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ABSTRACT

In the paper we prove a result on the uniqueness of meromorphic functions that is
related to a result of Q. Han, S. Mori and K. Tohge and is originated from a result of
H.Ueda and two subsequent results of G. Brosch.

RESUMEN

En este articulo probamos un resultado de unicidad de funciones meromorficas que se
relaciona a un resultado de Q. Han, S. Mori y K. Tohge, y se origina de un resultado
de H. Ueda y dos resultados derivados de G. Brosch.
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1 Introduction, Definitions and Results

Let f and g be two non-constant meromorphic functions defined in the open complex plane
C. For a € CU{oo} we say that f and g share the value a CM ( counting multiplicities ) if f,
g have the same a-points with the same multiplicities. If we do not take the multiplicities into
account then f, g are said to share the value a IM ( ignoring multiplicities ). For the standard
notations and definitions of the value distribution theory we refer to [5] and [15] . However we
require following notations.

Definition 1. Let k be a positive integer or infinity. For a € CU{oo} we denote by Ey(a;f) and
Ek)(a; f) the collection of those a-points of f whose multiplicities does not exceed k, with counting

multiplicities and with ignoring multiplicities respectively.

Definition 2. Let k be a positive integer and a € C U{oco}. Then by N(r, a;f| < k) we denote the
counting function of those a-points of f (counted with proper multiplicities) whose multiplicities
are not greater than k. By N(r, a;f| < k) we denote the corresponding reduced counting funcion.

In an analogous manner we define N(r, a;f| > k) and N(r, a;f| > k).
Also by N(r, a;f| = k) and N(r,a;f| = k) we denote respectively the counting function and

reduced counting function of those a-points of f whose multiplicities are exactly k.

In 1980 H.Ueda[I4]{see also p. 327 [15] }prove the following result.

Theorem A. [T]] Let f and g be nonconstant entire functions sharing 0,1 CM, and a(# 0,1, 00)
be a complex number. If E(a;f) C Eoo)(a;g), then f is a bilinear transformation of g.

Improving Theorem A in 1989 G.Brosch[2] proved the following result.

Theorem B. [2] Let f and g be two nonconstant meromorphic functions sharing 0,1,00 CM, and
a(#0,1,00) be a complex number. Iffoo)(a; f) C Ex,)(a; g), then f is a bilinear transformation of

g.

Following example shows that in Theorem B the condition ﬁoo)(a; f) C E,o)(a; g) cannot be
replaced by Eo,)(a;f) C Eo)(b;g) for b # a,0,1, 0.

Example 1. Let f=e?*+e*+1,g=e 2 +e *+1, a:% and b =3. Then f,g share 0,1, c0
CM and f—a = 3(2e*+1)2, g—b =e 2*(1+2¢*)(1 —€?). So Eo)(a;f) C By (b5g) but f is not
a bilinear transformation of g.

Considering the possibility a # b, G.Brosch[2] proved the following theorem.

Theorem C. [2] Let f and g be two nonconstant meromorphic functions sharing 0,1,00 CM, and
a,b be two complex numbers such that a,b & {0,1,00} . If Ex,)(a; f) = Eoo)(b;g), then f is a
bilinear transformation of g.
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In 2001 the idea of weighted sharing of values was introduced {cf.[6], [7]} which provides a
scaling between IM sharing and CM sharing of values. We now explain this notion in the following
definition.

Definition 3. [71] Let k be a nonnegative integer or infinity. For a € C U {oo} we denote by
Ex(a,f) the set of all a-points of f, where an a-point with multiplicity m is counted m times if
m < k and k+ 1 times if m > k. If Ex(a,f) = Ex(a,g), we say that f,g share the value a with
weight k.

The definition means that zg is a zero of f — a with multiplicity m(< k) if and only if zg is a
zero of g with multiplicity m(< k) and z¢ is a zero of f — a with multiplicity m(> k) if and only
if zy is a zero of g with multiplicity n(> k), where m is not necessarily equal to n.

