dx+

∫

Ω

1

p(x)
|u|p(x)dx+

∫

Ω

F−(x, u)dx−

∫

Ω

F+(x, u)dx −

∫

∂Ω

ϕudσ

≥

∫

Ω

A(x,∇u)dx+

∫

Ω

1

p(x)
|u|p(x)dx−

∫

Ω

F+(x, u)dx−

∫

∂Ω

ϕvdσ.

Therefore, similarly as in the proof of Theorem 4.2, the result of Theorem 4.3 follows immediately.

5 Entropy solutions

In this section, we study the existence of entropy solution for the problem (1.1) when the data

f ∈ L1(Ω) and ϕ ∈ L1(∂Ω).

We first recall some notations.

For any k > 0, we define the truncation function Tk by Tk(s) := max{−k,min{k, s}}.

Let Ω be a bounded open subset of RN of class C1 and 1 ≤ p(.) < +∞. It is well known( see

[20] or [23]) that if u ∈ W1,p(.)(Ω), it is possible to define the trace of u on ∂Ω. More precisely,

there is a bounded operator τ from W1,p(.)(Ω) into Lp(.)(∂Ω) such that τ(u) = u|∂Ω whenever

u ∈ C(Ω).

Set

T 1,p(.)(Ω) =
{
u : Ω −→ R, measurable such that Tk(u) ∈W

1,p(.)(Ω), for any k > 0
}
.

In [1], the authors have proved the following

Proposition 5.1 Let u ∈ T 1,p(.)(Ω). Then there exists a unique measurable function v : Ω −→ R
N

such that ∇Tk(u) = vχ{|u|<k}, for all k > 0. The function v is denoted by ∇u. Moreover if

u ∈W1,p(.)(Ω) then v ∈
(

Lp(.)(Ω)
)N

and v = ∇u in the usual sense.

It is easy to see that, in general, it is not possible to define the trace of an element of T 1,p(.)(Ω).

In demension one it is enough to consider the function u(x) = 1
x
for x ∈]0, 1[. Therefore, we are

going to define following [2,3], the trace for the elements of a subset T
1,p(.)
tr (Ω) of T 1,p(.)(Ω).

T
1,p(.)
tr (Ω) will be the set of functions u ∈ T 1,p(.)(Ω) such that there exists a sequence (un)n ⊂

W1,p(.)(Ω) satisfying the following conditions:

(C1) un → u a.e in Ω.

(C2) ∇Tk(un) → ∇Tk(u) in L
1(Ω) for any k > 0.

(C3) There exists a measurable function v on ∂Ω, such that un → v a.e in ∂Ω.

The function v is the trace of u in the generalized sense introduced in [2,3]. In the sequel the trace

of u ∈ T
1,p(.)
tr (Ω) on ∂Ω will be denoted by tr(u). If u ∈W1,p(.)(Ω), tr(u) coincides with τ(u) in
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the usual sense. Moreover, for u ∈ T
1,p(.)
tr (Ω) and for every k > 0, τ (Tk(u)) = Tk (tr(u)) and if

ϕ ∈W1,p(.)(Ω) ∩ L∞(Ω) then (u−ϕ) ∈ T
1,p(.)
tr (Ω) and tr(u− ϕ) = tr(u) − tr(ϕ).

We can now introduce the notion of entropy solution of (1.1).

Definition 5.2. A measurable function u is an entropy solution to problem (1.1) if u ∈ T
1,p(.)
tr (Ω),

|u|p(x)−2 u ∈ L1(Ω) and for every k > 0,
∫

Ω

a(x,∇u).∇Tk(u− v)dx+

∫

Ω

|u|p(x)−2 uTk(u− v)dx ≤

∫

∂Ω

ϕTk(u− v)dσ+

∫

Ω

f(x)Tk(u− v)dx

(5.1)

for all v ∈W1,p(.)(Ω) ∩ L∞(Ω).

Our main result in this section is the following:

Theorem 5.3. Assume (2.1)-(2.5), f ∈ L1(Ω) and ϕ ∈ L1(∂Ω). Then, there exists a unique

entropy solution u to problem (1.1).

The following propositions are useful for the proof of Theorem 5.3.

Proposition 5.4. Assume (2.1)-(2.5), f ∈ L1(Ω) and ϕ ∈ L1(∂Ω). Let u be an entropy solution

of (1.1). If there exists a positive constant M such that
∫

{|u|>k}

kq(x)dx ≤M (5.2)

then ∫

{|∇u|α(.)>k}

kq(x)dx ≤ ‖f‖L1(Ω) + ‖ϕ‖L1(∂Ω) +M, for all k > 0,

where α(.) = p(.)/(q(.) + 1).

Proof. Taking v = 0 in the entropy inequality (5.1) and using (2.5), we get
∫

Ω

|∇Tk(u)|
p(x)dx ≤ k

(

‖f‖L1(Ω) + ‖ϕ‖L1(∂Ω)

)

for all k > 0.

Therefore, defining ψ :=
1

k
Tk(u), we have for all k > 0,

∫

Ω

kp(x)−1|∇ψ|p(x)dx =
1

k

∫

Ω

|∇Tk(u)|
p(x)dx ≤ ‖f‖L1(Ω) + ‖ϕ‖L1(∂Ω).

From the above inequality, from the definition of α(.) and (5.2), we get
∫

{|∇u|α(.)>k}

kq(x)dx ≤

∫

{|∇u|α(.)>k}∩{|u|≤k}

kq(x)dx+

∫

{|u|>k}

kq(x)dx

≤

∫

{|u|≤k}

kq(x)
(

|∇u|α(x)

k

)

p(x)

α(x)

dx+M

≤ ‖f‖L1(Ω) + ‖ϕ‖L1(∂Ω) +M, for all k > 0.

