On certain functional equation in semiprime rings and standard operator algebras

Nejc Širovnik 1
Department of Mathematics and Computer Science, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroš ka cesta 160, 2000 Maribor, Slovenia
nejc.sirovnik@uni-mb.si

Abstract

The main purpose of this paper is to prove the following result, which is related to a classical result of Chernoff. Let X be a real or complex Banach space, let $\mathcal{L}(X)$ be the algebra of all bounded linear operators on X and let $\mathcal{A}(\mathrm{X}) \subseteq \mathcal{L}(\mathrm{X})$ be a standard operator algebra. Suppose there exists a linear mapping $D: \mathcal{A}(X) \rightarrow \mathcal{L}(X)$ satisfying the relation $2 \mathrm{D}\left(A^{n}\right)=D\left(A^{n-1}\right) A+A^{n-1} D(A)+D(A) A^{n-1}+A D\left(A^{n-1}\right)$ for all $A \in \mathcal{A}(X)$, where $n \geq 2$ is some fixed integer. In this case D is of the form $D(A)=[A, B]$ for all $\mathrm{A} \in \mathcal{A}(\mathrm{X})$ and some fixed $\mathrm{B} \in \mathcal{L}(\mathrm{X})$, which means that D is a linear derivation. In particular, D is continuous.

RESUMEN

El propósito principal de este artículo es probar el siguiente resultado, el cual se relaciona a un resultado clásico de Chernoff. Sea X un espacio de Banach real o complejo, sea $\mathcal{L}(X)$ el álgebra de todos los operadores lineales acotados en X y sea $\mathcal{A}(X) \subseteq \mathcal{L}(X)$ una álgebra de operadores estándar. Supongamos que existe una aplicación lineal $D: \mathcal{A}(X) \rightarrow \mathcal{L}(X)$ satisfaciendo la relación $2 D\left(A^{n}\right)=D\left(A^{n-1}\right) A+A^{n-1} D(A)+$ $D(A) A^{n-1}+A D\left(A^{n-1}\right)$ para todo $A \in \mathcal{A}(X)$, donde $n \geq 2$ es algún entero fijo. En este caso D es de la forma $D(A)=[A, B]$ para todo $A \in \mathcal{A}(X)$ y algún $B \in \mathcal{L}(X)$ fijo, lo que significa que D es una derivación lineal. En particular, D es continua.

Keywords and Phrases: Prime ring, semiprime ring, Banach space, standard operator algebra, derivation, Jordan derivation.

2010 AMS Mathematics Subject Classification: 16N60, 46B99, 39B42

[^0]This research has been motivated by the work of Vukman [19]. Throughout, R will represent an associative ring with center $Z(R)$. As usual we write $[x, y]$ for $x y-y x$. Given an integer $n \geq 2$, a ring R is said to be n-torsion free if for $x \in R, n x=0$ implies $x=0$. Recall that a ring R is prime if for $a, b \in R, a R b=(0)$ implies that either $a=0$ or $b=0$, and is semiprime in case $a R a=(0)$ implies $a=0$.

Let A be an algebra over the real or complex field and let B be a subalgebra of A. A linear mapping $D: B \rightarrow A$ is called a linear derivation in case $D(x y)=D(x) y+x D(y)$ holds for all pairs $x, y \in B$. In case we have a ring R, an additive mapping $D: R \rightarrow R$ is called a derivation if $D(x y)=D(x) y+x D(y)$ holds for all pairs $x, y \in R$ and is called a Jordan derivation in case $D\left(x^{2}\right)=D(x) x+x D(x)$ is fulfilled for all $x \in R$. A derivation D is inner in case there exists such $a \in R$ that $D(x)=[x, a]$ holds for all $x \in R$.

