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ABSTRACT

In this paper, we consider the quasilinear elliptic equation in a smooth bounded

domain. By using the method of lower and upper solutions, we study the existence,

asymptotic behavior near the boundary and uniqueness of the positive blow-up solutions

for quasilinear elliptic equation with nonlinear gradient term.

RESUMEN

En este art́ıculo consideramos la ecuación eĺıptica cuasilineal en un dominio acotado

suave. Usando el método de sub y súper soluciones, estudiamos la existencia, com-

portamiento asintótico cerca de la frontera y la unicidad de soluciones explosivas para

ecuaciones eĺıpticas cuasilineales con término del gradiente nolineal.
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1 Introduction and main results

We shall establish the results on the existence, asymptotic behavior near the
boundary and uniqueness near the boundary for the following quasilinear elliptic
equation

{
△mu = b(x)up(1+ |∇u|q), x ∈ Ω,

u = ∞, x ∈ ∂Ω,
(1.1)

where Ω is a C2 bounded domain with smooth boundary ∂Ω in RN, △mu :=
div(|∇u|m−2∇u), m ≥ 2, p, q > 0, b(x) ∈ Cµ(Ω̄) for some 0 < µ < 1.

Problems like (1.1) are usually known in the literature as a boundary blow-up
problems and its solutions are named ”blow-up solutions” or ”explosive solutions”
or ”large solutions” of Eq. (1.1). Precisely, by a solution of (1.1) we mean a solution
of (1.1) satisfying u(x) → ∞ as d(x, ∂Ω) → 0.

Semilinear elliptic problems involving a gradient term with boundary blow-up
interested many authors. Namely Bandle and Giarrusso[1] developed existence and
asymptotic behavior results for large solutions of ∆u+|∇u(x)|a = g(u) in a bounded
domain. In the case g(u) = p(x)uγ, a > 0, and γ > max(1, a). Ghergu et al.[2]
considered more general equation ∆u + q(x)|∇u(x)|a = p(x)g(u), where 0 ≤ a ≤
2, p and q are Hölder continuous functions on (0,∞). More results about some
extensions to this problems, we can see in[24]-[25].

Recently, Goncalves et al. [11] showed the existence of nonnegative solutions of
the boundary blow-up problem

{
△u = ψ(x, u,∇u), x ∈ Ω,

u = ∞, x ∈ ∂Ω
(1.2)

under the condition

a(x)g(t) ≤ ψ(x, t, ξ) ≤ h(t)(1+Λ|ξ|2),

where Λ > 0 is a constant, a, g and h are continuous functions, a(x) > 0 in Ω, g
and h are non-decreasing and satisfying g(0) = 0, g(t) > 0 for t > 0, h(0) ≥ 1, and
g satisfies the so called Keller-Osserman condition, namely

∫
∞

1

1
√

G(t)
dt < ∞, G(t) =

∫ t

0

g(s)ds.

The study of the following equation:
{

△mu = g(x)f(u), in Ω

u(x) → ∞, as x → ∂Ω
(1.3)
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also has been many results, see [3],[4],[15]-[19] and the references therein. Gladiali
and Porru [15] studied boundary asymptotic of solutions of this equation under some
condition on f and when g(x) ≡ 1. Related problems on asymptotic behavior and
uniqueness were also studied in [16]. Ahmed Mohammed in [17] established bound-
ary asymptotic estimate for solution of this equation under appropriate conditions
on g and the nonlinearity f. They still allowed g to be unbounded on Ω or to vanish
on ∂Ω. Diaz and Letelier [18] proved the existence and uniqueness of large solutions
to the problem (1.3) both for f(u) = uγ,γ > m−1(super-linear case) and ∂Ω being
of the class C2. Lu, Yang and E.H.Twizell [4] proved the existence of Large solutions
to the problem (1.1) both for f(u) = uγ,γ > m− 1,Ω = RN or Ω being a bounded
domain (super-linear case) and γ ≤ m − 1,Ω = RN(sub-linear case) respectively.
Z.Yang et.al. [19] also established an explosive sub-supersolution method for the
existence of solutions to (1.3).

For the other results of large solutions to quasilinear elliptic problems (1.1) with
nonlinear gradient terms, see [5]-[8] and the references therein.

