On a result of Q. Han, S. Mori and K. Tohge concerning uniquesness of meromorphic functions.

Indrajit Lahiri
Department of Mathematics,
University of Kalyani, Kalyani, Kalyani, West Bengal 741235, India.
ilahiri@hotmail.com

Nintu Mandal
Department of Mathematics, A. B. N. Seal College, Cooch Behar, West Bengal 736101, India. nintu311209@gmail.com

Abstract

In the paper we prove a result on the uniqueness of meromorphic functions that is related to a result of Q. Han, S. Mori and K. Tohge and is originated from a result of H.Ueda and two subsequent results of G. Brosch.

RESUMEN

En este artículo probamos un resultado de unicidad de funciones meromórficas que se relaciona a un resultado de Q. Han, S. Mori y K. Tohge, y se origina de un resultado de H. Ueda y dos resultados derivados de G. Brosch.

Keywords and Phrases: Meromorphic function, Uniqueness, Weighted sharing.
2010 AMS Mathematics Subject Classification: 30D35.

1 Introduction, Definitions and Results

Let f and g be two non-constant meromorphic functions defined in the open complex plane \mathbb{C}. For $a \in \mathbb{C} \cup\{\infty\}$ we say that f and g share the value $a C M$ (counting multiplicities) if f, g have the same a-points with the same multiplicities. If we do not take the multiplicities into account then f, g are said to share the value a IM (ignoring multiplicities). For the standard notations and definitions of the value distribution theory we refer to [5] and [15]. However we require following notations.

Definition 1. Let k be a positive integer or infinity. For $a \in \mathbb{C} \cup\{\infty\}$ we denote by $E_{k)}(a ; f)$ and $\overline{\mathrm{E}}_{\mathrm{k})}(\mathrm{a} ; \mathbf{f})$ the collection of those a -points of f whose multiplicities does not exceed k , with counting multiplicities and with ignoring multiplicities respectively.

Definition 2. Let k be a positive integer and $\mathrm{a} \in \mathbb{C} \cup\{\infty\}$. Then by $\mathrm{N}(\mathrm{r}, \mathrm{a} ; \mathrm{f} \mid \leq \mathrm{k})$ we denote the counting function of those a-points of f (counted with proper multiplicities) whose multiplicities are not greater than k . By $\overline{\mathrm{N}}(\mathrm{r}, \mathrm{a} ; \mathrm{f} \mid \leq \mathrm{k})$ we denote the corresponding reduced counting funcion.

In an analogous manner we define $\mathrm{N}(\mathrm{r}, \mathrm{a} ; \mathrm{f} \mid \geq \mathrm{k})$ and $\overline{\mathrm{N}}(\mathrm{r}, \mathrm{a} ; \mathrm{f} \mid \geq \mathrm{k})$.
Also by $\mathrm{N}(\mathrm{r}, \mathrm{a} ; \mathrm{f} \mid=\mathrm{k}$) and $\overline{\mathrm{N}}(\mathrm{r}, \mathrm{a} ; \mathrm{f} \mid=\mathrm{k})$ we denote respectively the counting function and reduced counting function of those a -points of f whose multiplicities are exactly k .

In 1980 H.Ueda 14 \{see also p. 327 [15] \}prove the following result.
Theorem A. 14] Let \mathbf{f} and g be nonconstant entire functions sharing $0,1 C M$, and $\mathbf{a}(\neq 0,1, \infty)$ be a complex number. If $\mathrm{E}_{\infty)}(\mathrm{a} ; \mathrm{f}) \subset \mathrm{E}_{\infty}(\mathrm{a} ; \mathrm{g})$, then f is a bilinear transformation of g .

Improving Theorem A in 1989 G.Brosch[2] proved the following result.
Theorem B. [2] Let f and g be two nonconstant meromorphic functions sharing $0,1, \infty C M$, and $\mathrm{a}(\neq 0,1, \infty)$ be a complex number. If $\overline{\mathrm{E}}_{\infty)}(\mathrm{a} ; \mathrm{f}) \subset \overline{\mathrm{E}}_{\infty}(\mathrm{a} ; \mathrm{g})$, then f is a bilinear transformation of g.

Following example shows that in Theorem B the condition $\bar{E}_{\infty)}(a ; f) \subset \bar{E}_{\infty}(a ; g)$ cannot be replaced by $\bar{E}_{\infty)}(a ; f) \subset \bar{E}_{\infty)}(b ; g)$ for $b \neq a, 0,1, \infty$.

Example 1. Let $\mathrm{f}=\mathrm{e}^{2 z}+\mathrm{e}^{z}+1, \mathrm{~g}=\mathrm{e}^{-2 z}+\mathrm{e}^{-z}+1, \mathrm{a}=\frac{3}{4}$ and $\mathrm{b}=3$. Then f, g share $0,1, \infty$ CM and $\mathrm{f}-\mathrm{a}=\frac{1}{4}\left(2 e^{z}+1\right)^{2}, \mathrm{~g}-\mathrm{b}=\mathrm{e}^{-2 z}\left(1+2 e^{z}\right)\left(1-e^{z}\right)$. So $\left.\left.\overline{\mathrm{E}}_{\infty}\right)(\mathrm{a} ; \mathrm{f}) \subset \overline{\mathrm{E}}_{\infty}\right)(\mathrm{b} ; \mathrm{g})$ but f is not a bilinear transformation of g .

Considering the possibility $\mathrm{a} \neq \mathrm{b}$, G.Brosch 2$]$ proved the following theorem.
Theorem C. [2] Let f and g be two nonconstant meromorphic functions sharing $0,1, \infty C M$, and a, b be two complex numbers such that $\mathrm{a}, \mathrm{b} \notin\{0,1, \infty\}$. If $\overline{\mathrm{E}}_{\infty)}(\mathrm{a} ; \mathrm{f})=\overline{\mathrm{E}}_{\infty)}(\mathrm{b} ; \mathrm{g})$, then f is a bilinear transformation of g .

In 2001 the idea of weighted sharing of values was introduced $\{c f .[6]$, 7] $\}$ which provides a scaling between IM sharing and CM sharing of values. We now explain this notion in the following definition.