Every derivation is a Jordan derivation. The converse is in general not true. A classical result of Herstein [9] asserts that any Jordan derivation on a 2-torsion free prime ring is a derivation. A brief proof of Herstein theorem can be found in [2]. Cusack [7] generalized Herstein theorem to 2-torsion free semiprime rings (see [3] for an alternative proof). Herstein theorem has been fairly generalized by Beidar, Brešar, Chebotar and Martindale [1]. For results concerning derivations in rings and algebras we refer to [5, 11, 16, 17, 18, 19, where further references can be found. Let X be a real or complex Banach space and let $\mathcal{L}(X)$ and $\mathcal{F}(X)$ denote the algebra of all bounded linear operators on X and the ideal of all finite rank operators in $\mathcal{L}(X)$, respectively. An algebra $\mathcal{A}(\mathrm{X}) \subseteq \mathcal{L}(\mathrm{X})$ is said to be standard in case $\mathcal{F}(\mathrm{X}) \subset \mathcal{A}(\mathrm{X})$. Let us point out that any standard operator algebra is prime.

Motivated by the work of Brešar [4, Vukman [19] has recently conjectured that in case we have an additive mapping $D: R \rightarrow R$, where R is a 2-torsion free semiprime ring satisfying the relation

$$
\begin{equation*}
2 D(x y x)=D(x y) x+x y D(x)+D(x) y x+x D(y x) \tag{1}
\end{equation*}
$$

for all pairs $x, y \in R$, then D is a derivation. Note that in case a ring has the identity element, the proof of Vukman's conjecture is immediate. Namely, in this case the substitution $y=e$ in the relation (11), where e stands for the identity element, gives that D is a Jordan derivation and then it follows from Cusack's generalization of Herstein theorem that D is a derivation. The substitution $y=x^{n-2}$ in the relation (11) gives

$$
2 \mathrm{D}\left(x^{\mathrm{n}}\right)=\mathrm{D}\left(x^{\mathrm{n}-1}\right) x+x^{\mathrm{n}-1} \mathrm{D}(x)+\mathrm{D}(x){x^{n-1}}^{\mathrm{n}}+\mathrm{xD}\left(x^{\mathrm{n}-1}\right)
$$

which leads to the following conjecture.
Conjecture 0.1. Let R be a semiprime ring with suitable torsion restrictions and let $\mathrm{D}: \mathrm{R} \rightarrow \mathrm{R}$ be an additive mapping. Suppose that

$$
2 D\left(x^{n}\right)=D\left(x^{n-1}\right) x+x^{n-1} D(x)+D(x) x^{n-1}+x D\left(x^{n-1}\right)
$$

holds for all $\mathrm{x} \in \mathrm{R}$ and some fixed integer $\mathrm{n} \geq 2$. In this case D is a derivation.

It is our aim in this paper to prove the conjecture above in case a ring has the identity element.
Theorem 0.2. Let $\mathrm{n} \geq 2$ be some fixed integer, let R be a n !-torsion free semiprime ring with the identity element and let $\mathrm{D}: \mathrm{R} \rightarrow \mathrm{R}$ be an additive mapping satisfying the relation

$$
2 D\left(x^{n}\right)=D\left(x^{n-1}\right) x+x^{n-1} D(x)+D(x) x^{n-1}+x D\left(x^{n-1}\right)
$$

for all $x \in R$. In this case D is a derivation.

Proof. We have the relation

$$
\begin{equation*}
2 D\left(x^{n}\right)=D\left(x^{n-1}\right) x+x^{n-1} D(x)+D(x) x^{n-1}+x D\left(x^{n-1}\right) \tag{2}
\end{equation*}
$$

and let us denote the identity element of R by e. Putting e for x in the above relation, we obtain

$$
\begin{equation*}
D(e)=0 \tag{3}
\end{equation*}
$$

Let y be any element of the center $Z(R)$. Putting $x+y$ in the above relation, we obtain

$$
\begin{aligned}
2 \sum_{i=0}^{n}\binom{n}{i} D\left(x^{n-i} y^{i}\right) & =\left(\sum_{i=0}^{n-1}\binom{n-1}{i} D\left(x^{n-1-i} y^{i}\right)\right)(x+y) \\
& +\left(\sum_{i=0}^{n-1}\binom{n-1}{i} x^{n-1-i} y^{i}\right) D(x+y) \\
& +D(x+y)\left(\sum_{i=0}^{n-1}\binom{n-1}{i} x^{n-1-i} y^{i}\right) \\
& +(x+y)\left(\sum_{i=0}^{n-1}\binom{n-1}{i} D\left(x^{n-1-i} y^{i}\right)\right)
\end{aligned}
$$

