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ABSTRACT

In this paper, we investigate a general formulation for inextensible flows of curves on

an oriented surface in R
3. We obtain necessary and sufficient conditions as partial

differential equations involving the geodesic curvature and the geodesic torsion for

inextensible curve flow lying on an oriented surface. Moreover, some special cases

of inextensible curves on oriented surface are given.

RESUMEN

En este art́ıculo investigamos una formulación general para flujos inextensibles de curvas

sobre una superficie orientable en R
3. Obtenemos condiciones necesarias y suficientes

para las ecuaciones diferenciales parciales que involucran la curva geodésica y la torsión

geodésica para curvas inextensibles fluyendo sobre superficies orientadas. Más aún, se

entregan algunos casos especiales de curvas inextensibles sobre superficies orientadas.
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1 Introduction

The flow of the curve is said to be inextensible if its arclength preserved. Curve design using

splines is one of the most fundamental topic in CAGD. Inextensible flows of the curves have

beautiful shapes preserving connection to their control polygon. On the other hand, physically

inextensible curve and surface flows give rise to motion which no strain energy is induced. For

example, the swinging motion of a cord of fixed length can be described by inextensible curve and

surface flows. Many authors have studied geometric flow problems and applications of inextensible

curve flows, [1]–[10]. An evolution equation for inelastic planar curves was derived by [9] and also,

the general formulation of inextensible flows of curves and developable surfaces in R
3 was exposed

by [10].

In this paper, we derive a general formulation for inextensible flows of curves according to Darboux

frame in R
3. We give the necessary and sufficient conditions for an inextensible curve flow are

expressed as a partial differential equations involving the geodesic curvature and geodesic torsion.

2 Preliminaries

Let S be an oriented surface in three-dimensional Euclidean space E3 and α (s) be a curve lying on

the surface S. Suppose that the curve α (s) is spatial then there exists the Frenet frame
{
−→
T ,

−→
N,

−→
B
}

at each points of the curve where
−→
T is unit tangent vector,

−→
N is principal normal vector and

−→
B is

binormal vector, respectively. The Frenet equation of the curve α (s) is given by

−→
T ′ = κ

−→
N

−→
N′ = −κ

−→
T + τ

−→
B

−→
B′ = −τ

−→
N

where κ and τ are curvature and torsion of the curve α (s), respectively.

Since the curve α (s) lies on the surface S there exists another frame of the curve α (s) which is

called Darboux frame and denoted by
{
−→
T ,−→g ,−→n

}
. In this frame

−→
T is the unit tangent of the

curve, −→n is the unit normal of the surface S and −→g is a unit vector given by −→g = −→n ×
−→
T . Since the

unit tangent
−→
T is common element of both Frenet frame and Darboux frame, the vectors

−→
N,

−→
B ,−→g

and −→n lie on the same plane. So that the relations between these frames can be given as follows









−→
T
−→g
−→n









=









1 0 0

0 cosϕ sinϕ

0 − sinϕ cosϕ

















−→
T
−→
N
−→
B









where ϕ is the angle between the vectors −→g and
−→
N . The derivative formulae of the Darboux frame
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is








.
−→
T
.
−→g
.
−→n









=









0 kg kn

− kg 0 τg

− kn − τg 0

















−→
T
−→g
−→n









where kg, kn and τg are called the geodesic curvature, the normal curvature and the geodesic

torsions, respectively. Here and in the following, we use ”dot” to denote the derivative with respect

to the arc length parameter of a curve.

The relations between the geodesic curvature, normal curvature, geodesic torsion and κ, τ are given

as follows, [11]

kg = κ cosϕ , kn = −κ sinϕ , τg = τ+ dϕ
ds
.

Furthermore, the geodesic curvature kg and geodesic torsion τg of the curve α (s) can be calculated

as follows, [11]

kg =
〈

d−→α
ds
, d

2−→α
ds2

×
−→n
〉

τg =
〈

d−→α
ds
,−→n × d−→n

ds

〉

.