Proposition 5.5. Assume (2.1)-(2.5), f ∈ L1(Ω) and ϕ ∈ L1(∂Ω). Let u be an entropy solution

of (1.1), then ∫

Ω

|∇Tk(u)|
p(x)dx ≤ k

(

‖f‖L1(Ω) + ‖ϕ‖L1(∂Ω)

)

for all k > 0 (5.3)
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and
∥

∥

∥
|u|p(x)−2 u

∥

∥

∥

1
=

∥

∥

∥
|u|p(x)−1

∥

∥

∥

1
≤ ‖f‖L1(Ω) + ‖ϕ‖L1(∂Ω). (5.4)

Proof. The inequality (5.3) is already obtained in the proof of Proposition 5.2. Let’s prove (5.4).

Taking ϕ = 0 in (5.1), we get for all k > 0,

∫

Ω

|u|p(x)−2 uTk(u)dx ≤ k
(

‖f‖L1(Ω) + ‖ϕ‖L1(∂Ω)

)

,

then ∫

{|u|>k}

|u|p(x)−2 uTk(u)dx ≤ k
(

‖f‖L1(Ω) + ‖ϕ‖L1(∂Ω)

)

.

From the inequality above, we obtain

k

∫

{u>k}

|u|p(x)−2 udx − k

∫

{u<−k}

|u|p(x)−2 udx ≤ k
(

‖f‖L1(Ω) + ‖ϕ‖L1(∂Ω)

)

,

which imply

∫

{u>k}

|u|p(x)−2 udx −

∫

{u<−k}

|u|p(x)−2 udx ≤ ‖f‖L1(Ω) + ‖ϕ‖L1(∂Ω).

The last inequality means

∫

{|u|>k}

|u|p(x)−1dx ≤ ‖f‖L1(Ω) + ‖ϕ‖L1(∂Ω) for all k > 0. (5.5)

We use Fatou’s Lemma in (5.5) by letting k goes to 0 to obtain (5.4).

Proposition 5.6. Assume that (2.1)-(2.5) hold, f ∈ L1(Ω) and ϕ ∈ L1(∂Ω). Let u be an

entropy solution of (1.1), then

∫

{|u|≤k}

|∇Tk(u)|
p−dx ≤ C(k + 1) for all k > 0. (5.6)

Proof. Note that
∫

{|u|≤k}

|∇Tk(u)|
p−dx =

∫

{|u|≤k,|∇u|>1}

|∇Tk(u)|
p−dx+

∫

{|u|≤k,|∇u|≤1}

|∇Tk(u)|
p−dx

≤

∫

{|u|≤k,|∇u|>1}

|∇Tk(u)|
p−dx+meas(Ω)

≤

∫

{|u|≤k}

|∇Tk(u)|
p(x)dx+meas(Ω).

Since

∫

{|u|≤k}

|∇Tk(u)|
p(x)dx ≤ k

(

‖f‖L1(Ω) + ‖ϕ‖L1(∂Ω)

)

, we obtain

∫

{|u|≤k}

|∇Tk(u)|
p−dx ≤ k

(

‖f‖L1(Ω) + ‖ϕ‖L1(∂Ω)

)

+meas(Ω) for all k > 0.
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Proposition 5.7. Assume that (2.1)-(2.5) hold, f ∈ L1(Ω) and ϕ ∈ L1(∂Ω). Let u be an entropy

solution of (1.1). Then

meas{|u| > h} ≤
‖f‖L1(Ω) + ‖ϕ‖L1(∂Ω)

hp−−1
for all h ≥ 1, (5.7)

and

meas{|∇u| > h} ≤
‖f‖L1(Ω) + ‖ϕ‖L1(∂Ω)

hp−−1
for all h ≥ 1. (5.8)

Proof.
∫

Ω

|u|p(x)−1dx =

∫

{|u|≤h}

|u|p(x)−1dx+

∫

{|u|>h}

|u|p(x)−1dx

≥

∫

{|u|>h}

|u|p(x)−1dx

≥

∫

{|u|>h}

hp(x)−1dx

≥ hp−−1meas{|u| > h} since h ≥ 1.

Then, by (5.4) we deduce (5.7).

We next prove (5.8).

For k, λ ≥ 0, set

Φ(k, λ) = meas{|∇u|p− > λ, |u| > k}.

We have

Φ(k, 0) ≤ meas{|u| > k}.

For k ≥ 1, we obtain by (5.7)

Φ(k, 0) ≤
(

‖f‖L1(Ω) + ‖ϕ‖L1(∂Ω)

)

k1−p−.

Using the fact that the function λ 7−→ Φ(k, λ) is nonincreasing, we get for k > 0 and λ > 0, that

Φ(0, λ) =
1

λ

∫λ

0

Φ(0, λ)ds ≤
1

λ

∫λ

0

Φ(0, s)ds

≤
1

λ

∫λ

0

[

Φ(0, s) + (Φ(k, 0) −Φ(k, s))
]

ds

≤ Φ(k, 0) +
1

λ

∫λ

0

(Φ(0, s) −Φ(k, s))ds.

Now, let us observe that

Φ(0, s) −Φ(k, s) = meas{|u| ≤ k, |∇u|p− > s}.

Then, thanks to (5.6), we get

∫+∞

0

(Φ(0, s) −Φ(k, s))ds =

∫

{|u|≤k}

|∇u|p−dx ≤ C(k + 1),
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where C = max
(

meas(Ω), ‖f‖L1(Ω) + ‖ϕ‖L1(∂Ω)

)

.

It follows that

Φ(0, λ) ≤
C(k + 1)

λ
+
(

‖f‖L1(Ω) + ‖ϕ‖L1(∂Ω)

)

k1−p−, for all k ≥ 1, λ > 0.

In particular, we have

Φ(0, λ) ≤
C(k + 1)

λ
+
(

‖f‖L1(Ω) + ‖ϕ‖L1(∂Ω)

)

k1−p−, for all k ≥ 1, λ ≥ 1.

We now set

fλ(k) =
C(k + 1)

λ
+
(

‖f‖L1(Ω) + ‖ϕ‖L1(∂Ω)

)

k1−p−, for all k ≥ 1,

where λ ≥ 1 is a fixed real number.