Definition 3. [11] Let k be a nonnegative integer or infinity. For $a \in \mathbb{C} \cup\{\infty\}$ we denote by $\mathrm{E}_{\mathrm{k}}(\mathrm{a}, \mathrm{f})$ the set of all a-points of f , where an a -point with multiplicity m is counted m times if $\mathrm{m} \leq \mathrm{k}$ and $\mathrm{k}+1$ times if $\mathrm{m}>\mathrm{k}$. If $\mathrm{E}_{\mathrm{k}}(\mathrm{a}, \mathrm{f})=\mathrm{E}_{\mathrm{k}}(\mathrm{a}, \mathrm{g})$, we say that f, g share the value a with weight k .

The definition means that z_{0} is a zero of $f-a$ with multiplicity $m(\leq k)$ if and only if z_{0} is a zero of g with multiplicity $m(\leq k)$ and z_{0} is a zero of $f-a$ with multiplicity $m(>k)$ if and only if z_{0} is a zero of g with multiplicity $n(>k)$, where m is not necessarily equal to n.

We write f, g share (a, k) to mean that f, g share the value a with weight k. Clearly if f, g share (a, k) then f, g share (a, p) for all integers $p, 0 \leq p<k$. Also we note that f, g share a value a IM or CM if and only if f, g share $(a, 0)$ or (a, ∞) respectively.

In 2004 using the idea of weighted value sharing T.C. Alzahari and H.X.Yi [1] improved Theorem C in the following manner .

Theorem D. [1] Let f, g be two nonconstant meromorphic functions sharing $\left(a_{1}, 1\right),\left(a_{2}, \infty\right)$, $\left(a_{3}, \infty\right)$, where $\left\{a_{1}, a_{2}, a_{3}\right\}=\{0,1, \infty\}$, and let a, b be two finite complex numbers such that $\mathrm{a}, \mathrm{b} \notin\{0,1\}$. If $\overline{\mathrm{E}}_{\infty}(\mathrm{a} ; \mathbf{f})=\overline{\mathrm{E}}_{\infty}(\mathrm{b} ; \mathrm{g})$, then f is a bilinear transformation of g . Moreover f and g satisfy exactly one of the following relations:
(i) $\mathrm{f} \equiv \mathrm{g}$;
(ii) $\mathrm{fg} \equiv 1$;
(iii) $\mathrm{bf} \equiv \mathrm{ag}$;
(iv) $\mathrm{f}+\mathrm{g} \equiv \mathrm{I}$;
(v) $\mathrm{f} \equiv \mathrm{ag}$;
(vi) $\mathrm{f} \equiv(1-\mathrm{a}) \mathrm{g}+\mathrm{a}$;
(vii) $(1-b) f \equiv(1-a) g+(a-b)$;
(viii) $(1-a+g) f \equiv a g$;
(ix) $f\{(b-a) g+(a-1) b\} \equiv a(b-1) g$;
(x) $f(g-1) \equiv g$;

The cases (ii) and (v) may occur if $\mathrm{ab}=1$, cases (iv) and (viii) may occur if $\mathrm{a}+\mathrm{b}=1$, cases (vi) and (x) may occur if $\mathrm{ab}=\mathrm{a}+\mathrm{b}$.

Improving Theorem D recently I.Lahiri and P.Sahoo [12] proved the following theorem.

Theorem E. [12] Let f, g be two distinct nonconstant meromorphic functions sharing $\left(\mathrm{a}_{1}, 1\right)$, $\left(a_{2}, m\right),\left(a_{3}, k\right)$, where $\left\{a_{1}, a_{2}, a_{3}\right\}=\{0,1, \infty\}$ and $(m-1)(m k-1)>(1+m)^{2}$.If for two values $\mathrm{a}, \mathrm{b} \notin\{0,1, \infty\}$ the functions $\mathrm{f}-\mathrm{a}$ and $\mathrm{g}-\mathrm{b}$ share $(0,0)$ then f, g share $(0, \infty),(1, \infty),(\infty, \infty)$ and $\mathrm{f}-\mathrm{a}, \mathrm{g}-\mathrm{b}$ share $(0, \infty)$. Also there exists a non-constant entire function λ such that f and g are one of the following forms:
(i) $\mathrm{f}=\mathrm{ae} \mathrm{e}^{\lambda}$ and $\mathrm{g}=\mathrm{b} \mathrm{e}^{-\lambda}$, where $\mathrm{ab}=1$;
(ii) $\mathrm{f}=1+\mathrm{ae}^{\lambda}$ and $\mathrm{g}=1+\left(1-\frac{1}{\mathrm{~b}}\right) \mathrm{e}^{-\lambda}$, where $\mathrm{ab}=\mathrm{a}+\mathrm{b}$;
(iii) $\mathrm{f}=\frac{\mathrm{a}}{\mathrm{a}+\mathrm{e}^{\lambda}}$ and $\mathrm{g}=\frac{e^{\lambda}}{1-\mathrm{b}+\mathrm{e}^{\lambda}}$, where $\mathrm{a}+\mathrm{b}=1$:
(iv) $\mathrm{f}=\frac{e^{\lambda}-\mathrm{a}}{e^{\lambda}-1}$ and $\mathrm{g}=\frac{\mathrm{b} e^{\lambda}-1}{e^{\lambda}-1}$, where $\mathrm{ab}=1$;
(v) $\mathrm{f}=\frac{\mathrm{b} e^{\lambda}-\mathrm{a}}{\mathrm{b} e^{\lambda}-\mathrm{b}}$ and $\mathrm{g}=\frac{\mathrm{b} e^{\lambda}-\mathrm{a}}{\mathrm{a} e^{\lambda}-\mathrm{a}}$, where $\mathrm{a} \neq \mathrm{b}$;
(vi) $\mathrm{f}=\frac{\mathrm{a}}{1-\mathrm{e}^{\lambda}}$ and $\mathrm{g}=\frac{\mathrm{b} \mathrm{e}^{\lambda}}{e^{\lambda}-1}$, where $\mathrm{ab}=\mathrm{a}+\mathrm{b}$;
(vii) $\mathrm{f}=\frac{\mathrm{b}-\mathrm{a}}{(\mathrm{b}-1)\left(1-e^{\lambda}\right)}$ and $\mathrm{g}=\frac{(\mathrm{b}-\mathrm{a}) \mathrm{e}^{\lambda}}{(\mathrm{a}-1)\left(1-e^{\lambda}\right)}$, where $\mathrm{a} \neq \mathrm{b}$;
(viii) $\mathrm{f}=\mathrm{a}+\mathrm{e}^{\lambda}$ and $\mathrm{g}=\mathrm{b}\left(1+\frac{1-\mathrm{b}}{e^{\lambda}}\right)$, where $\mathrm{a}+\mathrm{b}=1$;
(ix) $\mathrm{f}=\mathrm{e}^{\lambda}-\frac{\mathrm{a}(\mathrm{b}-1)}{\mathrm{a}-\mathrm{b}}$ and $\mathrm{g}=\frac{\mathrm{b}(\mathrm{a}-1)}{\mathrm{a}-\mathrm{b}}\left\{1-\frac{\mathrm{a}(\mathrm{b}-1)}{(\mathrm{b}-\mathrm{a}) \mathrm{e}^{\lambda}}\right\}$, where $\mathrm{a} \neq \mathrm{b}$;
Q.Han, S.Mori and K.Tohge [4] further improved Theorem C, Theorem D, Theorem E and proved the following.

