Reproducing inversion formulas for the Dunkl-Wigner transforms

Fethi Soltani 1
Department of Mathematics, Faculty of Science, Jazan University, P.O.Box 277, Jazan 45142, Saudi Arabia, fethisoltani10@yahoo.com

Abstract

We define and study the Fourier-Wigner transform associated with the Dunkl operators, and we prove for this transform a reproducing inversion formulas and a Plancherel formula. Next, we introduce and study the extremal functions associated to the DunklWigner transform.

RESUMEN

Definimos y estudiamos la transformada de Fourier-Wigner asociada a los operadores de Dunkl, y probamos una fórmula de inversion y una formula de Plancherel para esta transformada. Luego introducimos y estudiamos las funciones extramales asociadas a la transformada de Dunkl-Wigner.

Keywords and Phrases: Dunkl transform; Dunkl-Wigner transform; inversion formulas; extremal functions.

2010 AMS Mathematics Subject Classification: 42B10; 44A20; 46F12.

[^0]
1 Introduction

In this paper, we consider \mathbb{R}^{d} with the Euclidean inner product $\langle.,$.$\rangle and norm |y|:=\sqrt{\langle y, y\rangle}$. For $\alpha \in \mathbb{R}^{\mathrm{d}} \backslash\{0\}$, let σ_{α} be the reflection in the hyperplane $\mathrm{H}_{\alpha} \subset \mathbb{R}^{\mathrm{d}}$ orthogonal to α :

$$
\sigma_{\alpha} y:=y-\frac{2\langle\alpha, y\rangle}{|\alpha|^{2}} \alpha
$$

A finite set $\operatorname{Re} \subset \mathbb{R}^{d} \backslash\{0\}$ is called a root system, if $\operatorname{Re} \cap \mathbb{R} . \alpha=\{-\alpha, \alpha\}$ and $\sigma_{\alpha} \operatorname{Re}=\operatorname{Re}$ for all $\alpha \in$ Re. We assume that it is normalized by $|\alpha|^{2}=2$ for all $\alpha \in$ Re. For a root system Re, the reflections $\sigma_{\alpha}, \alpha \in R e$, generate a finite group G. The Coxeter group G is a subgroup of the orthogonal group $\mathrm{O}(\mathrm{d})$. All reflections in G , correspond to suitable pairs of roots. For a given $\beta \in \mathbb{R}^{\mathrm{d}} \backslash \bigcup_{\alpha \in \operatorname{Re}} \mathrm{H}_{\alpha}$, we fix the positive subsystem $\operatorname{Re}_{+}:=\{\alpha \in \operatorname{Re}:\langle\alpha, \beta\rangle>0\}$. Then for each $\alpha \in \operatorname{Re}$ either $\alpha \in \operatorname{Re}_{+}$or $-\alpha \in \operatorname{Re}_{+}$.

Let $k: \operatorname{Re} \rightarrow \mathbb{C}$ be a multiplicity function on Re (a function which is constant on the orbits under the action of G). As an abbreviation, we introduce the index $\gamma=\gamma_{k}:=\sum_{\alpha \in \operatorname{Re}_{+}} k(\alpha)$.

Throughout this paper, we will assume that $k(\alpha) \geq 0$ for all $\alpha \in$ Re. Moreover, let w_{k} denote the weight function $w_{k}(y):=\prod_{\alpha \in \operatorname{Re}_{+}}|\langle\alpha, y\rangle|^{2 k(\alpha)}$, for all $y \in \mathbb{R}^{d}$, which is G-invariant and homogeneous of degree 2γ.

Let c_{k} be the Mehta-type constant given by $c_{k}:=\left(\int_{\mathbb{R}^{d}} e^{-|y|^{2} / 2} \mathcal{w}_{k}(y) d y\right)^{-1}$. We denote by μ_{k} the measure on \mathbb{R}^{d} given by $\mathrm{d} \mu_{\mathrm{k}}(\mathrm{y}):=\mathrm{c}_{\mathrm{k}} w_{\mathrm{k}}(\mathrm{y}) \mathrm{d} y$; and by $\mathrm{L}^{\mathrm{p}}\left(\mu_{\mathrm{k}}\right), 1 \leq \mathrm{p} \leq \infty$, the space of measurable functions f on \mathbb{R}^{d}, such that

$$
\begin{aligned}
\|f\|_{L^{p}\left(\mu_{k}\right)} & :=\left(\int_{\mathbb{R}^{\mathrm{d}}}|f(\mathrm{y})|^{p} \mathrm{~d} \mu_{\mathrm{k}}(\mathrm{y})\right)^{1 / \mathrm{p}}<\infty, \quad 1 \leq \mathrm{p}<\infty \\
\|f\|_{L^{\infty}\left(\mu_{\mathrm{k}}\right)} & :=\operatorname{ess} \sup _{y \in \mathbb{R}^{\mathrm{d}}}|\mathrm{f}(\mathrm{y})|<\infty
\end{aligned}
$$

and by $L_{r a d}^{p}\left(\mu_{k}\right)$ the subspace of $L^{p}\left(\mu_{k}\right)$ consisting of radial functions.
For $f \in L^{1}\left(\mu_{k}\right)$ the Dunkl transform of f is defined (see [3]) by

$$
\mathcal{F}_{k}(f)(x):=\int_{\mathbb{R}^{d}} E_{k}(-\mathfrak{i x}, \mathrm{y}) f(y) \mathrm{d} \mu_{k}(y), \quad x \in \mathbb{R}^{d}
$$

where $E_{k}(-i x, y)$ denotes the Dunkl kernel. (For more details see the next section.)
The Dunkl translation operators $\tau_{x}, x \in \mathbb{R}^{\mathrm{d}}, 18$ are defined on $\mathrm{L}^{2}\left(\mu_{\mathrm{k}}\right)$ by

$$
\mathcal{F}_{k}\left(\tau_{x} f\right)(y)=E_{k}(i x, y) \mathcal{F}_{k}(f)(y), \quad y \in \mathbb{R}^{d}
$$

Let $g \in L_{r a d}^{2}\left(\mu_{k}\right)$. The Dunkl-Wigner transform V_{g} is the mapping defined for $f \in L^{2}\left(\mu_{k}\right)$ by

$$
V_{g}(f)(x, y):=\int_{\mathbb{R}^{d}} f(t) \overline{\tau_{x} g_{k, y}(-t)} d \mu_{k}(t)
$$

where

$$
g_{k, y}(z):=\mathcal{F}_{k}\left(\sqrt{\tau_{y}\left|\mathcal{F}_{k}(g)\right|^{2}}\right)(z)
$$

We study some of its properties, and we prove reproducing inversion formulas for this transform. Next, Building on the ideas of Matsuura et al. 6], Saitoh [11, 13] and Yamada et al. [20, and using the theory of reproducing kernels [10], we give best approximation of the mapping V_{g} on the Sobolev-Dunkl spaces $H^{s}\left(\mu_{k}\right)$. More precisely, for all $\lambda>0, h \in L^{2}\left(\mu_{k} \otimes \mu_{k}\right)$, the infimum

$$
\inf _{f \in H^{s}\left(\mu_{k}\right)}\left\{\lambda\|f\|_{H^{s}\left(\mu_{k}\right)}^{2}+\left\|h-V_{g}(f)\right\|_{L^{2}\left(\mu_{k} \otimes \mu_{k}\right)}^{2}\right\}
$$

is attained at one function $f_{\lambda, h}^{*}$, called the extremal function, and given by

$$
f_{\lambda, h}^{*}(y)=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{\mathrm{d}}} \frac{\mathrm{E}_{\mathrm{k}}(\mathfrak{i} y, z) \sqrt{\tau_{\mathrm{t}}\left|\mathcal{F}_{\mathrm{k}}(\mathrm{~g})\right|^{2}(z)} \mathcal{F}_{\mathrm{k}}(\mathrm{~h}(., \mathrm{t}))(z)}{\lambda\left(1+|z|^{2}\right)^{s}+\|g\|_{\mathrm{L}_{\mathrm{rad}}^{2}}^{2}\left(\mu_{\mathrm{k}}\right)} \mathrm{d} \mu_{\mathrm{k}}(\mathrm{t}) \mathrm{d} \mu_{\mathrm{k}}(z) .
$$

In the Dunkl setting, the extremal functions are studied in several directions [14, 15, 16, 17].
In the classical case, the Fourier-Wigner transforms are studied by Weyl [21] and Wong [22]. In the Bessel-Kingman hypergroups, these operators are studied by Dachraoui [1].

This paper is organized as follows. In Section 2, we recall some properties of harmonic analysis for the Dunkl operators. Next, we define the Fourier-Wigner transform V_{g} in the Dunkl setting, and we have established for it a reproducing inversion formulas. In Section 3, we introduce and study the extremal functions associated to the Dunkl-Wigner transform V_{g}.

