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ABSTRACT

In the paper we prove a result on the uniqueness of meromorphic functions that is

related to a result of Q. Han, S. Mori and K. Tohge and is originated from a result of

H.Ueda and two subsequent results of G. Brosch.

RESUMEN

En este art́ıculo probamos un resultado de unicidad de funciones meromórficas que se

relaciona a un resultado de Q. Han, S. Mori y K. Tohge, y se origina de un resultado

de H. Ueda y dos resultados derivados de G. Brosch.
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1 Introduction, Definitions and Results

Let f and g be two non-constant meromorphic functions defined in the open complex plane

C. For a ∈ C ∪ {∞} we say that f and g share the value a CM ( counting multiplicities ) if f,

g have the same a-points with the same multiplicities. If we do not take the multiplicities into

account then f, g are said to share the value a IM ( ignoring multiplicities ). For the standard

notations and definitions of the value distribution theory we refer to [5] and [15] . However we

require following notations.

Definition 1. Let k be a positive integer or infinity. For a ∈ C ∪ {∞} we denote by Ek)(a; f) and

Ek)(a; f) the collection of those a-points of f whose multiplicities does not exceed k, with counting

multiplicities and with ignoring multiplicities respectively.

Definition 2. Let k be a positive integer and a ∈ C ∪ {∞}. Then by N(r, a; f| ≤ k) we denote the

counting function of those a-points of f (counted with proper multiplicities) whose multiplicities

are not greater than k. By N(r, a; f| ≤ k) we denote the corresponding reduced counting funcion.

In an analogous manner we define N(r, a; f| ≥ k) and N(r, a; f| ≥ k).

Also by N(r, a; f| = k) and N(r, a; f| = k) we denote respectively the counting function and

reduced counting function of those a-points of f whose multiplicities are exactly k.

In 1980 H.Ueda[14]{see also p. 327 [15]}prove the following result.

Theorem A. [14] Let f and g be nonconstant entire functions sharing 0, 1 CM, and a(6= 0, 1,∞)

be a complex number. If E
∞)(a; f) ⊂ E

∞)(a;g), then f is a bilinear transformation of g.

Improving Theorem A in 1989 G.Brosch[2] proved the following result.

Theorem B. [2] Let f and g be two nonconstant meromorphic functions sharing 0, 1,∞ CM, and

a(6= 0, 1,∞) be a complex number. If E
∞)(a; f) ⊂ E

∞)(a;g), then f is a bilinear transformation of

g.

Following example shows that in Theorem B the condition E
∞)(a; f) ⊂ E

∞)(a;g) cannot be

replaced by E
∞)(a; f) ⊂ E

∞)(b;g) for b 6= a, 0, 1,∞.

Example 1. Let f = e2z + ez + 1, g = e−2z + e−z + 1, a = 3
4
and b = 3. Then f, g share 0, 1,∞

CM and f− a = 1
4
(2ez + 1)2, g− b = e−2z(1+ 2ez)(1− ez). So Ē

∞)(a; f) ⊂ Ē
∞)(b;g) but f is not

a bilinear transformation of g.

Considering the possibility a 6= b, G.Brosch[2] proved the following theorem.

Theorem C. [2] Let f and g be two nonconstant meromorphic functions sharing 0, 1,∞ CM, and

a, b be two complex numbers such that a, b 6∈ {0, 1,∞} . If E
∞)(a; f) = E

∞)(b;g), then f is a

bilinear transformation of g.
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In 2001 the idea of weighted sharing of values was introduced {cf.[6], [7]} which provides a

scaling between IM sharing and CM sharing of values. We now explain this notion in the following

definition.

Definition 3. [11] Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞} we denote by

Ek(a, f) the set of all a-points of f, where an a-point with multiplicity m is counted m times if

m ≤ k and k + 1 times if m > k. If Ek(a, f) = Ek(a, g), we say that f, g share the value a with

weight k.

The definition means that z0 is a zero of f− a with multiplicity m(≤ k) if and only if z0 is a

zero of g with multiplicity m(≤ k) and z0 is a zero of f − a with multiplicity m(> k) if and only

if z0 is a zero of g with multiplicity n(> k), where m is not necessarily equal to n.

We write f, g share (a, k) to mean that f, g share the value a with weight k. Clearly if f, g

share (a, k) then f, g share (a, p) for all integers p, 0 ≤ p < k. Also we note that f, g share a

value a IM or CM if and only if f, g share (a, 0) or (a,∞) respectively.

