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ABSTRACT

In this paper, we present a common fixed point theorem in complete cone metric spaces

which is a generalization of the theorem in [6]. This result also generalizes some theo-

rems given in [4] and [9].

RESUMEN

En este art́ıculo presentamos un teorema de punto de fijo común en espacios métricos

cono completos, el cual es una generalización del teorema en [6]. También este resultado

generaliza algunos teoremas en [4] y [9].
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1 Introduction

In [4], Guang and Xian reintroduced the concept of a cone metric space ( known earlier as K-metric

space, see [12]), replacing the set of real numbers by an ordered Banach space and proved some

fixed point theorems for mapping satisfying various contractive conditions. Recently, Rezapour

and Hamlbarani [9] generalized some results of [4] by omitting the assumption of normality in the

results. Also many authors proved some fixed point theorems for contractive type mappings in

cone metric spaces (see [1, 2, 3, 5, 7, 8, 10, 11]).

The main purpose of this paper is to present a common fixed point theorem for mappings in

complete cone metric spaces.

2 Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the set of real

numbers.

Definition 2.1. Let E be a real Banach space and P be a subset of E. P is called a cone if and

only if:

(i) P is closed, nonempty and P 6= {0},

(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P implies ax+ by ∈ P,

(iii) x ∈ P and −x ∈ P implies x = 0.

Given a cone P ⊆ E, we define a partial ordering ≤ with respect to P by x ≤ y if and only if

y− x ∈ P. We shall write x < y if x ≤ y and x 6= y, and x � y if y− x ∈ intP, where intP is the

interior of P.

The cone P is called normal if there is a number K > 0 such that for all x, y ∈ E,

0 ≤ x ≤ y implies ‖x‖ ≤ K‖y‖.

The least positive number satisfying the above is then called the normal constant of P.

Lemma 2.1. ([13]) Let E be a real Banach space with a cone P. Then:

(i) If x ≤ y and 0 ≤ a ≤ b, then ax ≤ by for x, y ∈ P,

(ii) If x ≤ y and u ≤ v, then x+ u ≤ y+ v,
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(iii) If xn ≤ yn for each n ∈ N, and limn→∞ xn = x, limn→∞ yn = y then x ≤ y.

Lemma 2.2. ([10]) If P is a cone, x ∈ P, α ∈ R, 0 ≤ α < 1, and x ≤ αx, then x = 0.

In the following definition, we suppose that E is a real Banach space, P is a cone in E with

intP 6= ∅ and ≤ is partial ordering with respect to P.

Definition 2.2. Let X be a non-empty set. Suppose the mapping d : X× X → E satisfies:

(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y,

(d2) d(x, y) = d(y, x) for all x, y ∈ X,

(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space. This definition

is more general than that of a metric space.

Example 2.1. Let E = R2, P = {(x, y) ∈ E : x, y ≥ 0} ⊂ R2, X = R2 and d : X × X → E defined

by

d(x, y) = d((x1, x2), (y1, y2)) = (max{|x1 − y1|, |x2 − y2|}, αmax{|x1 − y1|, |x2 − y2|}),

where α ≥ 0 is a constant. Then (X, d) is a cone metric space.

3 Definitions and Lemmas

In this section we shall give some definitions and lemmas.

Definition 3.1.([4]) Let (X, d) be a cone metric space. A sequence {xn} in X is said to be:

(a) A convergent sequence if for every c ∈ E with 0 � c, there is N ∈ N such that for all

n ≥ N, d(xn, x) � c for some fixed x in X. We denote this by limn→∞ xn = x or xn → x, n → ∞.

(b) A Cauchy sequence if for every c ∈ E with 0 � c, there is N ∈ N such that for all

n,m ≥ N, d(xn, xm) � c.

A cone metric space (X, d) is said to be complete if every Cauchy sequence is convergent in X.

The following lemma was recently proved in ([3]), by omitting the normality condition.

Lemma 3.1. Let (X, d) be a cone metric space. If {xn} is a convergent sequence in X, then the

limit of {xn} is unique.
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The proof of the following lemma is straighforward and is omitted.

Lemma 3.2. Let (X, d) be a cone metric space, {xn} be a sequence in X. If {xn} converges to x

and {xnk
} is any subsequence of {xn}, then {xnk

} converges to x.

