(i, j)- ω -semiopen sets and (i, j)- ω -semicontinuity in bitopological spaces

CARLOS CARPINTERO & ENNIS ROSAS Department of Mathematics, Universidad De Oriente, Nucleo De Sucre Cumana, Venezuela. Facultad de Ciencias Basicas, Universidad del Atlantico, Barranquilla, Colombia. carpintero.carlos@gmail.com, ennisrafael@gmail.com SABIR HUSSAIN Department of Mathematics, College of Science, Qassim University, P.O.BOX 6644, Buraydah 51482, Saudi Arabia. sabiriub@yahoo.com, sh.hussain@qu.edu.sa

ABSTRACT

The aim of this paper is to introduce and characterize the notions of (i, j)- ω -semiopen sets as a generalization of (i, j)-semiopen sets in bitopological spaces. We also define and discuss the properties of (i, j)- ω -semicontinuous functions.

RESUMEN

El objetivo de este artículo es introducir y caracterizar las nociones de conjuntos (i, j)- ω -semiabiertos como una generalización de conjuntos (i, j)-semiabiertos en espacios bitopológicos. También definimos y discutimos las propiedades de funciones (i, j)- ω -semicontinuas.

Keywords and Phrases: Bitopological spaces, (i, j)-ω-semiopen sets, (i, j)-ω-semiclosed sets. **2010 AMS Mathematics Subject Classification:** 54A05,54C05,54C08.

1 Introduction and Preliminaries

The concept of a bitopological space was introduced by Kelly [3]. On the other hand, S. Bose [1], introduced the concept of (i, j)-semiopen sets in bitopological spaces. Recently, as generalization of closed sets, the notion of ω -closed sets was introduced and studied by Hdeib [2]. A point $x \in X$ is called a condensation point of A, if for each $U \in \tau$ with $x \in U$, the set $U \cap A$ is uncountable. A is said to be ω -closed [2], if it contains all of its condensation points. The complement of a ω -closed set is said to be ω -open. It is well known that a subset W of a space (X, τ) is ω -open if and only if for each $x \in W$, there exists $U \in \tau$ such that $x \in U$ and $U \setminus W$ is countable. In this paper, we introduce the concept of (i, j)- ω -semiopen sets as a generalization of (i, j)-semiopen sets in bitopological spaces. We also define and discuss the properties of (i, j)- ω -semicontinuous functions. For a subset A of X, the closure of A and the interior of A are denoted by Cl(A)and Int(A), respectively. A subset A of a bitopological space (X, τ_1, τ_2) is said to be (i, j)-semi open, if $A \subseteq \tau_i$ -cl(τ_i -Int(A)), where $i \neq j$, i, j = 1, 2. The complement of a (i, j)-semiopen set is said to be a (i, j)-semiclosed. The (i, j)-semiclosure of A, denoted by (i, j)-scl(A) is defined by the intersection of all (i, j)-semiclosed sets containing A. The (i, j)-semi interior of A, denoted by (i, j)-sInt(A) is defined by the union of all (i, j)-semiopen sets contained in A. The family of all (i, j)-semiopen (respectively (i, j)-semiclosed) subsets of a space (X, τ_1, τ_2) is denoted by (i, j) - SO(X), (respectively (i, j) - SC(X)). A function $f : (X, \tau_1, \tau_2) \mapsto (Y, \sigma_1, \sigma_2)$ is said to be (i, j)-semi continuous, if the inverse image of every σ_i -open set in (Y, σ_1, σ_2) is (i, j)-semi open in (X, τ_1, τ_2) , where $i \neq j$, i, j = 1, 2. A σ_i -open set U in (Y, σ_1, σ_2) means $U \in \sigma_i$.

2 (i, j)- ω -semiopen sets

A set X equipped with two topologies is called a bitopological space. Throughout this paper, spaces (X, τ_1, τ_2) (or simply X) always means a bitopological spaces on which no separation axioms are assumed unless explicitly stated.

Definition 2.1. Let X be a bitopological space and $A \subseteq X$. Then A is said to be (i,j)- ω -semiopen, if for each $x \in A$ there exists a (i,j)-semiopen U_x containing x such that $U_x - A$ is a countable set. The complement of a (i,j)- ω -semiopen set is a (i,j)- ω -semiclosed set.

The family of all (i, j)- ω -semiopen (respectively (i, j)- ω -semiclosed) subsets of a space (X, τ_1, τ_2) is denoted by $(i, j) - \omega - SO(X)$, (respectively $(i, j) - \omega - SC(X)$). Also the family of all $(i, j) - \omega$ -semiopen sets of (X, τ_1, τ_2) containing x is denoted by $(i, j) - \omega - SO(X, x)$. Note that every (i, j)-semiopen set is a (i, j)- ω -semiopen. The following example shows that the converse is not true in general.