In 2004 using the idea of weighted value sharing T.C. Alzahari and H.X.Yi [1] improved

Theorem C in the following manner .

Theorem D. [1] Let f, g be two nonconstant meromorphic functions sharing (a1, 1), (a2,∞),

(a3,∞), where {a1, a2, a3} = {0, 1,∞}, and let a, b be two finite complex numbers such that

a, b 6∈ {0, 1} . If Ē
∞)(a; f) = Ē

∞)(b;g), then f is a bilinear transformation of g. Moreover f and g

satisfy exactly one of the following relations:

(i) f ≡ g;

(ii) fg ≡ 1;

(iii) bf ≡ ag;

(iv) f+ g ≡ 1;

(v) f ≡ ag;

(vi) f ≡ (1 − a)g+ a;

(vii) (1− b)f ≡ (1− a)g + (a− b);

(viii) (1− a+ g)f ≡ ag;

(ix) f{(b− a)g + (a− 1)b} ≡ a(b− 1)g;
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(x) f(g − 1) ≡ g;

The cases (ii) and (v) may occur if ab = 1, cases (iv) and (viii) may occur if a+b = 1, cases

(vi) and (x) may occur if ab = a+ b.

Improving Theorem D recently I.Lahiri and P.Sahoo [12] proved the following theorem.

Theorem E. [12] Let f, g be two distinct nonconstant meromorphic functions sharing (a1, 1),

(a2,m), (a3, k), where {a1, a2, a3} = {0, 1,∞} and (m − 1)(mk − 1) > (1 +m)2.If for two values

a, b 6∈ {0, 1,∞} the functions f − a and g − b share (0, 0) then f, g share (0,∞), (1,∞), (∞,∞)

and f − a, g − b share (0,∞). Also there exists a non-constant entire function λ such that f and

g are one of the following forms:

(i) f = aeλ and g = be−λ, where ab = 1;

(ii) f = 1+ aeλ and g = 1+ (1 − 1
b
)e−λ, where ab = a+ b;

(iii) f = a
a+eλ and g = eλ

1−b+eλ , where a+ b = 1:

(iv) f = eλ−a
eλ−1

and g = beλ−1
eλ−1

, where ab = 1;

(v) f = beλ−a
beλ−b

and g = beλ−a
aeλ−a

, where a 6= b;

(vi) f = a
1−eλ and g = beλ

eλ−1
, where ab = a+ b;

(vii) f = b−a
(b−1)(1−eλ)

and g =
(b−a)eλ

(a−1)(1−eλ)
, where a 6= b;

(viii) f = a+ eλ and g = b(1+ 1−b
eλ ), where a+ b = 1;

(ix) f = eλ −
a(b−1)

a−b
and g =

b(a−1)

a−b
{1−

a(b−1)

(b−a)eλ }, where a 6= b;

Q.Han, S.Mori and K.Tohge [4] further improved Theorem C, Theorem D, Theorem E and

proved the following.

Theorem F. [4] Let f and g be two distinct nonconstant meromorphic functions sharing (a1, k1),

(a2, k2) and (a3, k3) for three distinct values a1, a2, a3 ∈ C∪{∞}, where k1k2k3 > k1+k2+k3+2.

Furthermore if Ek)(a4; f) = Ek)(a5;g) for values a4, a5 in C∪{∞}\{a1, a2, a3} and for some positive

integer k(≥ 2), then f is a bilinear transformation of g.
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Example 1 with a = b =
3

4
shows that the conclusion of Theorem F does not hold for k = 1.

This suggests that some further investigation is necessary for the case k = 1. In the paper we take

up this problem and prove the following result.

Theorem 1.1. Let f, g be two distinct nonconstant meromorphic functions sharing (a1, k1),

(a2, k2), (a3, k3) where a1, a2, a3 ∈ C ∪ {∞} are distinct and k1k2k3 > k1 + k2 + k3 + 2. Further

let E1)(a; f) ⊂ E
∞)(b;g) for two complex numbers a, b 6∈ {a1, a2, a3} and E1)(0; f

′) ⊂ E
∞)(0;g

′).

Then f is a bilinear transformation of g.