The minimization of fλ in k gives

Φ(0, λ) ≤
(

‖f‖L1(Ω) + ‖ϕ‖L1(∂Ω)

)

λ−(1/(p−) ′), (5.9)

for all λ ≥ 1.

Setting λ = hp− in (5.9) gives (5.8).

Proof of Theorem 5.3. ∗ Uniqueness of entropy solution. Let h > 0 and u1, u2 be two

entropy solutions of (1.1). We write the entropy inequality (5.1) corresponding to the solution

u1, with Th(u2) as a test function, and to the solution u2, with Th(u1) as a test function. Upon

addition, we get






∫

{|u1−Th(u2)|≤k}

a(x,∇u1).∇(u1 − Th(u2))dx +

∫

{|u2−Th(u1)|≤k}

a(x,∇u2).∇(u2 − Th(u1))dx

+

∫

Ω

|u1|
p(x)−2 u1Tk(u1 − Th(u2))dx +

∫

Ω

|u2|
p(x)−2 u2Tk(u2 − Th(u1))dx ≤

∫

∂Ω

ϕ
(

Tk(u1 − Th(u2)) + Tk(u2 − Th(u1))
)

dσ+

∫

Ω

f
(

Tk(u1 − Th(u2)) + Tk(u2 − Th(u1))
)

dx.

(5.10)

Define now

E1 := {|u1 − u2| ≤ k, |u2| ≤ h}, E2 := E1 ∩ {|u1| ≤ h}, and E3 := E1 ∩ {|u1| > h}.

We start with the first integral in (5.10). By (2.5), we have
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∫

{|u1−Th(u2)|≤k}

a(x,∇u1).∇(u1 − Th(u2))dx

=

∫

{|u1−Th(u2)|≤k}∩{|u2|≤h}

a(x,∇u1).∇(u1 − Th(u2))dx

+

∫

{|u1−Th(u2)|≤k}∩{|u2|>h}

a(x,∇u1).∇(u1 − Th(u2))dx

=

∫

{|u1−Th(u2)|≤k}∩{|u2|≤h}

a(x,∇u1).∇(u1 − u2)dx +

∫

{|u1−hsign(u2)|≤k}∩{|u2|>h}

a(x,∇u1).∇u1dx

≥

∫

{|u1−Th(u2)|≤k}∩{|u2|≤h}

a(x,∇u1).∇(u1 − u2)dx =

∫

E1

a(x,∇u1).∇(u1 − u2)dx

=

∫

E2

a(x,∇u1).∇(u1 − u2)dx +

∫

E3

a(x,∇u1).∇(u1 − u2)dx

=

∫

E2

a(x,∇u1).∇(u1 − u2)dx +

∫

E3

a(x,∇u1).∇u1dx−

∫

E3

a(x,∇u1).∇u2dx

≥

∫

E2

a(x,∇u1).∇(u1 − u2)dx−

∫

E3

a(x,∇u1).∇u2dx.

(5.11)

Using (2.3) and (2.6), we estimate the last integral in (5.11) as follows:





∣

∣

∣

∣

∫

E3

a(x,∇u1).∇u2dx

∣

∣

∣

∣

≤ C1

∫

E3

(

j(x) + |∇u1|
p(x)−1

)

|∇u2|dx

≤ C1

(

|j|p ′(.) +
∣

∣

∣
|∇u1|

p(x)−1
∣

∣

∣

p ′(.),{h<|u1|≤h+k}

)

|∇u2|p(.),{h−k<|u1|≤h},

(5.12)

where
∣

∣

∣
|∇u1|

p(x)−1
∣

∣

∣

p ′(.),{h<|u1|≤h+k}
=

∥

∥

∥
|∇u1|

p(x)−1
∥

∥

∥

Lp ′(.)({h<|u1|≤h+k})
.

The quantity C1

(

|j|p ′(.) +
∣

∣

∣
|∇u1|

p(x)−1
∣

∣

∣

p ′(.),{h<|u1|≤h+k}

)

can be written as follows

C1

(

|j|p ′(.) +
∣

∣

∣
|∇Th+k(u1)|

p(x)−1
∣

∣

∣

p ′(.),{h<|u1|≤h+k}

)

< +∞,

since Th+k(u1) ∈W
1,p(.)(Ω) and j ∈ Lp

′(.)(Ω).

We deduce by Proposition 5.7 that

C1

(

|j|p ′(.) +
∣

∣

∣
|∇u1|

p(x)−1
∣

∣

∣

p ′(.),{h<|u1|≤h+k}

)

|∇u2|p(.),{h−k<|u1|≤h} converges to 0 as h→ +∞.

Therefore, from (5.11) and (5.12), we obtain
∫

{|u1−Th(u2)|≤k}

a(x,∇u1).∇(u1 − Th(u2))dx ≥ Ih +

∫

E2

a(x,∇u1).∇(u1 − u2)dx, (5.13)

where Ih converges to zero as h→ +∞.
We may adopt the same procedure to treat the second term in (5.10) to obtain

∫

{|u2−Th(u1)|≤k}

a(x,∇u2).∇(u2 − Th(u1))dx ≥ Jh −

∫

E2

a(x,∇u2).∇(u1 − u2)dx, (5.14)
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where Jh converges to zero as h→ +∞.
Now set for all h, k > 0

Kh =

∫

Ω

|u1|
p(x)−2 u1Tk(u1 − Th(u2))dx +

∫

Ω

|u2|
p(x)−2 u2Tk(u2 − Th(u1))dx.

We have

|u1|
p(x)−2 u1Tk(u1 − Th(u2)) −→ |u1|

p(x)−2 u1Tk(u1 − u2) a.e in Ω as h→ +∞,

and
∣

∣

∣
|u1|

p(x)−2 u1Tk(u1 − Th(u2))
∣

∣

∣
≤ k|u1|

p(x)−1 ∈ L1(Ω).