In the differential geometry of surfaces, for any curve α (s) lying on a surface S the following

relationships are well-known, [11]

i- α (s) is a geodesic curve if and only if kg = 0,

ii- α (s) is an asymptotic line if and only if kn = 0,

iii- α (s) is a principal line if and only if τg = 0.

Through each point on a surface there passes, in general, a geodesic in every direction. A geodesic

is uniquely determined by an initial point and tangent at that point. All straight lines on a surface

are geodesics.

Along all curved geodesics the principal normal coincides with the surface normal. Along asymp-

totic lines osculating planes and tangent planes coincide, along geodesics they are normal. Through

a point of a non-developable surface there are two asymptotic lines which can be real or imaginary.

3 Inextensible Flows of Curve Lying on Oriented Surface

Throughout this paper, we suppose that

α : [0, l]× [0,w) →M ⊂ E3

is a one parameter family of differentiable curves on orientable surface M in E3, where l is the

arclength of the initial curve. Let u be the curve parameterization variable, 0 ≤ u ≤ l. If the speed

of curve α is denoted by v =
∥

∥

∥

∂−→α
∂u

∥

∥

∥
then the arclength of α is
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S (u) =

u∫

0

∥

∥

∥

∥

∂−→α

∂u

∥

∥

∥

∥

du =

u∫

0

v du. (3.1)

The operator ∂
∂s

is given in terms of u by

∂
∂s

= 1
v
∂
∂u
. (3.2)

Thus, the arclength is ds = v du.

Definition 3.1. Let M be an orientable surface and α be a differentiable curve on M in E3. Any

flow of the curve α can be expressed with respect to Darboux frame
{
−→
T ,−→g ,−→n

}
in the following

form:

∂−→α
∂t

= f1
−→
T + f2

−→g + f3
−→n . (3.3)

Here, f1, f2 and f3 are scalar speeds of the curve α. Let the arclength variation be

S (u, t) =
u∫

0

v du. (3.4)

In the Euclidean space the requirement that a curve not to be subject to any elongation or com-

pression can be expressed by the condition

∂
∂t
S (u, t) =

u∫

0

∂v
∂t
du = 0 , u ∈ [0, 1]. (3.5)

Definition 3.2. A curve evolution α (u, t) and its flow ∂−→α
∂t

on the oriented surface M in E3 are

said to be inextensible if

∂

∂t

∥

∥

∥

∥

∂−→α

∂u

∥

∥

∥

∥

= 0.

Now, we research the necessary and sufficient condition of a flow to be inextensible. For this reason,

we need to the following Lemma.

Lemma 3.1. In E3, let M be an orientable surface and
{
−→
T ,−→g ,−→n

}
be a Darboux frame of α

on M. There exists following relation between the scalar speed functions f1, f2, f3 and the normal

curvature kn, geodesic curvature kg of α the curve

∂v
∂t

= ∂f1
∂u

− f2vkg − f3vkn. (3.6)
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Proof. Since ∂
∂u

and ∂
∂t

commute and v2 =
〈

∂−→α
∂u
, ∂

−→α
∂u

〉

, we have

2v∂v
∂t

= ∂
∂t

〈

∂−→α
∂u
, ∂

−→α
∂u

〉

= 2
〈

∂−→α
∂u
, ∂
∂u

(

f1
−→
T + f2

−→g + f3
−→n
)〉

= 2v
(

∂f1
∂u

− f2vkg − f3vkn
)

.

This completes the proof.

If we consider the conditions of being geodesic and asymptotic of a curve and Lemma 3.1, we

can give the following corollary.

Corollary 3.1. If a curve is a geodesic curve or an asymptotic curve, then there are the following

equations

∂v
∂t

= ∂f1
∂u

− f3vkn

or
∂v
∂t

= ∂f1
∂u

− f2vkg,

respectively.

