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ABSTRACT

A black hole is a spacetime region in whose interior lies a structure known as a space-

time singularity whose scientific description is profoundly elusive, and which depends

upon the still missing theory of quantum gravity. Using the classical weak comparison

principle we are able to obtain new bounds, compactness results and concentration phe-

nomena in the theory of Newtonian potentials of distributions with compact support

which gives a suitable mathematical theory of spacetime singularity. We derive a rig-

orous renormalization of the Newtonian gravity law using nonlinear functional analysis

and we have a solid set of astronomical observations supporting our new equation. This

general setting introduces a new kind of ill posed problem with a very simple physical

interpretation.

RESUMEN

Un hoyo negro es una región espacio-temporal en cuyo interior hay una estructura

llamada singularidad espacio-temporal cuya descripción cient́ıfica es dif́ıcil de encontrar,

y que depende de la aún inexistente teoŕıa de la gravedad cuántica. Usando el clásico

principio de comparación débil, aqúı probamos nuevas cotas, resultados de compacidad

y fenómenos de concentración en la teoŕıa de potenciales Newtonianos de distribuciones

de soporte compacto, que dan una teoŕıa matemática adecuada de la singularidad

espacio-temporal. Derivamos una rigurosa renormalización de la ley de gravitación

Newtoniana usando análisis funcional no lineal y tenemos un contundente conjunto de

datos de observaciones astronómicas que apoyan nuestra nueva ecuación. Este marco

general introduce una nueva forma de problema mal-puesto con una interpretación

f́ısica muy simple.
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1 Introduction.

In [2, 3], the authors introduced a new concentration phenomena for the Poisson’s equation using

techniques from nonlinear functional analysis. In this article we are concerned with several sim-

ple consequences of this new concentration of compactness results. Using the classical theory of

Newtonian potentials of distributions with compact support we are able to derive concentration

of compactness for Newtonian potentials with singular behaviour. For a review of this topic see [10].

Newtonian potentials are useful in the description of gravity fields of celestial bodies [5, 20, 21].

Today black holes in gravity theory and astronomy plays a central role [8, 12, 15, 27, 30, 31, 33,

40, 46]. The interior of a black hole is usually called spacetime singularity [7, 31]. In [3] we

obtain the existence of a sequence {Pj}
∞
j=1 ∈ C2(Ω) for any Ω bounded domain in R

N such that

− limj→∞ ∆Pj = ∞ uniformly on Ω and 0 < Pj(x) ≤ Pj+1(x) ≤ Cte for all x ∈ Ω. This

sequence proof that it is possible to do rigorous treatment of divergence to infinite in the frame

of Newtonian potentials extending rigorous quantum field theories on large scale [37, 38]. Black

holes are complicated real objects, and our Newtonian equation is a mathematical object but we

have astronomical observations of supermassive black holes given a concrete physical significance

to this new theoretical frame [27]. This is a remarkable fact in gravity theory [13, 41].

Lemma 1.1 (Lemma 1 page 277 [11]). Let Ω be an open set of RN, f ∈ D ′(Ω) and u a solution

(in the sense of distribution) of Poisson’s equation ∆u = f on Ω. Then for every bounded open set

Ω1 with Ω1 ⊂ Ω there exists f1 ∈ E ′ the space of distributions on R
N with compact support, such

that

f1 = f on Ω, u = the Newtonian potential of f1 on Ω1. (1)

Therefore for Ω1 ⊂ Ω and our sequence {Pj}
∞
j=1 there exists a sequence {f1,j}

∞
j=1 ∈ E ′ the

space of distributions on R
N with compact support, such that

f1,j = ∆Pj on Ω, Pj = the Newtonian potential of f1,j on Ω1. (2)

We have associated to each pair {Pj, Ω1} a gravitational Newtonian potential defined on all RN.

Using this lemma we have a very simple Newtonian interpretation of the interior of a black hole.

We have a set of solid astronomic observations supporting our new equation.
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Black hole name Solar mass (sun=1) References

Holmberg 15A 170.000.000.000 [23]

S5 0014+813 40.000.000.000 [16]

SDSS J085543.40-001517.7 25.000.000.000 [47]

APM 08279+5255 23.000.000.000 [35]

NGC 4889 21.000.000.000 [25]

Central black hole of Phoenix cluster 20.000.000.000 [26]

SDSS J07451.78+734336.1 19.500.000.000 [47]

OJ 285 primary 18.000.000.000 [39]

SDSS J08019.69+373047.3 15.140.000.000 [47]

SDSS J115954.33+20192.1 14.120.000.000 [47]

SDSS J075303.34+423130.8 13.500.000.000 [47]

SDSS J081855.77+095848.0 12.000.000.000 [47]

SDSS J0100+2802 12.000.000.000 [44]

SDSS J082535.19+512706.3 11.220.000.000 [47]

SDSS J013127.34-0321000.1 11.000.000.000 ♦

Central black hole of RX J1532.9+3021 10.000.000.000 ♦

QSO B2126-158 10.000.000.000 [16]

SDSS J015741.57-010629.6 9.800.000.00 [47]

NGC 3842 9.700.000.000 [25]

SDSS J2330301.45-093930.7 9.120.000.000 [47]

SDSS J075819.70+202300.9 7.800.000.000 [47]

SDSS J080956.02+50200.9 6.450.000.000 [47]

SDSS J0142114.75+0023224.2 6.310.000.000 [47]

Messier 87 6.300.000.000 ♦

QSO B0746+254 5.000.000.000 [16]

QSO B2149-306 5.000.000.000 [16]

NGC 1277 5.000.000.000 ♦

SDSS J090033.50+421547.0 4.700.000.000 [47]

Messier 60 4.500.000.000 ♦

SDSS J011521.20+152453.3 4.100.000.000 [47]

QSO B0222+185 4.000.000.000 [16]

Hercules A (3C 348) 4.000.000.000 ♦

SDSS J213023.61+122252.0 3.500.000.000 [47]
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J173352.23+540030.4 3.400.000.000 [47]

SDSS J025021.76-075749.9 3.100.000.000 [47]

SDSS J030341.04-002321.9 3.000.000.000 [47]

QSO B0836+710 3.000.000.000 [16]

SDSS J224956.08+000218.0 2.630.000.000 [47]

SDSS J030449.85-000813.4 2.400.000.000 [47]

SDSS J234625.66-001600.4 2.240.000.000 [47]

ULAS J1120+0641 2.000.000.000 ♦

QSO 0537-286 2.000.000.000 [16]

NGC 3115 2.000.000.000 ♦

Q0906+6930 2.000.000.000 ♦

QSO B0805+614 1.500.000.000 [16]