Then by Lebesgue Theorem, we deduce that

lim
h→+∞

∫

Ω

|u1|
p(x)−2 u1Tk(u1 − Th(u2))dx =

∫

Ω

|u1|
p(x)−2 u1Tk(u1 − u2)dx. (5.15)

Similarly, we have

lim
h→+∞

∫

Ω

|u2|
p(x)−2 u2Tk(u2 − Th(u1))dx =

∫

Ω

|u2|
p(x)−2 u2Tk(u2 − u1)dx. (5.16)

Using (5.15) and (5.16), we get

lim
h→+∞

Kh =

∫

Ω

(

|u1|
p(x)−2 u1 − |u2|

p(x)−2 u2

)

Tk(u1 − u2)dx. (5.17)

We next examine the right-hand side of (5.10).

For all k > 0,

f
(

Tk(u1−Th(u2))+Tk(u2−Th(u1))
)

−→ f
(

Tk(u1−u2)+Tk(u2−u1)
)

= 0 a.e in Ω as h→ +∞,

ϕ
(

Tk(u1−Th(u2))+Tk(u2−Th(u1))
)

−→ ϕ
(

Tk(u1−u2)+Tk(u2−u1)
)

= 0 a.e in ∂Ω as h→ +∞,

and
∣

∣

∣
f(x)

(

Tk(u1 − Th(u2)) + Tk(u2 − Th(u1))
)
∣

∣

∣
≤ 2k|f| ∈ L1(Ω),

∣

∣

∣
ϕ
(

Tk(u1 − Th(u2)) + Tk(u2 − Th(u1))
)∣

∣

∣
≤ 2k|ϕ| ∈ L1(∂Ω).

Lebesgue Theorem allows us to write

lim
h→+∞

[∫

∂Ω

ϕ
(

Tk(u1 − Th(u2)) + Tk(u2 − Th(u1))
)

dσ+

∫

Ω

f
(

Tk(u1 − Th(u2)) + Tk(u2 − Th(u1))
)

dx

]

= 0.

(5.18)

Using (5.13), (5.14), (5.17) and (5.18), we get






∫

{|u1−u2|≤k}

(

a(x,∇u1) − a(x,∇u2)
)

.
(

∇u1 −∇u2

)

dx

+

∫

Ω

(

|u1|
p(x)−2 u1 − |u2|

p(x)−2 u2

)

Tk(u1 − u2)dx ≤ 0.

(5.19)
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Therefore ∫

Ω

(

|u1|
p(x)−2 u1 − |u2|

p(x)−2 u2

)

Tk(u1 − u2)dx = 0. (5.20)

For x fixed in Ω, s 7−→ |s|p(x)−2 s is nondecreasing and vanishes at 0. Then,
(

|u1|
p(x)−2 u1 − |u2|

p(x)−2 u2

)

Tk(u1 − u2) ≥ 0, ∀x ∈ Ω and ∀k > 0.

Now, using inequality above and (5.20), for all k ∈ R
+ there exist Ωk ⊂ Ω with meas(Ωk) = 0

such that for all x ∈ Ω\Ωk,
(

|u1(x)|
p(x)−2 u1(x) − |u2(x)|

p(x)−2 u2(x)
)

Tk(u1(x) − u2(x)) = 0.

Therefore,
(

|u1(x)|
p(x)−2 u1(x) − |u2(x)|

p(x)−2 u2(x)
)

(u1(x) − u2(x)) = 0, for all x ∈ Ω\
⋃

k∈N∗

Ωk. (5.21)

Now, using (5.21) and (3.6), we get

u1 = u2 a.e. in Ω.

∗ Existence of entropy solution. Let fn = Tn(f) and ϕn = Tn(ϕ); then (fn)n and (ϕn)n are

in L(p−) ′

(Ω) and L(p−) ′

(∂Ω) respectively and are strongly converging to f in L1(Ω) and to ϕ in

L1(∂Ω) respectively. Moreover ‖fn‖L1(Ω) ≤ ‖f‖L1(Ω) and ‖ϕn‖L1(∂Ω) ≤ ‖ϕ‖L1(∂Ω), for all n ∈

N.

Next, we consider the problem





−div a(x,∇un) + |un|
p(x)−2 un = fn in Ω,

a(x,∇un).η = ϕn on ∂Ω.

(5.22)

It follows from Theorem 3.2 that there exists a unique un ∈W1,p(.)(Ω) such that
∫

Ω

a(x,∇un).∇vdx +

∫

Ω

|un|
p(x)−2 unvdx =

∫

∂Ω

ϕnvdσ+

∫

Ω

fnvdx (5.23)

for all v ∈W1,p(.)(Ω).

Our aim is to prove that these approximated solutions un tend, as n goes to infinity, to a measurable

function u which is an entropy solution to the limit problem (1.1). To start with, we prove the

following lemma:

Lemma 5.8. For any k > 0, ‖Tk(un)‖1,p(.) ≤ 1+ C where C = C(k,ϕ, f, p−, p+,meas(Ω)) is a

positive constant.

Proof. By taking v = Tk(un) in (5.23), we get
∫

Ω

a(x,∇un).∇Tk(un) +

∫

Ω

|un|
p(x)−2 unTk(un)dx =

∫

∂Ω

ϕnTk(un)dσ+

∫

Ω

fnTk(un)dx.
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Since all the terms in the left-hand side of equality above are nonnegative and
∫

∂Ω

ϕnTk(un)dσ+

∫

Ω

fnTk(un)dx ≤ k
(

‖ϕn‖L1(∂Ω) + ‖fn‖L1(Ω)

)

≤ k
(

‖ϕ‖L1(∂Ω) + ‖f‖L1(Ω)

)

;

by using (2.5) we obtain
∫

Ω

|∇Tk(un)|
p(x)dx ≤ k

(

‖ϕ‖L1(∂Ω) + ‖f‖L1(Ω)

)

(5.24)

and ∫

Ω

|un|
p(x)−2 unTk(un)dx ≤ k

(

‖ϕ‖L1(∂Ω) + ‖f‖L1(Ω)

)

. (5.25)

The inequality (5.25) is equivalent to
∫

{|un|≤k}

|Tk(un)|
p(x)dx +

∫

{|un|>k}

|un|
p(x)−2 unTk(un)dx ≤ k

(

‖ϕ‖L1(∂Ω) + ‖f‖L1(Ω)

)

.

