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ABSTRACT

In this paper we shall continue to study from [4], for k = −1 and k = 5, the infi-

nite sequences of triples A = (F2n+1, F2n+3, F2n+5), B = (F2n+1, 5F2n+3, F2n+5),

C = (L2n+1, L2n+3, L2n+5), D = (L2n+1, 5L2n+3, L2n+5) with the property that the

product of any two different components of them increased by k are squares. The se-

quences A and B are built from the Fibonacci numbers Fn while the sequences C and

D from the Lucas numbers Ln. We show some interesting properties of these sequences

that give various methods how to get squares from them.

RESUMEN

En este art́ıculo continuaremos el estudio de [4], para k = −1 y k = 5, las secuen-

cias infinitas de tripletas A = (F2n+1, F2n+3, F2n+5), B = (F2n+1, 5F2n+3, F2n+5),

C = (L2n+1, L2n+3, L2n+5), D = (L2n+1, 5L2n+3, L2n+5) con la propiedad que el pro-

ducto de dos componentes diferentes que se aumenta en k son cuadrados. Las secuencias

A y B se construyen con los números de Fibonacci Fn mientras que las secuencias C

y D se construyen con los números de Lucas Ln. Mostramos algunas propiedades in-

teresantes de estas secuencias que entregan muchos métodos de cómo conseguir los

cuadrados de ellos.
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1 Introduction

For integers a, b and c, let us write a
b
∼ c provided a+ b = c2. For the triples A = (a, b, c),

D = (d, e, f) and Ã = (ã, b̃, c̃) the notation A
D
∼ Ã means that b c

d
∼ ã, c a

e
∼ b̃ and ab

f
∼ c̃. When

D = (k, k, k), let us write A
k
∼ Ã for A

D
∼ Ã. Hence, A is the D(k)-triple (see [1]) if and only if

there is a triple Ã such that A
k
∼ Ã.

In the paper [4] we constructed infinite sequences α = {α(n)}∞n=0 and β = {β(n)}∞n=0 of D(−1)-

triples and γ = {γ(n)}∞n=0 and δ = {δ(n)}∞n=0 of D(5)-triples. Here, α(n) = A = (F2n+1, F2n+3,

F2n+5), β(n) = B = (F2n+1, 5F2n+3, F2n+5) and γ(n) = C = (L2n+1, L2n+3, L2n+5), δ(n) =

D = (L2n+1, 5L2n+3, L2n+5), where the Fibonacci and Lucas sequences of natural numbers Fn

and Ln are defined by the recurrence relations F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n > 2 and

L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2 for n > 2.

The numbers Fk make the integer sequence A000045 from [6] while the numbers Lk make

A000032.

The goal of this article is to further explore the properties of the sequences α, β, γ and δ. Each

member of these sequences is an Euler D(−1)- or D(5)-triple (see [2] and [3]) so that many of their

properties follow from the properties of the general (pencils of) Euler triples. It is therefore interest-

ing to look for those properties in which at least two of the sequences appear. This paper presents

several results of this kind giving many squares from the components, various sums and products of

the sequences α, β, γ and δ. Most of our theorems have also versions for the associated sequences

α̃, β̃, γ̃ and δ̃, where α̃(n) = Ã = (F2n+4, F2n+3, F2n+2), β̃(n) = B̃ = (L2n+4, F2n+3, L2n+2),

γ̃(n) = C̃ = (L2n+4, L2n+3, L2n+2), δ̃(n) = D̃ = (5F2n+4, L2n+3, 5F2n+2) satisfy A
−1
∼ Ã, B

−1
∼ B̃,

C
5
∼ C̃ and D

5
∼ D̃.

2 Squares from products of components

The relations A
−1
∼ Ã and C

5
∼ C̃ imply that the components of A and C satisfy A2A3

−1
∼ Ã1

and C2C3
5
∼ C̃1. Our first theorem shows that the product A2A3C2C3 is in a similar relation

with respect to 1. Of course, the other products A3A1C3C1, A1A2C1C2 as well as B2B3D2D3,

B3B1D3D1 and B1B2D1D2 exhibit a similar property.