2 The Dunkl-Wigner transform

The Dunkl operators $\mathcal{D}_{\mathfrak{j}} ; \mathfrak{j}=1, \ldots, \mathrm{~d}$, on \mathbb{R}^{d} associated with the finite reflection group G and multiplicity function k are given, for a function f of class C^{1} on \mathbb{R}^{d}, by

$$
\mathcal{D}_{\mathrm{j}} \mathrm{f}(\mathrm{y}):=\frac{\partial}{\partial y_{j}} f(\mathrm{y})+\sum_{\alpha \in \mathrm{Re}_{+}} k(\alpha) \alpha_{\mathrm{j}} \frac{\mathrm{f}(\mathrm{y})-\mathrm{f}\left(\sigma_{\alpha} \mathrm{y}\right)}{\langle\alpha, \mathrm{y}\rangle}
$$

For $y \in \mathbb{R}^{d}$, the initial problem $\mathcal{D}_{j} u(., y)(x)=y_{j} u(x, y), j=1, \ldots, d$, with $u(0, y)=1$ admits a unique analytic solution on \mathbb{R}^{d}, which will be denoted by $E_{k}(x, y)$ and called Dunkl kernel [2, 4]. This kernel has a unique analytic extension to $\mathbb{C}^{d} \times \mathbb{C}^{d}$ (see [7]). The Dunkl kernel has the Laplace-type representation [8]

$$
\begin{equation*}
E_{k}(x, y)=\int_{\mathbb{R}^{\mathrm{d}}} e^{\langle y, z\rangle} d \Gamma_{x}(z), \quad x \in \mathbb{R}^{d}, y \in \mathbb{C}^{d} \tag{2.1}
\end{equation*}
$$

where $\langle\mathrm{y}, z\rangle:=\sum_{\mathrm{i}=1}^{\mathrm{d}} \mathrm{y}_{\mathrm{i}} z_{\mathrm{i}}$ and Γ_{x} is a probability measure on \mathbb{R}^{d}, such that $\operatorname{supp}\left(\Gamma_{x}\right) \subset\left\{z \in \mathbb{R}^{\mathrm{d}}:|z| \leq|x|\right\}$. In our case,

$$
\begin{equation*}
\left|E_{k}(i x, y)\right| \leq 1, \quad x, y \in \mathbb{R}^{d} \tag{2.2}
\end{equation*}
$$

The Dunkl kernel gives rise to an integral transform, which is called Dunkl transform on \mathbb{R}^{d}, and was introduced by Dunkl in [3], where already many basic properties were established. Dunkl's results were completed and extended later by De Jeu 4. The Dunkl transform of a function f in $L^{1}\left(\mu_{k}\right)$, is defined by

$$
\mathcal{F}_{k}(f)(x):=\int_{\mathbb{R}^{d}} E_{k}(-i x, y) f(y) d \mu_{k}(y), \quad x \in \mathbb{R}^{d}
$$

We notice that \mathcal{F}_{0} agrees with the Fourier transform \mathcal{F} that is given by

$$
\mathcal{F}(f)(x):=(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} e^{-i\langle x, y\rangle} f(y) d y, \quad x \in \mathbb{R}^{d}
$$

Some of the properties of Dunkl transform \mathcal{F}_{k} are collected bellow (see [3, 4]).
Theorem 2.1. (i) $L^{1}-L^{\infty}$-boundedness. For all $f \in L^{1}\left(\mu_{k}\right)$, $\mathcal{F}_{k}(f) \in L^{\infty}\left(\mu_{k}\right)$, and

$$
\left\|\mathcal{F}_{\mathrm{k}}(\mathrm{f})\right\|_{\mathrm{L}^{\infty}\left(\mu_{\mathrm{k}}\right)} \leq\|f\|_{\mathrm{L}^{1}\left(\mu_{\mathrm{k}}\right)}
$$

(ii) Inversion theorem. Let $f \in \mathrm{~L}^{1}\left(\mu_{\mathrm{k}}\right)$, such that $\mathcal{F}_{\mathrm{k}}(\mathrm{f}) \in \mathrm{L}^{1}\left(\mu_{\mathrm{k}}\right)$. Then

$$
f(x)=\mathcal{F}\left(\mathcal{F}_{k}(f)\right)(-x), \quad \text { a.e. } x \in \mathbb{R}^{d}
$$

(iii) Plancherel theorem. The Dunkl transform \mathcal{F}_{k} extends uniquely to an isometric isomorphism of $\mathrm{L}^{2}\left(\mu_{\mathrm{k}}\right)$ onto itself. In particular, we have

$$
\|f\|_{L^{2}\left(\mu_{k}\right)}=\left\|\mathcal{F}_{\mathrm{k}}(\mathbf{f})\right\|_{\mathrm{L}^{2}\left(\mu_{\mathrm{k}}\right)}
$$

(iv) Parseval theorem. For $\mathrm{f}, \mathrm{g} \in \mathrm{L}^{2}\left(\mu_{\mathrm{k}}\right)$, we have

$$
\langle\mathrm{f}, \mathrm{~g}\rangle_{\mathrm{L}^{2}\left(\mu_{\mathrm{k}}\right)}=\left\langle\mathcal{F}_{\mathrm{k}}(\mathrm{f}), \mathcal{F}_{\mathrm{k}}(\mathrm{~g})\right\rangle_{\mathrm{L}^{2}\left(\mu_{\mathrm{k}}\right)} .
$$

The Dunkl transform \mathcal{F}_{k} allows us to define a generalized translation operators on $\mathrm{L}^{2}\left(\mu_{\mathrm{k}}\right)$ by setting

$$
\begin{equation*}
\mathcal{F}_{k}\left(\tau_{x} f\right)(y)=E_{k}(i x, y) \mathcal{F}_{k}(f)(y), \quad y \in \mathbb{R}^{d} \tag{2.3}
\end{equation*}
$$

It is the definition of Thangavelu and Xu given in [18. It plays the role of the ordinary translation $\tau_{x} f=f(x+$.$) in \mathbb{R}^{d}$, since the Euclidean Fourier transform satisfies $\mathcal{F}\left(\tau_{x} f\right)(y)=e^{i x y} \mathcal{F}(f)(y)$. Note that from (2.2) and Theorem 2.1 (iii), the definition (2.3) makes sense, and

$$
\begin{equation*}
\left\|\tau_{x} f\right\|_{L^{2}\left(\mu_{k}\right)} \leq\|f\|_{L^{2}\left(\mu_{k}\right)}, \quad f \in L^{2}\left(\mu_{k}\right) \tag{2.4}
\end{equation*}
$$

Rösler [9] introduced the Dunkl translation operators for radial functions. If f are radial functions, $f(x)=F(|x|)$, then

$$
\tau_{x} f(y)=\int_{\mathbb{R}^{d}} F\left(\sqrt{|x|^{2}+|y|^{2}+2\langle y, z\rangle}\right) d \Gamma_{x}(z) ; \quad x, y \in \mathbb{R}^{d}
$$

where Γ_{x} is the representing measure given by (2.1).
This formula allows us to establish the following results [18, 19].
Proposition 2.2. (i) For all $p \in[1,2]$ and for all $x \in \mathbb{R}^{d}$, the Dunkl translation $\tau_{x}: L_{r a d}^{p}\left(\mu_{k}\right) \rightarrow$ $\mathrm{L}^{\mathrm{p}}\left(\mu_{\mathrm{k}}\right)$ is a bounded operator, and for $\mathrm{f} \in \mathrm{L}_{\mathrm{rad}}^{\mathrm{p}}\left(\mu_{\mathrm{k}}\right)$, we have

$$
\left\|\tau_{\chi} f\right\|_{L^{p}\left(\mu_{k}\right)} \leq\|f\|_{L_{r a d}^{p}\left(\mu_{k}\right)}
$$

(ii) Let $\mathrm{f} \in \mathrm{L}_{\mathrm{rad}}^{1}\left(\mu_{\mathrm{k}}\right)$. Then, for all $\chi \in \mathbb{R}^{\mathrm{d}}$, we have

$$
\int_{\mathbb{R}^{\mathrm{d}}} \tau_{\mathrm{x}} f(y) \mathrm{d} \mu_{k}(y)=\int_{\mathbb{R}^{\mathrm{d}}} f(y) d \mu_{k}(y)
$$

The Dunkl convolution product $*_{k}$ of two functions f and g in $L^{2}\left(\mu_{k}\right)$ is defined by

$$
\begin{equation*}
f *_{k} g(x):=\int_{\mathbb{R}^{d}} \tau_{x} f(-y) g(y) d \mu_{k}(y), \quad x \in \mathbb{R}^{d} \tag{2.5}
\end{equation*}
$$

We notice that $*_{k}$ generalizes the convolution $*$ that is given by

$$
f * g(x):=(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} f(x-y) g(y) d y, \quad x \in \mathbb{R}^{d}
$$

