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ABSTRACT

We compute explicitly the inverse Laplace transform for rational functions vanishing

at infinity in the general case. We also compute explicitly convolution product for con-

tinuous elementary functions involved in the general case. We then consider algebraic

structure about the Laplace transform via convolution product.

RESUMEN

Calculamos expĺıcitamente la transformada de Laplace inversa para funciones racionales

que se anulan en infinito en el caso general. Además calculamos expĺıcitamente el

producto de convolución para funciones elementales continuas que participan en el caso

general. Luego, consideramos estructuras algebraicas de la transformada de Laplace

por medio del producto de convolución.
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1 Introduction

The Laplace transform L(f) of a real-valued, function f on the interval [0,∞) is defined by

L(f)(s) =

∫
∞

0

e−stf(t)dt

for s ∈ C in the domain of convergence (cf. [2] or [3]).

The Laplace transform L for continuous functions f on [0,∞) is injective. This fact is known

as Lerch’s theorem as a fundamental theorem in the Laplace transform theory (or deduced from

switching the Laplace transform as to be the Fourier transform), so that the inverse Laplace

transform is well defined as the inverse image of L(f):

L−1(L(f))(t) = f(t).

In this paper we consider real-valued, elementary functions f that are defined on the real line R

and are continuous on R, as well as the injectivity of the Laplace transform for these continuous

functions is preserved. The reason for this assumption of R just comes from that we do make most

of the statements simplified and also that this additional symmetry induces several symmetric

results and it makes it to be possible to consider the usual algebraic structure about continuous

elementary functions, and is perhaps more natural than cutting down functions to be zero on the

negative part of R. But this assumption is not the same as the usual convention that f is assumed

to be zero on the interval (−∞, 0). Indeed, the inverse Laplace trasform defined as

f(t) =
1

2πi

∫α+i∞

α−i∞

estL(f)(s)ds

known as Bromwich integral requires that convention, where the complex line integral is taken for

some real α and is computed by residue theorem as sums of residue functions. This says that even

real-valued functions of one variable as well as the complex case are determined by singularities of

their images under the Laplace transform. However, we do not use the complex integral in what

follows.

In this paper, by elementary calculation we compute explicitly the inverse Laplace transform

for rational functions vanishing at infinity in the general case and determine the inverse image.

We also compute explicitly convolution product for continuous elementary functions involved in

the general case. We then consider algebraic structure about the Laplace transform from our view

point, which may not be written in the literature.

As a reference, there is another inductive computation known as a recursive formula for mul-

tiples of convolution in general (see [1]), but without using it we compute more explictly multiples

of convolution for certain concrete continuous elementary functions.

There are 4 sections after this introduction as follows: 2. Inverse Laplace transform for rational

functions in a special case; 3. Inverse Laplace transform for rational functions in another special

case; 4. Inverse Laplace transform for rational functions; 5. Algebraic structure.
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Our elemetary but explicit computation results obtained in the several general cases of those

sections and our consideration and determination on the algebraic structure about the Laplace

transform via convolution product would be new as well as useful and helpful as a reference.

Notation. We denote by ex the exponential function to the base e for x ∈ R and by sin x and

cos x the trigonometric functions for x ∈ R. We denote by
(

n
k

)

the combination of k items from n

items mutually different.

2 Inverse Laplace transform for rational functions in a spe-

cial case

As a well known fact, we have

Lemma 2.1. Let s ∈ C with the real part Re(s) > 0 and λ ∈ R a constant with λ 6= 0. Then

L−1

(

1

(s2 + λ2)2

)

=
1

2λ3
sinλt−

t

2λ2
cosλt (t ∈ R).

Proof. By using a fact that the Laplace transform of the convolution product of two functions f(t)

and g(t) is the pointwise multiplication of their Laplace transforms:

L(f ∗ g)(s) = L(f)(s) · L(g)(s) with f ∗ g(t) =

∫t

0

f(t− τ)g(τ)dτ,

we compute

L−1

(

1

(s2 + λ2)2

)

= L−1

(

1

s2 + λ2
·

1

s2 + λ2

)

=
1

λ2
sin λt ∗ sin λt

=
1

λ2

∫t

0

sin λ(t− τ) sin λτdτ =
1

2λ2

∫t

0

{cosλ(t− 2τ) − cosλt}dτ

=
1

2λ2

[

1

−2λ
sin λ(t− 2τ) − τ cosλt

]t

τ=0

=
1

2λ3
sin λt−

t

2λ2
cosλt.

Note that L(sin λt) = λ
s2+λ2 well known.

As the second step in induction, we have

Lemma 2.2. Let s ∈ C with Re(s) > 0 and λ ∈ R a constant with λ 6= 0. Then

L−1

(

1

(s2 + λ2)3

)

=

(

3− λ2t2

8λ5

)

sin λt−
3t

8λ4
cosλt.
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Proof. We compute

L−1

(

1

(s2 + λ2)3

)

= L−1

(

1

s2 + λ2
·

1

(s2 + λ2)2

)

=
1

λ
sin λt ∗ L−1

(

1

(s2 + λ2)2

)

(t).

Inserting the result of Lemma 2.1 above for L−1( 1
(s2+λ2)2

) and computing the convolution product

by using integration by parts and addition theorem of trigonometric functions we obtain the formula

in the statement.

As the third step in induction, we have

Lemma 2.3. Let s ∈ C with Re(s) > 0 and λ ∈ R a constant with λ 6= 0. Then

L−1

(

1

(s2 + λ2)4

)

=

(

5− 2λ2t2

16λ7

)

sin λt+

(

3−1λ2t3 − 5t

16λ6

)

cosλt.

Proof. We compute

L−1

(

1

(s2 + λ2)4

)

= L−1

(

1

s2 + λ2
·

1

(s2 + λ2)3

)

=
1

λ
sin λt ∗ L−1

(

1

(s2 + λ2)3

)

(t).