Theorem F. 4] Let f and g be two distinct nonconstant meromorphic functions sharing $\left(\mathrm{a}_{1}, \mathrm{k}_{1}\right)$, $\left(a_{2}, k_{2}\right)$ and $\left(a_{3}, k_{3}\right)$ for three distinct values $a_{1}, a_{2}, a_{3} \in \mathbb{C} \cup\{\infty\}$, where $k_{1} k_{2} k_{3}>k_{1}+k_{2}+k_{3}+2$. Furthermore if $\bar{E}_{k)}\left(a_{4} ; f\right)=\bar{E}_{k)}\left(a_{5} ; g\right)$ for values a_{4}, a_{5} in $\mathbb{C} \cup\{\infty\} \backslash\left\{a_{1}, a_{2}, a_{3}\right\}$ and for some positive integer $\mathrm{k}(\geq 2)$, then f is a bilinear transformation of g .

Example 1 with $\mathrm{a}=\mathrm{b}=\frac{3}{4}$ shows that the conclusion of Theorem F does not hold for $\mathrm{k}=1$. This suggests that some further investigation is necessary for the case $k=1$. In the paper we take up this problem and prove the following result.

Theorem 1.1. Let f, g be two distinct nonconstant meromorphic functions sharing $\left(\mathrm{a}_{1}, \mathrm{k}_{1}\right)$, $\left(a_{2}, k_{2}\right),\left(a_{3}, k_{3}\right)$ where $a_{1}, a_{2}, a_{3} \in \mathbb{C} \cup\{\infty\}$ are distinct and $k_{1} k_{2} k_{3}>k_{1}+k_{2}+k_{3}+2$. Further let $\left.\mathrm{E}_{1)}(\mathrm{a} ; \mathrm{f}) \subset \overline{\mathrm{E}}_{\infty}\right)(\mathrm{b} ; \mathrm{g})$ for two complex numbers $\mathrm{a}, \mathrm{b} \notin\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right\}$ and $\left.\mathrm{E}_{1)}\left(0 ; \mathrm{f}^{\prime}\right) \subset \overline{\mathrm{E}}_{\infty}\right)\left(0 ; \mathrm{g}^{\prime}\right)$. Then f is a bilinear transformation of g .

If, in particular, $\left\{a_{1}, a_{2}, a_{3}\right\}=\{0,1, \infty\}$, then there exists a non-constant entire function λ such that f and g assume exactly one of the following forms:
(i) $\mathrm{f}=\mathrm{a} \mathrm{e}^{\lambda}$ and $\mathrm{g}=\mathrm{b} \mathrm{e}^{-\lambda}$ where $\mathrm{ab}=1$;
(ii) $\mathrm{f}=1+\mathrm{ae}$ and $\mathrm{g}=1+\left(1-\frac{1}{\mathrm{~b}}\right) \mathrm{e}^{-\lambda}$ where $\mathrm{ab}=\mathrm{a}+\mathrm{b}$;
(iii) $\mathrm{f}=\frac{\mathrm{a}}{\mathrm{a}+\mathrm{e}^{\lambda}}$ and $\mathrm{g}=\frac{\mathrm{e}^{\lambda}}{1-\mathrm{b}+\mathrm{e}^{\lambda}}$ where $\mathrm{a}+\mathrm{b}=1$:
(iv) $\mathrm{f}=\frac{e^{\lambda}-\mathrm{a}}{e^{\lambda}-1}$ and $\mathrm{g}=\frac{\mathrm{e}^{\lambda}-\mathrm{a}}{\mathrm{a} e^{\lambda}-\mathrm{a}}$ where $\overline{\mathrm{E}}_{\infty}(\mathrm{a} ; \mathrm{f})=\phi$;
(v) $\mathrm{f}=\frac{\mathrm{b} e^{\lambda}-\mathrm{a}}{\mathrm{b} e^{\lambda}-\mathrm{b}}$ and $\mathrm{g}=\frac{\mathrm{b} e^{\lambda}-\mathrm{a}}{\mathrm{a} e^{\lambda}-\mathrm{a}}$ where $\mathrm{a} \neq \mathrm{b}$;
(vi) $\mathrm{f}=\frac{\mathrm{a}}{1-\mathrm{e}^{\lambda}}$ and $\mathrm{g}=\frac{\mathrm{a} \mathrm{e}^{\lambda}}{(1-\mathrm{a})\left(1-\mathrm{e}^{\lambda}\right)}$ where $\overline{\mathrm{E}}_{\infty}(\mathrm{a} ; \mathrm{f})=\phi$;
(vii) $\mathrm{f}=\frac{\mathrm{b}-\mathrm{a}}{(\mathrm{b}-1)\left(1-e^{\lambda}\right)}$ and $\mathrm{g}=\frac{(\mathrm{b}-\mathrm{a}) \mathrm{e}^{\lambda}}{(\mathrm{a}-1)\left(1-e^{\lambda}\right)}$ where $\mathrm{a} \neq \mathrm{b}$;
(viii) $\mathrm{f}=\mathrm{a}+\mathrm{e}^{\lambda}$ and $\mathrm{g}=(1-\mathrm{a})\left(1+\frac{\mathrm{a}}{\mathrm{e}^{\lambda}}\right)$ where $\overline{\mathrm{E}}(\mathrm{a} ; \mathrm{f})=\phi$;
(ix) $\mathrm{f}=\mathrm{e}^{\lambda}-\frac{\mathrm{a}(\mathrm{b}-1)}{\mathrm{a}-\mathrm{b}}$ and $\mathrm{g}=\frac{\mathrm{b}(\mathrm{a}-1)}{\mathrm{a}-\mathrm{b}}\left\{1-\frac{\mathrm{a}(\mathrm{b}-1)}{(\mathrm{b}-\mathrm{a}) \mathrm{e}^{\lambda}}\right\}$ where $\mathrm{a} \neq \mathrm{b}$;

Considering Example 1 we see that the condition $E_{1)}\left(0 ; f^{\prime}\right) \subset \bar{E}_{\infty}\left(0, g^{\prime}\right)$ is essential for Theorem 1.1 .