The Proposition 2.2 allows us to establish the following properties for the Dunkl convolution on \mathbb{R}^{d} (see [18]).
Proposition 2.3. (i) Assume that $p \in[1,2]$ and $q, r \in[1, \infty]$ such that $1 / p+1 / q=1+1 / r$. Then the map $(\mathrm{f}, \mathrm{g}) \rightarrow \mathrm{f} *_{\mathrm{k}} \mathrm{g}$ extends to a continuous map from $\mathrm{L}_{\mathrm{rad}}^{\mathrm{p}}\left(\mu_{\mathrm{k}}\right) \times \mathrm{L}^{\mathrm{q}}\left(\mu_{\mathrm{k}}\right)$ to $\mathrm{L}^{\mathrm{r}}\left(\mu_{\mathrm{k}}\right)$, and

$$
\left\|\mathbf{f} *_{k} \boldsymbol{g}\right\|_{L^{r}\left(\mu_{k}\right)} \leq\|f\|_{L_{r a d}^{p}\left(\mu_{k}\right)}\|\boldsymbol{g}\|_{L^{q}\left(\mu_{k}\right)} .
$$

(ii) For all $\mathrm{f} \in \mathrm{L}_{\mathrm{rad}}^{1}\left(\mu_{\mathrm{k}}\right)$ and $\mathrm{g} \in \mathrm{L}^{2}\left(\mu_{\mathrm{k}}\right)$, we have

$$
\mathcal{F}_{\mathrm{k}}\left(\mathrm{f} *_{\mathrm{k}} \mathrm{~g}\right)=\mathcal{F}_{\mathrm{k}}(\mathrm{f}) \mathcal{F}_{\mathrm{k}}(\mathrm{~g})
$$

(iii) Let $\mathrm{f} \in \mathrm{L}_{\text {rad }}^{2}\left(\mu_{\mathrm{k}}\right)$ and $\mathrm{g} \in \mathrm{L}^{2}\left(\mu_{\mathrm{k}}\right)$. Then $\mathrm{f} *_{\mathrm{k}} \mathrm{g}$ belongs to $\mathrm{L}^{2}\left(\mu_{\mathrm{k}}\right)$ if and only if $\mathcal{F}_{\mathrm{k}}(\mathrm{f}) \mathcal{F}_{\mathrm{k}}(\mathrm{g})$ belongs to $\mathrm{L}^{2}\left(\mu_{\mathrm{k}}\right)$, and

$$
\mathcal{F}_{\mathrm{k}}\left(\mathrm{f} *_{\mathrm{k}} \mathrm{~g}\right)=\mathcal{F}_{\mathrm{k}}(\mathrm{f}) \mathcal{F}_{\mathrm{k}}(\mathrm{~g}), \quad \text { in the } \mathrm{L}^{2}\left(\mu_{\mathrm{k}}\right)-\text { case }
$$

(iv) Let $\mathrm{f} \in \mathrm{L}_{\text {rad }}^{2}\left(\mu_{\mathrm{k}}\right)$ and $\mathrm{g} \in \mathrm{L}^{2}\left(\mu_{\mathrm{k}}\right)$. Then

$$
\int_{\mathbb{R}^{\mathrm{d}}}|\mathrm{f} * \mathrm{~g}(\mathrm{x})|^{2} \mathrm{~d} \mu_{\mathrm{k}}(\mathrm{x})=\int_{\mathbb{R}^{\mathrm{d}}}\left|\mathcal{F}_{\mathrm{k}}(\mathrm{f})(z)\right|^{2}\left|\mathcal{F}_{\mathrm{k}}(\mathrm{~g})(z)\right|^{2} \mathrm{~d} \mu_{\mathrm{k}}(z)
$$

where both sides are finite or infinite.
Let $g \in L_{r a d}^{2}\left(\mu_{k}\right)$ and $y \in \mathbb{R}^{d}$. The modulation of g by y is the function $g_{k, y}$ defined by

$$
g_{k, y}(z):=\mathcal{F}_{\mathrm{k}}\left(\sqrt{\tau_{\mathrm{y}}\left|\mathcal{F}_{\mathrm{k}}(\mathrm{~g})\right|^{2}}\right)(z), \quad z \in \mathbb{R}^{\mathrm{d}}
$$

Thus,

$$
\begin{equation*}
\left\|g_{k, y}\right\|_{L^{2}\left(\mu_{k}\right)}=\|g\|_{L_{r a d}^{2}\left(\mu_{k}\right)} . \tag{2.6}
\end{equation*}
$$

Let $g \in L_{\text {rad }}^{2}\left(\mu_{k}\right)$. The Fourier-Wigner transform associated to the Dunkl operators, is the mapping V_{g} defined for $f \in L^{2}\left(\mu_{k}\right)$ by

$$
\begin{equation*}
V_{g}(f)(x, y):=\int_{\mathbb{R}^{d}} f(t) \overline{\tau_{x} g_{k, y}(-t)} d \mu_{k}(t), \quad x, y \in \mathbb{R}^{d} \tag{2.7}
\end{equation*}
$$

Proposition 2.4. Let $(f, g) \in L^{2}\left(\mu_{k}\right) \times L_{\text {rad }}^{2}\left(\mu_{k}\right)$.
(i) $\mathrm{V}_{\mathrm{g}}(\mathrm{f})(\mathrm{x}, \mathrm{y})=\overline{\mathrm{g}_{\mathrm{k}, \mathrm{y}}} *_{\mathrm{k}} \mathrm{f}(\mathrm{x})$.
(ii) $V_{g}(f)(x, y)=\int_{\mathbb{R}^{d}} E_{k}(i x, z) \mathcal{F}_{k}(f)(z) \sqrt{\tau_{y}\left|\mathcal{F}_{k}(g)\right|^{2}(z)} d \mu_{k}(z)$.
(iii) The function $\mathrm{V}_{\mathrm{g}}(\mathrm{f})$ belongs to $\mathrm{L}^{\infty}\left(\mu_{\mathrm{k}} \otimes \mu_{\mathrm{k}}\right)$, and

$$
\left\|V_{g}(f)\right\|_{L^{\infty}\left(\mu_{k} \otimes \mu_{k}\right)} \leq\|f\|_{L^{2}\left(\mu_{k}\right)}\|g\|_{L_{r a d}^{2}\left(\mu_{k}\right)}
$$

Proof. (i) follows from (2.5), (2.7) and the fact that $\overline{\tau_{x} g_{k, y}(-t)}=\tau_{x} \overline{\boldsymbol{g}_{k, y}(-t)}$.
(ii) By Theorem 2.1 (iv) and (2.3) we have

$$
V_{g}(f)(x, y)=\int_{\mathbb{R}^{d}} E_{k}(i x, z) \mathcal{F}_{k}(f)(z) \overline{\mathcal{F}_{k}\left(g_{k, y}\right)(-z)} \mathrm{d} \mu_{k}(z)
$$

We obtain the result from the fact that

$$
\overline{\mathcal{F}_{k}\left(g_{k, y}\right)(-z)}=\mathcal{F}_{\mathrm{k}}\left(\overline{g_{k, y}}\right)(z)=\sqrt{\tau_{y}\left|\mathcal{F}_{\mathrm{k}}(\mathrm{~g})\right|^{2}(z)}
$$

(iii) follows from (2.7), by using Hölder's inequality, (2.4) and (2.6).

Theorem 2.5. Let $\mathrm{g} \in \mathrm{L}_{\text {rad }}^{2}\left(\mu_{\mathrm{k}}\right)$.
(i) Plancherel formula: For every $\mathrm{f} \in \mathrm{L}^{2}\left(\mu_{\mathrm{k}}\right)$, we have

$$
\left\|V_{g}(f)\right\|_{L^{2}\left(\mu_{k} \otimes \mu_{k}\right)}=\|g\|_{L_{r a d}^{2}\left(\mu_{k}\right)}\|f\|_{L^{2}\left(\mu_{k}\right)}
$$

(ii) Parseval formula: For every $\mathrm{f}, \mathrm{h} \in \mathrm{L}^{2}\left(\mu_{\mathrm{k}}\right)$, we have

$$
\left\langle V_{g}(f), V_{g}(h)\right\rangle_{L^{2}\left(\mu_{k} \otimes \mu_{k}\right)}=\|g\|_{L_{r a d}^{2}\left(\mu_{k}\right)}^{2}\langle f, h\rangle_{L^{2}\left(\mu_{k}\right)}
$$

(iii) Inversion formula: For all $\mathrm{f} \in \mathrm{L}^{1} \cap \mathrm{~L}^{2}\left(\mu_{\mathrm{k}}\right)$ such that $\mathcal{F}_{\mathrm{k}}(\mathrm{f}) \in \mathrm{L}^{1}\left(\mu_{\mathrm{k}}\right)$, we have

$$
f(z)=\frac{1}{\|g\|_{L_{r a d}^{2}}^{2}\left(\mu_{k}\right)} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{\mathrm{d}}} V_{g}(f)(x, y) \overline{\tau_{z} g_{k, y}(-x)} d \mu_{k}(x) d \mu_{k}(y)
$$