Lemma 3.3. ([10]) Let (X, d) be a cone metric space and {xn} be a sequence in X. If there exists a

sequence {an} in R with an > 0 for all n ∈ N and
∑

an < ∞, which satisfies d(xn+1, xn) ≤ anM

for all n ∈ N and for some M ∈ E with M ≥ 0, then {xn} is a Cauchy sequence in (X, d).

Definition 3.2. ([11]) Let E and F be reel Banach spaces and P and Q be cones on E and F,

respectively. Let (X, d) and (Y, ρ) be cone metric spaces, where d : X× X → E and ρ : Y × Y → F.

A function f : X → Y is said to be continuous at x0 ∈ X, if for every c ∈ F with 0 � c, there exists

b ∈ E with 0 � b such that, ρ(f(x), f(x0)) � c whenever x ∈ X and d(x, x0) � b.

If f is continuous at every point of X, then it is said to be continuous on X.

Lemma 3.4. ([11]) Let (X, d) and (Y, ρ) be cone metric spaces as in Definition 3.2. A function

f : X → Y is continuous at a point x0 ∈ X if and only if whenever a sequence {xn} in X converges

to x0, the sequence {f(xn)} converges to f(x0).

4 Main result

The following common fixed point theorem was proved in [6].

Theorem 4.1. Let (X, d) be a complete metric space and let f and g be two continuous self-

mappings of X. If there are positive numbers α < 1 and β < 1 such that, for all x, y ∈ X,

d(fgx, gy) ≤ αd(x, gy) (1)

and

d(gfx, fy) ≤ βd(x, fy), (2)

then f and g have a unique common fixed point.

We now prove the following common fixed point theorem in complete cone metric spaces:

Theorem 4.2. Let (X, d) be a complete cone metric space and P be a cone. Let f and g be

self-mappings of X satisfying the following inequalities

d(fgx, gx) ≤ ad(x, gx), (3)

d(gfx, fx) ≤ bd(x, fx) (4)
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for all x in X, where a, b < 1. If either f or g is continuous, then f and g have a common fixed

point.

Proof. Let x0 be an arbitrary point in X and define the sequence {xn} inductively by

x2n+1 = fx2n, x2n+2 = gx2n+1

for n = 0, 1, 2, . . ..

Note that if xn = xn+1 for some n, then xn is a fixed point of f and g. Indeed, if x2n = x2n+1

for some n ≥ 0, then x2n is a fixed point of f. On the other hand, we have from inequality (4) that

d(x2n+2, x2n+1) = d(gx2n+1, fx2n) = d(gfx2n, fx2n)

≤ bd(x2n, fx2n) = bd(x2n, x2n+1) = 0

which implies−d(x2n+1, x2n+2) ∈ P. Also we have d(x2n+1, x2n+2) ∈ P. Hence d(x2n+1, x2n+2) =

0 and so x2n+1 = x2n+2. Thus, x2n is a common fixed point of f and g. If x2n+1 = x2n+2 for

some n ≥ 0, similarly, by using inequality (3) leads to x2n+1 is a common fixed point of f and g.

Now we suppose that xn 6= xn+1 for all n. Using inequality (4), we have

d(x2n+2, x2n+1) = d(gx2n+1, fx2n) = d(gfx2n, fx2n)

≤ bd(x2n, fx2n) = bd(x2n, x2n+1). (5)

Similarly, using inequality (3) we have

d(x2n+1, x2n) = d(fx2n, gx2n−1) = d(fgx2n−1, gx2n−1)

≤ ad(x2n−1, gx2n−1) = ad(x2n−1, x2n). (6)

Suppose that α = max{a, b}. Then from inequalities (5) and (6) we have

d(x2n+1, x2n+2) ≤ αd(x2n, x2n+1)

and

d(x2n, x2n+1) ≤ αd(x2n−1, x2n).

Thus, we obtain

d(xn+1, xn+2) ≤ αd(xn, xn+1)

for n = 0, 1, 2, . . . and it follows that

d(xn, xn+1) ≤ αnd(x0, x1).

for n = 1, 2, 3 . . .. Since
∑

∞

n=0
αn < ∞, it follows from Lemma 3.3 that {xn} is a Cauchy sequence

in the complete cone metric space (X, d) and so has a limit z in X.
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Now we consider that f is continuous. Since x2n+1 = fx2n, it follows from Lemma 3.4 that

z = lim
n→∞

x2n+1 = lim
n→∞

fx2n = fz

and so z is a fixed point of f.