Therefore, ∫

{|un|≤k}

|Tk(un)|
p(x)dx ≤ k

(

‖ϕ‖L1(∂Ω) + ‖f‖L1(Ω)

)

. (5.26)

Furthermore
∫

{|un|>k}

|Tk(un)|
p(x)dx =

∫

{|un|>k}

kp(x)dx

≤






kp+meas(Ω) if k ≥ 1,

meas(Ω) if k < 1.

This allows us to write
∫

{|un|>k}

|Tk(un)|
p(x)dx ≤ (1+ kp+)meas(Ω). (5.27)

Relations (5.26) and (5.27) give
∫

Ω

|Tk(un)|
p(x)dx ≤ k

(

‖ϕ‖L1(∂Ω) + ‖f‖L1(Ω)

)

+ (1+ kp+)meas(Ω). (5.28)

Hence, adding (5.24) and (5.28), it yields

ρ1,p(.)(Tk(un)) ≤ 2k
(

‖ϕ‖L1(∂Ω) + ‖f‖L1(Ω)

)

+ (1+ kp+)meas(Ω) = C(k,ϕ, f, p+,meas(Ω)).

(5.29)

If ‖Tk(un)‖1,p(.) ≥ 1, we have

‖Tk(un)‖
p−

1,p(.)
≤ ρ1,p(.)(Tk(un)) ≤ C(k,ϕ, f, p+,meas(Ω)),

which is equivalent to

‖Tk(un)‖1,p(.) ≤
(

C(k,ϕ, f, p+,meas(Ω))
)

1
p−

= C(k,ϕ, f, p−, p+,meas(Ω)).
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The above inequality gives

‖Tk(un)‖1,p(.) ≤ 1+ C(k,ϕ, f, p−, p+,meas(Ω)).

Then, the proof of Lemma 5.8. is complete.

From Lemma 5.8. we deduce that for any k > 0, the sequence (Tk(un)) is uniformly bounded in

W1,p(.)(Ω) and so in W1,p−(Ω). Then, up to a subsequence we can assume that for any k > 0,

Tk(un) converges weakly to σk in W1,p−(Ω), and so Tk(un) converges strongly to σk in Lp−(Ω).

We next prove the following proposition:

Proposition 5.9. Assume that (2.1)-(2.5) hold and un ∈ W1,p(.)(Ω) is the weak solution of

(5.22). Then the sequence (un)n is Cauchy in measure. In particular, there exists a measurable

function u and a subsequence still denoted (un)n such that un −→ u in measure.

Proof. Let s > 0 and define

E1 := {|un| > k}, E2 := {|um| > k} and E3 := {|Tk(un) − Tk(um)| > s}

where k > 0 is to be fixed. We note that

{|un − um| > s} ⊂ E1 ∪ E2 ∪ E3,

and hence

meas{|un − um | > s} ≤ meas(E1) +meas(E2) +meas(E3). (5.30)

Let ǫ > 0. Using Proposition 5.7, we choose k = k(ǫ) such that

meas(E1) ≤ ǫ/3 and meas(E2) ≤ ǫ/3. (5.31)

Since Tk(un) converges strongly in Lp−(Ω), then it is a Cauchy sequence in Lp−(Ω).

Thus

meas(E3) ≤
1

sp−

∫

Ω

|Tk(un) − Tk(um)|p−dx ≤
ǫ

3
, (5.32)

for all n,m ≥ n0(s, ǫ).

Finally, from (5.30), (5.31) and (5.32), we obtain

meas{|un − um| > s} ≤ ǫ for all n,m ≥ n0(s, ǫ). (5.33)

Relations (5.33) mean that the sequence (un)n is Cauchy sequence in measure and the proof of

Proposition 5.9. is complete.

Note that as un −→ u in measure, up to a subsequence, we can assume that un −→ u a.e. in Ω.

In the sequel, we need the following two technical lemmas.

Lemma 5.10. ( cf.[30, Lemma 5.4] ) Let (vn)n be a sequence of measurable functions in Ω. If

vn converges in measure to v and is uniformly bounded in Lp(.)(Ω) for some 1 ≪ p(.) ∈ L∞(Ω),

then vn −→ v strongly in L1(Ω).
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The second technical lemma is a well known result in measure theory (cf. [16] ).

Lemma 5.11. Let (X,M, µ) be a measure space such that µ(X) < +∞. Consider a measurable

function γ : X −→ [0,+∞] such that

µ({x ∈ X : γ(x) = 0}) = 0.

Then, for every ǫ > 0, there exists δ > 0, such that

µ(A) < ǫ, for all A ∈ M with

∫

A

γdµ < δ.

We now set to prove that the function u in the Proposition 5.9 is an entropy solution of (1.1).

Let v ∈W1,p(.)(Ω) ∩ L∞(Ω). For any k > 0, choose Tk(un − v) as a test function in (5.23).

We get

∫

Ω

a(x,∇un).∇Tk(un − v)dx +

∫

Ω

|un|
p(x)−2 unTk(un − v)dx =

∫

∂Ω

ϕn(x)Tk(un − v)dσ+

∫

Ω

fn(x)Tk(un − v)dx. (5.34)

We have the following proposition:

Proposition 5.12. Assume that (2.1)-(2.5) hold and un ∈ W1,p(.)(Ω) be the weak solution

of (5.22). Then

(i) ∇un converges in measure to the weak gradient of u;

(ii) For all k > 0, ∇Tk(un) converges to ∇Tk(u) in (L1(Ω))N.

(iii) For all t > 0, a(x,∇Tt(un)) converges to a(x,∇Tt(u)) in
(

L1(Ω)
)N

strongly and in
(

Lp
′(.)(Ω)

)N

weakly.

