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ABSTRACT

In this paper we shall continue to study from [4], for k = —1 and k=5, the infi-
nite sequences of triples A= (F2n+], F2n+3, F2n+5), B= (F2n+1, 5an+37 an+5),
C= (L2ﬂ+17 L2n+3, L2n+5), D= (L2n+17 5L2n+3, L2n+5) with the property that the
product of any two different components of them increased by k are squares. The se-
quences A and B are built from the Fibonacci numbers F,, while the sequences C and
D from the Lucas numbers L;,. We show some interesting properties of these sequences
that give various methods how to get squares from them.

RESUMEN

En este articulo continuaremos el estudio de [4], para k =—1 y k=5, las secuen-
cias infinitas de tripletas A = (Fani1, F2nes, Fanas), B = (Fani1, 5Fani3, Fanis),
C= (L2n+1, I_zn+3, LG+5), D= (L2n+], 5L2n+3, L2n+5) con la propiedad que el pro-
ducto de dos componentes diferentes que se aumenta en k son cuadrados. Las secuencias
A y B se construyen con los nimeros de Fibonacci F,, mientras que las secuencias C
y D se construyen con los nimeros de Lucas L,,. Mostramos algunas propiedades in-
teresantes de estas secuencias que entregan muchos métodos de cémo conseguir los
cuadrados de ellos.
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1 Introduction

For integers a, b and c, let us write aE ¢ provided a+b =c2. For the triples A = (a,b,c),
D = (d,e, f) and A= (a,E,’c“) the notation A < A means that bed d,ca~bandab L% When
D = (k,k,k), let us write A XA for ARA. Hence, A is the D(k)-triple (see [1]) if and only if
there is a triple A such that A IS A.

In the paper [4] we constructed infinite sequences & = {x(n)}>°_, and p = {B(n)}_, of D(—1)-
triples and v ={y(m)}3>_, and & ={6(n)}3>_, of D(5)-triples. Here, a(n) = A = (Fan+1, Fonss,
Fanys), B(n) = B = (Fant1, 5Fanys, Fanys) and y(n) = C = (Lont1, Longs, Langs), 8(n) =
D = (Lani1, 5Lony3s, Lanys), where the Fibonacci and Lucas sequences of natural numbers F,,
and L, are defined by the recurrence relations Fo =0, F; =1, F, =F,_1 +F,_> for n > 2 and
Lo=2L1=1L,=Ly 1+L,forn>2.

The numbers F make the integer sequence A000045 from [6] while the numbers L, make
A000032.

The goal of this article is to further explore the properties of the sequences «, 3,y and 6. Each
member of these sequences is an Euler D(—1)- or D(5)-triple (see [2] and [3]) so that many of their
properties follow from the properties of the general (pencils of) Euler triples. It is therefore interest-
ing to look for those properties in which at least two of the sequences appear. This paper presents
several results of this kind giving many squares from the components, various sums and products of
the sequences «, 3, Y and 8. Most of our theorems have also versions for the associated sequences
& B, ¥ and 8, where &(n) =A = (Fania,Fans3, Fans2),  B(M) =B = (Lansa, Fant 3, Lans2),
(n) = C = (Lansas Lans3y Lani2), 8(n) =D = (5Fan+4, Lans3, SFans2) satisfy A ~ A, B ~ B,
C 2 Cand D ’D.

<N

2 Squares from products of components

The relations A - A and C 2 C imply that the components of A and C satisfy A,A3z - A
and C,C3 2 61. Our first theorem shows that the product A;A3C,Cjs is in a similar relation
with respect to 1. Of course, the other products A3A1C3Cy, A1A,C1C, as well as B,B3D;,Ds,
B3B1D3D; and B1B,DD; exhibit a similar property.

Theorem 1. The following hold for the products of components:

1 9

A2A3C2C3 ~Fanys, 1B2B3 D, D3 ~ Lunys,
9 9

A3 A1 C3Cy ~Fanye, B3B1 D3 D1 ~ Fanve,

1 9
A1 A Cy Co ~ Fanqa, 1B1B2 D1 D3 ~ Lyn 4.
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Proof. Let @ = ”2\@ and P = 1*2‘/5 = —%. Since Fj = @ W g L = @ + 1, it follows that

o=
Ay = (P2n+(;:$2n+37 Az = <PZ“+(Z:$ZH+5 and C, = (p2n+3 +1b2n+37 C; = (p2n+5 +1‘l)2n+5.
. 1 16(M3 612
After the substitutions 1\ = —% and M = @™, the sum of A;A3C,C3 and 1 becomes £ 20N

However, this is precisely the square of F4,,.8. This shows the first relation. The other relations
have similar proofs. O

The version of the previous theorem for the sequences «, B, Yy and 5 is the following result.