Using inequality (4) we have

d(gz, z) = d(gfz, fz) ≤ bd(z, fz) = bd(z, z) = 0

which implies −d(gz, z) ∈ P. Also we have d(gz, z) ∈ P. Hence d(gz, z) = 0 and so gz = z. We

have therefore proved that z is a common fixed point of f and g.

Similarly, considering the continuity of g, it can be seen that f and g have a common fixed

point and this completes the proof.

Putting f = g and k = max{a, b} in Theorem 4.2, we get

Corollary 4.1. Let (X, d) be a complete cone metric space and P be a cone. Let f be a self-mapping

of X satisfying the following inequality

d(f2x, fx) ≤ kd(fx, x) (7)

for all x in X, where k < 1. If f is continuous, then f has a fixed point.

Putting E = R, P = {x ∈ R : x ≥ 0} ⊂ R and d : X × X → R in Theorem 4.2 and Corollary

4.1, then we obtain the following corollaries.

Corollary 4.2. Let (X, d) be a complete metric space and let f and g be self-mappings of X

satisfying the following inequalities

d(fgx, gx) ≤ ad(x, gx), (8)

d(gfx, fx) ≤ bd(x, fx) (9)

for all x in X, where a, b < 1. If either f or g is continuous, then f and g have a common fixed

point.

Corollary 4.3. Let (X, d) be a complete metric space and let f be a self-mapping of X satisfying

the following inequality

d(f2x, fx) ≤ kd(fx, x)

for all x in X, where k < 1. If f is continuous, then f has a fixed point.
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We now illustrate Theorem 4.2 by the following example.

Example 4.1. Let E = R2, P = {(x, y) ∈ E : x, y ≥ 0} ⊂ R2, X = R and the mapping

d : X× X → E defined by d(x, y) = ( |x− y|, |x− y|). Then (X, d) is a complete cone metric space.

Define the self-mappings f, g : X → X by

fx =

{
0 if x ≤ 1

x/4 if x > 1

and

gx =
1

4
x

for all x in X.

If x ≤ 1, then we have

d(fgx, gx) = d
(

0,
x

4

)

=
( |x|

4
,
|x|

4

)

=
1

3

(
∣

∣

∣
x−

x

4

∣

∣

∣
,
∣

∣

∣
x−

x

4

∣

∣

∣

)

= d
(

x,
x

4

)

=
1

3
d(x, gx)

and

d(gfx, fx) = (0, 0) ≤
1

3
(|x|, |x|) =

1

3
d(x, 0) =

1

3
d(x, fx).

If 1 < x ≤ 4, then we have

d(fgx, gx) = d
(

0,
x

4

)

=
( |x|

4
,
|x|

4

)

=
1

3

(
∣

∣

∣
x−

x

4

∣

∣

∣
,
∣

∣

∣
x−

x

4

∣

∣

∣

)

= d
(

x,
x

4

)

=
1

3
d(x, gx)

and

d(gfx, fx) = d
( x

16
,
x

4

)

=
(3|x|

16
,
3|x|

16

)

≤
1

3

(∣

∣

∣
x −

x

4

∣

∣

∣
,
∣

∣

∣
x−

x

4

∣

∣

∣

)

=
1

3
d
(

x,
x

4

)

=
1

3
d(x, fx).

If x > 4, then we have

d(fgx, gx) = d
( x

16
,
x

4

)

=
(3|x|

16
,
3|x|

16

)

≤
1

3

(
∣

∣

∣
x−

x

4

∣

∣

∣
,
∣

∣

∣
x−

x

4

∣

∣

∣

)

=
1

3
d
(

x,
x

4

)

=
1

3
d(x, gx)

and

d(gfx, fx) = d
( x

16
,
x

4

)

=
(3|x|

16
,
3|x|

16

)

≤
1

3

(∣

∣

∣
x −

x

4

∣

∣

∣
,
∣

∣

∣
x−

x

4

∣

∣

∣

)

=
1

3
d
(

x,
x

4

)

=
1

3
d(x, fx).
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Thus, inequalities (3) and (4) are satisfied and also x = 0 is a common fixed point of f and g.