Proof. (i) From Theorem 2.1 (iii), Proposition 2.2 (ii), Proposition 2.3 (iv) and Proposition 2.4 (i), we obtain

$$
\begin{aligned}
& \int_{\mathbb{R}^{\mathrm{d}}} \int_{\mathbb{R}^{\mathrm{d}}}\left|\mathrm{~V}_{\mathrm{g}}(\mathrm{f})(\mathrm{x}, \mathrm{y})\right|^{2} \mathrm{~d} \mu_{\mathrm{k}}(\mathrm{x}) \mathrm{d} \mu_{\mathrm{k}}(\mathrm{y})=\int_{\mathbb{R}^{\mathrm{d}}} \int_{\mathbb{R}^{\mathrm{d}}}\left|\overline{g_{k, y}} *_{k} \mathrm{f}(\mathrm{x})\right|^{2} \mathrm{~d} \mu_{\mathrm{k}}(\mathrm{x}) \mathrm{d} \mu_{\mathrm{k}}(\mathrm{y}) \\
& =\int_{\mathbb{R}^{\mathrm{d}}} \int_{\mathbb{R}^{\mathrm{d}}}\left|\mathcal{F}_{\mathrm{k}}\left(\overline{\boldsymbol{g}_{\mathrm{k}, \mathrm{y}}}\right)(z)\right|^{2}\left|\mathcal{F}_{\mathrm{k}}(\mathrm{f})(z)\right|^{2} \mathrm{~d} \mu_{\mathrm{k}}(z) \mathrm{d} \mu_{\mathrm{k}}(\mathrm{y}) \\
& =\int_{\mathbb{R}^{\mathrm{d}}} \int_{\mathbb{R}^{\mathrm{d}}} \tau_{\mathrm{y}}\left|\mathcal{F}_{\mathrm{k}}(\mathrm{~g})\right|^{2}(z)\left|\mathcal{F}_{\mathrm{k}}(\mathrm{f})(\mathrm{z})\right|^{2} \mathrm{~d} \mu_{\mathrm{k}}(z) \mathrm{d} \mu_{\mathrm{k}}(\mathrm{y}) \\
& =\|g\|_{\mathrm{L}_{\text {rad }}^{2}\left(\mu_{\mathrm{k}}\right)}^{2} \int_{\mathbb{R}^{\mathrm{d}}}\left|\mathcal{F}_{\mathrm{k}}(f)(z)\right|^{2} \mathrm{~d} \mu_{\mathrm{k}}(z) .
\end{aligned}
$$

(ii) follows from (i) by polarization.
(iii) From Theorem 2.1 (iv), Proposition 2.3 (ii) and (iii), we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{\mathrm{d}}} V_{g}(f)(x, y) \overline{\tau_{z} g_{k, y}(-x)} \mathrm{d} \mu_{k}(x) \mathrm{d} \mu_{k}(\mathrm{y}) \\
&=\int_{\mathbb{R}^{\mathrm{d}}} \int_{\mathbb{R}^{\mathrm{d}}} \tau_{y}\left|\mathcal{F}_{k}(\mathrm{~g})\right|^{2}(\mathrm{t}) \mathcal{F}_{\mathrm{k}}(\mathrm{f})(\mathrm{t}) \mathrm{E}_{\mathrm{k}}(\mathrm{iz}, \mathrm{t}) \mathrm{d} \mu_{\mathrm{k}}(\mathrm{t}) \mathrm{d} \mu_{\mathrm{k}}(\mathrm{y})
\end{aligned}
$$

Then, by Fubini's theorem, Theorem 2.1 (ii) and Proposition 2.2 (ii) we deduce that

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{\mathrm{d}}} V_{g}(f)(x, y) \overline{\tau_{z} g_{k, y}(-x)} \mathrm{d} \mu_{k}(x) \mathrm{d} \mu_{k}(y) & =\|g\|_{\mathrm{L}_{\text {rad }}^{2}\left(\mu_{k}\right)}^{2} \int_{\mathbb{R}^{\mathrm{d}}} \mathcal{F}_{\mathrm{k}}(f)(\mathrm{t}) \mathrm{E}_{\mathrm{k}}(i z, t) \mathrm{d} \mu_{k}(\mathrm{t}) \\
& =\|g\|_{\mathrm{L}_{\text {rad }}^{2}\left(\mu_{k}\right)}^{2} f(z)
\end{aligned}
$$

In the following we establish reproducing inversion formula of Calderón's type for the DunklWigner transform on \mathbb{R}^{d}.
Theorem 2.6. Let $\Delta=\prod_{j=1}^{\mathrm{d}}\left[\mathrm{a}_{\mathrm{j}}, \mathrm{b}_{\mathrm{j}}\right],-\infty<\mathrm{a}_{\mathrm{j}}<\mathrm{b}_{\mathrm{j}}<\infty$; and let $\mathrm{g} \in \mathrm{L}_{\mathrm{rad}}^{2}\left(\mu_{\mathrm{k}}\right)$ such that $\mathcal{F}_{\mathrm{k}}(\mathrm{g}) \in \mathrm{L}^{\infty}\left(\mu_{\mathrm{k}}\right)$. Then, for $\mathrm{f} \in \mathrm{L}^{2}\left(\mu_{\mathrm{k}}\right)$, the function f_{Δ} given by

$$
f_{\Delta}(z)=\frac{1}{\|g\|_{L_{r a d}\left(\mu_{k}\right)}} \int_{\Delta} \int_{\mathbb{R}^{d}} V_{g}(f)(x, y) \overline{\tau_{z} g_{k, y}(-x)} d \mu_{k}(x) d \mu_{k}(y)
$$

belongs to $\mathrm{L}^{2}\left(\mu_{\mathrm{k}}\right)$ and satisfies

$$
\begin{equation*}
\lim _{\substack{\mathbf{a}_{j} \rightarrow-\infty \\ \mathbf{b}_{\mathfrak{j}} \rightarrow+\infty}}\left\|\mathrm{f}_{\Delta}-\mathrm{f}\right\|_{L^{2}\left(\mu_{k}\right)}=0 \tag{2.8}
\end{equation*}
$$

Proof. From Theorem 2.1 (iii), Proposition 2.3 (iv) and Proposition 2.4 (i), we have

$$
f_{\Delta}(z)=\frac{1}{\|g\|_{\mathrm{L}_{\text {rad }}^{2}\left(\mu_{k}\right)}^{2}} \int_{\Delta} \int_{\mathbb{R}^{\mathrm{d}}} \tau_{\mathrm{y}}\left|\mathcal{F}_{\mathrm{k}}(\mathrm{~g})\right|^{2}(\mathrm{t}) \mathcal{F}_{\mathrm{k}}(\mathrm{f})(\mathrm{t}) \mathrm{E}_{\mathrm{k}}(\mathrm{i} z, \mathrm{t}) \mathrm{d} \mu_{\mathrm{k}}(\mathrm{t}) \mathrm{d} \mu_{\mathrm{k}}(\mathrm{y})
$$

By Fubini's theorem we get

$$
\begin{equation*}
f_{\Delta}(z)=\int_{\mathbb{R}^{\mathrm{d}}} K_{\Delta}(\mathrm{t}) \mathcal{F}_{\mathrm{k}}(\mathrm{f})(\mathrm{t}) \mathrm{E}_{\mathrm{k}}(\mathrm{i} z, \mathrm{t}) \mathrm{d} \mu_{\mathrm{k}}(\mathrm{t}) \tag{2.9}
\end{equation*}
$$

where

$$
\mathrm{K}_{\Delta}(\mathrm{t})=\frac{1}{\|\mathrm{~g}\|_{\mathrm{L}_{\text {rad }}^{2}\left(\mu_{\mathrm{k}}\right)}^{2}} \int_{\Delta} \tau_{\mathrm{y}}\left|\mathcal{F}_{\mathrm{k}}(\mathrm{~g})\right|^{2}(\mathrm{t}) \mathrm{d} \mu_{\mathrm{k}}(\mathrm{y})
$$

It is easily to see that $\left\|\mathrm{K}_{\Delta}\right\|_{\mathrm{L}^{\infty}\left(\mu_{\mathrm{k}}\right)} \leq 1$. On the other hand, by Hölder's inequality, we deduce that

$$
\left|K_{\Delta}(t)\right|^{2} \leq\left.\left.\frac{\mu_{k}(\Delta)}{\|g\|_{L_{r a d}^{2}\left(\mu_{k}\right)}^{4}} \int_{\Delta}\left|\tau_{y}\right| \mathcal{F}_{k}(g)\right|^{2}(t)\right|^{2} d \mu_{k}(y)
$$