Using (2) in the above relation and rearranging it in sense of collecting together terms involving equal number of factors of y, we obtain

$$
\sum_{i=1}^{n-1} f_{i}(x, y)=0
$$

where $f_{i}(x, y)$ stands for the expression of terms involving i factors of y. Replacing x by $x+2 y$, $x+3 y, \ldots, x+(n-1) y$ in turn in the relation (21) and expressing the resulting system of $n-1$ homogeneous equations of variables $f_{i}(x, y), i=1,2, \ldots, n-1$, we see that the coefficient matrix of the system is a Vandermonde matrix

$$
\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
2 & 2^{2} & \cdots & 2^{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
n-1 & (n-1)^{2} & \cdots & (n-1)^{n-1}
\end{array}\right]
$$

Since the determinant of this matrix is different from zero, it follows that the system has only a trivial solution. In particular,

$$
\begin{aligned}
f_{n-2}(x, e) & =2\binom{n}{n-2} D\left(x^{2}\right)-\binom{n-1}{n-2} D(x) x-\binom{n-1}{n-3} D\left(x^{2}\right) \\
& -\binom{n-1}{n-2} x D(x)-\binom{n-1}{n-3} x^{2} a-\binom{n-1}{n-2} D(x) x \\
& -\binom{n-1}{n-3} a x^{2}-\binom{n-1}{n-2} x D(x)-\binom{n-1}{n-3} D\left(x^{2}\right)
\end{aligned}
$$

where a denotes $\mathrm{T}(\mathrm{e})$. After some calculation and considering the relation (3), we obtain

$$
(n(n-1)-(n-1)(n-2)) D\left(x^{2}\right)=2(n-1)(D(x) x+x D(x))
$$

Since R is $2(n-1)$-torsion free, the above relation reduces to

$$
\mathrm{D}\left(\mathrm{x}^{2}\right)=\mathrm{D}(\mathrm{x}) \mathrm{x}+\mathrm{xD}(\mathrm{x})
$$

for all $x \in R$. In other words, D is a Jordan derivation and Cusack's generalization of Herstein theorem now implies that D is a derivation, which completes the proof.

In the proof of Theorem 0.2 we used methods similar to those used by Vukman and Kosi-Ulbl in [10. We proceed with the following result in the spirit of Conjecture 0.1.

Theorem 0.3. Let X be a real or complex Banach space and let $\mathcal{A}(X)$ be a standard operator algebra on X . Suppose there exists a linear mapping $\mathrm{D}: \mathcal{A}(\mathrm{X}) \rightarrow \mathcal{L}(\mathrm{X})$ satisfying the relation

$$
2 D\left(A^{n}\right)=D\left(A^{n-1}\right) A+A^{n-1} D(A)+D(A) A^{n-1}+A D\left(A^{n-1}\right)
$$

for all $A \in \mathcal{A}(X)$ and some fixed integer $\mathrm{n} \geq 2$. In this case D is of the form $\mathrm{D}(\mathrm{A})=[\mathrm{A}, \mathrm{B}]$ for all $\mathrm{A} \in \mathcal{A}(\mathrm{X})$ and some fixed $\mathrm{B} \in \mathcal{L}(\mathrm{X})$, which means that D is a linear derivation.

In case $\mathrm{n}=3$ the above relation reduces to Theorem 4 in [19. Let us point out that in Theorem 0.3 we obtain as a result the continuity of D under purely algebraic assumptions concerning D , which means that Theorem 0.3 might be of some interest from the automatic continuity point of view. For results concerning automatic continuity we refer the reader to [8] and [13]. In the proof of Theorem 0.3 we use Herstein theorem, the result below and methods that are similar to those used by Kosi-Ulbl and Vukman in [12].