Theorem 2. The products of components of K, E, C and D satisfy:
A2A3C,C3 N Fanys, B,B3D,D3 N Lanys,
A3A;1C5Cy N Fanye, ;*5§3§1]53]51 L Fanye,
A1A2CCy N Fany7, B1B,D ;D> L Lans7.

Zn+37w2n+3 ~ 2n+27‘b2 n+2 o~

Proof. Since A, = 2 = ,Az3 =2 = , Cy = @2™ 34 p2nt3 and Cs = @2nH24

P2n+2 the sum of Rzigézég and 1, after the substitutions 1\ = —% and M = @™, becomes
10 8 10,2
%. However, the square of F4,, 5 has the same value. This proves the first relation

~ ~ ~x ~ 1
AA3C2C3 ~ Fgni5. The remaining five relations in this theorem have similar proofs. O

The same kind of relations hold also for the products of components from all four sequences
«, B,y and 6.

Theorem 3. The following relations for products of components hold:

1 1
A2B3C2D3 ~ Fanys, 72A3B2C3D2 ~ Fanys,

9 9
A3B1C3D1 ~ Fanqs, A1B3C1D3 ~ Fgnqe,

1 1
21*5A1 B2C1D2 ~ Fany4, A2B1CoD1 ~ Fanqa.

Proof. Since B3 = A3z and D3 = C3, the first relation is the consequence of the first relation in
Theorem 1.

In order to prove the second relation, notice that B, =5 A, and D, =5 C; so that the multi-
plication of the identity behind the first relation in Theorem 1 with 25 we conclude that the second
relation holds. The other relations in this theorem have similar proofs. O

There is again the version of the previous theorem for the products of components from all
four sequences «, 3, v and d.
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Theorem 4. The products of components of K, E, C and D satisfy:

~ o~~~
A2B3CyD3 ~ Langs,
~ =~~~ 9

A3B1C3D1 ~ Lynge,

~ o~ ~
A1B2C1D2 ~ Fgnq7,

~ o~~~
A3B2C3D2 ~ F4nygs,
~ =~~~ 9

A1B3C1D3 ~ Lynse,

o~ o= 1
A2B1CoD1 ~ Lyngy.

Proof. Since Az = Ez and 62 = 152, the first, the second, the fifth and the sixth relations are the
consequence of the second, the first, the fifth and the sixth relations in Theorem 2.

In order to prove the third relation, note that the components Kg, §1 and 63, 151 are

(pZ n+2_1p2 n+2)
o=

7 @2n+4 +¢2n+4’ (92n+2 +1b2n+2 and 5(¢

2 n+4_1b2 n—+4

) .
= . It is now clear from the

proof of Theorem 1 that the sum of R3E1 63151 and 9 is precisely the square of L4, ¢. This shows

the third relation. The fourth relation has a similar proof. O

Nice relationships of the same kind hold also for the products of components with other choices

of indices.

Theorem 5.

0
%Az Bz C3 D3 ~ F2n+3]-2n+5)

0
A3 B3 Ci D1 ~ Fangslongt,

0
%A] B] CZ DZ ~ F2n+1]—2n+33

0
%Ag B3 Cz DZ ~ F2n+5L2n+3>

0
A1B1C3D3 ~Fangilangs,

0
%Az Bz C] D] ~ F2n+3L2n+1 .

PT’OOf. Since Bz = 5A2, AZ = F2n+3 and C3 = D3 = L2n+5, the product %Az Bz C3 D3 is the
square of Fon13L2n45. The other claims in this theorem have similar proofs. O

The version of the previous theorem for the products of components from all four associated

sequences is the following result.

Theorem 6. The products of components of R, E, C and D satisfy:

K2§26363 0
5F4n+4 2n+3y

~ s =
1A3B3C1Dy ~ Fanse,
K]glézﬁz 0

~ L2n+3>
F4n+8

Ang CzDz 0
~ L2n+43y
F4n+4

o~
1A1B1C3D;3 ~ Fane,
Azgzé]ﬁ] 0

~ F2n+3-
5 F4n+8

Proof. Since Rz = §2 =Fonys, 63 =Lonio, 153 =5F;n42, we see that the first relation clearly

holds. The others in this theorem are proved similarly. O
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This time the pairs (A, D) and (B, C) have equal indices.