Example 2.2. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, \{a, b\}, X\}, \tau_2 = \{\emptyset, \{b, c\}, X\}$. Then $\{a, c\}$ is a (i, j)-w-semiopen but not (i, j)-semiopen.

Theorem 2.3. Let X be a bitopological space and $A \subseteq X$. Then A is said to be (i, j)- ω -semiopen if and only if for every $x \in A$, there exists a (i, j)-semiopen set U_x containing x and a countable subset C such that $U_x - C \subseteq A$.

Proof. Let A be a (i, j)- ω -semiopen set and $x \in A$, then there exists a (i, j)-semiopen subset U_x containing x such that $U_x - A$ is countable. Let $C = U_x - A = U_x \cap (X - A)$. Then $U_x - C \subseteq A$. Conversely, let $x \in A$. Then there exists a (i, j)- ω -semiopen subset U_x containing x and a countable subset C such that $U_x - C \subseteq A$. Thus $U_x - A \subseteq C$ and $U_x - A$ is countable.

Theorem 2.4. Let X be a bitopological space and $C \subseteq X$. If C is a (i,j)- ω -semiclosed set, then $C \subseteq K \cup B$, for some (i,j)- ω -semiclosed subset K and a countable subset B.

Proof. If C is a (i, j)-*w*-semiclosed set, then X−C is a (i, j)-*w*-semiopen set and hence by Theorem 2.3, for every $x \in X - C$, there exists a (i, j)-semiopen set U containing x and a countable set B such that $U - B \subseteq X - C$. Thus $C \subseteq X - (U - B) = X - (U \cap (X - B)) = (X - U) \cup B$, let K = X - U. Then K is a (i, j)-semiclosed set such that $C \subseteq K \cup B$.

Theorem 2.5. The union of any family of $(i, j) - \omega$ -semiopen sets is (i, j)- ω -semiopen set.

Proof. If $\{A_{\alpha} : \alpha \in I\}$ is a collection of (i, j)- ω -semiopen subsets of X, then for every $x \in \bigcup_{\alpha \in I} A_{\alpha}, x \in A_{\alpha}$, for some $\alpha \in I$. Hence, there exists a (i, j)- ω -semiopen subset U containing x, such that $U - A_{\alpha}$ is countable. Now as $U - (\bigcup_{\alpha \in I} A_{\alpha}) \subseteq U - A_{\alpha}$, and thus $U - (\bigcup_{\alpha \in I} A_{\alpha})$ is countable. Therefore $\bigcup_{\alpha \in I} A_{\alpha}$ is a (i, j)- ω -semiopen set.

Definition 2.6. The union of all (i, j)- ω -semiopen sets contained in $A \subseteq X$ is called the (i, j)- ω -semi-interior of A and is denoted by $(i, j) - \omega$ -SInt(A). The intersection of all (i, j)- ω -semiclosed sets of X containing A is called the (i, j)- ω -semiclosure of A and is denoted by (i, j)- ω -SCl(A).

Remark 2.7. The (i, j)- ω -SCl(A) is a (i, j)- ω -semiclosed set and the (i, j)- ω -SInt(A) is a (i, j)- ω -semiopen set.

Theorem 2.8. Let X be a bitopological space and $A, B \subseteq X$. Then the following properties hold:

- (1) $(i, j)-\omega$ -SInt $((i, j)-\omega$ -SInt $(A)) = (i, j)-\omega$ -SInt(A).
- (2) If $A \subset B$, then $(i, j)-\omega$ -SInt $(A) \subset (i, j)-\omega$ -SInt(B).
- (3) $(i,j)-\omega$ -SInt $(A \cap B) \subset (i,j)-\omega$ -SInt $(A) \cap (i,j)-\omega$ -SInt(B).
- (4) (i,j)- ω -SInt(A) \cup (i,j)- ω -SInt(B) \subset (i,j)- ω -SInt(A \cup B).
- (5) (i,j)- ω -SInt(A) is the largest (i,j)- ω -semiopen subset of X contained in A.
- (6) A is (i, j)- ω -semiopen if and only if A = (i, j)- ω -SInt(A).
- (7) $(i,j)-\omega$ -SCl $((i,j)-\omega$ -SCl $(A)) = (i,j)-\omega$ -SCl(A).

(8) If $A \subset B$, then (i, j)- ω -SCl $(A) \subset (i, j)$ - ω -SCl(B).