Motivated by the results of the above cited papers, we shall attempt to treat
such equation (1.1), the results of the semilinear equations are extended to the
quasilinear ones. We can find the related results for m = 2 in [10].

To study (1.1),we first consider the existence of nonnegative solutions of the
generary boundary blow-up problem

{
△mu = ψ(x, u,∇u), x ∈ Ω,

u = ∞, x ∈ ∂Ω.
(1.4)

Our main results are summarized in the following and to our best knowledge, they
are not covered by any of the ones referred to above.

Theorem 1.1. Let ψ ∈ Cµ(Ω× R×RN), 0 < µ < 1, and ū, u ∈ W1,∞(Ω) be
the ordered weak upper and lower solutions of (1.4) and be bounded on any closed
subdomain of Ω. Assume that there exist constants k > m − 1, c1 > 0, and two
functions h1 ∈ Cµ(Ω) and g ∈ L∞

loc([0,+∞)) for some 0 < µ < 1, such that

|ψ(x, t, ξ)| ≤ h1(x) + g(t) + c1|ξ|
k−1a.e.x ∈ Ω, ∀ξ ∈ RN, t ∈ [u, ū]. (1.5)

Then there is a C1,β(Ω)-solution u of (1.4) for some 0 < β < 1 such that u ≤ u ≤ ū
in Ω.The ordered weak upper and lower solutions will be defined by Definition 2.1.

Theorem 1.2. Suppose that m ≥ 2, p, q > 0 and p+q > m− 1. If there exist
two constants γ ≥ 0 and β1 > 0 such that γ + m − q ≥ 0 and b(x) ≥ β1d

γ(x).
Then the problem (1.1) has at least one nonnegative C1-solution.

Theorem 1.3. Suppose that b(x) > 0 inΩ, m ≥ 2, p, q > 0 and p+q > m−1.
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If there are two constants β > 0 and γ ≥ 0 satisfying γ+m − q > 0, such that

lim
d(x)→0

b(x)

d(x)γ
= β.

Then the problem (1.1) possesses a nonnegative solution and any nonnegative solu-
tion u(x) satisfies

lim
d(x)→0

u(x)

d−α(x)
= (

αm−1−q(α+ 1)(m− 1)

β
)

1
p+q+1−m , (1.6)

where α = γ+m−q
p+q−m+1

. Furthermore, if p ≥ m − 1, then the nonnegative solution of
(1.1) is unique.

This work is organized as follows: In Section 2, we give a comparison principle
and prove Theorem 1.1. In Section 3, we first find out the blow-up rate in the
radially symmetric case and then prove Theorems 1.2 and 1.3.

2 Proofs of Theorem 1.1

Firstly, we consider the second order quasilinear operator Q of the form:

Q(u,ϕ) =

∫

Ω

(A(x, u,∇u).∇ϕ− b(x, u,∇u)ϕ)dx

where x = (x1, ..., xn) is contained in the domain Ω of RN,the functions A(x, z, p)
and b(x, z, p) are assumed to be defined for all values of (x, z, p) in the set Ω×R×
RN,ϕ ∈ C∞

0 (Ω).

From [23], we get the following comparison principle which plays an important
role in the proofs of Theorems 1.2 and 1.3.

Lemma 2.1.(Comparison principle) Let u, v ∈ C1(Ω) satisfy Qu ≥ 0 in Ω,
Qv ≤ 0 in Ω and u ≤ v on ∂Ω, where the functions A, b are continuously differen-
tiable with respect to the z, p variables in Ω ×R ×RN, the operator Q is elliptic
in Ω, and the function b is non-increasing in z for fixed (x, p) ∈ Ω ×RN. The, if
either

(i) the vector function A is independent of z; or

(ii) the function b is independent of p.

It follows that u ≤ v in Ω.