Theorem 1. The following hold for the products of components:

A2A3 C2 C3
1
∼ F4n+8,

1
5
B2 B3D2D3

9
∼ L4n+8,

A3A1 C3 C1
9
∼ F4n+6, B3 B1D3D1

9
∼ F4n+6,

A1A2 C1 C2
1
∼ F4n+4,

1
5
B1 B2D1D2

9
∼ L4n+4.
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Proof. Let ϕ = 1+
√
5

2
and ψ = 1−

√
5

2
= − 1

ϕ
. Since Fj =

ϕj−ψj

ϕ−ψ
and Lj = ϕ

j +ψj, it follows that

A2 =
ϕ2n+3−ψ2n+3

ϕ−ψ
, A3 =

ϕ2n+5−ψ2n+5

ϕ−ψ
and C2 = ϕ2n+3 +ψ2n+3, C3 = ϕ

2n+5 +ψ2n+5.

After the substitutionsψ = − 1
ϕ
andM = ϕn, the sum ofA2A3C2C3 and 1 becomes ϕ

16(M8−ψ16)2

20M8 .

However, this is precisely the square of F4n+8. This shows the first relation. The other relations

have similar proofs.

The version of the previous theorem for the sequences α̃, β̃, γ̃ and δ̃ is the following result.

Theorem 2. The products of components of Ã, B̃, C̃ and D̃ satisfy:

Ã2Ã3C̃2C̃3
1
∼ F4n+5, B̃2B̃3D̃2D̃3

1
∼ L4n+5,

Ã3Ã1C̃3C̃1
1
∼ F4n+6,

1
25
B̃3B̃1D̃3D̃1

1
∼ F4n+6,

Ã1Ã2C̃1C̃2
1
∼ F4n+7, B̃1B̃2D̃1D̃2

1
∼ L4n+7.

Proof. Since Ã2 =
ϕ2n+3−ψ2n+3

ϕ−ψ
, Ã3 =

ϕ2n+2−ψ2n+2

ϕ−ψ
, C̃2 = ϕ

2n+3+ ψ2n+3 and C̃3 = ϕ
2n+2+

ψ2n+2, the sum of Ã2Ã3C̃2C̃3 and 1, after the substitutions ψ = − 1
ϕ

and M = ϕn, becomes
ϕ10(M8+ψ10)2

5M8 . However, the square of F4n+5 has the same value. This proves the first relation

Ã2Ã3C̃2C̃3
1
∼ F4n+5. The remaining five relations in this theorem have similar proofs.

The same kind of relations hold also for the products of components from all four sequences

α, β, γ and δ.

Theorem 3. The following relations for products of components hold:

A2B3C2D3
1
∼ F4n+8,

1
25
A3B2C3D2

1
∼ F4n+8,

A3B1C3D1
9
∼ F4n+6, A1B3C1D3

9
∼ F4n+6,

1
25
A1B2C1D2

1
∼ F4n+4, A2B1C2D1

1
∼ F4n+4.

Proof. Since B3 = A3 and D3 = C3, the first relation is the consequence of the first relation in

Theorem 1.

In order to prove the second relation, notice that B2 = 5A2 and D2 = 5C2 so that the multi-

plication of the identity behind the first relation in Theorem 1 with 25 we conclude that the second

relation holds. The other relations in this theorem have similar proofs.

There is again the version of the previous theorem for the products of components from all

four sequences α̃, β̃, γ̃ and δ̃.
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Theorem 4. The products of components of Ã, B̃, C̃ and D̃ satisfy:

Ã2B̃3C̃2D̃3
1
∼ L4n+5, Ã3B̃2C̃3D̃2

1
∼ F4n+5,

Ã3B̃1C̃3D̃1
9
∼ L4n+6, Ã1B̃3C̃1D̃3

9
∼ L4n+6,

Ã1B̃2C̃1D̃2
1
∼ F4n+7, Ã2B̃1C̃2D̃1

1
∼ L4n+7.

