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ABSTRACT

Certain incompatibilities are proved related to the prolongation of an associative deriva-
tion convolution algebra, defined for a subset of distributions, to a larger subset of
distributions containing a derivation and the one distribution. This result is a twin of
Schwartz’ impossibility theorem, stating certain incompatibilities related to the pro-
longation of the multiplication product from the set of continuous functions to a larger
subset of distributions containing a derivation and the delta distribution. The presented
result shows that the non-associativity of a recently constructed derivation convolution
algebra of associated homogeneous distributions with support in R cannot be avoided.

RESUMEN

Se prueban algunas incompatibilidades relacionadas con la prolongacién de un algebra
de convolucién de derivacion asociativa, definida para un subconjunto de distribuciones
a un subconjunto mayor de distribuciones que contienen una derivaciéon y una dis-
tribucién. Este resultado es un gemelo del Teorema de Imposibilidad de Schwartz
declarando algunas incompatibilidades relacionadas a la prolongacién del producto de
multiplicaciéon de un conjunto de funciones continuas a un subconjunto mayor de dis-
tribuciones conteniendo una derivacién y una distribucion delta. El resultado presente
muestra que la no asociatividad de un algebra de convolucién de derivacién constru-
ida recientemente de distribuciones homogéneas asociadas con soporte en R no puede

evitarse.
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1 Introduction

In a series of preceding papers, [3]-[9], the author embarked on an in-depth study of the set H' (R)
of Associated Homogeneous Distributions (AHDs) based on (i.e., with support in) the real line R,
[11]. The elements of H’(R) are the distributional analogues of power-log functions with domain
in R and contain the majority of the distributions one encounters in (one-dimensional) physics
applications (including the & and n = %xq distributions). For an introduction to AHDs, an
overview of their properties and possible applications of this work, the reader is referred to [3].

The main result of the above study was the construction of a convolution algebra and an
isomorphic multiplication algebra of AHDs on R. The multiplication algebra provides a non-trivial
example of how a distributional product can be defined, for an important subset of distributions
containing a derivation and the delta distribution, and how this is influenced by L. Schwartz’
“impossibility theorem” [I4]. Both constructed algebras are non-commutative and non-associative,
but in a minimal and interesting way, see [7], [8].

Schwartz’ theorem, stating certain incompatibilities in a distributional derivation multiplica-
tion algebra, is well-known. One might be inclined to think that the existence of such incompati-
bilities is unique to the multiplication product of generalized functions. The aim of this note is to
show that this is not the case. We state a similar impossibility theorem related to the prolongation
of an associative derivation convolution algebra, defined for a subset of distributions D, C D/,
to a larger (not necessarily proper) subset of distributions containing a derivation and the one
distribution, [13], [10], [15], [I1].

Let us first recall Schwartz’ impossibility theorem for the multiplication product.

Let C*¥ denote the set of continuous (k = 0) or k-times continuously differentiable (k > 0)
functions from R — R.

Theorem 1.1. Denote by (C°,+,.;R) the algebra over R, consisting of the set C° together with
pointwise addition + and pointwise multiplication ., and 0 its +-identity element.

(i) Let (F',+;R) be any linear space over R such that F' > C°.

(i) Let .: F' x F' — F' be an associative multiplication product, which coincides with the one
defined on C° and with common .-identity element 1.

(iii) Let D : F' — F' be a derivation, with respect to ., which coincides with the derivation
defined on C' and x € C'\{0}: Dx = 1.

Then, 36 € F\{0}:x.5 = 0.