Now, we consider the general equation

△mu− ψ(x, u,∇u) = 0 x ∈ Ω. (2.1)
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Definition 2.1. Let 1 < k ≤ +∞, functions ū, u ∈ W1,k(Ω) are called the
weak upper and lower solutions of (2.1), respectively, if

ψ(·, ū(·),∇ū(·)) ∈ Lk ′

(Ω),ψ(·, u(·),∇u(·)) ∈ Lk ′

(Ω)

with

k ′ =

{
k

k−1
, k < ∞,

1, k = ∞,

and
∫

Ω

|∇ū|m−2∇ū∇vdx ≥ −

∫

Ω

ψ(x, ū,∇ū)vdx, ∀v ∈ W1,k
0 (Ω), v ≥ 0 a.e.in Ω

∫

Ω

|∇u|m−2∇u∇vdx ≤ −

∫

Ω

ψ(x, u,∇u)vdx, ∀v ∈ W1,k
0 (Ω), v ≥ 0 a.e.in Ω.

If u ≤ ū, we call that they are the ordered weak upper and lower solutions of (2.1).

Firstly, we consider the existence of weak solution to the problem
{

△mu− ψ(x, u,∇u) = 0, x ∈ Ω,

u = φ(x), x ∈ ∂Ω,
(2.2)

where ψ(·, u(·),∇u(·)) ∈ Lk ′

(Ω),φ ∈ W1,k(Ω). Assume that ū ∈ W1,k(Ω) is a weak
upper solution (u ∈ W1,k(Ω) is a weak lower solution) of (2.1). Here by ū ≥ φ(u ≤
φ) on ∂Ω, we mean (φ − u)+ := max{φ− u, 0} ∈ W1,k

0 (Ω) ((u − φ)+ ∈ W1,k
0 (Ω)).

If ū ≥ φ(u ≤ φ) on ∂Ω, we call that ū(u) is a weak upper solution (lower solution)
of (2.2). If u ≤ ū a.e. in Ω, we call that they are ordered.

Lemma 2.2.([9,Theorem 4.9]). Let ū, u ∈ W1,k(Ω) be the ordered weak upper
and lower solutions of (2.2), respectively, and u ≤ ū a.e. in Ω. Assume that there
exists a positive constant C1 and a function h1 ∈ Lk ′

(Ω) with k ′ = k/(k − 1), such
that

|ψ(x, t, ξ)| ≤ h1(x) + C1|ξ|
k−1, a.e. x ∈ Ω, ∀ξ ∈ RN, t ∈ [u, ū]. (2.3)

Then there is a weak solution u ∈ W1,k(Ω) of the problem (2.2) such that u ≤ u ≤
ū a.e. in Ω.

Lemma 2.3. Let ψ ∈ Cµ(Ω×R×RN), and ū, u ∈ W1,∞(Ω) be the ordered
weak upper and lower solutions of (2.2), φ ∈ C1+µ(Ω), 0 < µ < 1, and u ≤ φ ≤
ū a.e. in Ω. Assume that there exists constants k > 1, c1 > 0, and a function
h1 ∈ Cµ(Ω)

⋂

L∞(Ω), such that (2.3) holds. Then for some 0 < β < 1, there is a
C1,β-solution u of (2.2) such that u ≤ u ≤ ū in Ω.
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The proof of the lemma 2.3 is similar to [10], so we omit it here.

Definition 2.2. A domain Ω is called satisfying the uniform outside spherical
condition: if there exists a constant r > 0 such that there exists a sphere B whose
radius is r in RN for any z ∈ ∂Ω, such that B ∩Ω = {z}.

Noticing that any C2 bounded domain satisfies the uniform outside spherical
condition.

Lemma 2.4.( Theorem 4.2 in [20]) Assume that Ω is a bounded domain in RN

satisfying the uniform outside spherical condition, then there exists a series of C∞

domains {Ωn}
∞

1 , such that Ωn ⊂ Ωn+1 ⊂ Ω,
⋃

∞

n=1Ωn = Ω.

Proof of Theorem 1.1. Since Ω is a C2 bounded domain, from Lemma 2.4
we know that there exists a series of C∞ domains {Ωn}

∞

1 , such that Ωn ⊂ Ωn+1 ⊂
Ω,

⋃

∞

n=1Ωn = Ω. Now we consider the problem
{

△mu = ψ(x, u,∇u), x ∈ Ωn,

u = ū, x ∈ ∂Ωn.
(2.4)

Since ū ∈ W1,∞(Ωn) and u ∈ W1,∞(Ωn), by (1.5) we see that there is a constant
C2 = C2(n) > 0 such that |ψ(x, t, ξ)| ≤ h1(x) + C2 + C1|ξ|

k−1, a.e. x ∈ Ωn, ∀ξ ∈
RN, t ∈ [u, ū]. It is obvious that ū|Ω and u|Ω are the ordered upper and lower
solutions of (2.4), and h1 ∈ C(Ωn). By Lemma 2.3, there exists a solution un ∈
C1,β(Ωn) of (2.4) for some 0 < β < 1 such that u ≤ un ≤ ū in Ωn.