Messier 84 1.500.000.000 ♦

QSO B225155+2217 1.000.000.000 [16]

QSO B1210+330 1.000.000.000 [16]

NGC 6166 1.000.000.000 ♦

Cygnus A 1.000.000.000 ♦

Sombrero Galaxy 1.000.000.000 ♦

Markarian 501 900.000.000-3.400.000.000 ♦

PG 1426+015 467.740.000 [28]

3C 273 550.000.000 [28]

Messier 49 560.000.000 ♦

PG 0804+761 190.550.000 [28]

PG 1617+175 275.420.000 [28]

PG 1700 + 518 60.260.000 [28]

NGC 4261 400.000.000 ♦

NGC 1275 340.000.000 ♦

3C 390.3 338.840.000 [28]

II Zwicky 136 144.540.000 [28]

PG 0052+251 218.780.000 [28]

Messier 59 270.000.000 ♦

PG 1411+442 79.430.000 [28]

Markarian 876 240.000.000 [28]

Andromeda Galaxy 230.000.000 ♦

PG 0953+414 182.000.000 [28]

PG 0026+129 53.700.000 [28]

Fairall 9 79.430.000 [28]
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Markarian 1095 182.000.000 [28]

Messier 105 200.000.000 ♦

Markarian 509 57.550.000 [28]

OJ 287 secondary 100.000.000 [39]

RX J124236.9-1111935 100.000.000 ♦

Messier 85 100.000.000 ♦

NGC 5548 123.000.000 ♦

PG 1221+143 40.740.000 [28]

Messier 88 80.000.000 ♦

Messier 81 70.000.000 ♦

Markarian 771 75.860.000 [28]

Messier 58 70.000.000 ♦

PG 0844+349 21.380.000 [28]

Centaurus A 55.000.000 ♦

Markarian 79 52.500.000 [28]

Messier 96 48.000.000 ♦

Markarian 817 43.650.000 [28]

NGC 3227 38.900.000 [28]

NGC 4151 primary 40.000.000 ♦

3C 120 22.900.000 ♦

Markarian 279 41.700.000 ♦

NGC 3516 23.000.000 ♦

NGC 863 17.700.00 ♦

Messier 82 30.000.000 ♦

Messier 108 24.000.000 ♦

NGC 3783 9.300.000 ♦

Markarian 110 5.620.000 ♦

Markarian 335 6.310.000 ♦

NGC 4151 secondary 10.000.000 ♦

NGC 7469 6.460.000 ♦

IC 4329 A 5.010.000 ♦

NGC 4593 8.130.000 ♦

Messier 61 5.000.000 ♦

Messier 32 1.500.000-5.000.000 ♦

Sagittarius A* 4.100.000 ♦

NGC 4051 1.300.000 ♦

♦Only main
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references are provided.

Our function P = limj→∞ Pj is very ’rough’ from the point of view of regularity on Sobolev’s

spaces in opposition of the Poisson’s equation ∆u = 0 on Ω.

Theorem 1.2 (Weyl page 118[10]). Let Ω ⊂ R
N be open and u ∈ L1loc(Ω) satisfy

∫
Ω
u∆v = 0 for

all v ∈ C∞
0 (Ω). Then u ∈ C∞(Ω) and ∆u = 0.

A simpler use of Green’s identity allow us to imply the discontinuity at infinitum of the

functional G : C2(Ω)× C2(Ω)→ R,

G(u, v) =

∫

Ω

(v∆u− u∆v)dx−

∫

∂Ω

(

v
∂u

∂n
− u

∂v

∂n

)

dγ, (3)

where Ω is a bounded domain with C1 boundary ∂Ω. The functional G for a fixed pair (u, v) ∈

C2(Ω) × C2(Ω) in a smooth bounded domain Ω ⊂ R
N satisfies the Green’s identity G(u, v) = 0

(for a proof of Green’s formula see page 20 [29]). This equality is a consequence of the divergence

Theorem, (for a proof of the divergence Theorem stated by E. Heinz see page 46 [36], also page

570 [11]). Let us to remember several classical results:

Theorem 1.3. [Theorem 6.6 [18]] Let Ω be a C2,α domain in R
N and let u ∈ C2,α(Ω) be a

solution of the equation

Lu =

N∑

i,j=1

aijuxi,xj
+

N∑

i=1

biuxi
+ cu = f, (4)

where f ∈ Cα(Ω) and the coefficients of L satisfy, for positive constants λ, Λ

N∑

i,j=1

aijξiξj ≥ λ | ξ |2, for all x ∈ Ω, ξ ∈ R
N, (5)

| ai,j |0,α;Ω, | bi |0,α;Ω, | ci |0,α;Ω≤ Λ. (6)

Let ϕ ∈ C2,α(Ω) and suppose u = ϕ on ∂Ω. Then

| u |2,α;Ω≤ C{| u |0,Ω + | ϕ |2,α;Ω + | f |0,α;Ω}, (7)

where C = C(N,α, λ,Λ,Ω).

Lu = Di

(

aij(x)Dju+ bi(x)u
)

+ ci(x)Diu+ d(x)u, (8)

L∗u = Di

(

aijDju− ciu
)

− biDiu+ du, (9)

aij(x)ξiξj ≥ λ | ξ |2, for all x ∈ Ω, ξ ∈ R
N, (10)

∑
| aij(x) |2≤ Λ2, (11)

λ−2
∑

(

| bi(x) |2 + | ci(x) |2
)

+ λ−1 | d(x) |≤ v2, (12)
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Theorem 1.4. [Theorem 9.11 [18]] Let Ω be an open set in R
N and W2,p(Ω)∩Lp(Ω), 1 < p <∞,

a strong solution of the equation Lu = f in Ω where the coefficients of L satisfy for positive constants

λ, Λ

aij ∈ C0(Ω), bi, c ∈ L∞(Ω), f ∈ Lp(Ω); (13)

aijξiξj ≥ λ | ξ |2 for all ξ ∈ R
N, (14)

| ai,j |, | bi |, | c |≤ Λ, (15)

where i, j = 1, . . . , N. Then for any domain Ω ′ ⊂⊂ Ω,

‖ u ‖2,p;Ω ′≤ C (‖ u ‖p;Ω + ‖ f ‖p;Ω) , (16)

where C depends on N,p, λ,Λ,Ω ′,Ω and the moduli of continuity of the coefficients aij on Ω ′.