Inserting the result of Lemma 2.2 above for L−1( 1
(s2+λ2)3

) and computing the convolution product

by using integration by parts and addition theorem of trigonometric functions we obtain the formula

in the statement.

Theorem 2.4. Let s ∈ C with Re(s) > 0 and λ ∈ R a constant with λ 6= 0. Then, for an integer

n ≥ 1,

L−1

(

1

(s2 + λ2)2n

)

= e2n−2(t) sin λt+ o2n−1(t) cosλt

where e2n−2(t) is an even polynomial of t with degree 2n − 2 and with real coefficients involving

λ, and o2n−1(t) is an odd polynomial of t with degree 2n − 1 and with real coefficients involving

λ. Similarly, for an integer n ≥ 2,

L−1

(

1

(s2 + λ2)2n−1

)

= e2n−2(t) sin λt+ o2n−3(t) cosλt.

Proof. By induction, suppose that the formula for 2n in the statement holds. We then compute

L−1

(

1

(s2 + λ2)2n+1

)

= L−1

(

1

s2 + λ2
·

1

(s2 + λ2)2n

)

=
1

λ
sin λt ∗ L−1

(

1

(s2 + λ2)2n

)

(t)
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(and inserting the formula assumed for L−1( 1
(s2+λ2)2n ) we have:)

=
1

λ
sin λt ∗ {e2n−2(t) sin λt+ o2n−1(t) cosλt}

=
1

λ

∫t

0

sin λ(t− τ){e2n−2(τ) sinλτ+ o2n−1(τ) cosλτ}dτ

(and by addition theorem of trigonometric functions, we have:)

=
1

2λ

∫ t

0

e2n−2(τ){cosλ(t− 2τ) − cosλt}dτ

+
1

2λ

∫t

0

o2n−1(τ){sin λt+ sin λ(t− 2τ)}dτ

=
1

2λ

[∫t

0

e2n−2(τ) cosλ(t− 2τ)dτ −

∫t

0

e2n−2(τ)dτ · cosλt

]

+
1

2λ

[∫t

0

o2n−1(τ)dτ · sin λt+

∫t

0

o2n−1(τ) sinλ(t − 2τ)dτ

]

.

By using integration by parts repeatedly, we compute the first integral term among four terms

as:
∫t
0
e2n−2(τ) cosλ(t − 2τ)dτ

=

[

e2n−2(τ)
sin λ(t− 2τ)

−2λ

]t

τ=0

+
1

2λ

∫t

0

e ′
2n−2(τ) sin λ(t− 2τ)dτ

=

{
e2n−2(t) − e2n−2(0)

2λ

}

sin λt+
1

2λ

∫t

0

e ′
2n−2(τ) sin λ(t− 2τ)dτ

and note that the first coefficient {·} is an even polynomial of t of degree 2n − 2, and the integral

in the second term is computed as:
∫t
0
e ′
2n−2(τ) sin λ(t− 2τ)dτ

=

[

e ′
2n−2(τ)

− cosλ(t− 2τ)

−2λ

]t

τ=0

−
1

2λ

∫t

0

e ′′
2n−2(τ) cosλ(t− 2τ)dτ

=

{
e ′
2n−2(t) − e ′

2n−2(0)

2λ

}

cosλt−
1

2λ

∫t

0

e ′′
2n−2(τ) cosλ(t− 2τ)dτ

with the differential e ′
2n−2(0) = 0 and the coefficient {·} an odd polynomial of t of degree 2n − 1,

and moreover, the last integral
∫t
0
e ′′
2n−2(τ) cosλ(t− 2τ)dτ is computed inductively and finitely by

integration by parts to obtain the similar coefficients of sin λt and cosλt summed as even and odd

polynomials of t with degrees less than 2n − 2 and 2n − 1, respectively.

The same consideration as for the first integral is applied for the fourth integral:
∫t
0
o2n−1(τ) sinλ(t−

2τ)dτ to be computed as the sum of cosλt and sin λt with coefficients odd and even polynomials

of t of degree 2n − 1 and 2n, respectively.

As for
∫t
0
e2n−2(τ)dτ · cosλt and

∫t
0
o2n−1(τ)dτ · sin λt, the second and third integrals among

four terms are computed to be odd and even polynomials of t with degrees 2n − 1 and 2n − 2,

respectively.
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Summing up the computations above, we obtain

L−1

(

1

(s2 + λ2)2(n+1)−1

)

= e2(n+1)−2(t) sin λt+ o2(n+1)−3(t) cosλt

for some even e2n(t) and odd o2n−1(t). This is the case where n is replaced with n + 1 in the

second formula in the statement.

Similarly, the case of 2n + 2 is deduced from the case of 2n + 1 that now we have proved

above.

Remark. Perhaps, the real coefficients involving λ of even and odd polynomials in general 2n or

2n − 1 could be determined explicitly as given in Lemmas 2.1 to 2.3.

Corollary 2.5. For any integer n ≥ 1,

L−1

(

1

(s2 + λ2)n

)

(t) is an odd function as for t ∈ R.

3 Inverse Laplace transform for rational functions in an-

other special case

As a well known fact, we have

Lemma 3.1. Let s ∈ C with Re(s) > 0 and λ ∈ R a constant with λ 6= 0. Then

L−1

(

s

(s2 + λ2)2

)

=
1

2λ
t sinλt (t ∈ R).

Proof. We compute as in the previous section,

L−1

(

s

(s2 + λ2)2

)

= L−1

(

1

s2 + λ2
·

s

s2 + λ2

)

=
1

λ
sinλt ∗ cosλt

=
1

λ

∫t

0

sinλ(t − τ) cosλτdτ =
1

2λ

∫t

0

{sin λ(t− 2τ) + sin λt}dτ

=
1

2λ

[

1

2λ
cosλ(t− 2τ) + τ sinλt

]t

τ=0

=
1

2λ
t sin λt.