Now, we want to apply elliptic interior estimates together with a diagonal process
to conclude: {un : n ≥ 1} has a subsequence {uni

: ni ↑ ∞} such that {uni
} converges

to a function u in Ω(pointwise) and this convergence is in C1 on every compact set
in Ω. (Therefore, u ∈ C1 and div(|∇u|m−2∇u) = ψ(x, u,∇u) with u(x) ≤ u(x) ≤
u(x), and this concludes the proof.)

Step 1. On Ω2, {un : n ≥ 2} is uniformly bounded by u(x) and u(x). Since
both u(x) and u(x) are bounded functions on Ω2, there exists M > 0 such that
∥u(x)∥L∞(Ωn) ≤ M, for all n ≥ 2.

From (2.4), un satisfies
∫

Ω2

|∇un|
m ≤

∫

Ω2

ψun. (2.5)

Therefore,
∫

Ω2

|∇un|
m ≤ M(measΩ2)

1/q ′

C1∥∇un∥m, (2.6)

here 1/q ′+1/m = 1, and C1 is the Sobolev embedding constant. So, ∥un∥1,m ≤ C2.
When 1 < m < N, the embedding of W1,m

0 (Ω2) in LNm/(N−m)(Ω2) implies that
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uk ∈ LNm/(N−m)(Ω2). Applying Theorem 7.1 in [21, Page 286-287], we obtain the
estimate

sup{|un|; x ∈ Ω2} ≤ C3, (2.7)

here C3 = C3(∥ψ∥0). If m ≥ N, we get (2.7) from the Sobolev embedding theorem.
Using Theorem 1.1 in ([21], Page 251), we see that un belongs to Cα(Ω2) for some
0 < α < 1, and

∥un∥Cα ≤ C4, (2.8)

here C4 is determined by C3. By Proposition 3.7 in [22, Page 806], we also know
that un belongs to C1,α(Ω2) and

∥un∥C1,α ≤ C5. (2.9)

here C5 is determined by C4.

From the arguments above we see that there exists C > 0 such that

∥un∥C1+α(Ω1) ≤ C, for all n ≥ 2. (2.10)

Since the embedding C1+α(Ω1) → C1(Ω1) is compact, there exists a sequence de-
noted by {un1j

}j=1,2... (where n1j ↑ ∞), which converges in C1(Ω1). Let u1(x) =
limj→∞ un1j

(x), for x ∈ Ω1, then u1 is a solution of (2.1) with u(x) ≤ u1 ≤ u(x).

Step 2. Repeat Step 1 up to the existence of the sequence {un1j
}j=1,2... to get a

subsequence {un2i
}i=1,2... converging in C1(Ω2) to a limit u2. Then, likewise, u2 is a

solution of (2.4) and u2|Ω1
= u1. Repeat Step 1 again on Ω3, ..., etc. In this way,

we obtain a sequence {unnj
}j=1,2... which converges in C1(Ωn) and is a subsequence

of {unn−1)j
}j=1,2.... Let un = limj→∞ unnj

, then, un is a solution of (2.4) in Ωn and
un|Ωn−1

= un−1.

Step 3. By a diagonal process, {unll
}l=1,2... is a subsequence of {unlj

}j=1,2... for
every l. Thus, on Ωn for each n we have

lim
l→∞

unll
= un.

So, if we define u(x) = limn→∞ un(x), then u(x) satisfies

div(|∇u|m−2∇u) = ψ(x, u,∇u),

and u ≤ u(x) ≤ u (since u ≤ un(x) ≤ u) for every n. This completes the proof of
Theorem 1.1.
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3 Proofs of Theorems 1.2 and 1.3

To get the existence of large solutions, we first find the blow-up lower and super
solutions. Furthermore, if the blow-up lower solution and upper solution have the
same blow-up rate near the boundary, we could get the asymptotic behavior of large
solutions near the boundary. The idea of this section mainly comes from [10],[12]-
[14].