If, in particular, {a1, a2, a3} = {0, 1,∞},then there exists a non-constant entire function λ such

that f and g assume exactly one of the following forms:

(i) f = aeλ and g = be−λ where ab = 1;

(ii) f = 1+ aeλ and g = 1+ (1 − 1
b
)e−λ where ab = a+ b;

(iii) f = a
a+eλ and g = eλ

1−b+eλ where a+ b = 1:

(iv) f = eλ−a
eλ−1

and g = eλ−a
aeλ−a

where E
∞)(a; f) = φ;

(v) f = beλ−a
beλ−b

and g = beλ−a
aeλ−a

where a 6= b;

(vi) f = a
1−eλ and g = aeλ

(1−a)(1−eλ)
where E

∞)(a; f) = φ;

(vii) f = b−a
(b−1)(1−eλ)

and g =
(b−a)eλ

(a−1)(1−eλ)
where a 6= b;

(viii) f = a+ eλ and g = (1− a)(1+ a
eλ ) where E(a; f) = φ;

(ix) f = eλ −
a(b−1)

a−b
and g =

b(a−1)

a−b
{1−

a(b−1)

(b−a)eλ } where a 6= b;

Considering Example 1 we see that the condition E1)(0; f
′) ⊂ E

∞)(0, g
′) is essential for

Theorem 1.1.

2 Lemmas

In the section we present some necessary lemmas.

Lemma 2.1. [3] Let f and g share (0, 0), (1, 0), (∞, 0).Then T(r, f) ≤ 3T(r, g)+S(r, f) and T(r, g) ≤

3T(r, f) + S(r, f).

From this we conclude that S(r, f) = S(r, g). Henceforth we denote either of them by S(r).
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Lemma 2.2. [16] Let f and g share (0, k1), (1, k2), (∞, k3) and f 6≡ g, where k1k2k3 > k1 + k2 +

k3 + 2.Then

N(r, 0; f |≥ 2) +N(r, 1; f |≥ 2) +N(r,∞; f |≥ 2) = S(r).

Following can be proved in the line of Theorem 3.2 of [11].

Lemma 2.3. Let f and g be two distinct nonconstant meromorphic functions sharing (0, k1), (1, k2),

(∞, k3), where k1k2k3 > k1+k2+k3+ 2. If N0(r)+N1(r) ≥ λT(r, f)+S(r) for some λ > 1
2
, then

f is a bilinear transformation of g and

N0(r) +N1(r) = T(r, f) + S(r) = T(r, g) + S(r),

where N0(r)(N1(r)) denotes the counting function of those simple(multiple) zeros of f − g which

are not the zeros of f(f − 1) and 1
f
.

Lemma 2.4. [13] Let f and g be two distinct noncostant meromorphic functions sharing (0, 0),

(1, 0), (∞, 0). Further suppose that f is a bilinear transformation of g and E1)(a; f) ⊂ E
∞)(b;g),where

a, b 6∈ {0, 1,∞}. Then there exists a nonconstant entire function λ such that f and g assume exactly

one of the forms given in Theorem1.1.

Following can be proved in the line of Lemma 2.4 [13].

Lemma 2.5. Let f and g share (0, k1), (1, k2), (∞, k3) and f 6≡ g, where k1k2k3 > k1+k2+k3+2.

If f is not a bilinear transformation of g, then for a complex number a 6∈ {0, 1,∞} each of the

following holds:

(i) N(r, a; f |≥ 3) +N(r, a;g |≥ 3) = S(r);

(ii) T(r, f) = N(r, a; f ≤ 2) + S(r);

(iii) T(r, g) = N(r, a;g ≤ 2) + S(r).

In the line of Lemma 5 [9] we can prove the following.

Lemma 2.6. Let f, g share (0, k1), (1, k2), (∞, k3) and f 6≡ g, where k1k2k3 > k1 + k2 + k3 + 2.

If α = f−1
g−1

and β = g
f
, then N(r, a;α) = S(r) and N(r, a;β) = S(r) for a = 0,∞.

Following is an analogue of Lemma 2.6 [13].

Lemma 2.7. Let f and g be two distinct meromorphic functions sharing (0, k1), (1, k2), (∞, k3),

where k1k2k3 > k1 + k2 + k3 + 2.Then T(r, α(p)

α
) + T(r, β(p)

β
) = S(r), where p is a positive integer

and α,β are defined as in Lemma 2.6.
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Using the techniques of [8] and [10] we can prove the following.

Lemma 2.8. Let f, g share (0, k1), (1, k2), (∞, k3) and f 6≡ g, where k1k2k3 > k1 + k2 + k3 + 2.