Note that L(cosλt) = s
s2+λ2 well known.

As the second step in induction, we have

Lemma 3.2. Let s ∈ C with Re(s) > 0 and λ ∈ R a constant with λ 6= 0. Then

L−1

(

s

(s2 + λ2)3

)

=

(

1+ λ2t2

4λ3

)

sin λt−
t

2λ
cosλt.
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Proof. We compute

L−1

(

s

(s2 + λ2)3

)

= L−1

(

1

s2 + λ2
·

s

(s2 + λ2)2

)

=
1

λ
sin λt ∗ L−1

(

s

(s2 + λ2)2

)

(t).

Inserting the result of Lemma 3.1 above for L−1( s
(s2+λ2)2

) and computing the convolution product

by using integration by parts and addition theorem of trigonometric functions we obtain the formula

in the statement.

One can use the following decomposition and Lemma 2.1 in the previous section:

L−1

(

s

s2 + λ2
·

1

(s2 + λ2)2

)

= cosλt ∗ L−1

(

1

(s2 + λ2)2

)

(t).

As the third step in induction, we have

Lemma 3.3. Let s ∈ C with Re(s) > 0 and λ ∈ R a constant with λ 6= 0. Then

L−1

(

s

(s2 + λ2)4

)

=

(

2+ λ − λ3t2

16λ5

)

sin λt+

(

−3λt − 3−12λ3t3

16λ4

)

cosλt.

Proof. We compute

L−1

(

s

(s2 + λ2)4

)

= L−1

(

1

s2 + λ2
·

s

(s2 + λ2)3

)

=
1

λ
sin λt ∗ L−1

(

s

(s2 + λ2)3

)

(t).

Inserting the result of Lemma 3.2 above for L−1( s
(s2+λ2)3

) and computing the convolution product

by using integration by parts and addition theorem of trigonometric functions we obtain the formula

in the statement.

Theorem 3.4. Let s ∈ C with Re(s) > 0 and λ ∈ R a constant with λ 6= 0. Then, for an integer

n ≥ 2,

L−1

(

s

(s2 + λ2)2n

)

= e2n−2(t) sin λt+ o2n−1(t) cosλt

where e2n−2(t) is an even polynomial of t with degree 2n − 2 and with real coefficients involving

λ, and o2n−1(t) is an odd polynomial of t with degree 2n − 1 and with real coefficients involving

λ. Similarly, for an integer n ≥ 2,

L−1

(

s

(s2 + λ2)2n−1

)

= e2n−2(t) sin λt+ o2n−3(t) cosλt.
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Proof. By induction, suppose that two formula in the statement hold for 2n. We then compute

L−1

(

s

(s2 + λ2)2n+1

)

= L−1

(

1

s2 + λ2
·

s

(s2 + λ2)2n

)

=
1

λ
sin λt ∗ L−1

(

s

(s2 + λ2)2n

)

(t)

and inserting the formula assumed for L−1( s
(s2+λ2)2n ) we have

=
1

λ
sinλt ∗ {e2n−2(t) sin λt+ o2n−1(t) cosλt}

=
1

λ

∫t

0

sinλ(t − τ){e2n−2(τ) sin λτ+ o2n−1(τ) cosλτ}dτ.

Note that this integral is exactly the same as the integral in the case of L−1
(

1
(s2+λ2)2n+1

)

in the

proof of Theorem 2.4. Thus, we omit the rest of the proof.

Similarly, the case of 2n+ 2 is deduced from the case of 2n+ 1 that now we have proved.

Corollary 3.5. For any integer n ≥ 2,

L−1

(

s

(s2 + λ2)n

)

(t) is an odd function as for t ∈ R.

Remark. Note that the polynomials obtained in Theorem 3.4 are not the same as those in Theorem

2.4, but we use the same symbols for both of the polynomials.

Anyhow, combining both of Theorem 2.4 and Theorem 3.4 we get

Corollary 3.6. Both L−1( 1
(s2+λ2)2n ) for n ≥ 1 and L−1( s

(s2+λ2)2n ) for n ≥ 2 are written as the

same form:

e2n−2(t) sinλt+ o2n−1(t) cosλt;

and both L−1( 1
(s2+λ2)2n−1 ) for n ≥ 1 and L−1( s

(s2+λ2)2n−1 ) for n ≥ 2 are written as the same

form:

e2n−2(t) sin λt+ o2n−3(t) cosλt.

4 Inverse Laplace transform for rational functions

It is well known that a rational function f of s ∈ C such that f(s) = p(s)

q(s)
with p(s), q(s) polynomials

of s ∈ C with real coefficients and with degp(s) < degq(s) is decomposed into partial fractions as:

f(s) =

m0∑

j=1

c0j

sj
+

l1∑

k=1

mk∑

j=1

ckj

(s − ak)j

+

l2∑

k=1

nk∑

j=1

dkjs

((s − bk)2 + c2k)
j
+

l2∑

k=1

nk∑

j=1

ekj

((s − bk)2 + c2k)
j
,

where q(s) = q0s
m0Πl1

k=1(s − ak)
mkΠl2

k=1((s − bk)
2 + c2k)

nk
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the factorization of q(s) in real R with ak real roots of multiplicity mk and with bk±ick imaginary

roots of multiplicity nk, for some q0 6= 0 in R, m0 ≥ 0,mk ≥ 1, nk ≥ 1, and ak 6= 0, bk 6= 0 or

0, ck 6= 0 in R, and l1, l2 ∈ N, and c0j, ckj ∈ R but c0m0
6= 0 or ckmk

6= 0 corresponding to the

highest terms if nonzero; and dkj, ekj ∈ R but either dknk
6= 0 or eknk

6= 0 in R corresponding to

the highest terms if nonzero.