3.1 blow-up rate

In order to get the asymptotic behavior of large solutions in the general domain,
we first study the radically symmetric case:

{
(Φm(v

′)) ′ + N−1
r
Φp(v

′) = a(r)(R− r)γvp(1+ |v ′|q), r ∈ (0, R),

v ′(0) = 0, lim
r→R

v(r) = ∞,
(3.1)

where Φm(u) = |u|m−2u,m ≥ 2. To ascertain the blow-up rate of the solution of
(3.1) at R > 0, we first find out the blow-up rate of the following one-dimensional
problem

{
(Φm(u

′)) ′ = a(r)(R− r)γup(1+ |u ′|q), r ∈ (0, R),

u ′(0) = 0, lim
r→R

u(r) = ∞.
(3.2)

Set u(r) = (R− r)−αψ(r), r ∈ [0, R] for some positive constant α which will be
determined later, ψ(r) ∈ C2(0, R), then the problem (3.2) becomes

(|u ′|m−2u ′) ′ = (m − 1)(α(R− r)−α−1ψ(r) + (R− r)−αψ ′(r))m−2

sgn(α(R− r)−α−1ψ(r) + (R− r)−αψ ′(r))

[α(α+ 1)(R− r)−α−2ψ(r) + 2α(R− r)−α−1ψ ′(r) + (R− r)−αψ ′′(r)]

= (m − 1)(R− r)−α−2−(α+1)(m−2)(αψ(r) + (R− r)ψ ′(r))m−2

sgn(α(R− r)−α−1ψ(r) + (R− r)−αψ ′(r))

[α(α+ 1)ψ(r) + 2α(R− r)ψ ′(r) + (R− r)2ψ ′′(r)]

= a(r)(R− r)γ−αpψp(r) + a(r)(R− r)γ−αp−(α+1)q

ψp(r)|αψ(r) + (R− r)ψ ′(r)|q (3.3)

with the boundary condition ψ(0) = 0, and ψ(R) ∈ (0,∞). Therefore, the constant
α provides us with the exact blow-up rate of u at R. Multiplying (3.3) by (R −
r)α+2+(α+1)(m−2) we have
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(m− 1)(αψ(r) + (R− r)ψ ′(r))m−2sgn(α(R− r)−α−1ψ(r)

+(R− r)−αψ ′(r))[α(α+ 1)ψ(r) + 2α(R− r)ψ ′(r) + (R− r)2ψ ′′(r)]

= a(r)(R− r)γ−αp+α+2+(α+1)(m−2)ψp(r)

+a(r)(R− r)γ−αp−(α+1)q+α+2+(α+1)(m−2)ψp(r)|αψ(r) + (R− r)ψ ′(r)|q.

Assuming lim
r→R

(R− r)2ψ ′′(r) = lim
r→R

(R− r)ψ ′(r) = 0, we obtain

α =
γ+m − q

p+ q+ 1−m
, ψ(R) = (

αm−1−q(α+ 1)(m− 1)

a(R)
)

1
p+q+1−m . (3.4)

Theorem 3.1. Assume that R > 0, a ∈ C([0, R]; (0,∞)), m ≥ 2, γ ≥ 0, p, q >
0, and γ+m−q > 0, p+q > m−1. Let α and ψ(R) be defined by (3.4). Then for
each ϵ > 0, the problem (3.1) has at least one nonnegative C1-solution vϵ satisfying

1− ϵ ≤ lim
r→R

inf
vϵ(r)

ψ(R)(R− r)−α
≤ lim

r→R
sup

vϵ(r)

ψ(R)(R− r)−α
≤ 1+ ϵ. (3.5)

Therefore, for each x0 ∈ RN,m ≥ 2, the function

uϵ(x) := vϵ(r) with r := |x− x0|

provides us with a radially symmetric nonnegative solution of the problem
{

△mu = a(r)dγ(x)up(1+ |∇u|q), x ∈ BR(x0),

u = ∞, x ∈ ∂BR(x0),

satisfying

1− ϵ ≤ lim
d(x)→0

inf
uϵ(x)

ψ(R)d−α(x)
≤ lim

d(x)→0
sup

uϵ(x)

ψ(R)d−α(x)
≤ 1+ ϵ,

where d(x) := dist(x, ∂BR(x0)) = R− |x − x0| = R− r.