Hence, by (2.4) we find

$$
\left\|K_{\Delta}\right\|_{L^{2}\left(\mu_{k}\right)}^{2} \leq \frac{\left(\mu_{k}(\Delta)\right)^{2}}{\|g\|_{L_{\text {rad }}^{2}\left(\mu_{k}\right)}^{4}} \int_{\mathbb{R}^{d}}\left|\mathcal{F}_{k}(g)(t)\right|^{4} d \mu_{k}(t) \leq \frac{\left(\mu_{k}(\Delta)\right)^{2}\left\|\mathcal{F}_{k}(g)\right\|_{\mathrm{L}^{\infty}\left(\mu_{k}\right)}^{2}}{\|g\|_{\mathrm{L}_{\text {rad }}^{2}}^{2}\left(\mu_{k}\right)}
$$

Thus $\mathrm{K}_{\Delta} \in \mathrm{L}^{\infty} \cap \mathrm{L}^{2}\left(\mu_{\mathrm{k}}\right)$. Therefore and by (2.9) we obtain

$$
\mathcal{F}_{\mathrm{k}}\left(\mathrm{f}_{\Delta}\right)(\mathrm{t})=\mathrm{K}_{\Delta}(\mathrm{t}) \mathcal{F}_{\mathrm{k}}(\mathrm{f})(\mathrm{t})
$$

From this relation and Theorem 2.1 (iii), it follows that $f_{\Delta} \in L^{2}\left(\mu_{k}\right)$ and

$$
\left\|f_{\Delta}-f\right\|_{L^{2}\left(\mu_{k}\right)}^{2}=\int_{\mathbb{R}^{d}}\left|\mathcal{F}_{k}(f)(t)\right|^{2}\left(1-K_{\Delta}(t)\right)^{2} d \mu_{k}(t)
$$

But by Proposition 2.2 (ii) we have

$$
\lim _{\substack{a_{j} \rightarrow-\infty \\ b_{j} \rightarrow+\infty}} K_{\Delta}(t)=1, \quad \text { for all } t \in \mathbb{R}^{d}
$$

and

$$
\left|\mathcal{F}_{k}(f)(t)\right|^{2}\left(1-K_{\Delta}(t)\right)^{2} \leq\left|\mathcal{F}_{k}(f)(t)\right|^{2}, \quad \text { for all } t \in \mathbb{R}^{d}
$$

So, the relation (2.8) follows from the dominated convergence theorem.

3 Extremal functions for the mapping V_{g}

Let $s \geq 0$. We define the Sobolev-Dunkl space of order s, that will be denoted $H^{s}\left(\mu_{k}\right)$, as the set of all $f \in L^{2}\left(\mu_{k}\right)$ such that $\left(1+|z|^{2}\right)^{s / 2} \mathcal{F}_{k}(f) \in L^{2}\left(\mu_{k}\right)$. The space $H^{s}\left(\mu_{k}\right)$ provided with the inner product

$$
\langle f, g\rangle_{\mathrm{H}^{\mathrm{s}}\left(\mu_{\mathrm{k}}\right)}=\int_{\mathbb{R}^{\mathrm{d}}}\left(1+|z|^{2}\right)^{\mathrm{s}} \mathcal{F}_{\mathrm{k}}(\mathrm{f})(z) \overline{\mathcal{F}_{\mathrm{k}}(\mathrm{~g})(z)} \mathrm{d} \mu_{\mathrm{k}}(z)
$$

and the norm

$$
\|f\|_{H^{s}\left(\mu_{k}\right)}=\left[\int_{\mathbb{R}^{d}}\left(1+|z|^{2}\right)^{s}\left|\mathcal{F}_{k}(f)(z)\right|^{2} d \mu_{k}(z)\right]^{1 / 2}
$$

The space $\mathrm{H}^{\mathrm{s}}\left(\mu_{\mathrm{k}}\right)$ satisfies the following properties.
(a) $\mathrm{H}^{0}\left(\mu_{\mathrm{k}}\right)=\mathrm{L}^{2}\left(\mu_{\mathrm{k}}\right)$.
(b) For all $\mathrm{s}>0$, the space $\mathrm{H}^{\mathrm{s}}\left(\mu_{\mathrm{k}}\right)$ is continuously contained in $\mathrm{L}^{2}\left(\mu_{\mathrm{k}}\right)$ and $\|f\|_{\mathrm{L}^{2}\left(\mu_{\mathrm{k}}\right)} \leq$ $\|f\|_{H^{s}\left(\mu_{k}\right)}$.
(c) For all $s, t>0$, such that $t>s$, the space $H^{t}\left(\mu_{k}\right)$ is continuously contained in $H^{s}\left(\mu_{k}\right)$ and $\|f\|_{H^{s}\left(\mu_{k}\right)} \leq\|f\|_{H^{t}\left(\mu_{k}\right)}$.
(d) The space $\mathrm{H}^{\mathrm{s}}\left(\mu_{\mathrm{k}}\right), \mathrm{s} \geq 0$ provided with the inner product $\langle., .\rangle_{\mathrm{H}^{s}\left(\mu_{k}\right)}$ is a Hilbert space.

Remark 3.1. For $s>\gamma+d / 2$, the function $y \rightarrow\left(1+|z|^{2}\right)^{-s / 2}$ belongs to $L^{2}\left(\mu_{k}\right)$. Hence for all $\mathrm{f} \in \mathrm{H}^{\mathrm{s}}\left(\mu_{\mathrm{k}}\right)$, we have $\left\|\mathcal{F}_{\mathrm{k}}(\mathrm{f})\right\|_{\mathrm{L}^{2}\left(\mu_{\mathrm{k}}\right)} \leq\|\mathrm{f}\|_{\mathrm{H}^{s}\left(\mu_{\mathrm{k}}\right)}$, and by Hölder's inequality

$$
\left\|\mathcal{F}_{\mathrm{k}}(\mathrm{f})\right\|_{\mathrm{L}^{1}\left(\mu_{\mathrm{k}}\right)} \leq\left[\int_{\mathbb{R}^{\mathrm{d}}} \frac{\mathrm{~d} \mu_{\mathrm{k}}(z)}{\left(1+|z|^{2}\right)^{s}}\right]^{1 / 2}\|f\|_{\mathrm{H}^{\mathrm{s}}\left(\mu_{\mathrm{k}}\right)}
$$

Then the function $\mathcal{F}_{k}(f)$ belongs to $L^{1} \cap L^{2}\left(\mu_{k}\right)$, and therefore

$$
f(x)=\int_{\mathbb{R}^{d}} E_{k}(i x, z) \mathcal{F}_{k}(f)(z) d \mu_{k}(z), \quad \text { a.e. } x \in \mathbb{R}^{d}
$$

Let $\lambda>0$. We denote by $\langle., .\rangle_{\lambda, \mathrm{H}^{s}\left(\mu_{\mathrm{k}}\right)}$ the inner product defined on the space $\mathrm{H}^{\mathrm{s}}\left(\mu_{\mathrm{k}}\right)$ by

$$
\langle f, h\rangle_{\lambda, H^{s}\left(\mu_{k}\right)}:=\lambda\langle f, h\rangle_{H^{s}\left(\mu_{k}\right)}+\left\langle V_{g}(f), V_{g}(h)\right\rangle_{L^{2}\left(\mu_{k} \otimes \mu_{k}\right)}
$$

and the norm $\|f\|_{\lambda, H^{s}\left(\mu_{k}\right)}:=\sqrt{\langle\mathrm{f}, \mathrm{f}\rangle_{\lambda, \mathrm{H}^{s}\left(\mu_{\mathrm{k}}\right)}}$.
In the next we suppose that $g \in L_{\text {rad }}^{2}\left(\mu_{k}\right)$. By Theorem 2.5 (ii), the inner product $\langle., .\rangle_{\lambda, H^{s}\left(\mu_{k}\right)}$ can be written

$$
\begin{equation*}
\langle\mathrm{f}, \mathrm{~h}\rangle_{\lambda, \mathrm{H}^{s}\left(\mu_{\mathrm{k}}\right)}=\lambda\langle\mathrm{f}, \mathrm{~h}\rangle_{\mathrm{H}^{\mathrm{s}}\left(\mu_{\mathrm{k}}\right)}+\|\mathrm{g}\|_{\mathrm{L}_{\mathrm{rad}}^{2}\left(\mu_{\mathrm{k}}\right)}^{2}\langle\mathrm{f}, \mathrm{~h}\rangle_{\mathrm{L}^{2}\left(\mu_{\mathrm{k}}\right)} . \tag{3.1}
\end{equation*}
$$