Therefore, using the basic facts of Laplace transform for polynomials and translation and our

results in the previous sections we obtain

Theorem 4.1. Let f(s) be a rational function of s ∈ C vanishing at infinity with the factorization

as above. Assume that the real part of s satisfies the following inequality:

Re(s) > max{0, ak, bj | 1 ≤ k ≤ l1, 1 ≤ j ≤ l2}

if m0 ≥ 1, l1 ≥ 1, and l2 ≥ 1, and otherwise, some elements of the set may be dropped. Then, in

general,

L−1(f(s))(t) =

m0∑

j=1

c0jt
j−1

(j− 1)!
+

l1∑

k=1

mk∑

j=1

ckje
akttj−1

(j− 1)!

+

l2∑

k=1

dk1

ck
ebkt sin ckt+

l2∑

k=1

dk2

2ck
ebktt sin ckt

+

l2∑

k=1

⌈
nk
2

⌉
∑

n=2

dk(2n−1)e
bkt

[

ek(2n−2)(t) sin ckt+ ok(2n−3)(t) cos ckt
]

+

l2∑

k=1

⌊
nk
2

⌋
∑

n=2

dk(2n)e
bkt

[

ek(2n−2)(t) sin ckt+ ok(2n−1)(t) cos ckt
]

+

l2∑

k=1

ek1e
bkt cos ckt

+

l2∑

k=1

⌈
nk
2

⌉
∑

n=2

ek(2n−1)e
bkt

[

e∼k(2n−2)(t) sin ckt+ o∼

k(2n−3)(t) cos ckt
]

+

l2∑

k=1

⌊
nk
2

⌋
∑

n=1

ek(2n)e
bkt

[

e∼k(2n−2)(t) sin ckt+ o∼

k(2n−1)(t) cos ckt
]

,

where ⌈x⌉ means the minimum integer y such that y ≥ x, and ⌊x⌋ means the maximum integer y

such that y ≤ x, and ekj(t), okj(t), e
∼

kj(t), and o∼

kj(t) are polynomials of t with degree j and with

real coefficients involving ck.

Remark. The restriction on s ∈ C comes from the existence of the Laplace transform L(g(t))(s) =

f(s) for some g(t). Namely, s ∈ C should belong to a domain of convergence of L(g(t))(s). Note

that the maximum in the statement is just that of real parts of poles of the rational function f(s)

given.
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Remark. Note that L(δ(t)) = 1 for δ(t) the Dirac function, viewed as a distribution, i.e. a

functional, so that L−1(1) = δ(t), where the constant unit function 1 on C is also viewed as a

distribution.

5 Algebraic structure

In this section we consider algebraic structure about the Laplace transform via convolution product.

We denote by R0(C) the set of rational functions on C with real coefficients, vanishing at

infinity. Under pointwise addition and multiplication, R0(C) becomes a non-unital algebra over R.

Indeed,

Lemma 5.1. The set R0(C) is an algebra over R under point-wise operations.

Proof. Let f, g ∈ R0(C) such that f(s) = p1(s)

q1(s)
and g(s) =

p2(s)

q2(s)
for some polynomials pj(s), qj(s)

with deg pj < deg qj (j = 1, 2). Then

f(s) + g(s) =
p1(s)q2(s) + p2(s)q1(s)

q1(s)q2(s)
∈ R0(C)

and f(s)g(s) =
p1(s)p2(s)

q1(s)q2(s)
∈ R0(C)

and other axioms can be also easily checked.

We denote by A(R) the algebra overR generated by the sets of elementary continuous functions

on R: {tn |n ∈ N = {0, 1, 2, · · · }} of monomials and {eµt |µ ∈ R} and {sinλt, cosλt | λ ∈ R} under

point-wise addition and point-wise multiplication. Under (extended) convolution product defined

as:

(f ∗ g)(t) =

∫t

0

f(t− τ)g(τ)dτ, (t ∈ R)

for f, g ∈ A(R), which is a commutative and associative operation as well known as the usual case

on [0,∞), A(R) becomes an algebra over R. Indeed, check it in details as follows:

Proposition 5.2. The real algebra A(R) under point-wise operations is viewed as an algebra over

R under convolution product, as given in the following:

(1) (tn ∗ tm)(t) =

[

n∑

k=0

(

n

k

)

(−1)k

k +m+ 1

]

tn+m+1

for n,m ∈ N; and for µ, λ ∈ R with µ 6= λ,

(2) (eµt ∗ eλt)(t) =

{
eλt−eµt

λ−µ
if µ 6= λ,

teµt if µ = λ;
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and for n ≥ 0 in N and µ ∈ R with µ 6= 0,

(3) (tn ∗ eµt)(t) =

n∑

k=0

(

n

k

)

tn−k(−k)

∫ t

0

τkeµτdτ

with the integral
∫t
0
τkeµτdτ equal to

eµt

k+1∑

l=1

(−1)l−1k!

µl(k+ 1− l)!
tk+1−l +

(

(−1)k+1k!

µk+1

)

;

and for λ, µ ∈ R,

(4) (sin λt ∗ cosµt)(t) =

{
λ

λ2−µ2 cosµt− λ
λ2−µ2 cosλt if λ 6= ±µ,

1
2
t sinλt if λ = ±µ,

and

(cosλt ∗ cosµt)(t) =

{
µ

λ2−µ2 sinµt− λ
λ2−µ2 sinλt if λ 6= ±µ,

1
2
t cosλt+ 1

2λ
sin λt if λ = ±µ,

and

(sin λt ∗ sinµt)(t) =

{
λ

λ2−µ2 sinµt− µ
λ2−µ2 sin λt if λ 6= ±µ,

−1
2
t cosλt+ 1

2λ
sin λt if λ = ±µ;

and moreover, for µ, λ ∈ R with µ 6= 0,

(5) (eµt ∗ sin λt)(t) =
1

λ2 + µ2
{λe−µt − µ sin λt− λ cosλt}.

and

(eµt ∗ cosλt)(t) =
1

λ2 + µ2
{µe−µt − µ cosλt+ λ sin λt};

and furthermore,

(6) (tn ∗ sin λt)(t) =
n∑

k=0

(

n

k

)

tn−k(−1)k
∫t

0

τk sinλτdτ

with Ik =
∫t
0
τk sin λτdτ given by, for m ∈ N with m ≥ 0, if k = 2m,

I2m =

m+1∑

l=1

(−1)lk!