If f is not a bilinear transformation of g, then each of the following holds :

(i) T(r, f) + T(r, g) = N(r, 0; f |≤ 1) +N(r, 1; f |≤ 1) +N(r,∞; f |≤ 1) +N0(r) + S(r),

(ii) T(r, f) = N(r, 0;g ′ |≤ 1) +N0(r) + S(r),

(iii) T(r, g) = N(r, 0; f ′ |≤ 1) +N0(r) + S(r),

(iv) N1(r) = S(r),

(v) N0(r, 0;g
′ |≥ 2) = S(r),

(vi) N0(r, 0; f
′ |≥ 2) = S(r),

(vii) N(r, 0;g ′ |≥ 2) = S(r),

(viii) N(r, 0; f ′ |≥ 2) = S(r),

(ix) N(r, 0; f− g |≥ 2) = S(r),

(x) N(r, 0; f− g | f = ∞) = S(r),

where N0(r, 0;g
′ |≥ 2)(N0(r, 0; f

′ |≥ 2)) is the counting function of those multiple zeros of g ′(f ′)

which are not the zeros of f(f− 1) and N(r, 0; f− g | f = ∞) is the counting function of those zeros

of f− g which are poles of f.

3 Proof of Theorem 1.1

Proof. If necessary considering a bilinear transformation we may choose {a1, a2, a3} = {0, 1,∞}.

We now consider the following cases

CASE 1. Let a = b. If possible, we suppose that f is not a blinear transformation of g. We

put

Φ =
f ′(f− a)

f(f− 1)
−

g ′(g − a)

g(g − 1)
.

Let Φ 6≡ 0. Since Φ = aβ ′

β
+ (1 − a)α

′

α
, by Lemma 2.7 we get T(r,Φ) = S(r). Since E1)(a; f) ⊂

E
∞)(a;g) and E1)(0; f

′) ⊂ E
∞)(0;g

′), it follows that

N(r, a; f |≤ 2) ≤ 2N(r, 0;Φ) = S(r),

which contradicts (ii) of Lemma 2.5. Therefore Φ ≡ 0 and so

f ′(f− a)

f(f− 1)
=

g ′(g − a)

g(g − 1)
(3.1)
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If z0 is a double zero of g − a, then from (3.1) we see that z0 is a common zero of f ′ and

g ′.Hence z0 is a zero of α ′

α
= f ′

f−1
− g ′

g−1
. So by (i) of Lemma 2.5 and Lemma 2.7 we get

N(r, a;g |≥ 2) = 2N(r, 0;
α ′

α
) + S(r)

= S(r). (3.2)

Again if z1 is a zero of g ′ which is not a zero of g(g−1)(g−a), then from (3.1) and the hypotheses

of the theorem it follows that z1 is a zero of f ′ and so of α ′

α
. Hence from Lemma 2.2, Lemma 2.7

and (3.2) we get

N(r, 0;g ′ |≤ 1) ≤ N(r, a;g |≥ 2) +N(r, 0; f |≥ 2) +N(r, 1; f |≥ 2) +N(r, 0;
α ′

α
)

= S(r). (3.3)

Now from (ii) and (iv) of Lemma 2.8 and (3.3) we obtain

N0(r) +N1(r) = T(r, f) + S(r),

which is impossible by Lemma 2.3. Therefore f is a bilinear transformation of g and so by Lemma

2.4 f and g take one of the forms (i)-(iv),(vi) and (viii).

CASE 2. Let a 6= b. If f is a bilinear transformation of g, then by Lemma 2.4 f and g assume one

of the forms (i) − (ix). So we suppose that f is not a bilinear transformation of g. Following two

subcases come up for consideration.

Subcase (i) Let N(r, a; f |≥ 2) 6= S(r).

We put Ψ =
f ′(f−b)

f(f−1)
−

g ′(g−b)

g(g−1)
. Since a double zero of f− a is a zero of f ′ and so a zero of g ′,

if Ψ 6≡ 0, then we get by Lemma 2.5(i) and Lemma 2.7,

N(r, a; f |≥ 2) ≤ 2N(r, 0;Ψ) + S(r) = S(r)

which is a contradiction. Hence Ψ ≡ 0 and so

f ′(f− b)

f(f − 1)
=

g ′(g− b)

g(g − 1)
.

This shows that f − a has no simple zero because E1)(a; f) ⊆ E
∞)(b;g).