(iv) un converges to some function v a.e. on ∂Ω.

Proof.

(i) We claim that the sequence (∇un)n is Cauchy in measure.

Indeed, let s > 0, and consider

E1 := {|∇un| > h} ∪ {|∇um| > h}, E2 := {|un − um| > k}

and

E3 := {|∇un| ≤ h, |∇um| ≤ h, |un − um| ≤ k, |∇un −∇um | > s},

where h and k will be chosen later.

Note that

{|∇un −∇um| > s} ⊂ E1 ∪ E2 ∪ E3. (5.35)

Let ǫ > 0. By Proposition 5.7 (relation (5.8)), we may choose h = h(ǫ) large enough such that

meas(E1) ≤ ǫ/3, (5.36)
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for all n,m ≥ 0.

On the other hand, by Proposition 5.9

meas(E2) ≤ ǫ/3, (5.37)

for all n,m ≥ n0(k, ǫ).

Moreover, since a(x, ξ) is continuous with respect to ξ for a.e every x ∈ Ω, by assumption (2.5)

there exists a real valued function γ : Ω −→ [0,+∞] such that meas({x ∈ Ω : γ(x) = 0}) = 0 and

(a(x, ξ) − a(x, ξ ′)).(ξ − ξ ′) ≥ γ(x), (5.38)

for all ξ, ξ ′ ∈ R
N such that |ξ| ≤ h, |ξ ′| ≤ h, |ξ− ξ ′| ≥ s, for a.e x ∈ Ω.

Let δ = δ(ǫ) be given by Lemma 5.11., replacing ǫ and A by ǫ/3 and E3 respectively.

As un is a weak solution of (5.22), using Tk(un − um) as a test function, we get

∫

Ω

a(x,∇un).∇Tk(un − um)dx +

∫

Ω

|un|
p(x)−2 unTk(un − um)dx =

∫

∂Ω

ϕnTk(un − um)dσ+

∫

Ω

fnTk(un − um)dx

≤ k
(

‖ϕ‖L1(∂Ω) + ‖f‖L1(Ω)

)

.

Similarly for um, we have

∫

Ω

a(x,∇um).∇Tk(um − un)dx +

∫

Ω

|um|p(x)−2 umTk(um − un)dx =

∫

∂Ω

ϕmTk(um − un)dσ+

∫

Ω

fmTk(um − un)dx

≤ k
(

‖ϕ‖L1(∂Ω) + ‖f‖L1(Ω)

)

.

After adding the last two inequalities, it yields






∫

{|un−um|≤k}

(a(x,∇un) − a(x,∇um)).(∇un −∇um)dx

+

∫

Ω

(

|un|
p(x)−2 un − |um|p(x)−2 um

)

Tk(un − um)dx ≤ 2k
(

‖ϕ‖L1(∂Ω) + ‖f‖L1(Ω)

)

.

Since the second term of the above inequality is nonnegative, we obtain by using (5.38)

∫

E3

γ(x)dx ≤

∫

E3

(a(x,∇un) − a(x,∇um)).(∇un −∇um)dx ≤ 2k
(

‖ϕ‖L1(∂Ω) + ‖f‖L1(Ω)

)

< δ,

where k = δ/4
(

‖ϕ‖L1(∂Ω) + ‖f‖L1(Ω)

)

.

From Lemma 5.11, it follows that

meas(E3) ≤ ǫ/3. (5.39)
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Thus using (5.35), (5.36), (5.37) and (5.39), we get

meas({|∇un −∇um| > s}) ≤ ǫ, for all n,m ≥ n0(s, ǫ) (5.40)

and then the claim is proved.

Consequently, (∇un)n converges in measure to some measurable function v. In order to end the

proof of (i), we need the following lemma:

Lemma 5.13.

(a) For a.e. t ∈ R, ∇Tt(un) converges in measure to vχ{|u|<t};

(b) for a.e. t ∈ R, ∇Tt(u) = vχ{|u|<t};

(c) ∇Tt(u) = vχ{|u|<t} holds for all t ∈ R.

Proof of Lemma 5.13.

• Proof of (a).

We know that ∇un → v in measure. Thus, χ{|u|<t}∇un → χ{|u|<t}v in measure.

Now, let us show that
(

χ{|un|<t} − χ{|u|<t}

)

∇un → 0 in measure. For that, it is sufficient to show

that
(

χ{|un|<t} − χ{|u|<t}

)

→ 0 in measure. Now, for all δ > 0,

{∣
∣χ{|un|<t} − χ{|u|<t}

∣

∣ |∇un| > δ
}
⊂

{∣
∣χ{|un|<t} − χ{|u|<t}

∣

∣ 6= 0
}

⊂ {|u| = t} ∪ {un < t < u} ∪ {u < t < un} ∪ {un < −t < u} ∪ {u < −t < un} .

Thus,

{
meas

{∣
∣χ{|un|<t} − χ{|u|<t}

∣

∣ |∇un| > δ
}
≤ meas {|u| = t}+meas {un < t < u}+

meas {u < t < un}+meas {un < −t < u} +meas {u < −t < un} .
(5.41)

Note that

meas {|u| = t} ≤meas {t− h < u < t+ h}+meas {−t− h < u < −t+ h} → 0 as h→ 0

for a.e. t, since u is a fixed function. Next,

meas {un < t < u} ≤ meas {t < u < t+ h}+meas {|u− un| > h} , for all h > 0.

Due to Proposition 5.9, we have for all fixed h > 0, meas {|u− un| > h} → 0 as n → +∞. Since

meas {t < u < t + h} → 0 as h → 0, for all ǫ > 0, one can find N such that for all n > N,

meas {un < t < u} < ǫ/2 + ǫ/2 = ǫ by choosing h and then N. Each of the other terms in

the right-hand side of (5.41) can be treated in the same way as for meas {un < t < u}. Thus,

meas
{∣
∣χ{|un|<t} − χ{|u|<t}

∣

∣ |∇un| > δ
}
→ 0 as n→ +∞.