We write f, g share (a, k) to mean that f, g share the value a with weight k. Clearly if f, g
share (a,k) then f, g share (a,p) for all integers p, 0 < p < k. Also we note that f, g share a
value a IM or CM if and only if f, g share (a,0) or (a, co0) respectively.

In 2004 using the idea of weighted value sharing T.C. Alzahari and H.X.Yi [I] improved
Theorem C in the following manner .

Theorem D. [1] Let f, g be two nonconstant meromorphic functions sharing (ai, 1), (az,0),
(az,00), where {aj,az,a3} = {0,1,00}, and let a, b be two finite complex numbers such that
a,b £{0,1} . If Eoo)(a; f) = Eoo)(b; g), then f is a bilinear transformation of g. Moreover f and g

satisfy exactly one of the following relations:

(i) f=g;
(ii) fg=1;
(iii) bf = ag;
(iv) f+g=1;
(v) f=ag;
(vi) f=(1—a)g+a;
(vii) (1=b)f=(1—a)g+ (a—b);
(viii) (1—a+ g)f = ag;

(iz) f{(b—a)g+ (a—T1)b}=a(b—1)g;
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(x) flg—1)=g;

The cases (i) and (v) may occur if ab =1, cases (w) and (viii) may occur if a+b =1, cases
(vi) and (x) may occur if ab =a+Db.

Improving Theorem D recently I.Lahiri and P.Sahoo [12] proved the following theorem.

Theorem E. [12] Let f, g be two distinct nonconstant meromorphic functions sharing (ai, 1),
(az,m), (a3, k), where {a1,az,a3} ={0,1,00} and (m — 1)(mk — 1) > (1 +m)2.If for two values
a,b & {0,1,00} the functions f —a and g — b share (0,0) then f, g share (0,00), (1,00), (00, 00)
and f —a, g—b share (0,00). Also there exists a non-constant entire function A such that f and

g are one of the following forms:

(i) f = ae® and g = be >, where ab =1;
(i) f=1+ae’ and g=1+ (1 —$)e™?, where ab=a+b;

(ZZZ) f:#‘e* andg:$, wheTG a+b:]

A

(iv) f=5%=F and g = be‘i)\:ﬂ , where ab =1;

_ ber—a _ bet—a .
(v) f= g5 and g = 25—, where a # b;

(vi) f= 3" and g = ;;%A], where ab = a4 b;

.. _ b— A
(vii) f= m and g = (a(—Tal)fe")’ where a # b;

(viii) f=a+e* and g =b(1+ 52), where a+b =1;

er

(iz) f= e — aEIb:b” and g = bEla:b”ﬂ — (%(j’;)]e))\ }, where a # b;
.Han, S.Mori and K.Tohge urther improve eorem C, Theorem D, Theorem E an
Han, S.Mori and K.Tohge [4] further i d Th C, Th D, Th E and
proved the following.

Theorem F. [J] Let f and g be two distinct nonconstant meromorphic functions sharing (ai, k1),
(az,kz2) and (asz, k3) for three distinct values aq, a2, az € CU{oo}, where k1koks > k1 +ko+ksz+2.
Furthermore iffk) (ag;f) = Ek) (as; g) for values aq, as in CU{co\{a1, az, az} and for some positive
integer k(> 2), then f is a bilinear transformation of g.
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3
Example [l with a =b = 1 shows that the conclusion of Theorem F does not hold for k = 1.
This suggests that some further investigation is necessary for the case k = 1. In the paper we take
up this problem and prove the following result.

Theorem 1.1. Let f, g be two distinct nonconstant meromorphic functions sharing (ar,k1),
(az,kz2), (a3, k3) where ay,az,as € CU{oo} are distinct and kikaks > k1 + ko + k3 + 2. Further
let E1)(a;f) C Eoo)(b;g) for two complex numbers a,b ¢ {ai1, az,asz} and Eq)(0;f") C Eo)(0;9").
Then f is a bilinear transformation of g.