Although this theorem is usually referred to as an impossibility theorem, it does not say that a
multiplication product defined on D’ is not possible. It says that a multiplication product defined
on C°, with properties as stated in condition (i), and a derivation defined on C', with properties
as stated in condition (iii), cannot be faithfully prolonged to a superset F’ of C° which contains
the delta distribution 8. Notice that F’ is allowed to be a (proper) subset of D’.
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For Schwartz’ linear space of distributions (D', +;R), the multiplication defined for continuous
functions is not prolongated to all distributions, so condition (ii) does not hold, and this allows
the existence in D’ of a derivation D and a distribution § # 0: x.6 =0 (e.g., 8 = D? (% |x\))

In the construction of commutative, associative generalized function algebras, such as by
Egorov, [2], Rosinger, [12] or Colombeau, [I], Schwartz’ theorem is evaded in a more subtle way.
For instance, Colombeau’s construction has led to an algebra of generalized functions G, which
does not contain the algebra of the continuous functions as a subalgebra in the usual algebraically
exact way. First, the set CO is embedded in G as a subset C° C G such that C° is “associated”
to C° in some weak sense, which involves non-standard analysis. Then, Colombeau’s product ®
defined on G, when restricted to C~°7 agrees with the usual function product . defined on C° only in
his weak sense and the last clause in Theorem [Tl is circumvented since (i) does not hold. More
explicitly, Vf € C° associated to a fegand Vg € C° associated to a g € G holds that f.g € C° is
associated to f ® geaqg.

We will proof hereafter a twin of Schwartz’ impossibility theorem, stating certain incompati-
bilities in a distributional convolution algebra. We use the notation and definitions introduced in
3].

2 The convolution of distributions

Definition 2.1. Denote by H' the set of associated homogeneous distributions (AHDs) based on
R and %, a typical element, having degree of homogeneity z and order of association m. Let D},
stand for the set of all finite sums over C of elements of Hy, = {f;lk*1 € H',Vk,m € N} CcH,
the set of AHDs based on R with negative integer degrees.

Theorem 2.2. Denote by (D27,+,*;C) the algebra over C, consisting of the set D},  together

with distributional addition + and distributional convolution %, and 0 its +-identity element.
(i) Let (F',+;C) be any linear space over C such that F' D D}, .

(ii) Let « : F' x F' — F' be an associative convolution product, which coincides with the one
defined on Dj,  and with common identity element .

(iii) Let X : F!' — F' be a derivation, with respect to *, which coincides with the derivation
defined on D), and —5!") € D \{0}: X (=5!1)) =5.

Then, A1 € F\{0}: 61 1 =0.

Proof. Tt follows from the results obtained in [5] that (D’Zi, +, %; (C) is an associative convolution
algebra over C.

A. Consider the distribution f satisfying

X (8015 f) + 2 = =8V, (1)
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By [B, eq. (67)], f is readily seen to be an associated homogeneous distribution based on R
having degree of homogeneity —2 and order of association 1, hence f € D), C F'.

On the one hand, applying the derivation X to () and using the given property X (—5“ )) =9,
we get

X2 (5“) *f) — 2(Xf) + 6. 2)

On the other hand, since X is given to be a derivation with respect to the commutative convolution
product *, we have by Leibniz’ rule and due to the property X (—5“ )) = 9§, that

X2 (5“) x f) (xzzs(”) $f42 (xzs“)) x (XF) + 50« (X2)

= (x%1) f—2(xXF) + 811« (X71) . (3)

Since it is given that X is a derivation with respect to the commutative convolution product * and
that 0 is the x-identity, it holds further by Leibniz’ rule that

X6 =X(dx68) =2(X0)*xd=2(Xd),
so X6 = 0. This in turn implies that X?8") = X5 = 0. Then, (@) simplifies to
X2 (8115 F) = =2(x) 481+ (X2f) (4)
Combining [2)) with ) gives
51 (X2f) =3, ()

which shows that X?f is a convolutional inverse of 5(1). Consequently, X?f has degree 0, so
X2f ¢ D, . As it is given that X is an automorphism of F’, we must necessarily have that
X2 f e F.