Remark 4.1. Inequalities (1) and (2) of Theorem 4.1 obviously imply inequalities (8) and (9) of

Corollary 4.2. In general, inequalities (8) and (9) do not imply inequalities (1) and (2).

Example 4.2. Let X = R and d(x, y) = |x− y|. Define the self-mappings

f, g : X → X by fx =
1

2
x and gx =

1

4
x

for all x in X. Then f and g satisfy inequalities (8) and (9). But, for x = 0 and y ∈ R (y 6= 0) we

get

d(fg(0), g(y)) =
1

4
|y| 6≤ α

1

4
|y| = αd(0, g(y)),

d(gf(0), f(y)) =
1

2
|y| 6≤ β

1

2
|y| = βd(0, f(y))

where 0 ≤ α,β < 1. Therefore inequalities (1) and (2) are not satisfied.

The following theorems were proved in [4].

Theorem 4.3. Let (X, d) be a complete cone metric space, P be a normal cone with normal

constant K. Suppose the mapping T : X → X satisfies the contractive condition

d(Tx, Ty) ≤ kd(x, y), (10)

for all x, y ∈ X, where k ∈ [0, 1) is a constant. Then T has a unique fixed point in X.

Theorem 4.4. Let (X, d) be a complete cone metric space, P be a normal cone with normal

constant K. Suppose the mapping T : X → X satisfies the contractive condition

d(Tx, Ty) ≤ k(d(Tx, x) + d(Ty, y)), (11)

for all x, y ∈ X, where k ∈ [0, 1

2
) is a constant. Then, T has a unique fixed point in X.

Theorem 4.5. Let (X, d) be a complete cone metric space , P be a normal cone with normal

constant K. Suppose the mapping T : X → X satisfies the contractive condition

d(Tx, Ty) ≤ k(d(Tx, y) + d(x, Ty)), (12)

for all x, y ∈ X, where k ∈ [0, 1

2
) is a constant. Then, T has a unique fixed point in X.

Note that Rezapour and Hamlbarani also proved these theorems by omitting the normality

condition, see [9].

Remark 4.2. Inequalities (10), (11) and (12) obviously imply inequality (7) of Corollary 4.1.

In general, this inequality do not imply inequalities (10), (11) and (12). Thus, it is obvious that
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Corollary 4.1 that is a generalization of Theorem 4.3. If T is continuous in Theorem 4.4 and

Theorem 4.5, then Corollary 4.1 is also a generalization of Theorem 4.4 and Theorem 4.5.

Example 4.3. Let E = R2, P = {(x, y) ∈ E : x, y ≥ 0} ⊂ R2, X = R and the mapping

d : X× X → E defined by d(x, y) = ( |x− y|, |x− y|).

Define f : X → X by

fx =

{
0 if x ≤ 0

x if x > 0

for all x in X. Then we have,

d(f2x, fx) = d(0, 0) = (0, 0) = kd(fx, x) for x ≤ 0 and

d(f2x, fx) = d(x, x) = (0, 0) = kd(fx, x) for x > 0 wherek ∈ [0, 1).

Thus, inequality (7) is satisfied and also each x ∈ [0,∞) is a fixed point of f.

Now let x > 0, y > 0 and x 6= y. Then inequalities (10), (11) and (12) are not satisfied.

In fact, if inequality (10) hold for x > 0 and y > 0 (x 6= y) where 0 ≤ k < 1, then we have

d(fx, fy) = d(x, y) = (|x− y|, |x− y|)

≤ kd(x, y) = k(|x− y|, |x− y|),

and so 1 < k. This is a contradiction because of 0 ≤ k < 1.

If inequality (11) hold for x > 0 and y > 0 (x 6= y) where 0 ≤ k < 1

2
, then we have

d(fx, fy) = d(x, y) = (|x− y|, |x− y|)

≤ k(d(fx, x) + d(fy, y))

= k(d(x, x) + d(y, y)) = k(0, 0),

and so this is a contradiction.

If inequality (12) hold for x > 0 and y > 0 (x 6= y) where 0 ≤ k < 1

2
, then we have

d(fx, fy) = d(x, y) = (|x− y|, |x− y|)

≤ k(d(fx, y) + d(fy, x))

= k(d(x, y) + d(y, x)) = 2k(|x− y|, |x− y|),

and so 1

2
≤ k. This is a contradiction because of 0 ≤ k < 1

2
.
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