λ2l−1(k − 2l+ 2)!
tk−2l+2 cosλt

+

m∑

l=1

(−1)(l−1)k!

λ2l(k − 2l+ 1)!
tk−2l+1 sin λt+

(−1)mk!

λ2m+1

and if k = 2m + 1,

I2m+1 =

m+1∑

l=1

(−1)lk!

λ2l−1(k− 2l+ 2)!
tk−2l+2 cosλt

+

m+1∑

l=1

(−1)(l−1)k!

λ2l(k − 2l+ 1)!
tk−2l+1 sinλt
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so that

(tn ∗ sin λt)(t) =

⌊n
2
⌋

∑

m=0

(

n

2m

)

{

m+1∑

l=1

(−1)2m+lk!

λ2l−1(k − 2l+ 2)!
tn−2l+2 cosλt

+

m∑

l=1

(−1)(2m+l−1)k!

λ2l(k − 2l + 1)!
tn−2l+1 sin λt+

(−1)3mk!

λ2m+1
tn−2m}

+

⌈n
2
⌉−1

∑

m=0

(

n

2m + 1

)

{

m+1∑

l=1

(−1)2m+1+lk!

λ2l−1(k − 2l + 2)!
tn−2l+2 cosλt

+

m+1∑

l=1

(−1)(2m+l)k!

λ2l(k − 2l + 1)!
tn−2l+1 sin λt}

and also,

(tn ∗ cosλt)(t) =

n∑

k=0

(

n

k

)

tn−k(−1)k
∫t

0

τk cosλτdτ

with Jk ≡
∫t
0
τk cosλτdτ given by, for m ∈ N with m ≥ 0, if k = 2m,

J2m =

m+1∑

l=1

(−1)(l−1)k!

λ2l−1(k − 2l+ 2)!
tk−2l+2 sin λt

+

m∑

l=1

(−1)(l−1)k!

λ2l(k − 2l+ 1)!
tk−2l+1 cosλt

and if k = 2m + 1,

J2m+1 =

m+1∑

l=1

(−1)(l−1)k!

λ2l−1(k− 2l+ 2)!
tk−2l+2 sin λt

+

m+1∑

l=1

(−1)(l−1)k!

λ2l(k − 2l+ 1)!
tk−2l+1 cosλt+

(−1)m+1k!

λ2m+2

so that

(tn ∗ cosλt)(t) =

⌊n
2
⌋

∑

m=0

(

n

2m

)

{

m+1∑

l=1

(−1)(2m+l)k!

λ2l−1(k − 2l+ 2)!
tn−2l+2 sinλt

+

m∑

l=1

(−1)(2m+l)k!

λ2l(k − 2l+ 1)!
tn−2l+1 cosλt}

+

⌈n
2
⌉−1

∑

m=0

(

n

2m+ 1

)

{

m+1∑

l=1

(−1)(2m+l)k!

λ2l−1(k − 2l+ 2)!
tn−2l+2 sinλt

+

m+1∑

l=1

(−1)(2m+l)k!

λ2l(k − 2l+ 1)!
tn−2l+1 cosλt+

(−1)3m+2k!

λ2m+2
tn−2m−1}.
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Finally, the convolution of general monomials is given by, as an example,

(7) (tneµ1t sinλ1t) ∗ (t
meµ2t cosλ2t)(t)

= eµ1t

n∑

k=0

(

n

k

)

tn−k(−1)k
∫t

0

τk+me(µ2−µ1)τ sinλ1(t− τ) cosλ2τdτ

with sin λ1(t− τ) cosλ2τ = 1
2
{sin(λ1t−(λ1 − λ2)τ) + sin(λ1t−(λ1 + λ2)τ)}, and then the following

integral is computed inductively as

Ik+m,sin ≡

∫t

0

τk+me(µ2−µ1)τ sin(λ1t− (λ1 ± λ2)τ)dτ

=
µ2 − µ1

(µ2 − µ1)2 + (λ1 ± λ2)2
tk+me(µ2−µ1)t sin(∓λ2t)

+
λ1 ± λ2

(µ2 − µ1)2 + (λ1 ± λ2)2
tk+me(µ2−µ1)t cos(∓λ2t)

−
(k +m)(µ2 − µ1)

(µ2 − µ1)2 + (λ1 ± λ2)2

∫t

0

τk+m−1e(µ2−µ1)τ sin(λ1t− (λ1 ± λ2)τ)dτ

−
(k+m)(λ1 ± λ2)