1If, in particular, {a1, az, az} = {0, 1, 0o}, then there exists a non-constant entire function A such

that f and g assume exactly one of the following forms:
(i) f = ae® and g = be > where ab = 1;
(ii) f=1+aer andg=1+(1— %)6*7‘ where ab = a + b;

(iii) f= e andg:% where a+b =1:

(iv) = Zi:? and g = Laa where Eq)(a;f) = §;

ae™ —

_ ber—a __ bet—a .
(v) =5 and g = Jox—g where a #b;

a

. A —
(vi) f =" and g = % where Eoo)(a; f) = &;

.. _ b— A
(vii) = 7(]971}’)““72“ and g = 7“1(71)((11):2“ where a # b;
(viii) f=a+e" and g=(1—a)(1+ &) where E(a;f) = ¢;

(iz) = — 2 4pg g = bla

(‘;(_b;)]el} where a #£b;

Considering Example [l we see that the condition Ej)(0;f') C E,,)(0,g’) is essential for
Theorem [T1]

2 Lemmas

In the section we present some necessary lemmas.

Lemma 2.1. [3] Let f and g share (0,0), (1,0), (00,0). Then T(r,f) < 3T(r,g)+S(r,f) and T(r, g) <
3T(r,f) + S(r, f).

From this we conclude that S(r,f) = S(r, g). Henceforth we denote either of them by S(r).
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Lemma 2.2. [16] Let f and g share (0,k1), (1,k2), (00, k3) and f £ g, where kikaks > ky + ka2 +
k3 +2.Then
N(r,0;f [>2) + N(r, 1;f [> 2) + N(r, 00; f [> 2) = S(r).

Following can be proved in the line of Theorem 3.2 of [I1].

Lemma 2.3. Let f and g be two distinct nonconstant meromorphic functions sharing (0,k1), (1,k2),
(00, k3), where kikaks > k1 +ka2+ks+2. If No(r) +Nq(r) > AT(r,f) +S(r) for some A > %, then
fis a bilinear transformation of g and

No(r) + Ny (v) =T(r,f) + S(r) = T(r,g) + S(v),

where No(1)(N1(r)) denotes the counting function of those simple(multiple) zeros of T — g which
are not the zeros of f(f —1) and %

Lemma 2.4. [13] Let f and g be two distinct noncostant meromorphic functions sharing (0,0),

(1,0), (00,0). Further suppose that fis a bilinear transformation of g and Eq)(a;f) C Eoo) (b; g),where
a,b €{0,1,00}. Then there exists a nonconstant entire function A such that f and g assume exactly

one of the forms given in TheorenlI 1l

Following can be proved in the line of Lemma 2.4 [13].

Lemma 2.5. Let f and g share (0,kq), (1,k2), (00, k3) and f Z g, where k1kaks > ky+ka+k3+2.
If f is not a bilinear transformation of g, then for a complex number a & {0,1,00} each of the

following holds:
(i) N(r,a;f[>3)+N(r,a;9 1> 3) =S(r);
(i) T(r,f) =N(r,a;f < 2) + S(r);

(ZZZ) T(T‘, 9) = N(T‘, ag < 2) + S(T)

In the line of Lemma 5 [9] we can prove the following.
Lemma 2.6. Let f, g share (0,k1),(1,k2), (00, k3) and f # g, where k1kaoks > k1 + ka2 + k3 + 2.
If x = ;;j] and B = £, then N(r, ;&) = S(r) and N(r, ;) = S(r) for a =0, cc.

Following is an analogue of Lemma 2.6 [13].

Lemma 2.7. Let f and g be two distinct meromorphic functions sharing (0,k1), (1,k2), (00, k3),
where kikaks > ki +ka + ks + 2. Then T(r, &
and o, B are defined as in Lemma[2.0.