2 Lemmas

In the section we present some necessary lemmas.
Lemma 2.1. [3] Let f and g share $(0,0),(1,0),(\infty, 0)$. Then $\mathrm{T}(\mathrm{r}, \mathrm{f}) \leq 3 \mathrm{~T}(\mathrm{r}, \mathrm{g})+\mathrm{S}(\mathrm{r}, \mathrm{f})$ and $\mathrm{T}(\mathrm{r}, \mathrm{g}) \leq$ $3 T(r, f)+S(r, f)$.

From this we conclude that $S(r, f)=S(r, g)$. Henceforth we denote either of them by $S(r)$.

Lemma 2.2. [16] Let f and g share $\left(0, \mathrm{k}_{1}\right),\left(1, \mathrm{k}_{2}\right),\left(\infty, \mathrm{k}_{3}\right)$ and $\mathrm{f} \not \equiv \mathrm{g}$, where $\mathrm{k}_{1} \mathrm{k}_{2} \mathrm{k}_{3}>\mathrm{k}_{1}+\mathrm{k}_{2}+$ $\mathrm{k}_{3}+2$. Then

$$
\bar{N}(r, 0 ; f \mid \geq 2)+\bar{N}(r, 1 ; f \mid \geq 2)+\bar{N}(r, \infty ; f \mid \geq 2)=S(r)
$$

Following can be proved in the line of Theorem 3.2 of [11].
Lemma 2.3. Let f and g be two distinct nonconstant meromorphic functions sharing $\left(0, k_{1}\right),\left(1, k_{2}\right)$, $\left(\infty, \mathrm{k}_{3}\right)$, where $\mathrm{k}_{1} \mathrm{k}_{2} \mathrm{k}_{3}>\mathrm{k}_{1}+\mathrm{k}_{2}+\mathrm{k}_{3}+2$. If $\mathrm{N}_{0}(\mathrm{r})+\mathrm{N}_{1}(\mathrm{r}) \geq \lambda \mathrm{T}(\mathrm{r}, \mathrm{f})+\mathrm{S}(\mathrm{r})$ for some $\lambda>\frac{1}{2}$, then f is a bilinear transformation of g and

$$
N_{0}(r)+N_{1}(r)=T(r, f)+S(r)=T(r, g)+S(r)
$$

where $\mathrm{N}_{\mathrm{O}}(\mathrm{r})\left(\mathrm{N}_{1}(\mathrm{r})\right)$ denotes the counting function of those simple(multiple) zeros of $\mathrm{f}-\mathrm{g}$ which are not the zeros of $\mathrm{f}(\mathrm{f}-1)$ and $\frac{1}{\mathrm{f}}$.

Lemma 2.4. [13] Let f and g be two distinct noncostant meromorphic functions sharing $(0,0)$, $(1,0),(\infty, 0)$. Further suppose that f is a bilinear transformation of g and $E_{1)}(a ; f) \subset \bar{E}_{\infty}(b ; g)$, where $\mathrm{a}, \mathrm{b} \notin\{0,1, \infty\}$. Then there exists a nonconstant entire function λ such that f and g assume exactly one of the forms given in Theorem 1.1.

Following can be proved in the line of Lemma 2.413.

Lemma 2.5. Let f and g share $\left(0, \mathrm{k}_{1}\right),\left(1, \mathrm{k}_{2}\right),\left(\infty, \mathrm{k}_{3}\right)$ and $\mathrm{f} \not \equiv \mathrm{g}$, where $\mathrm{k}_{1} \mathrm{k}_{2} \mathrm{k}_{3}>\mathrm{k}_{1}+\mathrm{k}_{2}+\mathrm{k}_{3}+2$. If f is not a bilinear transformation of g, then for a complex number $a \notin\{0,1, \infty\}$ each of the following holds:
(i) $N(r, a ; f \mid \geq 3)+N(r, a ; g \mid \geq 3)=S(r)$;
(ii) $\mathrm{T}(\mathrm{r}, \mathrm{f})=\mathrm{N}(\mathrm{r}, \mathrm{a} ; \mathrm{f} \leq 2)+\mathrm{S}(\mathrm{r})$;
(iii) $\mathrm{T}(\mathrm{r}, \mathrm{g})=\mathrm{N}(\mathrm{r}, \mathrm{a} ; \mathrm{g} \leq 2)+\mathrm{S}(\mathrm{r})$.

In the line of Lemma 5 [9] we can prove the following.
Lemma 2.6. Let f, g share $\left(0, k_{1}\right),\left(1, k_{2}\right),\left(\infty, k_{3}\right)$ and $f \not \equiv g$, where $k_{1} k_{2} k_{3}>k_{1}+k_{2}+k_{3}+2$. If $\alpha=\frac{\mathrm{f}-1}{\mathrm{~g}-1}$ and $\beta=\frac{\mathrm{g}}{\mathrm{f}}$, then $\overline{\mathrm{N}}(\mathrm{r}, \mathrm{a} ; \alpha)=\mathrm{S}(\mathrm{r})$ and $\overline{\mathrm{N}}(\mathrm{r}, \mathrm{a} ; \beta)=\mathrm{S}(\mathrm{r})$ for $\mathrm{a}=0, \infty$.

Following is an analogue of Lemma 2.6 [13].
Lemma 2.7. Let f and g be two distinct meromorphic functions sharing $\left(0, k_{1}\right),\left(1, \mathrm{k}_{2}\right),\left(\infty, \mathrm{k}_{3}\right)$, where $\mathrm{k}_{1} \mathrm{k}_{2} \mathrm{k}_{3}>\mathrm{k}_{1}+\mathrm{k}_{2}+\mathrm{k}_{3}+2$. Then $\mathrm{T}\left(\mathrm{r}, \frac{\alpha^{(p)}}{\alpha}\right)+\mathrm{T}\left(\mathrm{r}, \frac{\beta^{(p)}}{\beta}\right)=\mathrm{S}(\mathrm{r})$, where p is a positive integer and α, β are defined as in Lemma 2.6.