(µ2 − µ1)2 + (λ1 ± λ2)2

∫t

0

τk+m−1e(µ2−µ1)τ cos(λ1t− (λ1 ± λ2)τ)dτ,

where the last two integrals are denoted by Ik+m−1,sin and Ik+m−1,cos respectively, and the integrals

can be inductively reduced to the cases of Ij,sin and Ij,cos for 1 ≤ j ≤ k +m − 2 and finally to the

case of I0,sin and I0,cos that are given by

I0,sin ≡

∫ t

0

e(µ2−µ1)τ sin(λ1t− (λ1 ± λ2)τ)dτ

=
µ2 − µ1

(µ2 − µ1)2 + (λ1 ± λ2)2
{e(µ2−µ1)t sin(∓λ2t) − sin(λ1t)}

+
λ1 ± λ2

(µ2 − µ1)2 + (λ1 ± λ2)2
{e(µ2−µ1)t cos(∓λ2t) − cos(λ1t)}

and

I0,cos ≡

∫t

0

e(µ2−µ1)τ cos(λ1t− (λ1 ± λ2)τ)dτ

=
µ2 − µ1

(µ2 − µ1)2 + (λ1 ± λ2)2
{e(µ2−µ1)t cos(∓λ2t) − cos(λ1t)}

−
λ1 ± λ2

(µ2 − µ1)2 + (λ1 ± λ2)2
{e(µ2−µ1)t sin(∓λ2t) − sin(λ1t)}

Other cases of convolution products of general monomials with sin and cos changed are also

computed similarly, but omitted.
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Proof. For (1), check first that for n,m ≥ 0 in N,

(tn ∗ tm)(t) =

∫t

0

(t− τ)nτmdτ

=

∫t

0

n∑

k=0

(

n

k

)

tn−k(−1)kτk+mdτ =

n∑

k=0

(

n

k

)

tn−k(−1)k
tk+m+1

k +m + 1

=

[

n∑

k=0

(

n

k

)

(−1)k

k +m + 1

]

tn+m+1 ∈ A(R).

Also, for (2), for µ, λ ∈ R with µ 6= λ,

(eµt ∗ eλt)(t) =

∫t

0

eµ(t−τ)eλτdτ = eµt

∫t

0

e(λ−µ)τdτ

= eµt

[

e(λ−µ)τ

λ− µ

]t

τ=0

=
eλt − eµt

λ − µ
∈ A(R).

If µ = λ, then

(eµt ∗ eλt)(t) =

∫t

0

eµtdτ = teµt ∈ A(R).

Moreover, for (3), for n ≥ 0 in N and µ ∈ R with µ 6= 0,

(tn ∗ eµt)(t) =

∫t

0

(t− τ)neµτdτ

=

∫t

0

n∑

k=0

(

n

k

)

tn−k(−k)τkeµτdτ =

n∑

k=0

(

n

k

)

tn−k(−k)

∫t

0

τkeµτdτ.

We then compute the following integral by integration by parts:

Ik ≡

∫t

0

τkeµτdτ =
1

µ
tkeµt −

k

µ
Ik−1

=
1

µ
tkeµt −

k

µ2
tk−1eµt +

k(k − 1)

µ2
Ik−2

=
1

µ
tkeµt −

k

µ2
tk−1eµt + · · ·+

(−1)k−1k(k − 1) · · · 2

µk−1

(

t

µ
eµt −

1

µ
I0

)

= eµt

k+1∑

l=1

(−1)l−1k!

µl(k + 1− l)!
tk+1−l +

(

(−1)k+1k!

µk+1

)

with I0 =
∫t
0
eµτdτ = 1

µ
(eµt − 1).
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Next, for (4), for λ, µ ∈ R with λ 6= ±µ,

(sin λt ∗ cosµt)(t) =

∫t

0

sin λ(t− τ) cosµτdτ

=
1

2

∫t

0

{sin(λt− (λ − µ)τ) + sin(λt − (λ + µ)τ)}dτ

=
1

2

[

cos(λt− (λ− µ)τ)

λ − µ
+

cos(λt− (λ + µ)τ)

λ+ µ

]t

τ=0

=
λ

λ2 − µ2
cosµt−

λ

λ2 − µ2
cosλt ∈ A(R).

If λ = ±µ, then (sin λt ∗ cosµt)(t) = 1
2
t sin λt ∈ A(R).

Moreover, for λ, µ ∈ R with λ 6= ±µ,

(cosλt ∗ cosµt)(t) =

∫t

0

cosλ(t − τ) cosµτdτ

=
1

2

∫t

0

{cos(λt − (λ − µ)τ) + cos(λt− (λ+ µ)τ)}dτ

=
1

2

[

sin(λt − (λ− µ)τ)

−(λ − µ)
+

sin(λt− (λ + µ)τ)

−(λ+ µ)

]t

τ=0

=
µ

λ2 − µ2
sinµt−

λ

λ2 − µ2
sin λt ∈ A(R).

If λ = ±µ, then (cosλt ∗ cosµt)(t) = 1
2
t cosλt+ 1

2λ
sinλt ∈ A(R).

Furthermore, for λ, µ ∈ R with λ 6= ±µ,

(sin λt ∗ sinµt)(t) =

∫t

0

sinλ(t − τ) sinµτdτ

=
−1

2

∫t

0

{cos(λt − (λ − µ)τ) − cos(λt − (λ+ µ)τ)}dτ

=
−1

2

[

sin(λt − (λ − µ)τ)

−(λ − µ)
−

sin(λt− (λ + µ)τ)

−(λ+ µ)

]t

τ=0

=
λ

λ2 − µ2
sinµt −

µ

λ2 − µ2
sin λt ∈ A(R).

If λ = ±µ, then (sin λt ∗ sinµt)(t) = −1
2
t cosλt+ 1

2λ
sin λt ∈ A(R).

Next, for (5), for µ, λ ∈ R with µ 6= 0,

(eµt ∗ sin λt)(t) = eµt

∫t

0

e−µτ sin λτdτ



112 Takahiro Sudo CUBO
16, 3 (2014)

with the integral Is ≡
∫t
0
e−µτ sin λτdτ computed as

Is =

[

e−µτ

−µ
sin λτ

]t

τ=0

+
λ

µ

∫t

0

e−µτ cosλτdτ

=
e−µt

−µ
sinλt+

λ

µ2
(1 − eµt cosλt) −

λ2

µ2
Is

so that

Is =
1

λ2 + µ2
{λ− e−µt(µ sin λt+ λ cosλt)}.