Theorem 0.4. Let X be a real or complex Banach space, let $\mathcal{A}(\mathrm{X})$ be a standard operator algebra on X and let $\mathrm{D}: \mathcal{A}(\mathrm{X}) \rightarrow \mathcal{L}(\mathrm{X})$ be a linear derivation. In this case D is of the form $\mathrm{D}(\mathrm{A})=[\mathrm{A}, \mathrm{B}]$ for all $\mathrm{A} \in \mathcal{A}(\mathrm{X})$ and some fixed $\mathrm{B} \in \mathcal{L}(\mathrm{X})$.

Theorem 0.4 has been proved by Chernoff [6] (see also [14, 15]).
Proof of the Theorem 0.3 . We have the relation

$$
\begin{equation*}
2 D\left(A^{n}\right)=D\left(A^{n-1}\right) A+A^{n-1} D(A)+D(A) A^{n-1}+A D\left(A^{n-1}\right) \tag{4}
\end{equation*}
$$

for all $A \in \mathcal{A}(X)$. Let us first restrict our attention on $\mathcal{F}(X)$. Let A be from $\mathcal{F}(X)$ and let $\mathrm{P} \in \mathcal{F}(X)$ be a projection with $A P=P A=A$. Putting P for A in the relation (4), we obtain

$$
\begin{equation*}
D(P)=D(P) P+P D(P) \tag{5}
\end{equation*}
$$

Putting $A+P$ for A in the relation (4), we obtain, similary as in the proof of Theorem 0.2, the relation

$$
\begin{aligned}
2 \sum_{i=0}^{n}\binom{n}{i} D\left(A^{n-i} P^{i}\right) & =\left(\sum_{i=0}^{n-1}\binom{n-1}{i} D\left(A^{n-1-i} P^{i}\right)\right)(A+P) \\
& +\left(\sum_{i=0}^{n-1}\binom{n-1}{i} A^{n-1-i} P^{i}\right) D(A+P) \\
& +D(A+P)\left(\sum_{i=0}^{n-1}\binom{n-1}{i} A^{n-1-i} P^{i}\right) \\
& +(A+P)\left(\sum_{i=0}^{n-1}\binom{n-1}{i} D\left(A^{n-1-i} P^{i}\right)\right) .
\end{aligned}
$$

Using (4) and (5) in the above relation and rearranging it in sense of collecting together terms involving equal number of factors of P, we obtain

$$
\sum_{i=1}^{n-1} f_{i}(A, P)=0
$$

where $f_{i}(A, P)$ stands for the expression of terms involving i factors of P. Replacing A by $A+2 P$, $A+3 P, \ldots, A+(n-1) P$ in turn in the relation (4) and expressing the resulting system of $n-1$ homogeneous equations of variables $f_{i}(A, P), i=1,2, \ldots, n-1$, we see that the coefficient matrix of the system is a Vandermonde matrix

$$
\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
2 & 2^{2} & \cdots & 2^{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
n-1 & (n-1)^{2} & \cdots & (n-1)^{n-1}
\end{array}\right]
$$

Since the determinant of this matrix is different from zero, it follows that the system has only a trivial solution. In particular,

$$
\begin{aligned}
f_{n-1}(A, P) & =2\binom{n}{n-1} D(A)-\binom{n-1}{n-1} D(P) A-\binom{n-1}{n-2} D(A) P \\
& -\binom{n-1}{n-1} P D(A)-\binom{n-1}{n-2} A D(P)-\binom{n-1}{n-1} D(A) P \\
& -\binom{n-1}{n-2} D(P) A-\binom{n-1}{n-1} A D(P)-\binom{n-1}{n-2} P D(A) .
\end{aligned}
$$

The above relation reduces to

$$
\begin{equation*}
2 \mathrm{D}(A)=\mathrm{D}(A) P+A D(P)+D(P) A+P D(A) \tag{6}
\end{equation*}
$$

and putting A^{2} for A in the above relation, we obtain

$$
\begin{equation*}
2 D\left(A^{2}\right)=D\left(A^{2}\right) P+A^{2} D(P)+D(P) A^{2}+P D\left(A^{2}\right) \tag{7}
\end{equation*}
$$