Using the techniques of [8] and [10] we can prove the following.
Lemma 2.8. Let f, g share $\left(0, \mathrm{k}_{1}\right),\left(1, \mathrm{k}_{2}\right),\left(\infty, \mathrm{k}_{3}\right)$ and $\mathrm{f} \not \equiv \mathrm{g}$, where $\mathrm{k}_{1} \mathrm{k}_{2} \mathrm{k}_{3}>\mathrm{k}_{1}+\mathrm{k}_{2}+\mathrm{k}_{3}+2$. If f is not a bilinear transformation of g , then each of the following holds :
(i) $\mathrm{T}(\mathrm{r}, \mathrm{f})+\mathrm{T}(\mathrm{r}, \mathrm{g})=\mathrm{N}(\mathrm{r}, 0 ; \mathrm{f} \mid \leq 1)+\mathrm{N}(\mathrm{r}, 1 ; \mathrm{f} \mid \leq 1)+\mathrm{N}(\mathrm{r}, \infty ; \mathrm{f} \mid \leq 1)+\mathrm{N}_{0}(\mathrm{r})+\mathrm{S}(\mathrm{r})$,
(ii) $\mathrm{T}(\mathrm{r}, \mathrm{f})=\mathrm{N}\left(\mathrm{r}, 0 ; \mathrm{g}^{\prime} \mid \leq 1\right)+\mathrm{N}_{\mathrm{O}}(\mathrm{r})+\mathrm{S}(\mathrm{r})$,
(iii) $\mathrm{T}(\mathrm{r}, \mathrm{g})=\mathrm{N}\left(\mathrm{r}, 0 ; \mathrm{f}^{\prime} \mid \leq 1\right)+\mathrm{N}_{\mathrm{O}}(\mathrm{r})+\mathrm{S}(\mathrm{r})$,
(iv) $\mathrm{N}_{1}(\mathrm{r})=\mathrm{S}(\mathrm{r})$,
(v) $\mathrm{N}_{0}\left(\mathrm{r}, 0 ; \mathrm{g}^{\prime} \mid \geq 2\right)=\mathrm{S}(\mathrm{r})$,
(vi) $\mathrm{N}_{0}\left(\mathrm{r}, 0 ; \mathrm{f}^{\prime} \mid \geq 2\right)=S(\mathrm{r})$,
(vii) $\bar{N}\left(r, 0 ; g^{\prime} \mid \geq 2\right)=S(r)$,
(viii) $\overline{\mathrm{N}}\left(\mathrm{r}, 0 ; \mathrm{f}^{\prime} \mid \geq 2\right)=\mathrm{S}(\mathrm{r})$,
(ix) $\mathrm{N}(\mathrm{r}, 0 ; \mathrm{f}-\mathrm{g} \mid \geq 2)=\mathrm{S}(\mathrm{r})$,
(x) $\mathrm{N}(\mathrm{r}, 0 ; \mathrm{f}-\mathrm{g} \mid \mathrm{f}=\infty)=\mathrm{S}(\mathrm{r})$,
where $N_{0}\left(r, 0 ; g^{\prime} \mid \geq 2\right)\left(N_{0}\left(r, 0 ; f^{\prime} \mid \geq 2\right)\right)$ is the counting function of those multiple zeros of $\mathrm{g}^{\prime}\left(\mathrm{f}^{\prime}\right)$ which are not the zeros of $\mathrm{f}(\mathrm{f}-1)$ and $\mathrm{N}(\mathrm{r}, 0 ; \mathrm{f}-\mathrm{g} \mid \mathrm{f}=\infty)$ is the counting function of those zeros of $\mathrm{f}-\mathrm{g}$ which are poles of f.

3 Proof of Theorem 1.1

Proof. If necessary considering a bilinear transformation we may choose $\left\{a_{1}, a_{2}, a_{3}\right\}=\{0,1, \infty\}$. We now consider the following cases
$C A S E$ 1. Let $\mathrm{a}=\mathrm{b}$. If possible, we suppose that f is not a blinear transformation of g . We put

$$
\Phi=\frac{f^{\prime}(f-a)}{f(f-1)}-\frac{g^{\prime}(g-a)}{g(g-1)}
$$

Let $\Phi \not \equiv 0$. Since $\Phi=a \frac{\beta^{\prime}}{\beta}+(1-a) \frac{\alpha^{\prime}}{\alpha}$, by Lemma 2.7 we get $T(r, \Phi)=S(r)$. Since $E_{1}(a ; f) \subset$ $\overline{\mathrm{E}}_{\infty)}(\mathrm{a} ; \mathrm{g})$ and $\mathrm{E}_{1)}\left(0 ; f^{\prime}\right) \subset \overline{\mathrm{E}}_{\infty}\left(0 ; \mathrm{g}^{\prime}\right)$, it follows that

$$
N(r, a ; f \mid \leq 2) \leq 2 N(r, 0 ; \Phi)=S(r)
$$

which contradicts (ii) of Lemma 2.5. Therefore $\Phi \equiv 0$ and so

$$
\begin{equation*}
\frac{f^{\prime}(f-a)}{f(f-1)}=\frac{g^{\prime}(g-a)}{g(g-1)} \tag{3.1}
\end{equation*}
$$

If z_{0} is a double zero of $g-a$, then from (3.1) we see that z_{0} is a common zero of f^{\prime} and g^{\prime}.Hence z_{0} is a zero of $\frac{\alpha^{\prime}}{\alpha}=\frac{f^{\prime}}{f-1}-\frac{g^{\prime}}{g-1}$. So by (i) of Lemma 2.5] and Lemma 2.7 we get

$$
\begin{align*}
\mathrm{N}(r, a ; g \mid \geq 2) & =2 \mathrm{~N}\left(r, 0 ; \frac{\alpha^{\prime}}{\alpha}\right)+S(r) \\
& =S(r) \tag{3.2}
\end{align*}
$$

Again if z_{1} is a zero of g^{\prime} which is not a zero of $g(g-1)(g-a)$, then from (3.1) and the hypotheses of the theorem it follows that z_{1} is a zero of f^{\prime} and so of $\frac{\alpha^{\prime}}{\alpha}$. Hence from Lemma 2.2, Lemma 2.7 and (3.2) we get

$$
\begin{align*}
\mathrm{N}\left(r, 0 ; g^{\prime} \mid \leq 1\right) & \leq N(r, a ; g \mid \geq 2)+\bar{N}(r, 0 ; f \mid \geq 2)+\bar{N}(r, 1 ; f \mid \geq 2)+N\left(r, 0 ; \frac{\alpha^{\prime}}{\alpha}\right) \\
& =S(r) \tag{3.3}
\end{align*}
$$

Now from (ii) and (iv) of Lemma 2.8 and (3.3) we obtain

$$
N_{0}(r)+N_{1}(r)=T(r, f)+S(r)
$$

which is impossible by Lemma 2.3. Therefore f is a bilinear transformation of g and so by Lemma 2.4 f and g take one of the forms (i)-(iv),(vi) and (viii).