Proof. Firstly, we show that, for each ϵ > 0 sufficiently small, there exists a
constant Aϵ > 0, for each A > Aϵ ,

v̄ϵ(r) := A+ B+(
r

R
)2(R− r)−α (3.6)

provides us with a positive upper solution of (3.1), where α is defined in(3.4),

B+ = (1+ ϵ)(
αm−1−q(α+ 1)(m− 1)

a(R)
)

1
p+q+1−m . (3.7)
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Indeed, v̄ϵ ′(0) = 0 and lim
r→R

v̄ϵ(r) = ∞. Thus, v̄ϵ is an upper solution of (3.1) if and

only if

(
B+

R2
)m−1[2(m− 1)(R− r)2 + 4(m− 1)αr(R− r) + (m− 1)α(α+ 1)r2

+2(N− 1)(R− r)2 + α(N− 1)r(R− r)]|2r(R− r)2 + αr2|m−2

≤ a(r)(R− r)γ−αp+α+2+(α+1)(m−2)(A(R− r)α + B+(
r

R
)2)p((R− r)(α+1)p

+|
2B+

R2
r(R− r) + αB+(

r

R
)2|q). (3.8)

Note that γ− αp+ α+ 2+ (α+ 1)(m− 2) = 0, at r = R, (3.8) becomes

(m− 1)αm−1(α+ 1)Bm−1
+ ≤ Bp+q

+ αqa(R)

which is valid if and only if

B+ ≥ (
αm−1−q(α+ 1)(m− 1)

a(R)
)

1
p+q+1−m .

Therefore, according to the choice of B+, inequality (3.8) is satisfied in a left neigh-
borhood of r = R, say (R − δ, R] for some δ = δ(ϵ) > 0. Finally, by choosing A
sufficiently large, it is clear that the inequality is satisfied in the whole interval [0, R]
since p > 0 and a is away from zero. This concludes the proof of the claim above.

Now we will construct a suitable lower solution for problem (3.1). We claim that
for each sufficiently small ϵ > 0, there exists C < 0 such that

vϵ(r) := max{0, C+ B−(r/R)
2(R− r)−α} (3.9)

provides us with a nonnegative lower solution of (3.1), here

B− = (1− ϵ)(
αm−1−q(α+ 1)(m− 1)

a(R)
)

1
p+q+1−m . (3.10)

Indeed, vϵ is a lower solution of (3.1) where

C + B−(
r

R
)2(R− r)−α ≥ 0, (3.11)

which implies
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(
B−

R2
)m−1[2(m− 1)(R− r)2 + 4(m− 1)αr(R− r) + (m− 1)α(α+ 1)r2

+2(N− 1)(R− r)2 + α(N− 1)r(R− r)]|2r(R− r)2 + αr2|m−2

≥ a(r)(R− r)γ−αp+α+2+(α+1)(m−2)(C(R− r)α + B−(
r

R
)2)p(R− r)(α+1)p

+|
2B−

R2
r(R− r) + αB−(

r

R
)2|q). (3.12)

Now, for each C < 0, we can find the constant z = Z(C) ∈ (0, R), such that

C+ B−(
r

R
)2(R− r)−α < 0 if r ∈ [0, Z(C)),

and

C+ B−(
r

R
)2(R− r)−α > 0 if r ∈ (Z(C), R).

Moreover, Z(C) is decreasing and

lim
C→−∞

Z(C) = R, lim
C→0

Z(C) = 0.

At r = R, (3.12) becomes into

(m− 1)αm−1(α+ 1)Bm−1
− ≥ Bp+q

− αqa(R),

which is valid if and only if

B− ≤ (
αm−1−q(α+ 1)(m− 1)

a(R)
)

1
p+q+1−m .

Therefore, by making the choice (3.10), inequality (3.11) is satisfied in a left neigh-
borhood of r = R, say (R− δ, R] for some δ = δ(ϵ) > 0. Moreover, thanks to (3.12),
there exists C < 0, such that Z(C) = R− δ(ϵ). For this choice of C, vϵ provides us
with a weak lower solution of (3.1).