Now the existence of our concentrating sequence of non negative, bounded functions {Pj}
∞
j=1

is a compactness property not established and noncontradictory with the statements in Theorems

1.3 and 1.4. This is a singular property that using very elementary techniques, allow us to obtain

new bounds and several interesting results related to the Newtonian potential in the theory of

distributions [11]. Moreover we built a sequence Fj : [a, b] → [0,∞) satisfying limj→∞ F ′′
j (x) =

−∞ in measure, Cte ≥ Fj+1 ≥ Fj ≥ 0 and each Fj non increasing on [a, b]. By considering

Fj(x1, x2, . . . , xN) = Fj(x1) we obtain a sequence for bounded smooth domains in R
N, N ≥ 2 with

similar properties.

2 Preliminaries.

The results of this section are contained in [3]. For the sake of the readability, we stated and prove

it here again.

Lemma 2.1. Let B(0, R) be a ball of radius R > 0 in R
N, N > 2. Consider the singular nonlinear

elliptic equation

−∆Pj = Hj(Pj) in B(0, R)

Pj = 0 on ∂B(0, R).
(17)

where Hj : (0,∞)→ (0,∞) is locally Hölder continuous function

Hj(s) =

{
s−j if 0 < s < 1,

s−1 if s ≥ 1.

Then the next properties holds:

(i) The sequence {Pj}
∞
j=1 ∈ C2(B(0, R)) ∩ C(B(0, R)) are radial functions with ∂P

∂r
< 0.

(ii) The sequence {Pj}
∞
j=1 satisfies Pj ≤ Pj+1.

(iii) The sequence {Hj(Pj)}
∞
j=1 satisfies Hj(Pj) ≤ Hj+1(Pj+1).

(iv) The sequence {Pj}
∞
j=1 satisfies w ≤ Pj ≤ e, where −∆v = v−1 in B(0, R), v = 0 on ∂B(0, R),
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−∆e = e−1 in B(0, R), e = 1 on ∂B(0, R) and −∆w = e−1 in B(0, R), w = 0 on ∂B(0, R).

Proof. The enunciate (i) is a consequence of classical results on radial symmetry. The points (ii)

and (iii) have been stated at [2, 3] and the point (iv) is proved in [1].

Theorem 2.2 ([3]). Let B(0, R) ⊂ R
N, a ball of radius R, with N ≥ 3. Then there exists a sequence

of radial, nonnegative and bounded functions {Pj}
∞
j=1 and 0 ≤ R0 < R such that

− lim
j→∞

∆Pj =∞ on A(R0, R), (18)

where A(R0, R) is the annulus of external radius R and internal radius R0. Moreover Pj ∈

C∞(A(R0, R)) and Pj ≤ Pj+1.

Proof. Our proof is a reductio ad absurdum procedure. Let us to consider

P = lim
j→∞

Pj. (19)

Now if there exists no sequence such that it is stated in our Theorem 2.2, then

lim
rրR

P(r) ≥ 1, (20)

because if limrրR P(r) < 1 for a all nonnegative and small enough ǫ, there exist δ > 0 such that

P(r) ≤ 1− ǫ for all r ∈ (R − δ, R). Therefore Pj(r) ≤ P(r) ≤ 1− ǫ for all r ∈ (R− δ, R) and

− limj→∞ ∆Pj = limj→∞ Hj(Pj)

= limj→(Pj)
−j

≥ limj→∞(1− ǫ)−j

= ∞ on A(R − δ, R).

(21)

Similarly if there exists no sequence satisfying our Theorem 2.2 then

lim
j→∞

Hj(Pj(r)) <∞ for all r ∈ [0, R), (22)

because if

lim
j→∞

Hj(Pj(r)) =∞ for r0 ∈ [0, R), (23)

from

Hj(Pj(r)) ≥ Hj(Pj(r0)) for all | x |= r ∈ [r0, R), (24)

we deduce

− limj→∞ ∆Pj = limj→∞ Hj(Pj)

≥ limj→∞ Hj(Pj(r0)) =∞ on A(r0, R).
(25)
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Contradiction so 22 holds and we obtain that P ∈ C1(B(0, R)), because using Theorem 9.11 page

235 in [18] we derive

‖ Pj ‖H2,p(Ω ′′) ≤ C(N,p,Ω ′,Ω ′′)
{
‖ Pj ‖Lp(Ω ′) + ‖ Hj(Pj) ‖Lp(Ω ′)

}

≤ C(N,p,Ω ′,Ω ′′)
{
‖ e ‖Lp(Ω ′) + ‖ limj→∞ Hj(Pj(r3)) ‖Lp(Ω ′)

} (26)

where Ω ′ ⊂ Ω ′′, Ω ′′ ⊂ B(0, R), p > N and r3 = supx∈Ω ′ | x |. According to Theorem 7.26 page

171 [18], we have the bounds

‖ Pj ‖
C

1,1−N
p (Ω ′′)

≤‖ Pj ‖H2,p(Ω ′′) . (27)

Therefore P ∈ C1(B(0, R)) and Pj → P in C1,α
loc(B(0, R) for 0 < α < 1− N

p
.

One more time if there exist no sequence satisfying the conclusions of Theorem 2.2 we imply

P : [0, R)→ [0,∞) is a strictly nonincreasing radial function because if there exist 0 ≤ r1 < r2 < R

with P(r1) = P(r2) and the fact of being P nonincreasing implies −∆P = 0 on the annulus

A(r1, r2). Using ‖ Pj ‖C1,α(A(r1,r2)≤ C and a nonnegative test function ϕ with support contained

in A(r1, r2):

0 =
∫
A(r1,r2)

∇P · ∇ϕdx

= limj→∞
∫
A(r1,r2)

∇Pj · ∇ϕdx

=
∫
A(r1,r2)

Hj(P1)ϕdx

≥
∫
A(r1,r2)

H1(P1)ϕdx > 0.

(28)

Contradiction.

So from the negation of the conclusion of Theorem 2.2 we derive that the function P : [0, R)→ R

satisfies P ∈ C1(0, R), P is strictly nonincreasing in (0, R) and limrրR P ≥ 1 and therefore

P(r) > 1 for all r ∈ [0, R). (29)

Finally we are ready to finish the proof of Theorem 2.2. Independently of the hypothesis in the

reductio ad absurdum, there exists 0 < r0 < R such that H1(P1(r0)) > H1(1) = 1 and therefore

using (iii) of Lemma 2.1

1 < H1(P1(r0)) ≤ Hj(Pj(r0)) for all j ≥ 1. (30)

But limj→∞ Pj(r0) = P(r0) > 1 and therefore for j big enough Pj(r0) > 1 and

Hj(Pj(r0)) = H1(Pj(r0)) < H1(1) = 1. (31)

Therefore

1 < H1(P1(r0)) ≤ Hj(Pj(r0)) < 1, (32)

for j big enough. In page 291 [11] it is stated that for every function f ∈ Cm,α(Ω), 0 < α < 1,

m ≥ 1 the solutions of Poisson’s equation ∆u = f on Ω are of class Cm+2,α on Ω, and so Pj are

of class C∞(A(r, R)). This end the proof.
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The next lemma is new

Lemma 2.3. The sequence {Hj(Pj)}
∞
j=1 is unbounded in Cα

loc(A(r, R)).