As the previously mentioned system of $n-1$ homogeneous equations has only a trivial solution, we also obtain

$$
\begin{aligned}
f_{n-2}(A, P) & =2\binom{n}{n-2} D\left(A^{2}\right)-\binom{n-1}{n-2} D(A) A-\binom{n-1}{n-3} D\left(A^{2}\right) P \\
& -\binom{n-1}{n-2} A D(A)-\binom{n-1}{n-3} A^{2} D(P)-\binom{n-1}{n-2} D(A) A \\
& -\binom{n-1}{n-3} D(P) A^{2}-\binom{n-1}{n-2} A D(A)-\binom{n-1}{n-3} P D\left(A^{2}\right) .
\end{aligned}
$$

The above relation now reduces to

$$
\begin{aligned}
n(n-1) D\left(A^{2}\right) & =2(n-1)(D(A) A+A D(A))+ \\
& +\binom{n-1}{n-3}\left(D\left(A^{2}\right) P+A^{2} D(P)+D(P) A^{2}+P D\left(A^{2}\right)\right)
\end{aligned}
$$

Applying the relation (7) in the above relation, we obtain

$$
n(n-1) D\left(A^{2}\right)=2(n-1)(D(A) A+A D(A))+(n-1)(n-2) D\left(A^{2}\right)
$$

which reduces to

$$
\begin{equation*}
D\left(A^{2}\right)=D(A) A+A D(A) \tag{8}
\end{equation*}
$$

From the relation (6) one can conclude that D maps $\mathcal{F}(\mathrm{X})$ into itself. We therefore have a linear mapping D, which maps $\mathcal{F}(X)$ into itself and satisfies the relation (8) for all $A \in \mathcal{F}(X)$. In other words, D is a Jordan derivation on $\mathcal{F}(\mathrm{X})$ and since $\mathcal{F}(\mathrm{X})$ is prime, it follows, according to Herstein theorem, that D is a derivation on $\mathcal{F}(\mathrm{X})$. Applying Theorem 0.4 one can conclude that D is of the form

$$
\begin{equation*}
D(A)=[A, B] \tag{9}
\end{equation*}
$$

for all $A \in \mathcal{F}(X)$ and some fixed $B \in \mathcal{L}(X)$. It remains to prove that (9) holds for all $A \in \mathcal{A}(X)$ as well. For this purpose we introduce $D_{1}: \mathcal{A}(X) \rightarrow \mathcal{L}(X)$ by $D_{1}(A)=[A, B]$ and consider the mapping $D_{0}=D-D_{1}$. The mapping D_{0} is obviously linear, satisfies the relation (44) and vanishes on $\mathcal{F}(\mathrm{X})$. It is our aim to prove that D_{0} vanishes on $\mathcal{A}(\mathrm{X})$ as well. Let $A \in \mathcal{A}(\mathrm{X})$, let P be a one-dimensional projection and let us introduce $S \in \mathcal{A}(X)$ by $S=A+P A P-(A P+P A)$. We have $S P=P S=0$. Obviously, $D_{0}(S)=D_{0}(A)$. By the relation (4) we now have

$$
\begin{aligned}
D_{0} & \left(S^{n-1}\right) S+S^{n-1} D_{0}(S)+D_{0}(S) S^{n-1}+S D_{0}\left(S^{n-1}\right) \\
& =2 D_{0}\left(S^{n}\right)=2 D_{0}\left(S^{n}+P\right)=2 D_{0}\left((S+P)^{n}\right) \\
& =D_{0}\left((S+P)^{n-1}\right)(S+P)+(S+P)^{n-1} D_{0}(S+P) \\
& +D_{0}(S+P)(S+P)^{n-1}+(S+P) D_{0}\left((S+P)^{n-1}\right) \\
& =D_{0}\left(S^{n-1}\right) S+D_{0}\left(S^{n-1}\right) P+S^{n-1} D_{0}(S)+P D_{0}(S) \\
& +D_{0}(S) S^{n-1}+D_{0}(S) P+S D_{0}\left(S^{n-1}\right)+P D_{0}\left(S^{n-1}\right)
\end{aligned}
$$

From the above relation it follows that

$$
D_{0}\left(S^{n-1}\right) P+P D_{0}(S)+D_{0}(S) P+P D_{0}\left(S^{n-1}\right)=0
$$