Theorem 3.2. Let $\lambda>0$ and $\mathrm{s}>\gamma+\mathrm{d} / 2$ and let $\mathrm{g} \in \mathrm{L}_{\mathrm{rad}}^{2}\left(\mu_{\mathrm{k}}\right)$. The space $\left(\mathrm{H}^{\mathrm{s}}\left(\mu_{\mathrm{k}}\right),\langle., .\rangle_{\lambda, \mathrm{H}^{\mathrm{s}}\left(\mu_{\mathrm{k}}\right)}\right)$ has the reproducing kernel

$$
\begin{equation*}
K_{s}(x, y)=\int_{\mathbb{R}^{d}} \frac{E_{k}(\mathfrak{i} x, z) E_{k}(-i y, z)}{\lambda\left(1+|z|^{2}\right)^{s}+\|g\|_{L_{r a d}^{2}\left(\mu_{k}\right)}^{2}} d \mu_{k}(z) \tag{3.2}
\end{equation*}
$$

that is
(i) For all $\mathrm{y} \in \mathbb{R}^{\mathrm{d}}$, the function $\mathrm{x} \rightarrow \mathrm{K}_{\mathrm{s}}(\mathrm{x}, \mathrm{y})$ belongs to $\mathrm{H}^{\mathrm{s}}\left(\mu_{\mathrm{k}}\right)$.
(ii) The reproducing property: for all $\mathrm{f} \in \mathrm{H}^{\mathrm{s}}\left(\mu_{\mathrm{k}}\right)$ and $\mathrm{y} \in \mathbb{R}^{\mathrm{d}}$,

$$
\left\langle f, K_{s}(., y)\right\rangle_{\lambda, H^{s}\left(\mu_{k}\right)}=f(y)
$$

Proof. (i) Let $y \in \mathbb{R}^{d}$. From (2.2), the function $\Phi_{y}: z \rightarrow \frac{E_{k}(-i y, z)}{\lambda\left(1+|z|^{2}\right)^{s}+\|g\|_{L_{r a d}}^{2}\left(\mu_{k}\right)}$ belongs to $L^{1} \cap L^{2}\left(\mu_{k}\right)$. Then, the function K_{s} is well defined and by Theorem 2.1 (ii), we have

$$
K_{s}(x, y)=\mathcal{F}_{k}^{-1}\left(\Phi_{y}\right)(x), \quad x \in \mathbb{R}^{\mathrm{d}}
$$

From Theorem 2.1 (iii), it follows that $\mathrm{K}_{\mathrm{s}}(., \mathrm{y})$ belongs to $\mathrm{L}^{2}\left(\mu_{\mathrm{k}}\right)$, and we have

$$
\begin{equation*}
\mathcal{F}_{\mathrm{k}}\left(\mathrm{~K}_{\mathrm{s}}(., \mathrm{y})\right)(z)=\frac{\mathrm{E}_{\mathrm{k}}(-\mathrm{i} y, z)}{\lambda\left(1+|z|^{2}\right)^{s}+\|\mathrm{g}\|_{\mathrm{L}_{\mathrm{rad}}^{2}\left(\mu_{\mathrm{k}}\right)}^{2}}, \quad z \in \mathbb{R}^{\mathrm{d}} \tag{3.3}
\end{equation*}
$$

Then by (2.2), we obtain

$$
\left|\mathcal{F}_{\mathrm{k}}\left(\mathrm{~K}_{\mathrm{s}}(., \mathrm{y})\right)(z)\right| \leq \frac{1}{\lambda\left(1+|z|^{2}\right)^{s}}
$$

and

$$
\left\|K_{s}(., y)\right\|_{H^{s}\left(\mu_{k}\right)}^{2} \leq \frac{1}{\lambda^{2}} \int_{\mathbb{R}^{d}} \frac{\mathrm{~d} \mu_{\mathrm{k}}(z)}{\left(1+|z|^{2}\right)^{s}}<\infty
$$

This proves that for all $y \in \mathbb{R}^{d}$ the function $K_{s}(., y)$ belongs to $H^{s}\left(\mu_{k}\right)$.
(ii) Let $\mathrm{f} \in \mathrm{H}^{\mathrm{s}}\left(\mu_{\mathrm{k}}\right)$ and $\mathrm{y} \in \mathbb{R}^{\mathrm{d}}$. From (3.1) and (3.3), we have

$$
\left\langle f, K_{s}(., y)\right\rangle_{\lambda, H^{s}\left(\mu_{k}\right)}=\int_{\mathbb{R}^{\mathrm{d}}} E_{k}(i y, z) \mathcal{F}_{k}(f)(z) \mathrm{d} \mu_{k}(z)
$$

and from Remark 3.1, we obtain the reproducing property:

$$
\left\langle\mathrm{f}, \mathrm{~K}_{\mathrm{s}}(., \mathrm{y})\right\rangle_{\lambda, \mathrm{H}^{s}\left(\mu_{\mathrm{k}}\right)}=\mathrm{f}(\mathrm{y})
$$

This completes the proof of the theorem.
The main result of this subsection can then be stated as follows.
Theorem 3.3. Let $\mathrm{s}>\gamma+\mathrm{d} / 2$ and $\mathrm{g} \in \mathrm{L}_{\text {rad }}^{2}\left(\mu_{\mathrm{k}}\right)$. For any $\mathrm{h} \in \mathrm{L}^{2}\left(\mu_{\mathrm{k}} \otimes \mu_{\mathrm{k}}\right)$ and for any $\lambda>0$, there exists a unique function $\mathrm{f}_{\lambda, \mathrm{g}}^{*}$, where the infimum

$$
\begin{equation*}
\inf _{f \in \mathrm{H}^{s}\left(\mu_{k}\right)}\left\{\lambda\|f\|_{\mathrm{H}^{s}\left(\mu_{k}\right)}^{2}+\left\|h-V_{g}(f)\right\|_{L^{2}\left(\mu_{k} \otimes \mu_{k}\right)}^{2}\right\} \tag{3.4}
\end{equation*}
$$

is attained. Moreover, the extremal function $\mathrm{f}_{\lambda, \mathrm{h}}^{*}$ is given by

$$
f_{\lambda, h}^{*}(y)=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{\mathrm{d}}} h(x, t) Q_{s}(x, y, t) d \mu_{k}(t) d \mu_{k}(x)
$$

where

$$
Q_{s}(x, y, t)=\int_{\mathbb{R}^{d}} \frac{E_{k}(-i x, z) E_{k}(i y, z) \sqrt{\tau_{t}\left|\mathcal{F}_{k}(g)\right|^{2}(z)}}{\lambda\left(1+|z|^{2}\right)^{s}+\|g\|_{L_{r a d}^{2}}^{2}\left(\mu_{k}\right)} d \mu_{k}(z)
$$

Proof. The existence and unicity of the extremal function $f_{\lambda, h}^{*}$ satisfying (3.4) is given by Kimeldorf and Wahba [5], Matsuura et al. [6] and Saitoh [12]. Especially, $f_{\lambda, h}^{*}$ is given by the reproducing kernel of $\mathrm{H}^{\mathrm{s}}\left(\mu_{\mathrm{k}}\right)$ with $\|\cdot\|_{\lambda, \mathrm{H}^{\mathrm{s}}\left(\mu_{k}\right)}$ norm as

$$
\begin{equation*}
f_{\lambda, h}^{*}(y)=\left\langle h, V_{g}\left(K_{s}(., y)\right)\right\rangle_{L^{2}\left(\mu_{k} \otimes \mu_{k}\right)} \tag{3.5}
\end{equation*}
$$

where K_{s} is the kernel given by (3.2).
But by Proposition 2.4 (ii) and (3.3), we have

$$
\begin{aligned}
V_{g}\left(K_{s}(., y)\right)(x, t) & =\int_{\mathbb{R}^{d}} E_{k}(i x, z) \mathcal{F}_{k}\left(K_{s}(., y)\right)(z) \sqrt{\tau_{t}\left|\mathcal{F}_{k}(g)\right|^{2}(z)} d \mu_{k}(z) \\
& =\int_{\mathbb{R}^{d}} \frac{E_{k}(i x, z) E_{k}(-i y, z) \sqrt{\tau_{t}\left|\mathcal{F}_{k}(g)\right|^{2}(z)}}{\lambda\left(1+|z|^{2}\right)^{s}+\|g\|_{L_{r a d}^{2}}^{2}\left(\mu_{k}\right)}
\end{aligned}
$$

This clearly yields the result.
Theorem 3.4. Let $\mathrm{s}>\gamma+\mathrm{d} / 2$ and $\mathrm{g} \in \mathrm{L}_{\text {rad }}^{2}\left(\mu_{\mathrm{k}}\right)$. For any $\mathrm{h} \in \mathrm{L}^{2}\left(\mu_{\mathrm{k}} \otimes \mu_{\mathrm{k}}\right)$ and for any $\lambda>0$, we have
(i) $\left|f_{\lambda, h}^{*}(y)\right| \leq \frac{\|h\|_{L^{2}\left(\mu_{k} \otimes \mu_{k}\right)}^{2 \sqrt{\lambda}}}{2}\left[\int_{\mathbb{R}^{d}} \frac{d \mu_{k}(z)}{\left(1+|z|^{2}\right)^{s}}\right]^{1 / 2}$.
(ii) $\left\|f_{\lambda, h}^{*}\right\|_{L^{2}\left(\mu_{k}\right)}^{2} \leq \frac{1}{4 \lambda} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{\mathrm{d}}}|\mathrm{h}(x, \mathrm{t})|^{2} \mathrm{e}^{\left(|x|^{2}+|t|^{2}\right) / 2} \mathrm{~d} \mu_{\mathrm{k}}(\mathrm{t}) \mathrm{d} \mu_{\mathrm{k}}(\mathrm{x})$.