Proof. In Theorem 4.6 page 60 [18] it is stated that: let Ω be a domain in R
N and let u ∈ C2(Ω),

f ∈ Cα(Ω) satisfy Poisson’s equation ∆u = f. Then u ∈ C2,α(Ω) and for any two concentric balls

B1 = B(x0, R), B2 = B(x0, 2R) ⊂⊂ Ω we have

| u | ′2,α;B1
≤ C(| u |0;B2

+R2 | f | ′0,α;B2
). (33)

Therefore limj→∞ | Hj(Pj) |
′
0,α;B2

=∞.

3 The construction of the sequence of functions Fj.

In [19] it is stated that

[page XVIII, [19]] When we refer to a set F as a fractal, therefore, we will typically

have the following in mind.

(i) F has a fine structure, i. e. detail on arbitray small scales.

(ii) F is too irregular to be described in traditional geometrical language, both locally

and globally.

(iii) Often F has some form of self-similarity, perhaps approximate or statistical.

(iv) Usually, the ‘fractal dimension’ of F (defined in some way) is greater than its

topological dimension.

(v) In most cases of interest F is defined in a very simple way, perhaps recursively.

Moreover

[Page XXII, [19]] The highly intricate structure of the Julia set illustrated in figure

0.6 stems from the single quadratic function f(z) = z2 + c for a suitable constant c.

Although the set is not strictly self-similar in the sense that the Cantor’s set and von

Koch curve are, it is ‘quasi-self-similar’ in that arbitrarily small portions of the set can

be magnified an distorted smoothly to coincide with a large part of the set.
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Let [0, a] be a bounded interval in R. Let us to consider, the infinite sequence of linear functions

h(x) = a− x,

h0(x) = a+ 1− x,

h1(x) = a+ 1+
1

2
− x,

· · ·

hj(x) = a+

j∑

n=0

1

2n
− x.

We introduce a infinite sequence of functions defined on [0, a],

p(x) = p(x; s; k) = −t(x−
s

k
a)2 + cs for all x ∈ [a

s

k
, a

s+ 1

k
], s = 0, 1, 2, . . . k − 1,

p0(x) = p0(x; s; k0) = −t0(x −
s

k0
a)2 + c0,s for all x ∈ [a

s

k0
, a

s+ 1

k0
], s = 0, 1, 2, . . . k0 − 1,

p1(x) = p1(x; s; k1) = −t1(x −
s

k1
a)2 + c1,s for all x ∈ [a

s

k1
, a

s+ 1

k1
], s = 0, 1, 2, . . . k1 − 1,

. . . ,

pj(x) = pj(x; s; kj) = −tj(x −
s

kj
a)2 + cj,s for all x ∈ [a

s

kj
, a

s+ 1

kj
], s = 0, 1, 2, . . . kj − 1.

Where the sequence

c0 = 1,

c0,0 = 1+ 1,

c1,0 = 1+ 1+
1

2
,

. . . ,

cj,0 = 1+

j∑

s=0

1

2j
.

satisfies

cs = p
( s

k
; s; k

)

for all s = 1, . . . , k− 1, (34)

c0,s = p0

( s

k
; s; k0

)

for all s = 1, . . . , k0 − 1, (35)

c1,s = p1

( s

k
; s; k1

)

for all s = 1, . . . , k1 − 1, (36)

· · · , (37)

cj,s = pj

(

s

kj
; s; kj

)

for all s = 1, . . . , kj − 1. (38)
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We have the association:

{cs}
∞
s=0 ←→ h←→ p,

{c0,s}
∞
s=0 ←→ h0 ←→ p0,

{c1,s}
∞
s=0 ←→ h1 ←→ p1,

. . . ,

{cj,s}
∞
s=0 ←→ hj ←→ pj.

The choice of the sequence of non negative numbers k ∪ {kj}
∞
j=1 determines t ∪ {tj}

∞
j=1. We keep k

such that the equation

p(x; 0, k) = h0(x), (39)

has no solutions. Similarly we divide this first interval [0, a
k
] in k0 intervals and setting k0 = kk0

such that the equation

p0(x; 0, k) = h1(x), (40)

has no solution. Now we complete the procedure by induction. Therefore

lim
j→∞

tj =∞. (41)

It is follow that the non decreasing, bounded, sequence of functions {p}∞j=0 defined on [0, a] has

second derivative defined almost everywhere and p ′′
j (x) = −2tj.

Using the Rolle’s Theorem for the functions pj(·; s; kj), hj(·) in the interval [sa
kj
,
(s+1)a

kj
], we deduce

the existence of xj,s ∈ (sa
kj
,
(s+1)a

kj
) such that

p ′
j(xj,s; s; kj) = h ′

j(xj,s) = −1, (42)

where

xj,s =
1

2tj
+

sa

kj
. (43)

Similarly for

x̃j,s =
1

20tj
+

sa

kj
, (44)

we have

p ′
j(x̃j,s; s; kj) = −

1

10
. (45)

For j big enough, let us to consider the sequence of intervals (sa
kj

− δj,
sa
kj

+ δj) ⊂ [0, a] for s =

1, 2, . . . , kj − 1 where

δj = min{
1

200tj
,

a

kjj2
,

a
kj

− 1
2tj

10
}. (46)
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By smoothing each pj on (sa
kj

− δj,
sa
kj

+ δj), we obtain the desired sequence {Fj}
∞
j=1 ∈ C∞[a, b].

We point that C∞ extension is a nontrivial task, see for example page 136 [18] or the Nikolskii’s

extension method page 69 [29] and the Calderon’s extension method page 72 [29]. Therefore we

give a full description of our procedure. For the smoothing method we use the functions

S(x; a; b) = x−

∫x

0

g(t)dt, (47)

where g(x) = 0 for x < a − δ, g(x) = 1 for a < x < b, g(x) = 0 for x > b + δ, 0 < δ ∈ R,

and g ∈ C∞(R) (see the C∞ Urysohn Lemma page 245, [14]). It it follows that S(x; a; b) = x

for x < a − δ, S(x; a; b) = x − c for x > b + δ and S ′(x; a; b) ≥ 0. Taking a suitable composition

with functions S(·; a; b) we accomplish with the smoothing procedure and moreover F ′
j(x) ≤ 0. The

sequence {∆Fj}
∞
j=1 converges in measure to −∞.