Theorem 7. The following hold for the products of components:

1 1
+A2B3C3D; ~ Fanys, +A3B;C2 D3 ~ Fanss,

9 9
A3B1 Ci D3 ~F4nqs, A1B3C3D1 ~ Fanys,

1 1
%A1 B, C2 D1 ~ Fanya, %Az By C1 D2 ~ Fanya.

P?"OOf. Since Az — F2n+3, Bg =S F2n+5, C3 = L2n+5 and Dz — 5L2n+3, the sum of %Az Bg C3 Dz
and 1is FgnieFansiio+1= Fin +g- The other claims in this theorem have similar proofs. O

Once again the version of the previous theorem for the associated sequences includes interesting
relations.

Theorem 8. The products of components of K, ﬁ, C and D satisfy:

AzB3C3D2 0 A3BzC2D3 0
—  ~L2n+2, = "~ Mn+2,
Fante S5Fante
15~ 0 173 ~~ 0
5A3B1C1D3 ~ Fangalonya, 5A1B3C3D1 ~ Fantalonso,
K]gzézlS] 0 K2§16162 0
= = F2n+4> ~ L2“+4'
SFinte Fanys

Proof. Since Rz =Fons3 Eg = 63 = Lonyo, 62 = Lon43 and Fony3lons3 = Fanig we see that the
first relation clearly holds. The other relations in this theorem are proved similarly. O

It is interesting that in some cases we can even mix components of the triples A, B,
~ =~ x = ) ~ ~ 1 ~ = 0
C, Dand A, B, C, D as the relations A, B3 C3D2 ~Fqnis, A2B2C3D3 ~Fani3lonss and

~ =~ 0
A2 By Cy Dy ~Fanyiszlonit show, but we do not see a general pattern here.

3 Squares from symmetric sums

Let o7, 02,03: Z> —Z be the basic symmetric functions defined for x=(a, b, c) by
Xo, =a+b+c, Xo =bct+catab, xq =abce. Let o5, 0}:Z> —=7Z be defined by
Xo3; =bc—ca+ab and Xg: = a—b+c. Note that Xg3 is the determinant of the 1 x 3 matrix
[a,b,c] (see [A]).

For the sums o, and o3 of the components the following relations are true.
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Theorem 9. The following is true for the sums o3 of the components:
21 69

AGZ CGZ ~ 4F4n+6) BGzDUz ~ ]6F4n+6>
~ ~ 5 ~ ~ 45

AGZ CO"Z ~ 2F4n+7» BO'ZDO"Z ~ 1OF4TL+6'

Proof. Since Ag, = 2+(4Luni6+13) and Cg, = 4Lsnie—13, the sum Ay, Co, +21 s
%[(4L4n+6)2 — 64] that we recognize as the square of 4F4,, 6. This proves the first relation

21 . . . A
As,Cs, ~ 4Fanis. The other relations in this theorem have similar proofs. O

The sums ﬁg; and ]5(,; have constant values —1 and 5. On the other hand, we have the
following result.

Theorem 10. The following is true for the sums 0% of the components:
-3 —51 ~ ~ 5
AO‘; CG’E ~ 2Fan+e, BO"Z‘DO‘; ~ T4Fan+s, AG’E CG; ~2F4n6.

Proof. Since By = %(14L4n+6 +23) and Doy = 14Lan+6 — 23, the sum Bgs Doy — 51 is the quo-

196(L3, , s—4)
5

tient . It is now easy to check that this is the square of 14 F416. This proves the

—51
second relation Bgx Cos, ~ 14Fiante6. The other relations in this theorem have similar proofs. [

Some similar relations where all four letters A, B, C and D appear make the following result.

Theorem 11. The following is true for the sums 0% of the components:
~ = ~ o~ ~ ~ ~ 10
Ag;Doy +Bos Cos =6, Ao Cos +Bos Doy ~ 2Fanys,

~ 9
Co3Doy ~2Lanys.

4roo/. © Do =5
AgxDgx 4+ Bgx Cox = 6. The second and the third relations in this theorem have similar proofs. [
2 2 2 2

Proof. Since ggz =1, ;\c; = 1(2L4nys +3), 663 =214ns5—3 and 1563 =5, it follows that

Here are two relations which contains both sums o, and 03.

Theorem 12. The following is true for the sums 0, and 05:

2 —74
;?(AGZDGZ - Bcrj C(I;) ~ F4n+6» 3BU§ CO‘; - AGZDGZ ~ 2 I—4n+6 + 6.