Finally, since ∇Tt(un) = ∇unχ{|un|<t}, the claim (a) follows.

• Proof of (b).
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Let ψt be the weakW
1,p(.)-limit of Tt(un), then it is also the strong L1-limit of Tt(un). But, as Tt

is a Lipschitz function, the convergence in measure of un to u implies the convergence in measure

of Tt(un) to Tt(u). Thus, by the uniqueness of the limit in measure, ψt is identified with Tt(u),

we conclude that ∇Tt(un) → ∇Tt(u) weakly in Lp(.)(Ω).

The previous convergence also ensures that ∇Tt(un) converges to ∇Tt(u) weakly in L1(Ω). On

the other hand, by (a), ∇Tt(un) converges to vχ{|u|<t} in measure. By lemma 5.10, since ∇Tt(un)

is uniformly bounded in Lp−(Ω), the convergence is actually strong in L1(Ω); thus it is also weak

in L1(Ω). By the uniqueness of a weak L1-limit, vχ{|u|<t} coincides with ∇Tt(u).

• Proof of (c)

Let 0 < t < s, and s be such that vχ{|u|<s} coincides with ∇Ts(u). Then

∇Tt(u) = ∇Tt(Ts(u)) = ∇Ts(u)χ{|Ts(u)|<t} = vχ{|u|<s}χ{|u|<t} = vχ{|u|<t}.

Now, we can end the proof of (i). Indeed, combining Lemma 5.13-(c) and Proposition 5.1, (i)

follows.

(ii) Let s > 0, k > 0 and consider

E4 = {|∇un −∇um | > s, |un| ≤ k, |um| ≤ k} , E5 = {|∇um | > s, |un| > k, |um| ≤ k} ,

E6 = {|∇un| > s, |um | > k, |un| ≤ k} and E7 = {0 > s, |um| > k, |un| > k} .

Note that

{|∇Tk(un) −∇Tk(um)| > s} ⊂ E4 ∪ E5 ∪ E6 ∪ E7. (5.42)

Let ǫ > 0. By Proposition 5.7, we may choose k(ǫ) such that

meas(E5) ≤
ǫ

4
,meas(E6) ≤

ǫ

4
and meas(E7) ≤

ǫ

4
. (5.43)

Therefore, using (5.40), (5.42) and (5.43), we get

meas({|∇Tk(un) −∇Tk(um)| > s}) ≤ ǫ, for all n,m ≥ n1(s, ǫ). (5.44)

Consequently, ∇Tk(un) converges in measure to ∇Tk(u).

Then, using lemmas 5.8 and 5.10, (ii) follows.

(iii) By lemmas 5.10 and 5.13, we have that for all t > 0, a(x,∇Tt(un)) converges to a(x,∇Tt(u))

in
(

L1(Ω)
)N

strongly and a(x,∇Tt(un)) converges to χt ∈ (Lp
′(.)(Ω))N in (Lp

′(.)(Ω))N weakly.

Since each of the convergences implies the weak L1-convergence, χt can be identified with a(x,∇Tt(u));

thus, a(x,∇Tt(u)) ∈ (Lp
′(.)(Ω))N. The proof of (iii) is then complete.

(iv) As un is a weak solution of (5.22), using Tk(un) as a test function, we get

∫

Ω

|Tk(un)|
p(x)

dx ≤

∫

Ω

|un|
p(x)−2

unTk(un)dx ≤ k
(

‖ϕ‖L1(∂Ω) + ‖f‖L1(Ω)

)

. (5.45)
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We deduce from (5.24) and (5.45) that

∫

Ω

|Tk(un)|
p− dx ≤ k

(

‖ϕ‖L1(∂Ω) + ‖f‖L1(Ω)

)

+meas(Ω), (5.46)

and ∫

Ω

|∇Tk(un)|
p− dx ≤ k

(

‖ϕ‖L1(∂Ω) + ‖f‖L1(Ω)

)

+meas(Ω). (5.47)

Furthermore, Tk(un) converges weakly to Tk(u) in W
1,p−(Ω) and since for every 1 ≤ p ≤ +∞,

τ :W1,p(Ω) → Lp(∂Ω), u 7→ τ(u) = u|∂Ω

is compact, we deduce that Tk(un) converges strongly to Tk(u) in Lp−(∂Ω) and so, up to a

subsequence, we can assume that Tk(un) converges to Tk(u), a.e. on ∂Ω. In other words, there

exists C ⊂ ∂Ω such that Tk(un) converges to Tk(u) on ∂Ω\C with µ(C) = 0 where µ is the area

measure on ∂Ω.

Now, we use Hölder Inequality, (5.46) and (5.47) to get

∫

Ω

|Tk(un)|dx ≤ (meas(Ω))
1

(p−)′

(

k
(

‖ϕ‖L1(∂Ω) + ‖f‖L1(Ω)

)

+meas(Ω)
)

1
p− , (5.48)

and
∫

Ω

|∇Tk(un)|dx ≤ (meas(Ω))
1

(p−)′

(

k
(

‖ϕ‖L1(∂Ω) + ‖f‖L1(Ω)

)

+meas(Ω)
)

1
p− . (5.49)

By using Fatou’s Lemma in (5.48) and (5.49) we get as n goes to +∞,

∫

Ω

|Tk(u)|dx ≤ (meas(Ω))
1

(p−)′

(

k
(

‖ϕ‖L1(∂Ω) + ‖f‖L1(Ω)

)

+meas(Ω)
)

1
p− , (5.50)

and
∫

Ω

|∇Tk(u)| dx ≤ (meas(Ω))
1

(p−)′

(

k
(

‖ϕ‖L1(∂Ω) + ‖f‖L1(Ω)

)

+meas(Ω)
)

1
p− . (5.51)

For every k > 0, let Ak := {x ∈ ∂Ω : |Tk(u(x))| < k} and C
′ = ∂Ω\

⋃

k>0

Ak.