Note that the set of numbers {xj,s, x̃j,s} are numerable and dense in [0, a]. Therefore by 42

and 45 we imply if Fj(x1, x2, . . . , xN) = Fj(x1) then

lim
j→∞

‖ Fj ‖C1,α(B(x,r))
=∞, (48)

for any ball B(x, r) with center at x with radius r and B(x, r) ⊂ Ω. It follows that

lim
j→∞

‖ Fj ‖C2,α(B(x,r))
=∞. (49)

Let us to consider the function

IAj
(x) =

{
1 if x ∈ Aj,

0 if x /∈ Aj,
(50)

where Aj = {x ∈ (sa
kj

+ δj,
(s+1)a

kj
− δj) | s = 0, 1, 2, . . . kj − 1}. Therefore

∫a

0

F ′′
j IAj

dx = tj

kj−1∑

s=0

(

a

kj
− 2δj

)

= tja− 2

kj−1∑

s=0

δj

≥ tja− 2
a

j2
.

So limj→∞
∫a
0
F ′′
j IAj

dx =∞ and

lim
j→∞

‖ F ′′
j ‖Lp[0,a]=∞ for all 1 ≤ p ≤∞. (51)

4 A primer analysis.

4.1 A new kind of ill-posed problem.

The concept of a well-posed problem of mathematical physics was introduced by J. Hadamard.

The solution of any quantitative problem usually ends in a equation z = R(u) where u is the
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initial data and z is the solution, R : U → Z, U and Z are metric spaces with distances ρU and

ρZ respectively. The problem of determining the solution z in the space Z from the initial data

u in the space U is said to be well-posed on the pair of metric space (Z,U) if the following three

conditions are satisfied:

(i) For every element u ∈ U there exists a solution z in the space Z.

(ii) The solution is unique.

(iii) For every positive number ǫ > 0 there exists a positive number δ such that ρU(u1, u2) ≤ δ

implies ρZ(z1, z2) ≤ ǫ, where z1 = S(u1), z2 = S(u2).

Problems that do not satisfy them are said ill-posed. The sequence {Pj}
∞
j=1 is a new kind of ill-

posed problem related to Sobolev’s spaces or even for the Laplacian operator in the the context of

distributions.

Given Ω a bounded domain in R
N and u ∈ W1,1(Ω) whose laplacian is a bounded measure µ

on Ω, we call normal derivative in the sense of distributions of u on ∂Ω the distribution v1 defined

on R
N by

〈v1, ϕ〉 =

∫

Ω

ϕdµ+

∫

Ω

∇ϕ · ∇udx, ϕ ∈ D(RN) (52)

The distribution v1 defined by 52 is of compact support in ∂Ω, if suppϕ ∩ ∂Ω = ∅ then ϕIΩ and

∇(ϕIΩ) = (∇ϕ)IΩ. Then by the definition of Laplacian in the sense of distributions

∫
Ω
ϕdµ = 〈∆u,ϕIΩ〉

= −
∫
∇(ϕIΩ) · ∇udx

= −
∫
Ω
∇ϕ · ∇udx.

(53)

Proposition 4.1 (page 500 [11]). Let Ω be a regular bounded open set with boundary of class

W2,∞, µ a bounded Radon measure and v1 a Radon measure on ∂Ω. Let us to consider the

Neumann problem

u ∈ W1,1(Ω), ∆u = µ in D
′(Ω), (54)

v1 is the normal derivative on ∂Ω of u. (55)

(i) There exists a solution of 54,55 if and only if
∫
∂Ω

dv1 =
∫
Ω
dµ.

(ii) If
∫
∂Ω

dv1 =
∫
Ω
dµ then the solution of 54, 55 is defined to whitin an additive constant and

u ∈ W1,p(Ω) for all 1 ≤ p < N
N−1

.

Our sequence {∆Pj}
∞
j=1 is non bounded in L∞(Ω) therefore the limit P is outside of the scope

of application of Proposition 4.1.
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4.1.1 Green’s identities.

We show the nature of the discontinuity of the the sequence {Pj}
∞
j=1 in Sobolev’s spaces and in the

context of distribution theory. From (page 17 [18] or [6])
∫

Ω

(∆u) vdx =

∫

∂Ω

∂u

∂n
vdγ−

∫

Ω

∇u · ∇vdx for all u ∈ C2(Ω), for all v ∈ C1(Ω), (56)

we calculate

lim
j→∞

∫

Ω

∇Pj · ∇vdx =∞ for all non negative v ∈ C1(Ω) with v = 0 on ∂Ω. (57)

Taking v ≡ 1 in 56, we derive

lim
j→∞

∫

∂Ω

∂Pj

∂n
dγ = −∞. (58)

Now we use the second Green’s identity
∫

Ω

(v∆u − u∆v)dx =

∫

∂Ω

(

v
∂u

∂n
− u

∂v

∂n

)

dγ for all u, v ∈ C2(Ω), (59)

it follows

lim
j→∞

∫

∂Ω

(

v
∂Pj

∂n
−Pj

∂v

∂n

)

dγ = −∞ for all nonnegative v ∈ C2(Ω). (60)

Therefore for non negative v ∈ C2(Ω) with v = 0 on ∂Ω, we deduce
∫

Ω

((v+ ǫ)∆Pj −Pj∆v)dx = ǫ

∫

∂Ω

∂Pj

∂n
dγ−

∫

∂Ω

Pj

∂v

∂n
dγ, (61)

∫

Ω

(v∆Pj −Pj∆v)dx = −

∫

∂Ω

Pj
∂v

∂n
dγ, (62)

and letting j→∞ we demonstrate the discontinuity at infinitum of the functional 3.

Theorem 4.2 (Theorem 4.11 page 85 [29]). Let Ω ∈ R
N a bounded domain with smooth boundary;

if 1 ≤ p < N put 1
q

= 1
p
− 1

N−1
p−1
p

; if p = N, put q ≥ 1. There exists a unique mapping

Z ∈ [W2,p(Ω)→W1,q(∂Ω)] such that u ∈ C∞(Ω) =⇒ Zu = u.