Proof. Since Ã2 = B̃2 and C̃2 = D̃2, the first, the second, the fifth and the sixth relations are the

consequence of the second, the first, the fifth and the sixth relations in Theorem 2.

In order to prove the third relation, note that the components Ã3, B̃1 and C̃3, D̃1 are
ϕ2n+2−ψ2n+2)

ϕ−ψ
, ϕ2n+4 +ψ2n+4, ϕ2n+2 +ψ2n+2 and 5(ϕ2n+4−ψ2n+4)

ϕ−ψ
. It is now clear from the

proof of Theorem 1 that the sum of Ã3B̃1C̃3D̃1 and 9 is precisely the square of L4n+6. This shows

the third relation. The fourth relation has a similar proof.

Nice relationships of the same kind hold also for the products of components with other choices

of indices.

Theorem 5.

1
5
A2 B2 C3D3

0
∼ F2n+3L2n+5,

1
5
A3 B3 C2D2

0
∼ F2n+5L2n+3,

A3 B3 C1D1
0
∼ F2n+5L2n+1, A1 B1 C3D3

0
∼ F2n+1L2n+5,

1
5
A1 B1 C2D2

0
∼ F2n+1L2n+3,

1
5
A2 B2 C1D1

0
∼ F2n+3L2n+1.

Proof. Since B2 = 5A2, A2 = F2n+3 and C3 = D3 = L2n+5, the product 1
5
A2 B2 C3D3 is the

square of F2n+3L2n+5. The other claims in this theorem have similar proofs.

The version of the previous theorem for the products of components from all four associated

sequences is the following result.

Theorem 6. The products of components of Ã, B̃, C̃ and D̃ satisfy:

Ã2B̃2C̃3D̃3

5 F4n+4

0
∼ F2n+3,

Ã3B̃3C̃2D̃2

F4n+4

0
∼ L2n+3,

1
5
Ã3B̃3C̃1D̃1

1
∼ F4n+6,

1
5
Ã1B̃1C̃3D̃3

1
∼ F4n+6,

Ã1B̃1C̃2D̃2

F4n+8

0
∼ L2n+3,

Ã2B̃2C̃1D̃1

5 F4n+8

0
∼ F2n+3.

Proof. Since Ã2 = B̃2 = F2n+3, C̃3 = L2n+2, D̃3 = 5F2n+2, we see that the first relation clearly

holds. The others in this theorem are proved similarly.
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This time the pairs (A,D) and (B,C) have equal indices.

Theorem 7. The following hold for the products of components:

1
5
A2 B3 C3D2

1
∼ F4n+8,

1
5
A3 B2 C2D3

1
∼ F4n+8,

A3 B1 C1D3
9
∼ F4n+6, A1 B3 C3D1

9
∼ F4n+6,

1
5
A1 B2 C2D1

1
∼ F4n+4,

1
5
A2 B1 C1D2

1
∼ F4n+4.

Proof. Since A2 = F2n+3, B3 = F2n+5, C3 = L2n+5 and D2 = 5L2n+3, the sum of 1
5
A2 B3 C3D2

and 1 is F4n+6F4n+10 + 1 = F
2
4n+8. The other claims in this theorem have similar proofs.

Once again the version of the previous theorem for the associated sequences includes interesting

relations.

Theorem 8. The products of components of Ã, B̃, C̃ and D̃ satisfy:

Ã2B̃3C̃3D̃2

F4n+6

0
∼ L2n+2,

Ã3B̃2C̃2D̃3

5 F4n+6

0
∼ F2n+2,

1
5
Ã3B̃1C̃1D̃3

0
∼ F2n+2L2n+4,

1
5
Ã1B̃3C̃3D̃1

0
∼ F2n+4L2n+2,

Ã1B̃2C̃2D̃1

5 F4n+6

0
∼ F2n+4,

Ã2B̃1C̃1D̃2

F4n+6

0
∼ L2n+4.