Theorem 3.1. Let
{
−→
T ,−→g ,−→n

}
be the Darboux frame of a curve α on M and ∂−→α

∂t
= f1

−→
T + f2

−→g +

f3
−→n be a differentiable flow of α in R

3. Then the flow is inextensible if and only if

∂f1
∂s

= f2kg + f3kn. (3.7)

Proof. Suppose that the curve flow is inextensible. From the equations (3.4) and (3.6) for u ∈ [0, l]

we see that

∂

∂t
S (u, t) =

u∫

0

∂v

∂t
du =

u∫

0

(

∂f1

∂u
− f2vkg − f3vkn

)

du = 0. (3.8)

Thus, it can be seen that
∂f1

∂u
= f2vkg + f3vkn. (3.9)

Considering the last equation and (3.2), we reach

∂f1
∂s

= f2kg + f3kn.

Conversely, by following a similar way as above, the proof is completed.

From Theorem 3.1, we have following corollary.
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Corollary 3.2. i- Let the curve α is a geodesic curve on M. Then the curve flow is inextensible

if and only if ∂f1
∂s

= f3kn.

ii- Let the curve α is an asymptotic line on M. Then the curve flow is inextensible if and only

if ∂f1
∂s

= f2kg.

Now, we restrict ourselves to the arclength parameterized curves. That is, v = 1 and the local

coordinate u corresponds to the curve arclength s. We require the following Lemma.

Lemma 3.2. Let M be an orientable surface in E3 and
{
−→
T ,−→g ,−→n

}
be a Darboux frame of the

curve α on M. Then, the differentiations of
{
−→
T ,−→g ,−→n

}
with respect to t is

∂
−→
T
∂t

=
(

f1kg +
∂f2
∂s

− f3τg
)−→g +

(

f1kn + ∂f3
∂s

+ f2τg
)−→n

∂−→g
∂t

= −
(

f1kg +
∂f2
∂s

− f3τg
)−→
T +ψ−→n

∂−→n
∂t

= −
(

f1kn + ∂f3
∂s

+ f2τg
)−→
T −ψ−→g

where ψ =
〈

∂−→g
∂t
,−→n

〉

.

Proof. Since ∂
∂t

and ∂
∂s

are commutative, it seen that

∂
−→
T
∂t

= ∂
∂t

(

∂−→α
∂s

)

= ∂
∂s

(

∂−→α
∂t

)

= ∂
∂s

(

f1
−→
T + f2

−→g + f3
−→n
)

= ∂f1
∂s

−→
T + f1

∂
−→
T
∂s

+ ∂f2
∂s

−→g + f2
∂−→g
∂s

+ ∂f3
∂s

−→n + f3
∂−→n
∂s
.

Substituting the equation (3.7) into the last equation and using Theorem 3.1, we have

∂
−→
T

∂t
=

(

f1kg +
∂f2

∂s
− f3τg

)

−→g +

(

f1kn +
∂f3

∂s
+ f2τg

)

−→n .

Now, let us differentiate the Darboux frame with respect to t as follows;

0 =
∂

∂t

〈

−→
T ,−→g

〉

=

〈

∂
−→
T

∂t
,−→g

〉

+

〈

−→
T ,
∂−→g

∂t

〉

=

(

f1kg +
∂f2

∂s
− f3τg

)

+

〈

−→
T ,
∂−→g

∂t

〉

(3.10)

0 =
∂

∂t

〈

−→
T ,−→n

〉

=

〈

∂
−→
T

∂t
,−→n

〉

+

〈

−→
T ,
∂−→n

∂t

〉

=

(

f1kn +
∂f3

∂s
+ f2τg

)

+

〈

−→
T ,
∂−→n

∂t

〉

(3.11)

From (3.10) and (3.11), we have obtain

∂−→g

∂t
= −

(

f1kg +
∂f2

∂s
− f3τg

)

−→
T +ψ−→n
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and
∂−→n

∂t
= −

(

f1kn +
∂f3

∂s
+ f2τg

)

−→
T − ψ−→g

respectively, where ψ =
〈

∂−→g
∂t
,−→n

〉

.