Since v̄ϵ(r), v(r) ∈ W1,∞(0, R) are the ordered weak lower and upper solutions
of (3.1) and are bounded on any closed subdomain of [0, R), it is easy to see (1.5)
holds owing to p, q > 0. So the existence of a C1-solution u of (3.1) is followed by
Theorem 1.1, and

vϵ(r) ≤ u ≤ v̄ϵ(r) in Ω.

Finally, since

lim
r→R

v̄ϵ(r)

B+(R− r)−α
= lim

r→R

vϵ(r)

B−(R− r)−α
= 1, (3.13)

where B+ and B− are the constants defined through (3.7)and (3.10), one can easily
deduce the remaining assertions of Theorem 3.1. The proof is completed.
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3.2 Proofs of Theorems 1.2 and 1.3

Proof of Theorem 1.2. For n ≥ 1, we consider the following problem
{

△mu = b(x)up(1+ |∇u|q), x ∈ Ω,

u = n, x ∈ ∂Ω.
(3.14)

It is obvious that the function ψ(x, t, ξ) = b(x)tp(1 + |ξ|q) satisfies the condition
(2.3) since b(x) ∈ Cµ(Ω̄). The constant functions u(x) = 0 and u(x) = n are
the ordered lower and upper solutions of (3.14). By Lemma 2.3, we see that the
problem (3.14) has at least one nonnegative solution un(x) ∈ C1(Ω) and it satisfies
0 ≤ un(x) ≤ n < n+ 1.

By our assumption, b(x) ≥ β1d
γ(x) > 0 in Ω.So,u = un and ū = n+ 1 are the

order lower and upper solutions of the following problem
{

△mu = b(x)up(1+ |∇u|q), x ∈ Ω,

u = n+ 1, x ∈ ∂Ω.

Therefore un ≤ un+1. Now we fix a point x0 ∈ Ω and consider a small ball B centered
at x0 and contained properly in Ω. By Theorem 3.1, there exists a nonnegative C1-
solution v(x) to the problem

{
△mu = β1(dist(x, ∂B))γup(1+ |∇u|q), x ∈ BR(x0),

u = ∞, x ∈ ∂BR(x0)

Since

△mun − b(x)up
n(1+ |∇un|

q)

≤ △mun − β1d
γ(x)up

n(1+ |∇un|
q)

≤ △mun − β1(dist(x, ∂B))
γ(x)up

n(1+ |∇un|
q), x ∈ B,

and un(x) ≤ v(x) = ∞ on ∂B, by the Comparison principle (Lemma 2.1), we
have un(x0) ≤ v(x0) for all n. Since un increases in Ω as n increases, un(x)
is uniformly bounded on any compact subset of Ω. Standard elliptic regularity
arguments show that lim

n→∞

un(x) = u∗(x) exists and u∗(x) satisfies the differential

equation of (1.1). To prove u∗(x) is a nonnegative solution of (1.1), it remains to
verify u∗(x)|∂Ω = ∞. If this is not true, then there exist a nonnegative constant M,
a sequence {xj} ⊂ Ω and x0 ∈ ∂Ω, such that xj → x0 and un(xj) ≤ M. For any
fixed k, note that un(xj) → u∗(xj) as n → ∞, it follows that there exists Nj > 0,
such that un(xj) ≤ 1 +M for all n ≥ Nj. Note that un is increasing in n, we have
un(xj) ≤ 1+M for every n > 0. Now fix a n > 1+M and let j → ∞ in the above
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inequality, it follows un(x0) ≤ 1 + M < n since xj → x0, which is a contradiction
with un(x0) = n. The theorem is proved.

Proof of Theorem 1.3. In view of lim
d(x)→0

b(x)
d(x)γ

= β > 0 and b(x) > 0 in Ω, it

is easy to see that
b(x) ≥ β1d

γ(x), x ∈ Ω

for some β1 > 0. Thus, the nonnegative C1-solution of problem (1.1) exists by
Theorem 1.2.