Proof. Since Ã2 = F2n+3 B̃3 = C̃3 = L2n+2, D̃2 = L2n+3 and F2n+3L2n+3 = F4n+6 we see that the

first relation clearly holds. The other relations in this theorem are proved similarly.

It is interesting that in some cases we can even mix components of the triples A, B,

C, D and Ã, B̃, C̃, D̃ as the relations Ã2 B3 C3 D̃2
1
∼ F4n+8, Ã2 B̃2 C3D3

0
∼ F2n+3L2n+5 and

Ã2 B̃2 C1D1
0
∼ F2n+3L2n+1 show, but we do not see a general pattern here.

3 Squares from symmetric sums

Let σ1, σ2, σ3 : Z
3
→ Z be the basic symmetric functions defined for x=(a, b, c) by

xσ1
= a+ b+ c, xσ2

= b c+ c a+ ab, xσ3
= ab c. Let σ∗2, σ∗1 : Z

3
→ Z be defined by

xσ∗

2
= b c− c a+ ab and xσ∗

1
= a− b+ c. Note that xσ∗

1
is the determinant of the 1× 3 matrix

[a, b, c] (see [5]).

For the sums σ2 and σ∗2 of the components the following relations are true.
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Theorem 9. The following is true for the sums σ2 of the components:

Aσ2
Cσ2

21
∼ 4 F4n+6, Bσ2

Dσ2

69
∼ 16 F4n+6,

Ãσ2
C̃σ2

5
∼ 2 F4n+7, B̃σ2

D̃σ2

45
∼ 10 F4n+6.

Proof. Since Aσ2
= 1

5
(4L4n+6 + 13) and Cσ2

= 4L4n+6 − 13, the sum Aσ2
Cσ2

+ 21 is
1
5
[(4L4n+6)

2 − 64] that we recognize as the square of 4F4n+6. This proves the first relation

Aσ2
Cσ2

21
∼ 4 F4n+6. The other relations in this theorem have similar proofs.

The sums B̃σ∗

2
and D̃σ∗

2
have constant values −1 and 5. On the other hand, we have the

following result.

Theorem 10. The following is true for the sums σ∗2 of the components:

Aσ∗

2
Cσ∗

2

−3
∼ 2 F4n+6, Bσ∗

2
Dσ∗

2

−51
∼ 14 F4n+6, Ãσ∗

2
C̃σ∗

2

5
∼ 2 F4n+6.

Proof. Since Bσ∗

2
= 1
5
(14L4n+6 + 23) and Dσ∗

2
= 14L4n+6 − 23, the sum Bσ∗

2
Dσ∗

2
− 51 is the quo-

tient
196(L2

4n+6−4)

5
. It is now easy to check that this is the square of 14 F4n+6. This proves the

second relation Bσ∗

2
Cσ2

−51
∼ 14 F4n+6. The other relations in this theorem have similar proofs.

Some similar relations where all four letters A, B, C and D appear make the following result.

Theorem 11. The following is true for the sums σ∗2 of the components:

Ãσ∗

2
D̃σ∗

2
+ B̃σ∗

2
C̃σ∗

2
= 6, Ãσ∗

2
C̃σ∗

2
+ B̃σ∗

2
D̃σ∗

2

10
∼ 2 F4n+5,

−Ãσ∗

2
B̃σ∗

2
C̃σ∗

2
D̃σ∗

2

9
∼ 2 L4n+5.

Proof. Since B̃σ∗

2
= −1, Ãσ∗

2
= 1
5
(2 L4n+5 + 3), C̃σ∗

2
= 2 L4n+5 − 3 and D̃σ∗

2
= 5, it follows that

Ãσ∗

2
D̃σ∗

2
+ B̃σ∗

2
C̃σ∗

2
= 6. The second and the third relations in this theorem have similar proofs.

Here are two relations which contains both sums σ2 and σ∗2.