Proof. (i) From (3.5) and Theorem 2.5 (i), we have

$$
\begin{aligned}
\left|f_{\lambda, h}^{*}(\mathrm{y})\right| & \leq\|\mathrm{h}\|_{\mathrm{L}^{2}\left(\mu_{k} \otimes \mu_{k}\right)}\left\|\mathrm{V}_{\mathrm{g}}\left(\mathrm{~K}_{s}(., \mathrm{y})\right)\right\|_{\mathrm{L}^{2}\left(\mu_{k} \otimes \mu_{k}\right)} \\
& \leq\|h\|_{\mathrm{L}^{2}\left(\mu_{k} \otimes \mu_{k}\right)}\|\mathrm{g}\|_{\mathrm{L}_{\mathrm{rad}}^{2}\left(\mu_{k}\right)}\left\|\mathrm{K}_{\mathrm{s}}(., \mathrm{y})\right\|_{\mathrm{L}^{2}\left(\mu_{k}\right)}
\end{aligned}
$$

Then, by Theorem 2.1 (iii) and (3.3), we deduce that

$$
\begin{aligned}
\left|f_{\lambda, g}^{*}(y)\right| & \leq\|h\|_{L^{2}\left(\mu_{k} \otimes \mu_{k}\right)}\|g\|_{L_{r a d}^{2}\left(\mu_{k}\right)}\left\|\mathcal{F}_{k}\left(K_{s}(., y)\right)\right\|_{L^{2}\left(\mu_{k}\right)} \\
& \leq\|h\|_{L^{2}\left(\mu_{k} \otimes \mu_{k}\right)}\|g\|_{L_{r a d}^{2}\left(\mu_{k}\right)}\left[\int_{\mathbb{R}^{d}} \frac{d \mu_{k}(z)}{\left[\lambda\left(1+|z|^{2}\right)^{s}+\|g\|_{L_{r a d}^{2}\left(\mu_{k}\right)}^{2}\right]^{2}}\right]^{1 / 2}
\end{aligned}
$$

Using the fact that $\left[\lambda\left(1+|z|^{2}\right)^{s}+\|g\|_{\mathrm{L}_{\text {rad }}^{2}\left(\mu_{k}\right)}^{2}\right]^{2} \geq 4 \lambda\left(1+|z|^{2}\right)^{s}\|g\|_{\mathrm{L}_{\text {rad }}^{2}\left(\mu_{k}\right)}^{2}$, we obtain the result.
(ii) We write

$$
f_{\lambda, h}^{*}(y)=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} e^{-\left(|x|^{2}+|t|^{2}\right) / 4} e^{\left(|x|^{2}+|t|^{2}\right) / 4} h(x, t) Q_{s}(x, y, t) d \mu_{k}(t) d \mu_{k}(x)
$$

Applying Hölder's inequality, we obtain

$$
\left|f_{\lambda, h}^{*}(y)\right|^{2} \leq \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}}|h(x, t)|^{2} e^{\left(|x|^{2}+|t|^{2}\right) / 2}\left|Q_{s}(x, y, t)\right|^{2} d \mu_{k}(t) \mathrm{d} \mu_{k}(x)
$$

Thus and from Fubini-Tonnelli's theorem, we get

$$
\left\|f_{\lambda, h}^{*}\right\|_{L^{2}\left(\mu_{k}\right)}^{2} \leq \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}}|h(x, t)|^{2} e^{\left(|x|^{2}+|t|^{2}\right) / 2}\left\|Q_{s}(x, ., t)\right\|_{L^{2}\left(\mu_{k}\right)}^{2} \mathrm{~d} \mu_{\mathrm{k}}(\mathrm{t}) \mathrm{d} \mu_{\mathrm{k}}(x)
$$

The function $z \rightarrow \frac{\mathrm{E}_{\mathrm{k}}(-i x, z) \sqrt{\tau_{t}\left|\mathcal{F}_{\mathrm{k}}(\mathrm{g})\right|^{2}(z)}}{\lambda\left(1+|z|^{2}\right)^{s}+\|g\|_{\mathrm{L}_{\mathrm{rad}}\left(\mu_{k}\right)}^{2}}$ belongs to $\mathrm{L}^{1} \cap \mathrm{~L}^{2}\left(\mu_{\mathrm{k}}\right)$, then by Theorem 2.1 (ii), we get

$$
\mathrm{Q}_{s}(x, y, t)=\mathcal{F}_{k}^{-1}\left(\frac{E_{k}(-i x, z) \sqrt{\tau_{t}\left|\mathcal{F}_{k}(g)\right|^{2}(z)}}{\lambda\left(1+|z|^{2}\right)^{s}+\|g\|_{L_{r a d}}^{2}\left(\mu_{k}\right)}\right)(y) .
$$

Thus, by Theorem 2.1 (iii) we deduce that

$$
\begin{aligned}
\left\|Q_{s}(x, ., t)\right\|_{L^{2}\left(\mu_{k}\right)}^{2} & =\int_{\mathbb{R}^{d}}\left|\mathcal{F}_{k}\left(Q_{s}(x, ., t)\right)(z)\right|^{2} d \mu_{k}(z) \\
& \leq \int_{\mathbb{R}^{d}} \frac{\tau_{t}\left|\mathcal{F}_{k}(g)\right|^{2}(z) \mathrm{d} \mu_{k}(z)}{\left[\lambda\left(1+|z|^{2}\right)^{s}+\|g\|_{L_{r a d}^{2}\left(\mu_{k}\right)}^{2}\right]^{2}}
\end{aligned}
$$

Then

$$
\|Q(x, ., t)\|_{L^{2}\left(\mu_{k}\right)}^{2} \leq \frac{1}{4 \lambda\|g\|_{L_{r a d}^{2}\left(\mu_{k}\right)}^{2}} \int_{\mathbb{R}^{d}} \tau_{t}\left|\mathcal{F}_{k}(g)\right|^{2}(z) \mathrm{d} \mu_{k}(z) \leq \frac{1}{4 \lambda}
$$

From this inequality we deduce the result.
Theorem 3.5. Let $s>\gamma+\mathrm{d} / 2$ and $\mathrm{g} \in \mathrm{L}_{\text {rad }}^{2}\left(\mu_{\mathrm{k}}\right)$. For any $\mathrm{h} \in \mathrm{L}^{2}\left(\mu_{\mathrm{k}} \otimes \mu_{\mathrm{k}}\right)$ and for any $\lambda>0$, we have
(i) $f_{\lambda, h}^{*}(y)=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{E_{k}(i y, z) \sqrt{\tau_{\mathrm{t}}\left|\mathcal{F}_{k}(g)\right|^{2}(z)} \mathcal{F}_{k}(h(., t))(z)}{\lambda\left(1+|z|^{2}\right)^{s}+\|g\|_{L_{r a d}^{2}}^{2}\left(\mu_{k}\right)} d \mu_{k}(t) d \mu_{k}(z)$.
(ii) $\mathcal{F}_{k}\left(f_{\lambda, h}^{*}\right)(z)=\frac{\int_{\mathbb{R}^{\mathrm{d}}} \sqrt{\tau_{\mathrm{t}}\left|\mathcal{F}_{\mathrm{k}}(\mathrm{g})\right|^{2}(z)} \mathcal{F}_{\mathrm{k}}(\mathrm{h}(., \mathrm{t}))(z) \mathrm{d} \mu_{\mathrm{k}}(\mathrm{t})}{\lambda\left(1+|z|^{2}\right)^{\mathrm{s}}+\|\mathrm{g}\|_{\mathrm{L}_{\text {rad }}^{2}\left(\mu_{k}\right)}^{2}}$.
(iii) $\left\|f_{\lambda, h}^{*}\right\|_{H^{s}\left(\mu_{k}\right)} \leq \frac{1}{2 \sqrt{\lambda}}\|h\|_{L^{2}\left(\mu_{k} \otimes \mu_{k}\right)}$.