Now we prove the limit (1.6). Since

lim
d(x)→0

b(x)

d(x)γ
= β > 0,

for any small ϵ > 0, there exists δ = δ(ϵ) > 0, such that for all x ∈ Ω with
d(x) < 2δ,

(β− ϵ)dγ(x) ≤ b(x) ≤ (β+ ϵ)dγ(x).

Now we define Ωδ = {x ∈ Ω : d(x) < δ} with ∂Ωδ = {x ∈ Ω : d(x) = δ} and
{

u+(x) = B+(ϵ)(d(x)− σ)
−α, x ∈ D+

σ = Ω2δ/Ω̄σ,

u−(x) = B−(ϵ)(d(x) + σ)
−α, x ∈ D−

σ = Ω2δ−σ,
(3.15)

where 0 < σ < δ, and

B+(ϵ) = (1+ ϵ)(
αm−1−q(α+ 1)(m− 1)

β− ϵ
)

1
p+q+1−m ,

B−(ϵ) = (1− ϵ)(
αm−1−q(α+ 1)(m− 1)

β+ ϵ
)

1
p+q+1−m .

It is easy to prove that by diminishing δ > 0 if necessary, d(x) is a C2-function on
the domain Ω̄2δ and

{
△mu

+ − b(x)(u+)p(1+ |∇u+|q) ≤ 0, x ∈ D+
σ ,

△mu
− − b(x)(u−)p(1+ |∇u−|q) ≥ 0, x ∈ D−

σ .
(3.16)

Let u be any nonnegative solution of (1.1) and

M1(δ) = max
d(x)≥2δ

u(x),M2(δ) = B−(2δ)
−α.

We see that {
u(x) ≤ u+(x) +M1(δ), x ∈ ∂D+

σ ,

u−(x) ≤ u(x) +M2(δ), x ∈ ∂D−
σ .

(3.17)
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On the other hand, by p > 0, we have
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

△m(u
+ +M1(δ))− b(x)(u+ +M1(δ))

p(1+ |∇(u+ +M1(δ))|
q)

< 0, x ∈ D+
σ ,

△m(u+M2(δ))− b(x)(u+M2(δ))
p(1+ |∇(u +M2(δ))|

q)

< 0, x ∈ D−
σ .

(3.18)

Note (3.15)− (3.18), it follows by Lemma 2.1 that
{

u(x) ≤ u+(x) +M1(δ), x ∈ D+
σ ,

u−(x) ≤ u(x) +M2(δ), x ∈ D−
σ .

(3.19)

For any x ∈ Ω2δ, there is a σ∗ > 0, such that x ∈ D+
δ

⋂

D−
δ for all 0 < σ ≤ σ∗.

Letting σ→ 0 , (3.19) yields

B−(ϵ)d
−α(x) ≤ u+M2(δ) ≤ B+(ϵ)d

−α(x) +M1(δ) +M2(δ),

which implies

B−(ϵ) ≤ lim
d(x)→0

inf
uϵ(x)

d−α(x)
≤ lim

d(x)→0
sup

uϵ(x)

d−α(x)
≤ B+(ϵ). (3.20)

Taking ϵ→ 0,(3.20) yields

lim
d(x)→0

u(x)

d−α(x)
= (

αm−1−q(α+ 1)(m− 1)

β
)

1
p+q+1−m ,

which is accordance with (1.6).

The final step is to prove the uniqueness. Let u1 and u2 be two nonnegative
solutions of(1.1), then by(1.6), we have

lim
d(x)→0

u1(x)

u2(x)
= 1.

Indeed, for θ > 0 arbitrary, set

ωi = (1+ θ)ui, for i = 1, 2.

It follows that

lim
d(x)→0

(u1 −ω2)(x) = lim
d(x)→0

(u2 −ω1)(x) = −∞.

When p ≥ m − 1, since q > 0, we have that

△mωi − b(x)ωp
i (1+ |∇ωi|

q) < (1+ θ)m−1[△mui − b(x)up
i (1+ |∇ui|

q)], x ∈ Ω.
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Therefore, by lemma 2.1, we infer that

u1 ≤ (1+ θ)u2, u2 ≤ (1+ θ)u1, x ∈ Ω. (3.21)

Passing to the limit θ → 0+ in (3.21), we get u1 = u2 in Ω. This completes the
proof of Theorem1.3.

Received: September 2012. Revised: March 2014.
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