Since α ′

α
= f ′

f−1
− g ′

g−1
. and E1)(0; f

′) ⊆ E
∞)(0;g

′), it follows that a double zero of f − a is a

zero of α ′

α
. So by Lemma 2.7 we get N(r, a; f |= 2) ≤ 2N(r, 0; α

′

α
) = S(r), which contradicts (ii) of

Lemma 2.5.

Subcase (ii) Let N(r, a; f |≥ 2) = S(r). Since f is not a bilinear transformation of g, we see that

α, β and αβ are non-constant. Also we note that f =
1− α

1− αβ
and g =

(1− α)β

1− αβ
.
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We put F = (f−a)(1−αβ) = aαβ−α+1−a andw =
F ′

F
. Also we note that F = (f−a)

g − f

f(g− 1)
.

Since by Lemma 2.6 N(r,∞; F) = S(r) and w has only simple poles (if there is any), we get

T(r,w) = m(r,w) +N(r,w) = N(r, 0; F) + S(r). (3.4)

Now by Lemma 2.2 and (ix), (x) of Lemma 2.8 we obtain

N(r, 0; F |≥ 2) ≤ N(r, a; f |≥ 2) +N(r, 0; f− g |≥ 2) +N(r,∞; f |≥ 2)

+N(r, 0; f− g | f = ∞)

= S(r). (3.5)

Hence from (3.4) and (3.5) we get

T(r,w) = N(r, 0; F |≤ 1) + S(r)

= N(r, a; f |≤ 1) +N0(r) +N2(r) + S(r), (3.6)

where N2(r) is the counting function of those simple poles of f which are non-zero regular points

of f− g.

From the definitions of α and β we get

{

g−
α ′β

(αβ) ′

}(
α ′

α
+

β ′

β

)

≡
f ′(g − f)

f(f− 1)
. (3.7)

From (3.7) we see that a simple pole of f which is a non-zero regular point of f − g is a

regular point of

{

g−
α ′β

(αβ) ′

}(
α ′

α
+

β ′

β

)

. Hence it is either a pole of
α ′β

(αβ) ′
or a zero of

α ′

α
+

β ′

β
.

Therefore by Lemma 2.7 and the first fundamental theorem we get

N2(r) ≤ T

(

r,
α ′

α
+

β ′

β

)

+ T

(

r,
α ′β

(αβ) ′

)

≤ T

(

r,
α ′

α
+

β ′

β

)

+ T

(

r,
1

1+ αβ ′

α ′β

)

≤ 2T

(

r,
α ′

α

)

+ 2T

(

r,
β ′

β

)

+O(1)

= S(r).

So from (3.6) we get

T(r,w) = N(r, a; f |≤ 1) +N0(r) + S(r). (3.8)

By (ii) of Lemma 2.5 we get from (3.8)

T(r,w) = T(r, f) +N0(r) + S(r). (3.9)
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Let

τ1 =
a− 1

b− 1
(ξ − bδ),

τ2 =
1

2
·
a− 1

b− 1
{ξ ′ + ξ2 − b(δ ′ + δ2)}

and τ3 =
1

6
·
a− 1

b− 1
{ξ ′′ + 3ξξ ′ + ξ3 − b(δ ′′ + 3δδ ′ + δ3)},

where ξ =
α ′

α
and δ =

α ′

α
+

β ′

β
. By Lemma 2.7 we see that T(r, ξ) = S(r) and T(r, δ) = S(r).

If τ1 ≡ 0, from (3.7) we get

(g − b)δ ≡
f ′(g − f)

f(f− 1)
. (3.10)

Since E1)(a; f) ⊂ E(b;g), it follows from (3.10) that a simple zero of f− a, which is neither a

zero nor a pole of δ, is a zero of g − b and so is a zero of f ′. Hence N(r, a; f |≤ 1) = S(r), which

contradicts (ii) of Lemma 2.5. Therefore τ1 6≡ 0.

Let z0 be a simple zero of f − a and τ1(z0) 6= 0. Then g(z0) = b and so α(z0) =
a− 1

b − 1
and

β(z0) =
b
a
. Expanding F around z0 in Taylor’s series we get

−F(z) = τ1(z0)(z − z0) + τ2(z0)(z − z0)
2 + τ3(z0)(z − z0)

3 +O((z − z0)
4).

Hence in some neighbourhood of z0 we obtain

w(z) =
1

z − z0
+

B(z0)

2
+ C(z0)(z − z0) +O((z − z0)

2),

where B =
2τ2

τ1
and C =

2τ3

τ1
−

(

τ2

τ1

)2

.