(9) $(i,j)-\omega$ -SCl $(A) \cup (i,j)-\omega$ -SCl $(B) \subset (i,j)-\omega$ -SCl $(A \cup B)$.

(10) (i, j)- ω -SCl $(A \cap B) \subset (i, j)$ - ω -SCl $(A) \cap (i, j)$ - ω -SCl(B).

Proof. (1), (2), (6), (7) and (8) follow directly from the definition of (i, j)- ω -semiopen and (i, j)- ω -semiclosed sets. (3), (4) and (5) follow from (2). (9) and (10) follow by applying (8).

Example 2.9. Let X be the real line, $\tau_1 = \{\emptyset, \operatorname{Re}, Q^c\}$ and $\tau_2 = \{\emptyset, \operatorname{Re}, Q, Q^c\}$. Take A = (0, 1), B = (1, 2), then (i, j)- ω -SCl $(A \cap B) \subset (i, j)$ - ω -SCl $(A) \cap (i, j)$ - ω -SCl(B).

Example 2.10. Let X be the real line, $\tau_1 = \{\emptyset, \operatorname{Re}, Q\}$ and $\tau_2 = \{\emptyset, \operatorname{Re}, Q\}$. The collection of (i,j) - SO(X) is $\{\emptyset, \operatorname{Re}, Q\}$. take A = Q, $B = \{\pi\}$. Then (i,j)- ω -SCl(A) = Q, (i,j)- ω -SCl $(B) = \{\pi\}$ and (i,j)- ω -SCl $(A) \cup (i,j)$ - ω -SCl $(B) \subset (i,j)$ - ω -SCl $(A \cup B)$.

Theorem 2.11. Let X be a bitopological space. Suppose $A \subseteq X$ and $x \in X$. Then $x \in (i, j)$ - ω -SCl(A) if and only if $U \cap A \neq \emptyset$ for every $U \in (i, j)$ - ω -SO(X, x).

Proof. Suppose that $x \in (i, j)$ - ω -SCl(A) and we show that $U \cap A \neq \emptyset$, for all $U \in (i, j)$ - ω -SO(X, x). Suppose on the contrary that there exists $U \in (i, j)$ - ω -SO(X, x) such that $U \cap A = \emptyset$, then $A \subseteq X - U$ and X - U is a (i, j)- ω -semiclosed set. This follows that (i, j)- ω -SCl(A) $\subseteq (i, j)$ - ω -SCl(X - U) = X - U. Since $x \in (i, j)$ - ω -SCl(A), we have $x \in X - U$ and hence $x \notin U$. Which contradicts the fact that $x \in U$. Therefore, $U \cap A \neq \emptyset$. Conversely, suppose that $U \cap A \neq \emptyset$ for every $U \in (i, j)$ - ω -SO(X, x). We shall prove that $x \in (i, j)$ - ω -SCl(A). Suppose on the contrary that $x \notin (i, j)$ - ω -SCl(A). Let U = X - (i, j)- ω -SCl(A), then $U \in (i, j)$ - ω -SO(X, x) and $U \cap A = (X - ((i, j)) - \omega$ -SCl(A))) ∩ $A \subseteq (X - A) \cap A = \emptyset$. This is a contradiction to the fact that $U \cap A \neq \emptyset$. Hence $x \in (i, j)$ - ω -SCl(A). □

Theorem 2.12. Let X be a bitopological space and $A \subset X$. Then the following properties hold:

(1) $(i, j)-\omega$ -SCl $(X \setminus A) = X \setminus (i, j)-\omega$ -SInt(A);

(2) $(i,j)-\omega$ -SInt $(X \setminus A) = X \setminus (i,j)-\omega$ -SCl(A).

Proof. (1). Let $x \in X \setminus (i, j) - \omega - SCl(A)$. Then there exists $V \in (i, j) - \omega - SO(X, x)$ such that $V \cap A = \emptyset$ and hence we obtain $x \in (i, j) - \omega - SInt(X \setminus A)$. This shows that $X \setminus (i, j) - \omega - SCl(A) \subset (i, j) - \omega - SInt(X \setminus A)$. Now consider $x \in (i, j) - \omega - SInt(X \setminus A)$. Since $(i, j) - \omega - SInt(X \setminus A) \cap A = \emptyset$, we obtain $x \notin (i, j) - \omega - SCl(A)$. Therefore, we have, $(i, j) - \omega - SCl(X \setminus A) = X \setminus (i, j) - \omega - SInt(A)$.