If we take into consideration last Lemma, we have following corollary.

Corollary 3.3. Let M be an orientable surface in E3.

i- If the curve α is a geodesic curve, then

∂
−→
T
∂t

=
(

∂f2
∂s

− f3τg
)−→g +

(

f1kn + ∂f3
∂s

+ f2τg
)−→n ,

∂−→g
∂t

= −
(

∂f2
∂s

− f3τg
)−→
T +ψ−→n ,

∂−→n
∂t

= −
(

f1kn + ∂f3
∂s

+ f2τg
)−→
T −ψ−→g ,

where ψ =
〈

∂−→g
∂t
,−→n

〉

.

ii- If the curve α is an asymptotic line, then

∂
−→
T
∂t

=
(

f1kg +
∂f2
∂s

− f3τg
)−→g +

(

∂f3
∂s

+ f2τg
)−→n ,

∂−→g
∂t

= −
(

f1kg +
∂f2
∂s

− f3τg
)−→
T +ψ−→n ,

∂−→n
∂t

= −
(

∂f3
∂s

+ f2τg
)−→
T − ψ−→g ,

where ψ =
〈

∂−→g
∂t
,−→n

〉

.

iii- If the curve is a curvature line, then

∂
−→
T
∂t

=
(

f1kg +
∂f2
∂s

)−→g +
(

f1kn + ∂f3
∂s

)−→n ,
∂−→g
∂t

= −
(

f1kg +
∂f2
∂s

)−→
T + ψ−→n ,

∂−→n
∂t

= −
(

f1kn + ∂f3
∂s

)−→
T −ψ−→g ,

where ψ =
〈

∂−→g
∂t
,−→n

〉

.

Theorem 3.2. Suppose that the curve flow ∂−→α
∂t

= f1
−→
T +f2

−→g +f3
−→n is inextensible on the orientable

surface on M. In this case, the following partial differential equations are held:

∂kg

∂t
= f2k

2
g + f3kgkn + f1

∂kg

∂s
+ ∂2f2

∂s2
− 2∂f3

∂s
τg − f3

∂τg
∂s

− f1knτg − f2τ
2
g + ψkn,

∂kn

∂t
= f2kgkn + f3k

2
n + f1

∂kn

∂s
+ ∂2f3

∂s2
+ 2∂f2

∂s
τg + f2

∂τg
∂s

+ f1kgτg − f3τ
2
g −ψkg,

∂τg
∂t

= f2kgτg −
∂f2
∂s
kn + ∂f3

∂s
kg + f3knτg +

∂ψ
∂s

.

Proof. Since ∂
∂s
∂
−→
T
∂t

= ∂
∂t
∂
−→
T
∂s

we get

∂
∂s
∂
−→
T
∂t

= ∂
∂s

[(

f1kg +
∂f2
∂s

− f3τg
)−→g +

(

f1kn + ∂f3
∂s

+ f2τg
)−→n

]

=
(

∂f1
∂s
kg + f1

∂kg

∂s
+ ∂2f2

∂s2
− ∂f3

∂s
τg − f3

∂τg
∂s

)

−→g +
(

f1kg +
∂f2
∂s

− f3τg
)

∂−→g
∂s

+
(

∂f1
∂s
kn + f1

∂kn

∂s
+ ∂2f3

∂s2
+ ∂f2

∂s
τg + f2

∂τg
∂s

)

−→n +
(

f1kn + ∂f3
∂s

+ f2τg
)

∂−→n
∂s
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i.e.,

∂
∂s
∂
−→
T
∂t

=
(

∂f1
∂s
kg + f1

∂kg

∂s
+ ∂2f2

∂s2
− ∂f3

∂s
τg − f3

∂τg
∂s

)