Theorem 12. The following is true for the sums σ2 and σ∗2:

1
36
(Aσ2

Dσ2
− Bσ∗

2
Cσ∗

2
)
2
∼ F4n+6, 3Bσ∗

2
Cσ∗

2
−Aσ2

Dσ2

−74
∼ 2 L4n+6 + 6.

Proof. Since the sums Bσ∗

2
, Aσ2

, Cσ∗

2
and Dσ2

are equal 1
5
(14 L4n+6 + 23),

1
5
(4 L4n+6 + 13),

2 L4n+6 + 1 and 16 L4n+6 − 37, we infer that the sum 1
36
(Aσ2

Dσ2
− Bσ∗

2
Cσ∗

2
) + 2 is the square

of F4n+6. The second relation in this theorem has analogous proof.

In the next result we consider the products of the same components of the triples A, B, C and

D and the product of their components.



CUBO
15, 2 (2013)

Squares in Euler triples ... 85

Theorem 13. The following relations hold:

A1B1C1D1
0
∼ F4n+2, A2B2C2D2

0
∼ 5 F4n+6,

A3B3C3D3
0
∼ F4n+10, Aσ3

Bσ3
Cσ3

Dσ3

0
∼ 5 F4n+2 F4n+6 F4n+10.

Proof. Since the product F2n+5L2n+5 is F4n+10, A3 = B3 = F2n+5 and C3 = D3 = L2n+5, it fol-

lows that A3B3C3D3 = (F2n+5 L2n+5)
2 = F24n+10. This proves the third relation. The other rela-

tions have similar proofs.

The products of the same components of the triples Ã, B̃, C̃ and D̃ and the product of their

components appear in the following result.

Theorem 14. The following relations are true:

1
5
Ã1B̃1C̃1D̃1

0
∼ F4n+8,

1
5
Ã3B̃3C̃3D̃3

0
∼ F4n+4,

Ã2B̃2C̃2D̃2
0
∼ F4n+6, Ãσ3

B̃σ3
C̃σ3

D̃σ3

0
∼ 5 F4n+8F4n+6F4n+4.

Proof. Since Ã3 = F2n+2, B̃3 = L2n+2, C̃3 = L2n+2, D̃3 = 5 F2n+2 and F2n+2L2n+2 = F4n+4, it

follows that the product 1
5
Ã3B̃3C̃3D̃3 is the square of F4n+4. This proves the second relation. The

other relations in this theorem have similar proofs.

The products of the sums σ1 and σ
∗ of the components of the triples A, B, C and D show the

same kind of relations. This is also true for the associated triples Ã, B̃, C̃ and D̃.

Theorem 15. The following relations hold for the sums σ1 and σ∗1:

Aσ1
Bσ1

Cσ1
Dσ1

0
∼ 32 F4n+6,

1
144
Ãσ1

B̃σ1
C̃σ1

D̃σ1

1
∼ F4n+7,

Aσ∗

1
Bσ∗

1
Cσ∗

1
Dσ∗

1

0
∼ 4 F4n+6,

1
64
Ãσ∗

1
B̃σ∗

1
C̃σ∗

1
D̃σ∗

1

1
∼ F4n+5.

Proof. The sums of the components Aσ1
, Bσ1

, Cσ1
andDσ1

are equal 4 F2n+3, 8F2n+3, 4 L2n+3 and

8 L2n+3. Hence, the product Aσ1
Bσ1

Cσ1
Dσ1

is the square of 32 F4n+6 since F2n+3L2n+3 = F4n+6.

This proves the above first relation. The other relations in this theorem have similar proofs.

In the next result we combine the sums σ1 and σ∗1 in each product.