CASE 2. Let $\mathrm{a} \neq \mathrm{b}$. If f is a bilinear transformation of g , then by Lemma 2.4 f and g assume one of the forms $(i)-(i x)$. So we suppose that f is not a bilinear transformation of g. Following two subcases come up for consideration.

Subcase (i) Let $N(r, a ; f \mid \geq 2) \neq S(r)$.
We put $\Psi=\frac{f^{\prime}(f-b)}{f(f-1)}-\frac{g^{\prime}(g-b)}{g(g-1)}$. Since a double zero of $f-a$ is a zero of f^{\prime} and so a zero of g^{\prime}, if $\Psi \not \equiv 0$, then we get by Lemma 2.5 (i) and Lemma 2.7,

$$
N(r, a ; f \mid \geq 2) \leq 2 N(r, 0 ; \Psi)+S(r)=S(r)
$$

which is a contradiction. Hence $\Psi \equiv 0$ and so

$$
\frac{f^{\prime}(f-b)}{f(f-1)}=\frac{g^{\prime}(g-b)}{g(g-1)}
$$

This shows that $f-a$ has no simple zero because $E_{1)}(a ; f) \subseteq \bar{E}_{\infty}(b ; g)$.
Since $\frac{\alpha^{\prime}}{\alpha}=\frac{f^{\prime}}{f-1}-\frac{g^{\prime}}{g-1}$. and $E_{1)}\left(0 ; f^{\prime}\right) \subseteq \bar{E}_{\infty}\left(0 ; g^{\prime}\right)$, it follows that a double zero of $f-a$ is a zero of $\frac{\alpha^{\prime}}{\alpha}$. So by Lemma 2.7 we get $N(r, a ; f \mid=2) \leq 2 N\left(r, 0 ; \frac{\alpha^{\prime}}{\alpha}\right)=S(r)$, which contradicts (ii) of Lemma 2.5.

Subcase (ii) Let $N(r, a ; f \mid \geq 2)=S(r)$. Since f is not a bilinear transformation of g, we see that α, β and $\alpha \beta$ are non-constant. Also we note that $f=\frac{1-\alpha}{1-\alpha \beta}$ and $g=\frac{(1-\alpha) \beta}{1-\alpha \beta}$.

We put $F=(f-a)(1-\alpha \beta)=a \alpha \beta-\alpha+1-a$ and $w=\frac{F^{\prime}}{F}$. Also we note that $F=(f-a) \frac{g-f}{f(g-1)}$. Since by Lemma $2.6 \bar{N}(r, \infty ; F)=S(r)$ and w has only simple poles (if there is any), we get

$$
\begin{equation*}
\mathrm{T}(\mathrm{r}, w)=\mathrm{m}(\mathrm{r}, w)+\mathrm{N}(\mathrm{r}, w)=\overline{\mathrm{N}}(\mathrm{r}, 0 ; \mathrm{F})+\mathrm{S}(\mathrm{r}) \tag{3.4}
\end{equation*}
$$

Now by Lemma 2.2 and (ix), (x) of Lemma 2.8 we obtain

$$
\begin{align*}
\overline{\mathrm{N}}(r, 0 ; \mathrm{F} \mid \geq 2) \leq & N(r, a ; f \mid \geq 2)+N(r, 0 ; f-g \mid \geq 2)+\bar{N}(r, \infty ; f \mid \geq 2) \\
& +N(r, 0 ; f-g \mid f=\infty) \\
= & S(r) \tag{3.5}
\end{align*}
$$

Hence from (3.4) and (3.5) we get

$$
\begin{align*}
\mathrm{T}(\mathrm{r}, w) & =\mathrm{N}(\mathrm{r}, 0 ; \mathrm{F} \mid \leq 1)+\mathrm{S}(\mathrm{r}) \\
& =\mathrm{N}(\mathrm{r}, \mathrm{a} ; \mathrm{f} \mid \leq 1)+\mathrm{N}_{0}(\mathrm{r})+\mathrm{N}_{2}(\mathrm{r})+\mathrm{S}(\mathrm{r}) \tag{3.6}
\end{align*}
$$

where $N_{2}(r)$ is the counting function of those simple poles of f which are non-zero regular points of $f-g$.

From the definitions of α and β we get

$$
\begin{equation*}
\left\{g-\frac{\alpha^{\prime} \beta}{(\alpha \beta)^{\prime}}\right\}\left(\frac{\alpha^{\prime}}{\alpha}+\frac{\beta^{\prime}}{\beta}\right) \equiv \frac{f^{\prime}(g-f)}{f(f-1)} \tag{3.7}
\end{equation*}
$$