−→g +
(

f1kg +
∂f2
∂s

− f3τg
)

(

−kg
−→
T + τg

−→n
)

+
(

∂f1
∂s
kn + f1

∂kn

∂s
+ ∂2f3

∂s2
+ ∂f2

∂s
τg + f2

∂τg
∂s

)

−→n +
(

f1kn + ∂f3
∂s

+ f2τg
)

(

−kg
−→
T − τg

−→g
)

while
∂

∂t

∂
−→
T

∂s
=
∂

∂t

(

kg
−→g + kn

−→n
)

=
∂kg

∂t
−→g + kg

∂−→g

∂t
+
∂kn

∂t
−→n + kn

∂−→n

∂t
.

Thus, from the both of above two equations, we reach

∂kg

∂t
= f2k

2
g + f3kgkn + f1

∂kg

∂s
+
∂2f2

∂s2
− 2

∂f3

∂s
τg − f3

∂τg

∂s
− f1knτg − f2τ

2
g +ψkn (3.12)

and
∂kn

∂t
= f2kgkn + f3k

2
n + f1

∂kn

∂s
+
∂2f3

∂s2
+ 2

∂f2

∂s
τg + f2

∂τg

∂s
+ f1kgτg − f3τ

2
g −ψkg. (3.13)

Noting that ∂
∂s
∂−→g
∂t

= ∂
∂t
∂−→g
∂s

, it is seen that

∂
∂s
∂−→g
∂t

= ∂
∂s

[

−
(

f1kg +
∂f2
∂s

− f3τg
)−→
T +ψ−→n

]

= −
(

∂f1
∂s
kg + f1

∂kg

∂s
+ ∂2f2

∂s2
− ∂f3

∂s
τg − f3

∂τg
∂s

)

−→
T

−
(

f1kg +
∂f2
∂s

− f3τg
) (

kg
−→g + kn

−→n
)

+∂ψ
∂s
n +ψ

(

−kn
−→
T − τg

−→g
)

while

∂

∂t

∂−→g

∂s
=
∂

∂t

(

−kg
−→
T + τg

−→n
)

= −
∂kg

∂t

−→
T − kg

∂
−→
T

∂t
+
∂τg

∂t
−→n + τg

∂−→n

∂t
.

Thus, we obtain
∂τg

∂t
= f2kgτg −

∂f2

∂s
kn +

∂f3

∂s
kg + f3knτg +

∂ψ

∂s
. (3.14)

No other new formulas are obtained from the relation ∂
∂s
∂−→n
∂t

= ∂
∂t
∂−→n
∂s
.

Thus, we give the following corollary from last theorem.

Corollary 3.4. Let M be an orientable surface in E3.

i- If the curve α is a geodesic curve on M, then we have

∂kn

∂t
= f3k

2
n + f1

∂kn

∂s
+
∂2f3

∂s2
+ 2

∂f2

∂s
τg + f2

∂τg

∂s
− f3τ

2
g

and
∂τg

∂t
= −

∂f2

∂s
kn + f3knτg +

∂ψ

∂s
.

ii- If the curve α is an asymptotic line, we have

∂kg

∂t
= f2k

2
g+f1

∂kg

∂s
+
∂2f2

∂s2
− 2

∂f3

∂s
τg − f3

∂τg

∂s
− f2τ

2
g
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and
∂τg

∂t
= f2kgτg +

∂f3

∂s
kg +

∂ψ

∂s
.

iii- If the curve α is a curvature line, then we have

∂kg

∂t
= f2k

2
g + f3kgkn + f1

∂kg

∂s
+ ∂2f2

∂s2
+ψkn

∂kn

∂t
= f2kgkn + f3k

2
n + f1

∂kn

∂s
+ ∂2f3

∂s2
−ψkg.

Received: September 2013. Accepted: May 2014.
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