Proof. (i) From Theorem 3.3 and Fubini's theorem, we have

$$
\begin{aligned}
f_{\lambda, h}^{*}(y) & =\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{E_{k}(i y, z) \sqrt{\tau_{t}\left|\mathcal{F}_{k}(g)\right|^{2}(z)}}{\lambda\left(1+|z|^{2}\right)^{s}+\|g\|_{L_{r a d}^{2}\left(\mu_{k}\right)}^{2}}\left[\int_{\mathbb{R}^{d}} h(x, t) E_{k}(-i x, z) \mathrm{d} \mu_{k}(x)\right] d \mu_{k}(t) \mathrm{d} \mu_{k}(z) \\
& =\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{E_{k}(i y, z) \sqrt{\tau_{t}\left|\mathcal{F}_{k}(g)\right|^{2}(z)} \mathcal{F}_{k}(h(., t))(z)}{\lambda\left(1+|z|^{2}\right)^{s}+\|g\|_{L_{r a d}^{2}\left(\mu_{k}\right)}^{2}} d \mu_{k}(t) \mathrm{d} \mu_{k}(z) .
\end{aligned}
$$

(ii) The function $z \rightarrow \frac{\int_{\mathbb{R}^{d}} \sqrt{\tau_{t}\left|\mathcal{F}_{k}(g)\right|^{2}(z)} \mathcal{F}_{k}(h(., t))(z) \mathrm{d} \mu_{k}(t)}{\lambda\left(1+|z|^{2}\right)^{s}+\|g\|_{L_{\text {rad }}\left(\mu_{k}\right)}^{2}}$ belongs to $L^{1} \cap L^{2}\left(\mu_{k}\right)$. Then
by Theorem 2.1 (ii) and (iii), it follows that $f_{\lambda, h}^{*}$ belongs to $L^{2}\left(\mu_{k}\right)$, and

$$
\mathcal{F}_{k}\left(f_{\lambda, h}^{*}\right)(z)=\frac{\int_{\mathbb{R}^{\mathrm{d}}} \sqrt{\tau_{\mathrm{t}}\left|\mathcal{F}_{\mathrm{k}}(\mathrm{~g})\right|^{2}(z)} \mathcal{F}_{\mathrm{k}}(\mathrm{~h}(., \mathrm{t}))(z) \mathrm{d} \mu_{\mathrm{k}}(\mathrm{t})}{\lambda\left(1+|z|^{2}\right)^{s}+\|\mathrm{g}\|_{\mathrm{L}_{\text {rad }}^{2}\left(\mu_{k}\right)}^{2}}
$$

(iii) From (ii), Hölder's inequality and (2.6) we have

$$
\left|\mathcal{F}_{k}\left(f_{\lambda, h}^{*}\right)(z)\right|^{2} \leq \frac{\|g\|_{\mathrm{L}_{r a d}^{2}\left(\mu_{k}\right)}^{2}}{\left[\lambda\left(1+|z|^{2}\right)^{s}+\|g\|_{\mathrm{L}_{r a d}^{2}\left(\mu_{k}\right)}^{2}\right]^{2}} \int_{\mathbb{R}^{\mathrm{d}}}\left|\mathcal{F}_{k}(h(., t))(z)\right|^{2} d \mu_{k}(t)
$$

Thus,

$$
\begin{aligned}
\left\|f_{\lambda, h}^{*}\right\|_{\mathrm{H}^{s}\left(\mu_{k}\right)}^{2} & \leq \int_{\mathbb{R}^{\mathrm{d}}} \frac{\left(1+|z|^{2}\right)^{s}\|g\|_{\mathrm{L}_{\text {rad }}^{2}\left(\mu_{k}\right)}^{2}}{\left[\lambda\left(1+|z|^{2}\right)^{s}+\|g\|_{\mathrm{L}_{r a d}^{2}\left(\mu_{k}\right)}^{2}\right]^{2}}\left[\int_{\mathbb{R}^{\mathrm{d}}}\left|\mathcal{F}_{\mathrm{k}}(\mathrm{~h}(., \mathrm{t}))(z)\right|^{2} \mathrm{~d} \mu_{\mathrm{k}}(\mathrm{t})\right] \mathrm{d} \mu_{\mathrm{k}}(z) \\
& \leq \frac{1}{4 \lambda} \int_{\mathbb{R}^{\mathrm{d}}}\left[\int_{\mathbb{R}^{\mathrm{d}}}\left|\mathcal{F}_{\mathrm{k}}(h(., \mathrm{t}))(z)\right|^{2} \mathrm{~d} \mu_{\mathrm{k}}(\mathrm{t})\right] \mathrm{d} \mu_{\mathrm{k}}(z)=\frac{1}{4 \lambda}\|\mathrm{~h}\|_{\mathrm{L}^{2}\left(\mu_{k} \otimes \mu_{k}\right)}^{2}
\end{aligned}
$$

which ends the proof.
Theorem 3.6. Let $s>\gamma+\mathrm{d} / 2$ and $\mathrm{g} \in \mathrm{L}_{\mathrm{rad}}^{2}\left(\mu_{\mathrm{k}}\right)$. For any $\mathrm{h} \in \mathrm{L}^{2}\left(\mu_{\mathrm{k}} \otimes \mu_{\mathrm{k}}\right)$ and for any $\lambda>0$, we have

$$
V_{g}\left(f_{\lambda, h}^{*}\right)(x, y)=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{E_{k}(i x, z) \sqrt{\tau_{t}\left|\mathcal{F}_{k}(g)\right|^{2}(z) \tau_{y}\left|\mathcal{F}_{k}(g)\right|^{2}(z)} \mathcal{F}_{k}(h(., t))(z)}{\lambda\left(1+|z|^{2}\right)^{s}+\|g\|_{L_{r a d}^{2}}^{2}\left(\mu_{k}\right)} d \mu_{k}(t) d \mu_{k}(z)
$$

Proof. From Proposition 2.4 (ii), we have

$$
V_{g}\left(f_{\lambda, h}^{*}\right)(x, y)=\int_{\mathbb{R}^{\mathrm{d}}} E_{k}(i x, z) \mathcal{F}_{k}\left(f_{\lambda, h}^{*}\right)(z) \sqrt{\tau_{y}\left|\mathcal{F}_{k}(g)\right|^{2}(z)} d \mu_{k}(z)
$$

Then by Theorem 3.5 (ii), we obtain the result.

```
Received: January 2015. Accepted: April 2015.
```


References

[1] A. Dachraoui, Weyl-Bessel transforms, J. Comput. Appl. Math. 133 (2001) 263-276
[2] C.F. Dunkl, Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991) 12131227.
[3] C.F. Dunkl, Hankel transforms associated to finite reflection groups, Contemp. Math. 138 (1992) 123-138.
[4] M.F.E.de Jeu, The Dunkl transform, Invent. Math. 113 (1993) 147-162.
[5] G.S. Kimeldorf and G. Wahba, Some results on Tchebycheffian spline functions, J. Math. Anal. Appl. 33 (1971) 82-95.
[6] T. Matsuura, S. Saitoh and D.D. Trong, Inversion formulas in heat conduction multidimensional spaces, J. Inv. Ill-posed Problems 13 (2005) 479-493.
[7] E.M. Opdam, Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group, Compositio Math. 85(3) (1993) 333-373.
[8] M. Rösler, Positivity of Dunkl's intertwining operator, Duke Math. J. 98 (1999) 445-463.
[9] M. Rösler, A positive radial product formula for the Dunkl kernel, Trans. Amer. Math. Soc. 355 (2003) 2413-2438.
[10] S. Saitoh, Hilbert spaces induced by Hilbert space valued functions, Proc. Amer. Math. Soc. 89 (1983) 74-78.
[11] S. Saitoh, The Weierstrass transform and an isometry in the heat equation, Appl. Anal. 16 (1983) 1-6.
[12] S. Saitoh, Approximate real inversion formulas of the Gaussian convolution, Appl. Anal. 83 (2004) 727-733.
[13] S. Saitoh, Best approximation, Tikhonov regularization and reproducing kernels, Kodai Math. J. 28 (2005) 359-367.
[14] F. Soltani, Inversion formulas in the Dunkl-type heat conduction on \mathbb{R}^{d}, Appl. Anal. 84 (2005) 541-553.
[15] F. Soltani, Best approximation formulas for the Dunkl L^{2}-multiplier operators on \mathbb{R}^{d}, Rocky Mountain J. Math. 42 (2012) 305-328.
[16] F. Soltani, Multiplier operators and extremal functions related to the dual Dunkl-Sonine operator, Acta Math. Sci. 33B(2) (2013) 430-442.
[17] F. Soltani, Uncertainty principles and extremal functions for the Dunkl L²-multiplier operators, J. Oper. 2014(2014) Article ID 659069 1-9.
[18] S. Thangavelu and Y. Xu, Convolution operator and maximal function for the Dunkl transform, J. Anal. Math. 97 (2005) 25-55.
[19] S. Thangavelu and Y. Xu, Riesz transform and Riesz potentials for Dunkl transform, J. Comput. Appl. Math. 199 (2007) 181-195.
[20] M. Yamada, T. Matsuura and S. Saitoh, Representations of inverse functions by the integral transform with the sign kernel, Frac. Calc. Appl. Anal. 2 (2007) 161-168.
[21] H. Weyl, The theory of groups and quantum mechanics, Dover, New York, 1950.
[22] M.W. Wong, Weyl transforms, Universitext, Springer, New York, 1998.

[^0]: ${ }^{1}$ Author partially supported by the DGRST research project LR11ES11 and CMCU program 10G/1503