The second Green’s identity 59 is valid on W2,2(Ω), it follows from 58 and Theorem 4.2 that

our sequence {Pj}
∞
j=1 is unbounded in W1,2N−1

N−2 (∂Ω). From 57 we imply

lim
j→∞

‖ Pj ‖W1,p(Ω)=∞ for all 1 ≤ p ≤∞, (63)

and

lim
j→∞

‖ Pj ‖W2,p(Ω)=∞ for all 1 ≤ p ≤∞. (64)

Therefore the sequence is unbounded in the domain of definition of the trace operator stated in

Theorem 4.2. Similar considerations are implied easily from
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Theorem 4.3 (page 5 [29]). Let Ω be a bounded domain with lipschitzian boundary. Then there

exists a uniquely defined, linear an continuous mapping T : Wk,2(Ω) → L2(∂Ω) such that for

x ∈ ∂Ω and v ∈ C∞(Ω), it is defined by T(v)(x) = v(x)

Theorem 4.4 (page 135 [36]). We consider a solution u = u(x) ∈ C2(Ω) of Poisson’s differential

equation ∆u(x) = f(x), x ∈ Ω in the domain Ω ⊂ R
N, N ≥ 3. For each ball BR(a) ⊂⊂ Ω then we

have the identity

u(a) =
1

RN−1ωN

∫

|x−a|=R

u(x)dσ −
1

(N − 2)ωN

∫

|x−a|≤R

(

| x− a |2−N −R2−N
)

f(x)dx (65)

The same discontinuity at infinitum appears in the context of singular phenomena in nonlinear

elliptic problems [1, 2, 9, 17, 34].
∫

Ω

((v+ ǫ)∆Uj − Uj∆v)dx = ǫ

∫

∂Ω

∂Uj

∂n
dγ−

∫

∂Ω

Uj
∂v

∂n
dγ, (66)

∫

Ω

(v∆Uj − Uj∆v)dx = −

∫

∂Ω

Uj
∂v

∂n
dγ, (67)

where Uj solves the problem

−∆Uj = U−γ
j in Ω, (68)

Uj =
1

j
on ∂Ω, (69)

with γ > 1. Moreover limj→∞ Uj = U ∈ C2(Ω) ∩ C0(Ω) and
∫
Ω
U−γdx = ∞, showing the same

kind of discontinuity at infinitum. This discontinuity property is an interesting example in the

Friedrichs method of extension of semibounded operators to self-adjoint operators (page 228 [4],

see also page 205 [24]).

4.1.2 Integration by parts.

In the one dimension if u, v ∈ W1,p(I) with 1 ≤ p ≤∞, then
∫y
x
u ′v = u(x)v(x)−u(y)v(x)−

∫x
y
uv ′

for all x, y ∈ I but even if a distribution has second distributional derivative the integration by

parts is not true. For example for fh =
∫x
0

1
h
I[−h,0](t)dt, we have:

∫y
x
[f ′h]ϕ

′ = [f ′h(y)]ϕ(y) − [f ′h(x)]ϕ(x) −
∫y
x
[f ′′h]ϕ = 0 for all ϕ ∈ C∞

0 (x, y)
∫y
x
[f ′h]ϕ

′ = [fh(y)]ϕ
′(y) − [fh(x)]ϕ

′(x) −
∫y
x
[fh]ϕ

′′

= ϕ ′(−h)−ϕ ′(0)
−h

for all ϕ ∈ C∞
0 (x, y).

(70)

Taking a radial ϕ ∈ D(A(r, R)) we get

∫
A(r,R)

∇Pj · ∇ϕdx =
∫
A(r,R)

∂Pj

∂r
xi

r
ϕ
∂r

xi

r
dx

=
∫
A(r,R)

∂Pj

∂r
∂ϕ
∂r

rdx

=
∫R
r
rN−1dr

∫
SN−1

∂Pj

∂r
∂ϕ
∂r

rdω

=
∫R
r

∂Pj

∂r
∂ϕ
∂r

rNdr
∫
SN−1 dω.

(71)
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So

lim
j→∞

∫R

r

∂Pj

∂r

∂ϕ

∂r
dr =∞ (72)

and the integration by parts rule not hold in the limit because

∫R

r

∂Pj

∂r

∂ϕ

∂r
dr = Pj(R)

∂ϕ

∂r
(R) − Pj(r)

∂ϕ

∂r
(r) −

∫R

r

Pj
∂2ϕ

∂r2
dr. (73)

Also the Cantor’s function not satisfies the integration by part rule (this function is monotone and

it has zero derivative almost everywhere).

4.1.3 A detour with monotone functions.

Let Ω be a domain in R
N, P a line verifying P ∩Ω is a nonempty set. A function defined almost

everywhere in Ω is said absolutely continuous on the line P if it is continuous on each closed interval

of P ∩Ω.

Theorem 4.5 (page 55 [29]). Suppose u ∈ L1loc(Ω) and ∂u
∂xi

∈ Lp(Ω), p ≥ 1. This function

changed on a set of measure zero is absolutely continuous on almost all lines parallel to axis xi.

Let us denote by
[

∂u
∂xi

]

the usual derivative and by ∂u
∂xi

the distribution derivative. Then we have

almost everywhere
[

∂u
∂xi

]

= ∂u
∂xi

. Conversely, if u ∈ L1loc(Ω) is absolutely continuous on almost all

lines parallel to the axis xi with
[

∂u
∂xi

]

∈ Lp(Ω), then we have ∂u
∂xi

=
[

∂u
∂xi

]

.

By the Lebesgue’s Differentiation Theorem the function P has derivative almost everywhere

with respect the radius.

VarPj = supr≤r0<r1<···<rn≤R

{∑n
i=1 | Pj(ri) − Pj(rj−1) |

}
(page 39 [22])

=
∫R
r
| [

dPj

dr
]) | dr (page 41 [22])

= sup[r,R]Pj − inf [r,R]Pj (page 43 [22])

≤ C (Lemma 2.1 iv).