)+ T(r, B;:) ) = S(r), where p is a positive integer
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Using the techniques of [§] and [I0] we can prove the following.

Lemma 2.8. Let f, g share (0,kq1), (1,k2), (00,k3) and f # g, where k1kaoks > k1 + k2 + k3 + 2.
If f is not a bilinear transformation of g, then each of the following holds :

(i) T(r,f) +T(r,g) =N(r,0;f [< 1) + N(r, ;£ |< 1) + N(r, 00, f [< 1) + No(r) + S(),
(i) T(ryf) =N(r,0;g" |< 1) + No(r) + S(1),
(ii) T(r,g) = N(r,0;f" [< 1) 4+ No(r) + S(v),
(iv) Ni(r) = S(r),
(v) No(r,0;9" [> 2) = S(r),
(vi) No(r,0;f" [>2) = S(r),
(vii) N(r,0;9" [> 2) = S(r),
(viii) N(r,0;f" [>2) = S(r),
(iz) N(r,0;f — g > 2) = S(r),
(z) N(r,0;f — g | f =00) = S(r),

where No(r,0;9" [> 2)(No(r,0; 1 |> 2)) is the counting function of those multiple zeros of g’ (f’)
which are not the zeros of f(f—1) and N(r,0;f— g | f = 00) is the counting function of those zeros

of f — g which are poles of f.

3 Proof of Theorem [1.1]

Proof. If necessary considering a bilinear transformation we may choose {aq, az, az} = {0, 1, co}.
We now consider the following cases

CASE 1. Let a = b. If possible, we suppose that f is not a blinear transformation of g. We

put

f'(f—a) g'(g—a)

ff=1)  glg—1)"

Let @ # 0. Since ® = a% + (11— a)%, by Lemma 2.7 we get T(r,®) = S(r). Since Eq)(a;f) C

Ew(a;g) and Eqy(0;f') C Eoo)(o;g’), it follows that

O =

N(T) a, f ‘S 2) < ZN(T, O) q)) = S(T))
which contradicts (ii) of Lemma 235 Therefore ® = 0 and so

f'(f—a) g'(g—a)
f(f—1)  glg—1) (3.1)
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If zo is a double zero of g — a, then from (B we see that zo is a common zero of f’ and

g’ .Hence z; is a zero of % = ff_,] — g_,] . So by (i) of Lemma 28] and Lemma 277 we get
“/
Ninagl22) = 2N(0 ) +50)
= S(r). (3.2)

Again if z1 is a zero of g’ which is not a zero of g(g—1)(g—a), then from [B.I]) and the hypotheses
of the theorem it follows that z; is a zero of ' and so of "‘7/ Hence from Lemma 2.2] Lemma 2.7]

and [B32)) we get

/

N(T,0,g"|<1) < N(r,a;gIZ2)—&—W(r,();f\22)+W(r,1;f\22)+N(r,0;%)
— s(r. (3.3)

Now from (ii) and (iv) of Lemma 2§ and (33]) we obtain
No(r) + N (r) = T(r, f) + S(r),

which is impossible by Lemma[2.3] Therefore f is a bilinear transformation of g and so by Lemma
24 f and g take one of the forms (i)-(iv),(vi) and (viii).

CASE 2. Let a #b. If f is a bilinear transformation of g, then by Lemma [2.4] f and g assume one
of the forms (i) — (ix). So we suppose that f is not a bilinear transformation of g. Following two

subcases come up for consideration.

Subcase (i) Let N(r, a;f |> 2) # S(r).