B. Since it is given that & is the s-identity, that * in (F’, 4, *; C) is associative, that (1) %1 =0,
and using eq. (), we obtain

T=Ta8 =1 (814 (02)) = (1) 51) « (X21) = 0 (X2f) =0.
Hence, 31 € F\{0}: 51«1 =0. O

Theorem does not say that a convolution product of distributions is not possible. It
says that a convolution product defined on D}, , with properties as stated in condition (ii), and
a derivation defined on Dj, , with properties as stated in condition (iii), cannot be faithfully
prolonged to a superset F’ of Dj,  which contains the one distribution 1. Notice that 7’ is again
allowed to be a subset of D’.

For Schwartz’ set of distributions D’, the convolution defined on D7, is not prolonged to D', so
condition (ii) does not hold, and this allows the existence in D’ of a derivation X and a distribution
1#£0:5M%1=0 (e.g., 1 =X (—m!M)).
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Let F' now stand for the set of all finite sums over C of elements of H’. We constructed earlier
in [5]-[7] the convolution product in the algebra (F’, +, %;C). Clearly, 7' D D}, . Theorem 22 (in
particular, part B of the proof) shows that the non-associativity of critical convolution products,
obtained in [§] for the set H', cannot be avoided.

Theorem is for convolution algebras what Schwartz’ theorem is for multiplication algebras.
However, since the identity element & of the convolution product * is a distribution, there are no
convolution algebras with x-identity for function sets.

A corollary of Schwartz’ theorem states that the set 7’ in his theorem contains elements g
that satisfy Dg = 0 and for which g is not proportional to 1. We have the following analogue for
the convolution product.

Corollary 2.3. The set F' in theorem[2.2 contains elements g that satisfy Xg =0 and for which
g s not proportional to 8.
Proof. Consider the distribution h satisfying

x(zs(”*h)+2h=o. (6)

By [B, eq. (69)], f is readily seen to be an associated homogeneous distribution based on R having
degree of homogeneity —2, hence f € D}, C F'.

On the one hand, applying the derivation X to (@) gives
X2 (5(” * h) — _2(Xh).

On the other hand, since it is given that X is a derivation with respect to the convolution product
*, we have by Leibniz’ rule and by using the property X (—6“ J) =, given in theorem [2.2] that

X2 (5(” « h) = —2(Xh) + 5V % (X2h).
Combining both results gives
5 % (X*h) = 0.
Theorem states that in F’ necessarily must hold that
X?h =0.
However, any homogeneous distribution h of degree —2 is of the form, [} eq. (14)],
h=as" +bn".

We can choose a = 0 and b # 0, use Xn!) =n # §, which is a particular result of [3, eq. (181)],
and so obtain a distribution h for which g £ Xh is not of the form c¢5. Hence, Xg can be zero for
a distribution g that is not proportional to d. O

In the non-associative convolution algebra, developed in [5]-[7], we have due to [3, eq. (181)]
that X?n'" = -1/ #£ 0.
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3 Summary

3.1 Multiplication

On C°, a commutative and associative multiplication . can always be defined. Hence, the operation
X £ x. (derivation with respect to ) is always possible on C°. The derivation X can be prolongated
from C° to any superset F/, since multiplication of a distribution by a polynomial is always defined.
However, the multiplication . can not be prolongated from C° to F’ with all its properties preserved.

Further, the derivation D £ 51« is not defined everywhere on C° (regarded as a function
space). It is however defined everywhere in the subset of regular distributions generated by C°, Dis -
Then, the derivation D can be prolongated from D, to F’, since convolution of any distribution
with a compact support distribution is always defined.

3.2 Convolution

On D), , a commutative and associative convolution * can always be defined. Hence, the operation
D £ 5V« (derivation with respect to .) is always possible on Dj . The derivation D can be
prolongated from D/, to any superset F', since convolution of any distribution with a compact
support distribution is always defined. However, the convolution * can not be prolongated from
D;, to F' with all its properties preserved.

Further, the derivation X £ x. is defined everywhere on D!, , since multiplication of any
distribution by a smooth function is always defined.

Received: February 2012. Accepted: September 2012.
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