Since $D_{0}(S)=D_{0}(A)$, we can rewrite the above relation as

$$
\begin{equation*}
D_{0}\left(A^{n-1}\right) P+P D_{0}(A)+D_{0}(A) P+P D_{0}\left(A^{n-1}\right)=0 \tag{10}
\end{equation*}
$$

Putting $2 A$ for A in the above relation, we obtain

$$
\begin{equation*}
2^{n-1} D_{0}\left(A^{n-1}\right) P+2 P D_{0}(A)+2 D_{0}(A) P+2^{n-1} P D_{0}\left(A^{n-1}\right)=0 \tag{11}
\end{equation*}
$$

In case $n=2$, the relation (10) implies that

$$
\begin{equation*}
P D_{0}(A)+D_{0}(A) P=0 \tag{12}
\end{equation*}
$$

In case $n>2$, the relations (10) and (11) give the above relation (12). Multiplying the above relation from both sides by P, we obtain

$$
P D_{0}(A) P=0
$$

Right multiplication by P in the relation (12) gives $P_{0}(A) P+D_{0}(A) P=0$, which is reduced by the above relation to

$$
D_{0}(A) P=0
$$

Since P is an arbitrary one-dimensional projection, it follows from the above relation that $D_{0}(A)=$ 0 for all $A \in \mathcal{A}(X)$, which completes the proof of the theorem.

Received: January 2013. Accepted: February 2014.

References

[1] K. I. Beidar, M. Brešar, M. A. Chebotar, W. S. Martindale 3rd: On Herstein's Lie map Conjectures II, J. Algebra 238 (2001), 239-264.
[2] M. Brešar, J. Vukman: Jordan derivations on prime rings, Bull. Austral. Math. Soc. Vol. 37 (1988), 321-322.
[3] M. Brešar: Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006.
[4] M. Brešar: Jordan mappings of semiprime rings, J. Algebra 127 (1989), 218-228.
[5] M. Brešar, J. Vukman: Jordan (θ, ϕ)-derivations, Glasnik Mat. 16 (1991), 13-17.
[6] P. R. Chernoff: Representations, automorphisms and derivations of some Operator Algebras, J. Funct. Anal. 2 (1973), 275-289.
[7] J. Cusack: Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321-324.
[8] H. G. Dales: Automatic continuity, Bull. London Math. Soc. 10 (1978), 129-183.
[9] I. N. Herstein: Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 11041119.
[10] I. Kosi-Ulbl, J. Vukman: A note on derivations in semiprime rings, Int. J. Math. \& Math. Sci., 20 (2005), 3347-3350.
[11] I. Kosi-Ulbl, J. Vukman: On derivations in rings with involution, Internat. Math. J. Vol. 6 (2005), 81-91.
[12] I. Kosi-Ulbl, J. Vukman: An identity related to derivations of standard operator algebras and semisimple H^{*}-algebras, CUBO A Mathematical Journal, 12 (2010), 95-103.
[13] A. M. Sinclair: Automatic continuity of linear operators, London Math. Soc. Lecture Note Ser. 21, Cambridge University Press, Cambridge, London, New York and Melbourne (1976).
[14] P. Šemrl: Ring derivations on standard operator algebras, J. Funct. Anal. Vol. 112 (1993), 318-324.
[15] J. Vukman: On automorphisms and derivations of operator algebras, Glasnik Mat. Vol. 19 (1984), 135-138.
[16] J. Vukman: On derivations of algebras with involution, Acta Math. Hungar. 112 (3) (2006), 181-186.
[17] J. Vukman: On derivations of standard operator algebras and semisimple H^{*}-algebras, Studia Sci. Math. Hungar. 44 (2007), 57-63.
[18] J. Vukman: Identities related to derivations and centralizers on standard operator algebras, Taiwan. J. Math. Vol. 11 (2007), 255-265.
[19] J. Vukman: Some remarks on derivations in semiprime rings and standard operator algebras, Glasnik. Mat. Vol. 46 (2011), 43-48.

[^0]: ${ }^{1}$ This research has been supported by the Research Council of Slovenia.