From (3.7) we see that a simple pole of f which is a non-zero regular point of $f-g$ is a regular point of $\left\{g-\frac{\alpha^{\prime} \beta}{(\alpha \beta)^{\prime}}\right\}\left(\frac{\alpha^{\prime}}{\alpha}+\frac{\beta^{\prime}}{\beta}\right)$. Hence it is either a pole of $\frac{\alpha^{\prime} \beta}{(\alpha \beta)^{\prime}}$ or a zero of $\frac{\alpha^{\prime}}{\alpha}+\frac{\beta^{\prime}}{\beta}$. Therefore by Lemma 2.7 and the first fundamental theorem we get

$$
\begin{aligned}
\mathrm{N}_{2}(\mathrm{r}) & \leq \mathrm{T}\left(\mathrm{r}, \frac{\alpha^{\prime}}{\alpha}+\frac{\beta^{\prime}}{\beta}\right)+\mathrm{T}\left(\mathrm{r}, \frac{\alpha^{\prime} \beta}{(\alpha \beta)^{\prime}}\right) \\
& \leq \mathrm{T}\left(\mathrm{r}, \frac{\alpha^{\prime}}{\alpha}+\frac{\beta^{\prime}}{\beta}\right)+\mathrm{T}\left(\mathrm{r}, \frac{1}{1+\frac{\alpha \beta^{\prime}}{\alpha^{\prime} \beta}}\right) \\
& \leq 2 \mathrm{~T}\left(\mathrm{r}, \frac{\alpha^{\prime}}{\alpha}\right)+2 \mathrm{~T}\left(\mathrm{r}, \frac{\beta^{\prime}}{\beta}\right)+\mathrm{O}(1) \\
& =\mathrm{S}(\mathrm{r})
\end{aligned}
$$

So from (3.6) we get

$$
\begin{equation*}
T(r, w)=N(r, a ; f \mid \leq 1)+N_{0}(r)+S(r) \tag{3.8}
\end{equation*}
$$

By (ii) of Lemma 2.5 we get from (3.8)

$$
\begin{equation*}
T(r, w)=T(r, f)+N_{0}(r)+S(r) \tag{3.9}
\end{equation*}
$$

Let

$$
\begin{aligned}
\tau_{1} & =\frac{a-1}{b-1}(\xi-b \delta), \\
\tau_{2} & =\frac{1}{2} \cdot \frac{a-1}{b-1}\left\{\xi^{\prime}+\xi^{2}-b\left(\delta^{\prime}+\delta^{2}\right)\right\} \\
\text { and } \quad \tau_{3} & =\frac{1}{6} \cdot \frac{a-1}{b-1}\left\{\xi^{\prime \prime}+3 \xi \xi^{\prime}+\xi^{3}-b\left(\delta^{\prime \prime}+3 \delta \delta^{\prime}+\delta^{3}\right)\right\},
\end{aligned}
$$

where $\xi=\frac{\alpha^{\prime}}{\alpha}$ and $\delta=\frac{\alpha^{\prime}}{\alpha}+\frac{\beta^{\prime}}{\beta}$. By Lemma 2.7 we see that $T(r, \xi)=S(r)$ and $T(r, \delta)=S(r)$.
If $\tau_{1} \equiv 0$, from (3.7) we get

$$
\begin{equation*}
(g-b) \delta \equiv \frac{f^{\prime}(g-f)}{f(f-1)} \tag{3.10}
\end{equation*}
$$

Since $E_{1)}(a ; f) \subset \bar{E}(b ; g)$, it follows from (3.10) that a simple zero of $f-a$, which is neither a zero nor a pole of δ, is a zero of $g-b$ and so is a zero of f^{\prime}. Hence $N(r, a ; f \mid \leq 1)=S(r)$, which contradicts (ii) of Lemma 2.5. Therefore $\tau_{1} \not \equiv 0$.

Let z_{0} be a simple zero of $f-a$ and $\tau_{1}\left(z_{0}\right) \neq 0$. Then $g\left(z_{0}\right)=b$ and so $\alpha\left(z_{0}\right)=\frac{a-1}{b-1}$ and $\beta\left(z_{0}\right)=\frac{b}{a}$. Expanding F around z_{0} in Taylor's series we get

$$
-F(z)=\tau_{1}\left(z_{0}\right)\left(z-z_{0}\right)+\tau_{2}\left(z_{0}\right)\left(z-z_{0}\right)^{2}+\tau_{3}\left(z_{0}\right)\left(z-z_{0}\right)^{3}+\mathrm{O}\left(\left(z-z_{0}\right)^{4}\right)
$$

Hence in some neighbourhood of z_{0} we obtain

$$
w(z)=\frac{1}{z-z_{0}}+\frac{\mathrm{B}\left(z_{0}\right)}{2}+\mathrm{C}\left(z_{0}\right)\left(z-z_{0}\right)+\mathrm{O}\left(\left(z-z_{0}\right)^{2}\right)
$$

where $B=\frac{2 \tau_{2}}{\tau_{1}}$ and $C=\frac{2 \tau_{3}}{\tau_{1}}-\left(\frac{\tau_{2}}{\tau_{1}}\right)^{2}$.
We put

$$
\begin{equation*}
H=w^{\prime}+w^{2}-B w-A \tag{3.11}
\end{equation*}
$$

where $A=3 C-\frac{B^{2}}{4}-B^{\prime}$.
Clearly $T(r, A)+T(r, B)+T(r, C)=S(r)$ and since $w=\frac{F^{\prime}}{F}$ and $F=(f-a) \frac{g-f}{f(g-1)}$, we get by Lemma 2.1 and (3.9) that $\mathrm{S}(\mathrm{r}, \mathrm{w})=\mathrm{S}(\mathrm{r})$.

Let $H \not \equiv 0$. Then it is easy to see that z_{0} is a zero of H. So

$$
\begin{align*}
N(r, a ; f \mid \leq 1) & \leq N(r, 0 ; H)+S(r) \\
& \leq T(r, H)+S(r) \\
& =N(r, H)+S(r) \tag{3.12}
\end{align*}
$$

From (ii) of Lemma 2.5 and (3.12) we get

$$
\begin{equation*}
T(r, f) \leq N(r, H)+S(r) \tag{3.13}
\end{equation*}
$$

Let z_{1} be a pole of F. Then z_{1} is a simple pole of w. So if z_{1} is not a pole of A and B, then z_{1} is at most a double pole of H. Hence by Lemma 2.6 we get

$$
\begin{equation*}
N(r, \infty ; H \mid F=\infty) \leq 2 \bar{N}(r, \infty ; F)+S(r)=S(r) \tag{3.14}
\end{equation*}
$$

where $N(r, \infty ; H \mid F=\infty)$ denotes the counting function of those poles of H which are also poles of F.

Let z_{2} be a multiple zero of F. Then z_{2} is a simple pole of w. So if z_{2} is not a pole of A and B , then z_{2} is a pole of H of multiplicity at most two. Hence by (3.5) we get

$$
\begin{equation*}
N(r, \infty ; H \mid F=0, \geq 2) \leq 2 \bar{N}(r, 0 ; F \mid \geq 2)+S(r)=S(r) \tag{3.15}
\end{equation*}
$$

where $N(r, \infty ; H \mid F=0, \geq 2)$ denotes the counting function of those poles of H which are multiple zeros of F.