Similarly,

(eµt ∗ cosλt)(t) = eµt

∫t

0

e−µτ cosλτdτ

with the integral Ic ≡
∫t
0
e−µτ cosλτdτ computed as

Ic =

[

e−µτ

−µ
cosλτ

]t

τ=0

−
λ

µ

∫t

0

e−µτ sin λτdτ

=
1

µ
(1 − e−µt cosλt) +

λ

µ2
e−µt sin λt−

λ2

µ2
Ic

so that

Ic =
1

λ2 + µ2
{µ− e−µt(µ cosλt− λ sin λt)}.

On the other hand, for (6), for n ≥ 0 in N and λ ∈ R with λ 6= 0,

(tn ∗ sin λt)(t) =

∫t

0

(t− τ)n sin λτdτ =

∫t

0

n∑

k=0

(

n

k

)

tn−k(−1)kτk sin λτdτ =

n∑

k=0

(

n

k

)

tn−k(−1)k
∫t

0

τk sin λτdτ.

We then compute the following integral by integration by parts:

Ik ≡

∫t

0

τk sin λτdτ =
−1

λ
tk cosλt+

k

λ

∫t

0

τk−1 cosλτdτ

=
−1

λ
tk cosλt+

k

λ2
tk−1 sin λt−

k(k − 1)

λ2
Ik−2.

Inductively, if k = 2m with m ∈ N and m ≥ 0, then

I2m =

m∑

l=1

(−1)lk!

λ2l−1(k− 2l+ 2)!
tk−2l+2 cosλt

+

m∑

l=1

(−1)(l−1)k!

λ2l(k − 2l+ 1)!
tk−2l+1 sinλt+

(−1)mk!

λ2m
I0
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with I0 =
∫t
0
sin λτdτ = 1

λ
− 1

λ
cosλt, and hence,

I2m =

m+1∑

l=1

(−1)lk!

λ2l−1(k − 2l+ 2)!
tk−2l+2 cosλt

+

m∑

l=1

(−1)(l−1)k!

λ2l(k − 2l + 1)!
tk−2l+1 sin λt+

(−1)mk!

λ2m+1
.

If k = 2m + 1 with m ∈ N and m ≥ 0, then

I2m+1 =

m∑

l=1

(−1)lk!

λ2l−1(k − 2l + 2)!
tk−2l+2 cosλt

+

m∑

l=1

(−1)(l−1)k!

λ2l(k − 2l+ 1)!
tk−2l+1 sin λt+

(−1)mk!

λ2m
I1

with I1 =
∫t
0
τ sinλτdτ = −1

λ
t cosλt+ 1

λ2 sin λt, and hence,

I2m+1 =

m+1∑

l=1

(−1)lk!

λ2l−1(k − 2l + 2)!
tk−2l+2 cosλt

+

m+1∑

l=1

(−1)(l−1)k!

λ2l(k − 2l+ 1)!
tk−2l+1 sinλt.

Similarly, for n ≥ 0 in N and λ ∈ R with λ 6= 0,

(tn ∗ cosλt)(t) =

∫t

0

(t − τ)n cosλτdτ =

∫ t

0

n∑

k=0

(

n

k

)

tn−k(−1)kτk cosλτdτ =

n∑

k=0

(

n

k

)

tn−k(−1)k
∫t

0

τk cosλτdτ.

We then compute the following integral by integration by parts:

Jk ≡

∫t

0

τk cosλτdτ =
1

λ
tk sin λt+

−k

λ

∫ t

0

τk−1 sinλτdτ

=
1

λ
tk sin λt+

k

λ2
tk−1 cosλt−

k(k − 1)

λ2
Jk−2.

Inductively, if k = 2m with m ∈ N and m ≥ 0, then

J2m =

m∑

l=1

(−1)(l−1)k!

λ2l−1(k − 2l+ 2)!
tk−2l+2 sinλt

+

m∑

l=1

(−1)(l−1)k!

λ2l(k− 2l+ 1)!
tk−2l+1 cosλt+

(−1)mk!

λ2m
J0
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with J0 =
∫t
0
cosλτdτ = 1

λ
sinλt, and hence,

J2m =

m+1∑

l=1

(−1)(l−1)k!

λ2l−1(k − 2l+ 2)!
tk−2l+2 sin λt

+

m∑

l=1

(−1)(l−1)k!

λ2l(k − 2l + 1)!
tk−2l+1 cosλt.

If k = 2m + 1 with m ∈ N and m ≥ 0, then

J2m+1 =

m∑

l=1

(−1)(l−1)k!

λ2l−1(k− 2l+ 2)!
tk−2l+2 sin λt

+

m∑

l=1

(−1)(l−1)k!

λ2l(k − 2l+ 1)!
tk−2l+1 cosλt+

(−1)mk!

λ2m
J1

with J1 =
∫t
0
τ cosλτdτ = 1

λ
t sinλt + 1

λ2 (cosλt− 1), and hence,

J2m+1 =

m+1∑

l=1

(−1)(l−1)k!

λ2l−1(k − 2l+ 2)!
tk−2l+2 sin λt

+

m+1∑

l=1

(−1)(l−1)k!

λ2l(k − 2l+ 1)!
tk−2l+1 cosλt+

(−1)m+1k!

λ2m+2
.