We put ¥ = ff/((ff:h) — gg/((g::j)). Since a double zero of f— a is a zero of f/ and so a zero of g’,

if W £ 0, then we get by Lemma [Z5]i) and Lemma [2.7]
N(r,a;f [>2) < 2N(r,0;¥) + S(r) = S(r)

which is a contradiction. Hence ¥ = 0 and so

f'(f—b) g’(g—b)
f(f—=1)  glg—1)"

This shows that f — a has no simple zero because E;)(a;f) C Eoo) (b; g).

o f—1
zero of % So by Lemma 2.7 we get N(r, a;f |=2) < 2N(r,0; %/) = S(r), which contradicts (ii) of
Lemma

Since & = £ — 5%. and Eq)(0;f’) C Eoy(0;g), it follows that a double zero of f — a is a

Subcase (ii) Let N(r,a;f[> 2) = S(r). Since f is not a bilinear transformation of g, we see that

1— 1—
o, f and «f3 are non-constant. Also we note that f = T and g = ( «)B

1T—ap T—ap '
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F/ —f
We put F = (f—a)(1—ap) = axp—a+1—aand w = T Also we note that F = (f_a)f(ziﬂ'
Since by Lemma 2.6 N(r, 00; F) = S(r) and w has only simple poles (if there is any), we get

T(r,w) = m(r,w) + N(r,w) = N(r,0; F) + S(r). (3.4)
Now by Lemma 22 and (ix), (x) of Lemma 2.8 we obtain
N OF[>2) < N(r,a;f[>2) +N(r,0;f — g [>2) + N(r, 00, f > 2)

+N(r,0;f —g | f=o00)
= S(r). (3.5)

Hence from (B4]) and (B3] we get

T(r,w) = N(r0GF[<1)+S5(r)
= N(r,a;f[< 1)+ No(r) + Na(r) + S(r), (3.6)
where N3 (1) is the counting function of those simple poles of f which are non-zero regular points
of f—g.

From the definitions of « and 3 we get
CWB O\ [« B\ _flg—1
o) (54 %) = Tew 37

From (B7) we see that a simple pole of f which is a non-zero regular point of f — g is a

!/ !/ / / !/ !/
regular point of {g — (zﬁﬁ)’ } <% + %) . Hence it is either a pole of x or a zero of x + B_

(o)’ x B
Therefore by Lemma 2.7 and the first fundamental theorem we get

(x/ B/ (XIB

Na(r) < T(r,;—&-ﬁ)—kT(r, (ocﬁ)’)
o’ B’ 1

T(r,;+ﬁ)+T<r,71+zﬁé>

(r, ﬁ/ + 2T (r,ﬁ—l) +0(1)
o B

A

IN

Il A
w N
E —

So from (3.6) we get
T(ry,w) =N(r,q;f[< 1) + No(r) + S(r). (3.8)

By (ii) of Lemma [Z5l we get from (B.8])

T(r,w) =T(r,f) + No(r) + S(r). (3.9)



58 Indragit Lahiri & Nintu Mandal SII‘I(ZBOI?)

Let
o o= S lEowy)
1 - b—1 )
_ 1 a-1 ’ 2 1 2
T2 = 5 b_]{E +E2—Db(d'+6%))
and T3 = %-%{a”+aa&’+a3—b(é”+355’+53)},
“/ (x/ B/
where & = % and 6 = ™ + E By Lemma 2.7 we see that T(r, &) = S(r) and T(r,d) = S(r).
If 11 =0, from B.1) we get
_ flg—1)

Since Eq(a;f) C E(b;g), it follows from (BI0) that a simple zero of f — a, which is neither a
zero nor a pole of 8, is a zero of g — b and so is a zero of f’. Hence N(r,a;f [< 1) = S(r), which
contradicts (ii) of Lemma 2.5 Therefore Ty # 0.