We put

H = w ′ +w2 − Bw −A, (3.11)

where A = 3C −
B2

4
− B ′.

Clearly T(r,A) + T(r, B) + T(r, C) = S(r) and since w =
F ′

F
and F = (f − a)

g − f

f(g − 1)
, we get

by Lemma 2.1 and (3.9) that S(r,w) = S(r).

Let H 6≡ 0. Then it is easy to see that z0 is a zero of H. So

N(r, a; f |≤ 1) ≤ N(r, 0;H) + S(r)

≤ T(r,H) + S(r)

= N(r,H) + S(r). (3.12)
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From (ii) of Lemma 2.5 and (3.12) we get

T(r, f) ≤ N(r,H) + S(r). (3.13)

Let z1 be a pole of F. Then z1 is a simple pole of w. So if z1 is not a pole of A and B, then

z1 is at most a double pole of H. Hence by Lemma 2.6 we get

N(r,∞;H | F = ∞) ≤ 2N(r,∞; F) + S(r) = S(r), (3.14)

where N(r,∞;H | F = ∞) denotes the counting function of those poles of H which are also poles

of F.

Let z2 be a multiple zero of F. Then z2 is a simple pole of w. So if z2 is not a pole of A and

B, then z2 is a pole of H of multiplicity at most two. Hence by (3.5) we get

N(r,∞;H | F = 0,≥ 2) ≤ 2N(r, 0; F |≥ 2) + S(r) = S(r), (3.15)

where N(r,∞;H | F = 0,≥ 2) denotes the counting function of those poles of H which are multiple

zeros of F.

Let z3 be a simple zero of F which is not a pole of A and B. Then in some neighbourhood of z3

we get F(z) = (z−z3)h(z), where h is analytic at z3 and h(z3) 6= 0. Hence in some neightbourhood

of z3 we obtain

H(z) =

(

2h ′

h
− B

)

1

z − z3
+ h1,

where h1 =

(

h ′

h

)

′

+

(

h ′

h

)2

−
Bh ′

h
−A.

This shows that z3 is at most a simple pole of H. Since a simple zero of f − a is a zero of H

and N(r, 0; F | f = t) ≤ N(r, 0; f − g |≥ 2) for t = 0, 1 and F = (f − a)
g− f

f(g− 1)
, we get from (3.14)

and (3.15) in view of (ix) of Lemma 2.8

N(r,H) = N(r,∞;H | F = ∞) +N(r,∞;H | F = 0) + S(r)

≤ N(r, 0; F |≤ 1) −N(r, a; f |≤ 1) + S(r)

= N0(r) +N2(r) + S(r)

= N0(r) + S(r), (3.16)

where N(r, 0; F | f = t) denotes the counting function of those zeros of F which are zeros of f − t

and N(r,∞;H | F = 0) denotes the counting function of those poles of H which are zeros of F

From (3.13) and (3.16) we obtain T(r, f) ≤ N0(r) + S(r), which by (iv) of Lemma 2.8 and
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Lemma 2.3 implies a contradiction. Therefore H ≡ 0 and so

w ′ +w2 − Bw −A ≡ 0

i.e.,
w ′

w
≡

A

w
−w+ B

i.e., F ′′ ≡ AF+ BF ′.

Since F ′ = a(αβ) ′ − α ′ and F ′′ = a(αβ) ′′ − α ′′, we get from above

Kαβ+ Lα ≡ A(f − a)(1− αβ), (3.17)

where K = a{
(αβ) ′′

αβ
− B

(αβ) ′

αβ
} and L = B

α ′

α
−

α ′′

α
.

By Lemma 2.7 we see that T(r, K) = S(r) and T(r, L) = S(r). Since αβ =
g(f − 1)

f(g − 1)
and

α =
f− 1

g − 1
, we get from (3.17)

Kg+ Lf ≡
A(f − a)(g − f)

(f− 1)
(3.18)

Let z0 be a simple zero of f−a which is not a pole of A. Since E1)(a; f) ⊂ E
∞)(b;g), it follows

from 3.18 that z0 is a zero of bK+ aL. Hence

N(r, a; f |≤ 1) ≤ N(r, 0;bK+ aL) +N(r,∞;A) ≡ S(r),

which contradicts (ii) of Lemma 2.5.This proves the theorem.

Received: April 2012. Accepted: September 2012.
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