Finally, for (7), the convolution of general monomials is given by, as an example,

(tneµ1t sin λ1t) ∗ (t
meµ2t cosλ2t)(t)

=

∫t

0

(t − τ)neµ1(t−τ) sinλ1(t− τ)τmeµ2τ cosλ2τdτ

= eµ1t

n∑

k=0

(

n

k

)

tn−k(−1)k
∫t

0

τk+me(µ2−µ1)τ sin λ1(t − τ) cosλ2τdτ

with sin λ1(t− τ) cosλ2τ = 1
2
{sin(λ1t−(λ1− λ2)τ)+ sin(λ1t−(λ1+ λ2)τ)}, and then the following

integral is computed inductively as

Ik+m,sin ≡

∫t

0

τk+me(µ2−µ1)τ sin(λ1t− (λ1 ± λ2)τ)dτ

=

[

τk+m

∫

e(µ2−µ1)τ sin(λ1t− (λ1 ± λ2)τ)dτ

]t

τ=0

− (k +m)

∫t

0

τk+m−1

(∫

e(µ2−µ1)τ sin(λ1t− (λ1 ± λ2)τ)dτ

)

dτ
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where the indefinite integral is computed by using integration by parts twice as:
∫

e(µ2−µ1)τ sin(λ1t− (λ1 ± λ2)τ)dτ

=
µ2 − µ1

(µ2 − µ1)2 + (λ1 ± λ2)2
e(µ2−µ1)τ sin(λ1t− (λ1 ± λ2)τ)

+
λ1 ± λ2

(µ2 − µ1)2 + (λ1 ± λ2)2
e(µ2−µ1)τ cos(λ1t− (λ1 ± λ2)τ)

and hence, we obtain

Ik+m,sin =
µ2 − µ1

(µ2 − µ1)2 + (λ1 ± λ2)2
tk+me(µ2−µ1)t sin(∓λ2t)

+
λ1 ± λ2

(µ2 − µ1)2 + (λ1 ± λ2)2
tk+me(µ2−µ1)t cos(∓λ2t)

−
(k +m)(µ2 − µ1)

(µ2 − µ1)2 + (λ1 ± λ2)2

∫t

0

τk+m−1e(µ2−µ1)τ sin(λ1t− (λ1 ± λ2)τ)dτ

−
(k+m)(λ1 ± λ2)

(µ2 − µ1)2 + (λ1 ± λ2)2

∫t

0

τk+m−1e(µ2−µ1)τ cos(λ1t− (λ1 ± λ2)τ)dτ,

where the last two integrals are denoted by Ik+m−1,sin and Ik+m−1,cos respectively, and the integrals

can be inductively reduced to the case of I0,sin and I0,cos that are given by

I0,sin ≡

∫t

0

e(µ2−µ1)τ sin(λ1t− (λ1 ± λ2)τ)dτ

=
µ2 − µ1

(µ2 − µ1)2 + (λ1 ± λ2)2
{e(µ2−µ1)t sin(∓λ2t) − sin(λ1t)}

+
λ1 ± λ2

(µ2 − µ1)2 + (λ1 ± λ2)2
{e(µ2−µ1)t cos(∓λ2t) − cos(λ1t)}

and

I0,cos ≡

∫t

0

e(µ2−µ1)τ cos(λ1t− (λ1 ± λ2)τ)dτ

=
µ2 − µ1

(µ2 − µ1)2 + (λ1 ± λ2)2
{e(µ2−µ1)t cos(∓λ2t) − cos(λ1t)}

−
λ1 ± λ2

(µ2 − µ1)2 + (λ1 ± λ2)2
{e(µ2−µ1)t sin(∓λ2t) − sin(λ1t)}.

Other cases of convolution products of general monomials with sin and cos changed are also

computed similarly.

Theorem 5.3. The Laplace transform L is an algebra homomorphism from A(R) with convolution

product to R0(C) with point-wise multiplication.

Also, the inverse Laplace transform L−1 is an algebra homomorphism from R0(C) to A(R).

Then L−1 ◦ L = idA(R) and L ◦ L−1 = idR0(C) the identity maps on A(R) and R0(C).
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Remark. Note that we identify a rational function g in R0(C) with the image of f ∈ A(R) under L

with domain of convergence such that L(f) = g. Indeed, the infimum of the real part of the domain

of convergence for L(f) = g is defined to be the maximum of the real parts of poles of g, so that

the domain of convergence for L(f) is determined by g uniquely.

Proof. It is well known that L(f ∗ g)(s) = L(f)(s) · L(g)(s) for f, g ∈ A(R). It follows by the

convolution products checked explicitly in Proposition 5.2, in particular, that any element of A(R),

which is a linear combination of multiples of elementary continuous functions, is a continuous

function on R, so that, as also a well known fact, the Laplace transform is injective on A(R) but

restricted to [0,∞), and hence the inverse Laplace transform L−1 is also injective on L(A(R)). Note

that real coefficients in such linear combinations are determined uniquely by the injectivity, so that

we may extend the definition domains from [0,∞) to R preserving the injectivity. It is clear that

L(A(R)) is contained in R0(C) by using basic formulae in Laplace transform and by Proposition

5.2. For instance, check that

L(eµttn sin λt)(s) = L(tn sin λt)(s− µ) =

(−1)nL((−t)n sin λt)(s− µ) = (−1)n
dn

dsn

(

λ

(s− µ)2 + λ2

)

∈ R0(C).

The last belonging is proved by induction. Indeed, if p(s)

q(s)
∈ R0(C), then

d
ds

(
p(s)

q(s)
) =

p ′(s)q(s)−p(s)q ′(s)

q(s)2
∈

R0(C).

It is also checked explicitly in Theorem 4.1 that any element of R0(C) is mapped to an element

of A(R) under L−1.

Corollary 5.4. It follows that the algebra A(R) with convolution product is isomorphic to R0(C),

as an algebra.

It also follows that the algebra A(R) with point-wise multiplication is isomorphic to R0(C), as

a real vector space.

Remark. The Laplace transform L (as well as the inverse L−1) is linear but dose not preserve

point-wise multiplication. For instance,

L(t2) =
2

s3
6= L(t) · L(t) =

1

s2
·
1

s2
=

1

s4
.
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