—1
Let zp be a simple zero of f — a and T1(z9) # 0. Then g(zp) = b and so a(zp) = 3_1 and
B(zo) = %. Expanding F around zo in Taylor’s series we get
—F(z) = T1(20)(z — 20) + T2(20) (2 — 20)* + T3(20) (z — 20)* + O((z — z0)*).
Hence in some neighbourhood of zy we obtain
1 B(z
w(z) = —— + 22 zg)(z— 20) + O((z — 20)%),
zZ—2Zp 2
2
WhereBzzﬂandszﬁ—<E> .
T T T
We put
H=w'4+w?—Bw—A, (3.11)
BZ
where A = 3C — T —B’.
F/ —
Clearly T(r,A) + T(r,B) + T(r,C) = S(r) and since w = =3 and F = (f — a)f(% 7y we get

by Lemma 2T and B.9) that S(r,w) = S(r).
Let H #£ 0. Then it is easy to see that zg is a zero of H. So
N(r,aq;f|[<1) < N(r,0;H) + S(r)
T(r,H) + S(r)
N(r,H) + S(r). (3.12)

IN
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From (ii) of Lemma [Z5 and B.12) we get

T(r,f) < N(r,H) + S(r). (3.13)

Let z1 be a pole of F. Then z; is a simple pole of w. So if z; is not a pole of A and B, then
z1 is at most a double pole of H. Hence by Lemma 2.6l we get

N(r,00;H | F = 00) < 2N(r, 00; F) + S(r) = S(1), (3.14)

where N(r,00;H | F = 0o0) denotes the counting function of those poles of H which are also poles
of F.

Let z; be a multiple zero of F. Then z; is a simple pole of w. So if z; is not a pole of A and
B, then z; is a pole of H of multiplicity at most two. Hence by [B.H) we get

N(ry00;H | F=0,>2) < 2N(r,0;F [> 2) + S(r) = S(r), (3.15)

where N(r,00;H | F =0, > 2) denotes the counting function of those poles of H which are multiple
zeros of F.

Let z3 be a simple zero of F which is not a pole of A and B. Then in some neighbourhood of z3
we get F(z) = (z—z3)h(z), where h is analytic at z3 and h(z3) # 0. Hence in some neightbourhood

H(z):(z—h/—B> ] -+ hy,

h z—2z3
h\’' [(h’\? BH
where hy = <—) + <—> — —A.

of z3 we obtain

h h h
This shows that z3 is at most a simple pole of H. Since a simple zero of f — a is a zero of H
—f
and N(1,0;F | f=1) < N(r,0;f —g|>2) for t =0,1 and F = (f — a)h, we get from (BI4)
and (3I0) in view of (ix) of Lemma

N(r,H) N(r,o00;H | F =00) + N(r,00;H | F=0) 4+ S(r)
N(r,0;F [< 1) = N(r, q;f [< 1) 4 S(r)
No(r) + N2 () + S(r)

= No(r) + S(r), (3.16)

IN I

where N(r,0;F | f = t) denotes the counting function of those zeros of F which are zeros of f —t
and N(r,00;H | F = 0) denotes the counting function of those poles of H which are zeros of F

From (I3) and @BI6) we obtain T(r,f) < No(r) + S(r), which by (iv) of Lemma and
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Lemma 2.3 implies a contradiction. Therefore H = 0 and so

ie., F’"=AF+BF.

Since F/ = a(af)’ — o’ and F’ = a(«f)” — ', we get from above

Kap + Lo = A(f —a)(1 — «f), (3.17)
where K = a{(OCB)” — B((xﬁ)/} and L = Bg — 0(_”
of o o 108

f—1
By Lemma 2.7 we see that T(r,K) = S(r) and T(r,L) = S(r). Since «fp = 9l ) and
f—1

o =1 , we get from (BI7)

Alf —a)(g —f)

K Lf=
9+ (=)

(3.18)

Let zg be a simple zero of f —a which is not a pole of A. Since Eq)(a;f) C Eoo) (b; g), it follows
from [B.I8 that z¢ is a zero of bK + al. Hence

N(r,q;f|<1) < N(r,0;bK+ al) + N(r, 00; A) = S(1),

which contradicts (ii) of Lemma 2.5 This proves the theorem. O
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