Theorem 16. The following relations hold for the sums σ1 and σ∗1:

Aσ1
Bσ∗

1
Cσ1

Dσ∗

1

0
∼ 8 F4n+6, Aσ∗

1
Bσ1

Cσ∗

1
Dσ1

0
∼ 16 F4n+6,

1
24
Ãσ1

B̃σ∗

1
C̃σ∗

1
D̃σ1

1
∼ 2 F4n+6 + 1,

1
24
Ãσ∗

1
B̃σ1

C̃σ1
D̃σ∗

1

1
∼ 2 F4n+6 − 1,

1
64
Ãσ1

B̃σ∗

1
C̃σ1

D̃σ∗

1

1
∼ F4n+7,

1
144
Ãσ∗

1
B̃σ1

C̃σ∗

1
D̃σ1

1
∼ F4n+5.
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Proof. The sums of the components Aσ1
, Bσ∗

1
, Cσ1

and Dσ∗

1
are equal 4 F2n+3, −2 F2n+3, 4 L2n+3

and −2 L2n+3. The product Aσ1
Bσ∗

1
Cσ1

Dσ∗

1
is therefore the square of 8 F4n+6 since F2n+3L2n+3

= F4n+6. This proves the first relation. The other relations in this theorem have analogous

proofs.

4 Squares from the sums of squares

For a natural number k > 1, let the sums νk, ν
∗
k : Z3 → Z of powers be defined for x = (a, b, c) by

xνk
= ak + bk + ck and xν∗

k
= ak − bk + ck.

We proceed with the version of the Theorem 9 for the sums ν2 of the squares of components.

Theorem 17. The following relations are true for the sums ν2:

1
4
Aν2

Cν2

−11
∼ 4 F4n+6,

1
4
Bν2

Dν2

−59
∼ 16 F4n+6,

1
4
Ãν2

C̃ν2

−3
∼ 2 F4n+6,

1
4
B̃ν2

D̃ν2

−27
∼ 8 F4n+6.

Proof. Since Aν2
and Cν2

are 2
5
(4 L4n+6 + 3) and 2(4 L4n+6 − 3), the difference of 1

4
Aν2

Cν2
and

11 is equal
16(L2

4n+6−4)

5
. But, one can easily check that

L2
4n+6−4

5
= F24n+6 so that the above quotient

is the square of 4 F4n+6. This concludes the proof of the first relation. The other relations in this

theorem have similar proofs.

The next is the version of the Theorem 10 for the alternating sums ν∗2 of the squares of

components.

Theorem 18. The following relations are true for the sums ν∗2:

1
4
Aν∗

2
Cν∗

2

−7
∼ 3 F4n+6,

1
4
Bν∗

2
Dν∗

2

41
∼ 9 F4n+6,

1
4
Ãν∗

2
C̃ν∗

2

1
∼ F4n+6,

1
4
B̃ν∗

2
D̃ν∗

2

−23
∼ 7 F4n+6.

Proof. Notice that the alternating sums of squares of components Aν∗

2
and Cν∗

2
are 2

5
(3 L4n+6 + 1)

and 2(3 L4n+6 + 1). Hence, the sum of 1
4
Aν∗

2
Cν∗

2
and −7 is equal to the following quotient

9(L2
4n+6−4)

5
. This quotient is in fact the square of 3 F4n+6. This proves the first relation. The

remaining three relations in this theorem have similar proofs.

Certain sums of products of the sums ν∗2 of components show the same behavior.

Theorem 19. The following relations are true for the sums ν∗2:

1
8
(Aν∗

2
Dν∗

2
+ Bν∗

2
Cν∗

2
)
17
∼
√
−27 F4n+6,

1
8
(Ãν∗

2
D̃ν∗

2
+ B̃ν∗

2
C̃ν∗

2
)
−11
∼

√
7 F4n+6.
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Proof. Notice that the alternating sums of squares of components Ãν∗

2
, B̃ν∗

2
, C̃ν∗

2
and D̃ν∗

2
are

2 F2n+2F2n+4,
2
5
(7 L4n+6 + 9), 2 L2n+2L2n+4 and 2(7 L4n+6 − 9). Hence, the sum of

1
8
(Ãν∗

2
D̃ν∗

2
+ B̃ν∗

2
C̃ν∗

2
) and −11 is equal to the square of

√
7 F4n+6. This proves the second relation.

The first relation has a similar proof.