(74)

Moreover from page 62 [22]

VarP ≤ lim inf
n→∞

VarPj. (75)

We infer

‖ [
dP

dr
] ‖L1[r,R]≤‖ [

dPj

dr
] ‖L1[r,R]≤ Cte. (76)

From

P ′′
j (r) +

N− 1

r
P ′

j(r) ≤ Cj on B(r, R) with lim
j→∞

Cj = −∞, (77)

we derive

lim
j→∞

‖
∂2Pj

∂r2
‖Lp(B(r,R))=∞, (78)
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1 ≤ p ≤∞. Similarly

lim
j→∞

‖ F ′′ ‖Lp[0,a]=∞ (79)

for all 1 ≤ p ≤∞ and

‖ [
dF

dx
] ‖L1[0,a]≤‖ [

dFj

dx
] ‖L1[0,a]≤ Cte. (80)

It follows that both sequences {Pj}
∞
j=1 and {Fj}

∞
j=1 are ill-posed in Sobolev’s spaces. This anomalous

behaviour is also present in the sequence fh(x) =
∫x
0

1
h
I[−h,0](t)dt, where

∫1
−1

| [dfh
dt

] | dt = 1 for

all h > 0 and limh→0+ ‖ [dfh
dt

] ‖Lp[−1,1]=∞ for all 1 < p ≤∞. Moreover for all nonnegative test

function ϕ ∈ C∞
0 (−1, 1), we have

lim
h→0+

∫1

−1

[f ′h(x)]ϕ
′(x)dx = lim

h→0+

∫0

−h

ϕ ′(x)

h
dx = lim

h→0+

ϕ(−h) −ϕ(0)

−h
= (−1)(Dδ0)ϕ. (81)

Therefore if we define the distribution Λh(ϕ) =
∫1
−1

[f ′h(x)]ϕ
′(x)dx then limh→0+ Λh = −(Dδ0)

where Dδ0 is the distributional derivative of Dirac’s δ distribution and it is well known that

distribution has not weak derivative. The space of functions of pointwise bounded variation admits

discontinuous functions and therefore both topologies on the same set C∞(r, R) produce completely

different objects in metrics and associated functionals. Our functions The sequence {Pj}
∞
j=1 is

bounded in W1,1(A(r, R)) but is it not ensured the strong or weak convergence. The function P

has derivative
[

∂P
∂r

]

almost everywhere on (r, R) because is a monotone function and moreover we

have P = PAC +PC +Pj, where PAC is an absolutely continuous function, Pj is continuous and

singular, and PJ is the jump function of P.

Theorem 4.6 (page 3 [22]). Let I ⊂ R be an interval and let u : I → R be a monotone function.

Then u has as most countable many discontinuity points. Conversely, given a countable set E ⊂ R,

there exists a monotone function u : R→ R whose set of discontinuity points is exactly E.

So by Theorem 4.5 the function u has derivative [u ′] but no weak derivative if for example E

is dense on I.

4.2 The solid mean value.

Despite the difficulty posed by the discontinuity of Green’s identities on the sequence {Pj}
∞
j=1 we

can obtain several properties.

If a function u is absolutely continuous on the interval (a, b) page 225 [22], then

u(x) −
1

b− a

∫b

a

u(t)dt =
1

b− a

[∫x

a

(t− a)u ′(t)dt −

∫b

x

(b − t)u ′(t)dt

]

. (82)

Using the Lebesgue’s Dominated Convergence Theorem, we obtain a one dimensional solid mean

average identity

F(x) −
1

b− a

∫b

a

F(t)dt = lim
j→∞

{
1

b− a

[∫x

a

(t− a)F ′
j(t)dt−

∫b

x

(b− t)F ′
j(t)dt

]}

. (83)
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Now we recall the extension to Poisson’s equation of the solid mean value for Laplace’s equation

in [18] Chapter 4: Let v ∈ C2(Ω) ∩ C0(Ω) satisfy −∆v = f then for any ball B = BR(y), we have

v(y) =
1

| B |

∫

B

vdx +
1

NωN

∫

B

f(x)Θ(r, R)dx, r =| x− y |, (84)

where

Θ(r, R) =
1

N − 2

(

r2−N − R2−N
)

−
1

2RN

(

R2 − r2
)

, (85)

for N > 2 and

Θ(r, R) = log

(

R

r

)

−
1

2

(

1−
r2

R2

)

, (86)

forN = 2, whereωN is the volume of the unit ball in R
N. We deduce that if P(y) = limj→∞Pj(y),

using the Lebesgue’s Dominated Convergence Theorem then

P(y) −
1

| B |

∫

B

Pdx = lim
j→∞

1

NωN

∫

B

Hj(Pj(x))Θ(r, R)dx, (87)

r =| x− y | . (88)

This elementary result involves several strong indeterminations.

Lemma 4.7 (Lemma 3.1.1 page 113 [45]). Let u ∈ W1,p[B(x0, r)], p ≥ 1, where x0 ∈ R
N and

r > 1. Let 0 < δ < r. Then
∫
B(x0,r)

u(y)dy

rN
−

∫
B(x0,δ)

u(y)dy

δN =

∫
B(x0,r)

[∇u(y)·(y−x0)]dy

NrN

−

∫
B(x0,δ)

[∇u(y)·(y−x0)]dy

NδN .
(89)

The Lebesgue’s Dominated Convergence Theorem implies

∫
B(x0,r)

P(y)dy

rN
−

∫
B(x0,δ)

P(y)dy

δN = limj→∞

{∫
B(x0,r)

[∇Pj(y)·(y−x0)]dy

NrN

−

∫
B(x0,δ)

[∇Pj(y)·(y−x0)]dy

NδN

}
.

(90)

4.3 Newtonian potentials.

The theory of Newtonian potentials for distributions with compact support are defined on Ω ⊂

R
N, N ≥ 1. We shall make use of the following results:

Proposition 4.8 (Proposition 5 page 281 [11]). Let Ω be a regular bounded open set and let

u ∈ C2(Ω) ∩ C1
n(Ω) with ∆u ∈ L1(Ω). Then

u = u0 + u1 + u2 on Ω, (91)
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where u0, u1, u2 are the Newtonian potentials of the distributions f0, f1, f2 on R
N defined by

〈f0, ζ〉 =

∫

Ω

ζ∆udx, (92)

〈f1, ζ〉 =

∫

∂Ω

ζ

(

−
∂u

∂n

)

dγ, (93)

〈f2, ζ〉 =

∫

∂Ω

∂ζ

∂n
udγ. (94)

We note that f0, f1, f2 ∈ E ′:

f0 is an integrable function on R
N with support contained in Ω,

f1 is a measure on R
N with support contained in ∂Ω,

f2 is a distribution of order 1 on R
N with support contained in ∂Ω.

We say that u1 is the simple layer (respectively double layer) potential defined by the function −∂u
∂n

(respectively u) continuous on ∂Ω.