Let z_{3} be a simple zero of F which is not a pole of A and B. Then in some neighbourhood of z_{3} we get $F(z)=\left(z-z_{3}\right) h(z)$, where h is analytic at z_{3} and $h\left(z_{3}\right) \neq 0$. Hence in some neightbourhood of z_{3} we obtain

$$
H(z)=\left(\frac{2 h^{\prime}}{h}-B\right) \frac{1}{z-z_{3}}+h_{1}
$$

where $h_{1}=\left(\frac{h^{\prime}}{h}\right)^{\prime}+\left(\frac{h^{\prime}}{h}\right)^{2}-\frac{B h^{\prime}}{h}-A$.
This shows that z_{3} is at most a simple pole of H. Since a simple zero of $f-a$ is a zero of H and $N(r, 0 ; F \mid f=t) \leq N(r, 0 ; f-g \mid \geq 2)$ for $t=0,1$ and $F=(f-a) \frac{g-f}{f(g-1)}$, we get from (3.14) and (3.15) in view of (ix) of Lemma 2.8

$$
\begin{align*}
N(r, H) & =N(r, \infty ; H \mid F=\infty)+N(r, \infty ; H \mid F=0)+S(r) \\
& \leq N(r, 0 ; F \mid \leq 1)-N(r, a ; f \mid \leq 1)+S(r) \\
& =N_{0}(r)+N_{2}(r)+S(r) \\
& =N_{0}(r)+S(r) \tag{3.16}
\end{align*}
$$

where $N(r, 0 ; F \mid f=t)$ denotes the counting function of those zeros of F which are zeros of $f-t$ and $N(r, \infty ; H \mid F=0)$ denotes the counting function of those poles of H which are zeros of F

From (3.13) and (3.16) we obtain $\mathrm{T}(\mathrm{r}, \mathrm{f}) \leq \mathrm{N}_{0}(\mathrm{r})+\mathrm{S}(\mathrm{r})$, which by (iv) of Lemma 2.8 and

Lemma 2.3 implies a contradiction. Therefore $\mathrm{H} \equiv 0$ and so

$$
\begin{array}{ll}
& w^{\prime}+w^{2}-B w-A \equiv 0 \\
\text { i.e., } & \frac{w^{\prime}}{w} \equiv \frac{A}{w}-w+B \\
\text { i.e., } & F^{\prime \prime} \equiv A F+B F^{\prime} .
\end{array}
$$

Since $F^{\prime}=a(\alpha \beta)^{\prime}-\alpha^{\prime}$ and $F^{\prime \prime}=a(\alpha \beta)^{\prime \prime}-\alpha^{\prime \prime}$, we get from above

$$
\begin{equation*}
K \alpha \beta+L \alpha \equiv A(f-a)(1-\alpha \beta) \tag{3.17}
\end{equation*}
$$

where $K=a\left\{\frac{(\alpha \beta)^{\prime \prime}}{\alpha \beta}-B \frac{(\alpha \beta)^{\prime}}{\alpha \beta}\right\}$ and $L=B \frac{\alpha^{\prime}}{\alpha}-\frac{\alpha^{\prime \prime}}{\alpha}$.
By Lemma 2.7 we see that $T(r, K)=S(r)$ and $T(r, L)=S(r)$. Since $\alpha \beta=\frac{g(f-1)}{f(g-1)}$ and $\alpha=\frac{f-1}{g-1}$, we get from (3.17)

$$
\begin{equation*}
K g+L f \equiv \frac{A(f-a)(g-f)}{(f-1)} \tag{3.18}
\end{equation*}
$$

Let z_{0} be a simple zero of $f-a$ which is not a pole of A. Since $E_{1)}(a ; f) \subset \bar{E}_{\infty}(b ; g)$, it follows from 3.18 that z_{0} is a zero of $b K+a L$. Hence

$$
N(r, a ; f \mid \leq 1) \leq N(r, 0 ; b K+a L)+N(r, \infty ; A) \equiv S(r)
$$

which contradicts (ii) of Lemma 2.5. This proves the theorem.

```
Received: April 2012. Accepted: September 2012.
```


References

[1] T. C. Alzahary and H.X.Yi, Weighted sharing three values and uniqueness of meromorphic functions, J. Math.Anal. Appl., Vol. 295 (2004), pp.247-257.
[2] G. Brosch, Eindeutigkeissätze für Meromorphe Funktionen (Thesis), Technical University of Aachen, (1989).
[3] G.G.Gundersen, Meromorphic functions that share three or four values, J.London Math. Soc.,Vol.20, No. 2 (1979),pp.457-466.
[4] Q.Han, S. Mori and K. Tohge, On results of H. Ueda and G. Brosch concerning the unicity of meromorphic functions, J. Math.Anal. Appl., 335 (2007), pp.915-934.
[5] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford (1964).
[6] I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math.J. 161 (2001),pp.193-206
[7] I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Var. Theory Appl., Vol. 46, No. 3 (2001), pp. 241-253.
[8] I. Lahiri, Characteristic functions of a meromorphic functions sharing three values with finite weights, Complex Var.Theory Appl.,50(1) (2005),pp.69-78.
[9] I. Lahiri, and A.Sarkar, On a uniqueness theorem of Tohge, Arch. Math. (Basel), 84 (2005),pp.461-469.
[10] I. Lahiri, Sharing three values with small weights, Hokkaido Math. J., Vol. 36 (2007),pp. 129-142.
[11] I. Lahiri, Weighted sharing of three values by meromorphic functions, Hokkaido Math. J., Vol. 37 (2008), No.1,pp.41-58.
[12] I. Lahiri, and P.Sahoo, On a result of G. Brosch, J. Math. Anal. Appl.,331(1) (2007),pp.532546.
[13] I. Lahiri, and R.Pal, On a result of G. Brosch and T. C. Alzahari, J. Math. Anal. Appl., Vol. 341, Issue 1 (2008), pp. 91-102.
[14] H. Ueda, Unicity theorems for meromorphic or entire functions, Kodai Math. J.,3 (1980),pp. 457-471.
[15] C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers (2003).
[16] H.X.Yi, Meromorphic functions with weighted sharing of three values, Complex Var. Theory Appl., Vol. 50 (2005), pp.923-934.