5 Squares from the products ⊙, ⊲ and ⊳

Let us introduce three binary operations ⊙, ⊲ and ⊳ on the set Z3 of triples of integers by the rules

(a, b, c)⊙ (u, v, w) = (au, b v, cw), (a, b, c) ⊲ (u, v, w) = (a v, bw, cu), and

(a, b, c) ⊳ (u, v, w) = (aw, bu, c v).

This section contains four theorems which show that the operations ⊙, ⊲ and ⊳ are also the

source of squares from components of the eight sequences.

Theorem 20. The following relations for the sequences A, B, C and D hold:

(A⊙ B)σ1
(C⊙D)σ1

−76
∼ 12 F4n+6, (A ⊲ B)σ1

(C ⊲D)σ1

61
∼ 4 L4n+5 and

(A ⊳ B)σ1
(C ⊳D)σ1

61
∼ 4 L4n+7.

Proof. Since (A ⊲ B)σ1
= 4 F4n+5 + 5 and (C ⊲D)σ1

= 5(4 F4n+5 − 5), it follows that the sum of

(A ⊲ B)σ1
(C ⊲D)σ1

and 61 is the product 16(5 F24n+5 − 4), i. e., the square of 4 L4n+5. This proves

the second relation. The first and the third could be established similarly.

Theorem 21. The following relations for the sequences A, B, C and D hold:
1
4
(A⊙ B)σ∗

1
(C⊙D)σ∗

1

1
∼ F4n+6, (A ⊲ B)σ∗

1
(C ⊲D)σ∗

1

69
∼ 2 F4n+2 and

(A ⊳ B)σ∗

1
(C ⊳D)σ∗

1

69
∼ 2 F4n+10.

Proof. Since the sums (A ⊲ B)σ∗

1
and (C ⊲D)σ∗

1
are 1

5
(2 L4n+2 + 19) and 2 L4n+2 − 19, it follows

that the sum of (A ⊲ B)σ∗

1
(C ⊲D)σ∗

1
and 69 is the square of 2 F4n+2. This is the outline of the

proof of the second relation. The similar proofs of the first and the third relation are left to the

reader.

Theorem 22. The following relations for the triples Ã, B̃, C̃ and D̃ hold:

(Ã⊙ B̃)σ1
(C̃⊙ D̃)σ1

36
∼ 31 F4n+3 + 7 F4n, (Ã ⊲ B̃)σ1

(C̃ ⊲ D̃)σ1

−3
∼ 2 F4n+8, and

(Ã ⊳ B̃)σ1
(C̃ ⊳ D̃)σ1

29
∼ 4 F4n+7.

Proof. Since the sums (Ã ⊳ B̃)σ1
and (C̃ ⊳ D̃)σ1

are 1
5
(2 L4n+8 + 1) and 2 L4n+8 − 1, it follows that

the sum of (Ã ⊳ B̃)σ1
(C̃ ⊳ D̃)σ1

and −3 is the square of 2 F4n+8. This is the outline of the proof of

the third relation. The similar proofs of the first and the second relation are left to the reader.
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Theorem 23. The following relations hold for the triples Ã, B̃, C̃ and D̃:

(Ã⊙ B̃)σ∗

1
(C̃⊙ D̃)σ∗

1

36
∼ 23 F4n+3 + 5 F4n, (Ã ⊲ B̃)σ∗

1
(C̃ ⊲ D̃)σ∗

1

29
∼ 4 F4n+5 and

(Ã ⊳ B̃)σ∗

1
(C̃ ⊳ D̃)σ∗

1

−3
∼ 2 F4n+4.

Proof. Since the sums (Ã ⊳ B̃)σ∗

1
and (C̃ ⊳ D̃)σ∗

1
are −1

5
(2 L4n+4 + 1) and 1− 2 L4n+4, it follows

that the difference of (Ã ⊳ B̃)σ∗

1
(C̃ ⊳ D̃)σ∗

1
and 3 is the square of 2 F4n+4. This is the outline of the

proof of the third relation. The similar proofs of the first and the second relation are left to the

reader.
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