We have

µ(C ′) =
1

k

∫

C ′

|Tk(u)|dx ≤
1

k

∫

∂Ω

|Tk(u)|dx

≤
C1

k
‖Tk(u)‖W1,1(Ω)

≤
C1

k
‖Tk(u)‖L1(Ω) +

C1

k
‖∇Tk(u)‖L1(Ω) .

According to (5.50) and (5.51), we deduce by letting k→ +∞ that µ(C ′) = 0.

Let us define in ∂Ω the function v by

v(x) := Tk(u(x)) if x ∈ Ak.
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We take x ∈ ∂Ω\ (C ∪ C ′); then there exists k > 0 such that x ∈ Ak and we have

un(x) − v(x) = (un(x) − Tk(un(x))) + (Tk(un(x)) − Tk(u(x))) .

Since x ∈ Ak, we have |Tk(u(x))| < k and so |Tk(un(x))| < k, from which we deduce that |un(x)| <

k.

Therefore

un(x) − v(x) = (Tk(un(x)) − Tk(u(x))) → 0, as n→ +∞.

This means that un converges to v a.e. on ∂Ω.

The proof of the Proposition 5.12 is then complete.

We are now able to pass to the limit in the identity (5.34).

For the right-hand side, the convergence is obvious since fn converges strongly to f in L1(Ω),

ϕn converges strongly to ϕ in L1(∂Ω) and Tk(un − v) converges weakly-∗ to Tk(u− v) in L∞(Ω)

and a.e in Ω and to Tk(u− v) in L∞(∂Ω) and a.e in ∂Ω.

For the second term of (5.34), we have

∫

Ω

|un|
p(x)−2 unTk(un − v)dx =

∫

Ω

(

|un|
p(x)−2 un − |v|p(x)−2 v

)

Tk(un − v)dx

+

∫

Ω

|v|p(x)−2 vTk(un − v)dx.

The quantity
(

|un|
p(x)−2 un − |v|p(x)−2 v

)

Tk(un − v) is nonnegative and since for all

x ∈ Ω, s 7−→ |s|p(x)−2 s is continuous, we get

(

|un|
p(x)−2 un − |v|p(x)−2 v

)

Tk(un − v) −→
(

|u|p(x)−2 u− |v|p(x)−2 v
)

Tk(u− v)dx a.e in Ω.

Then, it follows by Fatou’s Lemma that

lim inf
n→+∞

∫

Ω

(

|un|
p(x)−2 un − |v|p(x)−2 v

)

Tk(un−v)dx ≥

∫

Ω

(

|u|p(x)−2 u− |v|p(x)−2 v
)

Tk(u−v)dx.

Let us show that |v|p(x)−2 v ∈ L1(Ω).

We have ∫

Ω

∣

∣

∣
|v|p(x)−2 v

∣

∣

∣
dx =

∫

Ω

|v|p(x)−1dx ≤

∫

Ω

(

‖v‖∞

)p(x)−1

dx.

If ‖v‖∞ ≤ 1, then

∫

Ω

∣

∣

∣
|v|p(x)−2 v

∣

∣

∣
dx ≤ meas(Ω) < +∞.

If ‖v‖∞ > 1, then

∫

Ω

∣

∣

∣
|v|p(x)−2 v

∣

∣

∣
dx ≤

∫

Ω

(

‖v‖∞

)p+−1

dx =
(

‖v‖∞

)p+−1

meas(Ω) < +∞.
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Hence |v|p(x)−2 v ∈ L1(Ω).

Since Tk(un−v) converges weakly-∗ to Tk(u−v) in L
∞(Ω) and |v|p(x)−2 v ∈ L1(Ω), it follows that

lim
n→+∞

∫

Ω

|v|p(x)−2 vTk(un − v)dx =

∫

Ω

|v|p(x)−2 vTk(u− v)dx.

Next, we write the first term in (5.34) in the following form
∫

{|un−v|≤k}

a(x,∇un).∇undx−

∫

{|un−v|≤k}

a(x,∇un).∇vdx. (5.52)

Set l = k+ ‖v‖∞, the second integral in (5.52) equals to
∫

{|un−v|≤k}

a(x,∇Tl(un)).∇vdx.

Since a(x,∇Tl(un)) is uniformly bounded in
(

Lp
′(.)(Ω)

)N

(by (2.3) and (5.24) ),

by Proposition 5.12−(iii), it converges weakly to a(x,∇Tl(u)) in
(

Lp
′(.)(Ω)

)N

.

Therefore

lim
n→+∞

∫

{|un−v|≤k}

a(x,∇Tl(un)).∇vdx =

∫

{|u−v|≤k}

a(x,∇Tl(u)).∇vdx.

Moreover a(x,∇un).∇un is nonnegative and converges a.e in Ω to a(x,∇u).∇u.

Thanks to Fatou’s Lemma, we obtain

lim inf
n→+∞

∫

{|un−v|≤k}

a(x,∇un).∇undx ≥

∫

{|u−v|≤k}

a(x,∇u).∇udx.

Gathering results, we obtain
∫

Ω

a(x,∇u).∇Tk(u− v)dx+

∫

Ω

|u|p(x)−2 uTk(u− v)dx ≤

∫

∂Ω

ϕTk(u− v)dσ+

∫

Ω

fTk(u− v)dx.

We conclude that u is an entropy solution of (1.1).
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[5] P. Bénilan, L. Boccardo, T. Gallouèt, R. Gariepy, M. Pierre, J.L. Vazquez, An L1 theory of

existence and uniqueness of nonlinear elliptic equations, Ann Scuola Norm. Sup. Pisa, 22 no.2

(1995), 240-273.
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[20] C. B. Jr. Morrey; Multiple Intégrals in the Calculus of Variations, Springer-Verlag, 1966.

[21] J. Musielak; Orlicz Spaces and modular spaces. Lecture Notes in Mathematics, vol. 1034

(1983), springer, Berlin.

[22] H. Nakano; Modulared semi-ordered linear spaces. Maruzen Co., Ltd., Tokyo, 1950.
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