Proof. Since the sums Bos, Ag,, Cos and Do, are equal 1(14Lanig+23), 1(4Lante+13),

2L4ni6+ 1 and 16 L4546 — 37, we infer that the sum ;?(AGZDUZ —Bo3 Cos) + 2 is the square

of F4ni6. The second relation in this theorem has analogous proof. O

In the next result we consider the products of the same components of the triples A, B, C and
D and the product of their components.
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Theorem 13. The following relations hold:
0 0
A1B1C1D1 ~ Fans2, A2B2C32D2 ~5Fan e,

0 0
A3B3C3D3 ~ Fang1o0, As;Bo;Co; Do, ~5F4n12 Fanye Fangio.

Proof. Since the product Fanis5Llonis is Fani10, Az =Bz =Fonas and C3 = D3 = Lonys, it fol-
lows that A3B3C3D3 = (Fonas Lonys)? = F421n+10- This proves the third relation. The other rela-
tions have similar proofs. O

The products of the same components of the triples /T\, 1“3'7 C and D and the product of their
components appear in the following result.

Theorem 14. The following relations are true:
5A1B1C1Dy ~ Fanys, 5A3B3C3D3 ~ Fanya,
~ =~ ~ =~ 0 ~ =~ ~ =~ 0
A2B2CoD; ~ Fan v, A¢;Bo,Coy Doy ~5FanisFanteFanta.
Proof. Since Az = F2n+2, Bs = Lony2, Cs = Lant2, D3 =5F2n 12 and Fanialonsa = Fana, it

follows that the product /-\3 B 3 C 3 D 3 is the square of F4,,, 4. This proves the second relation. The
other relations in this theorem have similar proofs. O

The products of the sums 07 and o* of the components of the trlples A, B, C and D show the
same kind of relations. This is also true for the associated triples A B C and D.

Theorem 15. The following relations hold for the sums o1 and o7 :

0 1 ~ = 1

AO‘] BO‘] C0'1 DO'] ~32 F4n+6a WAUI BO'] CO'] DO‘] ~ F4n+7»
0 1% 35 ~ = 1

Ao+ Bo:CorDor ~4Fanye, iAo Bo: Co:Dor ~ Fanys.

Proof. The sums of the components Ag,, By, , Co, and Dy, are equal 4 Fo1 43, 8Fon+3,4 Lont3 and
8Lsn+3. Hence, the product Ay, Bs, Co, Do, is the square of 32 F4n 6 since Fony3Lloni3 = Fanys.
This proves the above first relation. The other relations in this theorem have similar proofs. [

In the next result we combine the sums o7 and o7 in each product.

Theorem 16. The following relations hold for the sums o1 and o7 :

0 0
AO‘] BG’{ CO‘] DO"; ~ 8F4n+6) AG’]‘Bm CO‘TDO"] ~ 16F4‘n+6)

1
2726 Bo:Cor:Do, ~2Fanye+1,  35A0; BmCmDMzmn% 1,

‘I ~ ~
1 1
67A61 BG’{ Ccr] DUT ~ F4n+7a WAU’]‘ BO‘] CG*{ DO‘] ~ F4n+5-
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Proof. The sums of the components Ag,, Bo:, Cy, and Do+ are equal 4Frna3, —2Fana3, 4 Lonys
and —2 L,y 43. The product Ag, Bo:Co, Doy is therefore the square of 8 F4n16 since Fony3lonys
= F4nye. This proves the first relation. The other relations in this theorem have analogous
proofs. O

4 Squares from the sums of squares

For a natural number k > 1, let the sums vy, vi : Z3 — Z of powers be defined for x = (a, b, ¢) by
Xy, = @ +b* +c* and xy: = ak —b* +ck.
We proceed with the version of the Theorem 9 for the sums v, of the squares of components.

Theorem 17. The following relations are true for the sums vj:

—11 —59
1 1
ZAVZ Cvz ~ 4F4n+6» ZBVZDVZ ~ ]6F4n+6)
~ o~ _3 ~ ~ —27
1 1
ZAVZCVZ ~ 2F4n+6) ZBVZDVZ ~ 8F4n+6-

Proof. Since Ay, and C,, are %(4 Lsnie +3) and 2(4 Lyns — 3), the difference of ];AVZ Cy, and

2 o 2 _
11 is equal %*64). But, one can easily check that % = Fﬁn+6 so that the above quotient
is the square of 4 F45146. This concludes the proof of the first relation. The other relations in this

theorem have similar proofs. O

The next is the version of the Theorem 10 for the alternating sums v3 of the squares of
components.