We apply this results to our sequence {Pj}
∞
j=1. Using Proposition 4.8, we have

Pj = P0,j +P1,j +P2,j on Ω, (95)

where P0,j,P1,j,P2,j are the Newtonian potentials of the distributions f0,j, f1,j, f2,j. Therefore

∆P0,j = f0,j on R
N, (96)

∆P1,j = f1,j on R
N, (97)

∆P2,j = f2,j on R
N. (98)

We obtain

lim
j→∞

〈f0,j, ζ〉 = −∞, (99)

lim
j→∞

〈f1,j, 1〉 =

∫

∂Ω

1

(

−
∂Pj

∂n

)

dγ =∞, simple layer potentials, (100)

lim
j→∞

〈f2,j, ζ〉 =

∫

∂Ω

∂ζ

∂n

(

lim
j→∞

Pj

)

dγ, double layer potentials. (101)

Proposition 4.9 (Proposition 2 page 278 [11]). Let f ∈ E ′ and let u be the Newtonian potential

of f. Then for every multi-index α ∈ N

∂αu

∂xα
(x) = 〈f, 1〉+O

(

1

| x |n+|α|−1

)

when | x |→∞. (102)

In particular

if N ≥ 3, lim
|x|→∞

u(x) = 0, (103)

if N ≥ 2, lim
|x|→∞

∇u(x) = 0. (104)

The last proposition is useful in the description of the sequence of Newtonian potentials

{f1,j}
∞
j=1, {f0,j}

∞
j=1, {f1,j}

∞
j=1 and {f2,j}

∞
j=1.
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4.4 The spherical average.

For u in 56 with {0} ∈ Ω ⊂ R
N, N ≥ 2, let u be the spherical average of u, i.e.,

u(r) =
1

ωNrN−1

∫

|x|=r

u(x)dγx. (105)

With the change of variable x→ y, we have

u(r) =
1

ωN

∫

|y|=1

u(ry)dγy, (106)

and

du

dr
=

1

ωN

∫

|y|=1

∇u(ry) · ydγy. (107)

Hence

du

dr
=

1

ωN

∫

|y|=1

∂u

∂r
(ry)dγy =

1

ωNrN−1

∫

|x|=r

∂u

∂r
(x)dγx, (108)

that is

du

dr
=

1

ωNrN−1

∫

B(0,r)

∆u(x)dx. (109)

Therefore from Theorem 2.2 it follows that

lim
j→∞

dPj

dr
= −∞. (110)

5 Statement and proof of the main results.

Our main Theorem states the concentration of compactness. It can be regarded as a classical

counterpart of Helly’s Selection Theorem in the space of functions of bounded point variations

(Theorem 2.35 page 59 [22]).

Theorem 5.1. Let Ω be a bounded domain in R
N, N ≥ 3 and any sequence of functions {uj}

∞
j=1

in C2(Ω) ∩ C0(Ω) satisfying

−∆Pj ≥ −∆uj in Ω, (111)

Pj ≥ uj on ∂Ω. (112)

Then there exist a constant C depending only on the sequence {P}∞j=1, such that uj ≤ C for all

j = 1, . . . ,∞.

Proof. It is a simple consequence of Theorem 3.3 page 33 in [18].
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Theorem 5.2 (Strong concentration of compactness for Newtonian potentials). Let Ω be a bounded

smooth domain in R
N, N > 2. Then there exist a sequence {f1,j}

∞
j=1 ∈ E ′ the space of distributions

on R
N with compact support such that:

(i) f1,j = ∆Pj on Ω in the sense of the distributions.

(ii) The sequence of functions {Pj}
∞
j=1 ∈ C∞(Ω) is non decreasing and bounded.

(iii) limj→∞ ∆Pj = −∞ uniformly on Ω.

(iv) Pj is the Newtonian potential of f1,j on Ω.

(v) The simple layer potential a f1,j ∈ E ′ associated to Pj satisfies

limj→∞〈f1,j, 1〉 =
∫
∂Ω

1
(

−
∂Pj

∂n

)

dγ =∞.

(vi) limj→∞ ‖ ∆Pj ‖ ′

Cα(B(x0,R))
=∞ for all B(x0, R) ⊂⊂ Ω.

(vii) Solid mean value property.

P(y) −
1

| B |

∫

B

Pdx = lim
j→∞

(−1)

NωN

∫

B

∆Pj(x)Θ(r, R)dx, (113)

r =| x− y | . (114)

where

Θ(r, R) =
1

N − 2

(

r2−N − R2−N
)

−
1

2RN

(

R2 − r2
)

, (115)

for N > 2, where ωN is the volume of the unit ball in R
N.

(viii) For N > 2 we have

∫
B(x0,r)

P(y)dy

rN
−

∫
B(x0,δ)

P(y)dy

δN = limj→∞

{∫
B(x0,r)

[∇Pj(y)·(y−x0)]dy

NrN

−

∫
B(x0,δ)

[∇Pj(y)·(y−x0)]dy

NδN

}
.

(116)

(ix) The spherical average Pj satisfy

lim
j→∞

dPj

dr
= −∞. (117)

Proof. This theorem is a collection of results stated in the A primer analysis section.

Theorem 5.3 (Weak concentration of compactness for Newtonian potentials). Let Ω be a bounded

smooth domain in R
N, N ≥ 1. Then there exist a sequence {f1,j}

∞
j=1 ∈ E ′ the space of distributions

on R
N with compact support such that:

(i) f1,j = ∆Fj on Ω in the sense of the distributions.

(ii) The sequence of functions {Fj}
∞
j=1 ∈ C∞(Ω) is non decreasing and bounded.

(iii) limj→∞ ∆Fj = −∞ in measure on Ω.

(iv) Fj is the Newtonian potential of f1,j on Ω.

(v) limj→∞ ‖ F ‖
C1,α(B(x0,R))

=∞ for all B(x0, R) ⊂⊂ Ω.
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(vi) One dimensional mean value property.

F(x) −
1

b− a

∫b

a

F(t)dt = lim
j→∞

{
1

b − a

[∫x

a

(t− a)F ′
j(t)dt−

∫b

x

(b − t)F ′
j(t)dt

]}

. (118)

(vii) Solid mean value property.

F(y) −
1

| B |

∫

B

Fdx = lim
j→∞

(−1)

NωN

∫

B

∆Fj(x)Θ(r, R)dx, (119)

r =| x− y | . (120)

where

Θ(r, R) =
1

N − 2

(

r2−N − R2−N
)

−
1

2RN

(

R2 − r2
)

, (121)

for N > 2 and

Θ(r, R) = log

(

R

r

)

−
1

2

(

1−
r2

R2

)

, (122)

for N = 2, where ωN is the volume of the unit ball in R
N.

(viii) For N > 2

∫
B(x0,r)

F(y)dy

rN
−

∫
B(x0,δ)

F(y)dy

δN = limj→∞

{ ∫
B(x0,r)

[∇Fj(y)·(y−x0)]dy

NrN

−

∫
B(x0,δ)

[∇Fj(y)·(y−x0)]dy

NδN

}
.

(123)

Proof. This theorem is a collection of results stated in the A primer analysis section.
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