Theorem 18. The following relations are true for the sums vj:

_7 41

1 1

ZAV’Z‘ Cv; ~ 3F4n+6» ZB‘VED‘VZ ~ 9F4n+6)
1 1

ZA\/;C‘V; NF4n+6) ZBV’Z‘DV’E ~ 7F4n+6-

Proof. Notice that the alternating sums of squares of components Ay: and C; are %(3 Lonis+ 1)
and 2(3L4n16+1). Hence, the sum of %AV; Cy; and —7 is equal to the following quotient
2 —
w. This quotient is in fact the square of 3 F4,,1¢. This proves the first relation. The

remaining three relations in this theorem have similar proofs. O

Certain sums of products of the sums v3 of components show the same behavior.
Theorem 19. The following relations are true for the sums vj:

17
%(A‘VEDV; + Bv; Cv’i) ~ vV —27 F4n+6)

~ ~ o~ 11
%(AV;D\,; +BV§CV§) ~ \ﬁF4n+6-
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Proof. Notice that the alternating sums of squares of components R\,z, g\,;, EVE and 15\,3 are
2Frni2Fonaa, %(7 Linie+9), 2Lons2lonia  and  2(7Lgnie —9). Hence, the sum of
%(7\\,;6\,3 + ﬁvz 6\/3) and —11 is equal to the square of v/7 F4n¢. This proves the second relation.
The first relation has a similar proof. O

5 Squares from the products ©, > and «

Let us introduce three binary operations ®, > and < on the set Z3 of triples of integers by the rules
(a, b, ¢c) ® (u, v, w) = (au, bv, cw), (a, b, c)> (u, v, w) = (av, bw, cu), and
(a, b, ¢)<(u, v, w) = (aw, bu, cv).
This section contains four theorems which show that the operations ®, > and < are also the

source of squares from components of the eight sequences.

Theorem 20. The following relations for the sequences A, B, C and D hold:
—-76 61
(A®B)g, (Co D)oy ~ 12Fsni6y (A>B)o (C> D)o, ~ 4Lanys and
61
(A<] B)Gl (CQD)m ~ 4L4n+7-

Proof. Since (A>B)g, =4Fanys +5 and (C> D)y, =5(4Fanys —5), it follows that the sum of

(A>B)s, (Cp> D)y, and 61 is the product 16(5 thws —4), 1. e., the square of 4 L4y, 5. This proves
the second relation. The first and the third could be established similarly. O

Theorem 21. The following relations for the sequences A, B, C and D hold:
1 69
%(A © B)Gf (Co D)GT ~Faniey (AD B)U]‘ (Co D)G}“ ~ 2F4n42 and
69
(A<B)os (C<aD)or ~ 2Fans10.

Proof. Since the sums (A>B)s; and (C>D)gs are %(2 Lani2 +19) and 2 L4, 2 — 19, it follows
that the sum of (A>B)s:(C>D)or and 69 is the square of 2F4n 2. This is the outline of the
proof of the second relation. The similar proofs of the first and the third relation are left to the
reader. O

Theorem 22. The following relations for the triples K, E’ C and D hold:

=~ = ~ = 36 ~ = ~ = -3

(A O] B)U] (C O] D)O‘] ~ 31 F4n+3 + 7F4n7 (A > B)O‘] (C > D)m ~ 2F4n+87 and
~ = ~ = 29

(AQB)OW(CQD)O‘] ~4F4TL+7'

Proof. Since the sums (/K < g)g] and (C < 15)(,1 are 13(2 Lanig+ 1) and 2148 — 1, it follows that
the sum of (A <B)gs, (C<D)s, and —3 is the square of 2F4,,1 3. This is the outline of the proof of
the third relation. The similar proofs of the first and the second relation are left to the reader. [
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Theorem 23. The following relations hold for the triples K, g, C and D:
~ = ~ = 36 ~ = ~ = 29
(A®B)s (C@D)o’{ ~ 23F4n43 +5F4n, (ADB)G’{(CDD)G’{ ~ 4F4nys5 and

*
1

5.3 ~ =~ -3
(AQB)GT(CQD)G’{ ~ 2F4n+4-

Proof. Since the sums (Rdﬁ)g*{ and (6<1 15)07 are —%(2 Lgnia+1) and 1—20L4n 14, it follows
that the difference of (A « B)GT (C« D)U»]« and 3 is the square of 2F4,, 4. This is the outline of the
proof of the third relation. The similar proofs of the first and the second relation are left to the

reader. O
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