(2). Let $x \in X \setminus (i, j)-\omega$ -SInt(X-A). Since $(i, j)-\omega$ -SInt $(X \setminus A) \cap A = \emptyset$, we have $x \notin (i, j)-\omega$ -SCl(A) implies $x \in X \setminus (i, j)-\omega$ -SCl(A). Now consider $x \in X \setminus (i, j)-\omega$ -SCl(A), then there exists $V \in (i, j)-\omega$ -SO(X, x) such that $V \cap A = \emptyset$, hence we obtain that $(i, j)-\omega$ -SInt $(X \setminus A) = X \setminus (i, j)-\omega$ -SCl(A). \Box

Definition 2.13. Let X be a bitopological space and $B \subseteq X$. Then B is a (i, j)- ω -semineighbourhood of a point $x \in X$ if there exists a (i, j)- ω -semiopen set W such that $x \in W \subset B$.

Theorem 2.14. Let X be a bitopological space and $B \subseteq X$. B is a (i,j)- ω -semiopen set if and only if it is a (i,j)- ω -semineighbourhood of each of its points.

Proof. Let B be a (i, j)- ω -semiopen set of X. Then by definition B is a (i, j)- ω -semineighbourhood of each of its points. Conversely, suppose that B is a (i, j)- ω -semineighbourhood of each of its points. Then for each $x \in B$, there exists $S_x \in (i, j)$ - ω -SO(X, x) such that $S_x \subset B$. Then $B = \bigcup \{S_x : x \in B\}$. Since each S_x is a (i, j)- ω -semiopen and arbitrary union of (i, j)- ω -semiopen sets is (i, j)- ω -semiopen, B is a (i, j)- ω -semiopen in X.

Theorem 2.15. If each nonempty (i, j)- ω -semiopen set of a bitopological space X is uncountable, then (i, j)-SCl(A) = (i, j)- ω -SCl(A), for each subset $A \in \tau_1 \cap \tau_2$.

Proof. Clearly (i, j)- ω -SCl(A) ⊆ (i, j)-SCl(A). On the other hand, let $x \in (i, j)$ -SCl(A) and B be a (i, j)- ω -semiopen set containing x. Using Theorem 2.3, there exists a (i, j)-semiopen set V containing x and a countable set C such that $V - C \subseteq B$. Follows $(V - C) \cap A \subseteq B \cap A$ and so $(V \cap A) - C \subseteq B \cap A$. Now $x \in V$, $x \in (i, j)$ -SCl(A) such that $V \cap A \neq \emptyset$ where $V \cap A$ is a (i, j)- ω -semiopen set, since V is a (i, j)-semiopen set and $A \in \tau_1 \cap \tau_2$. Using the hypothesis, each nonempty (i, j)- ω -semiopen set of X is uncountable and so is $(V \cap A) \setminus C$. Thus B∩A is uncountable. Therefore, B ∩ A ≠ \emptyset implies that $x \in (i, j)$ - ω -SCl(A).

Theorem 2.16. Let X be a bitopological space. If every (i, j)- ω -semiopen subset of X is τ_i -open in X. Then $(X, (i, j)-\omega$ -SO(X)) is a topological space.

Proof. 1. \emptyset , X belong to (i, j)- ω -SO(X)

2. Let $U, V \in (i, j)-\omega$ -SO(X) and $x \in U \cap V$. Then there exists (i, j)-semi open sets G, H in X containing x such that $G \setminus U$ and $H \setminus V$ are countable. Since $(G \cap H) \setminus (U \cap V) = (G \cap H) \cap ((X \setminus U) \cup (X \setminus V)) \subseteq (G \cap (X \setminus U)) \cup (H \cap (X \setminus V))$ implies that $(G \cap H) \setminus (U \cap V)$ is a countable set and by hypothesis, the intersection of two (i, j)-semi open set is (i, j)-semi open. Hence $U \cap V \in (i, j)$ - ω -SO(X)).

3. The union follows directly.

3 (i, j)- ω -semicontinuous functions

Definition 3.1. A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be a (i, j)- ω -semicontinuous, if the inverse image of every σ_i -open set of Y is (i, j)- ω -semiopen in (X, τ_1, τ_2) , where $i \neq j$, i, j=1, 2.

Definition 3.2. A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be a (i, j)-semicontinuous, if the inverse image of every σ_i -open set of Y is (i, j)-semiopen in (X, τ_1, τ_2) , where $i \neq j$, i, j=1, 2.

Theorem 3.3. Every (i, j)-semicontinuous function is (i, j)- ω -semicontinuous.

Proof. The proof follows from the fact that every (i, j)-semiopen set is (i, j)- ω -semiopen.

However, the converse may be false.

Example 3.4. Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$, $\tau_2 = \{\emptyset, \{a\}, X\}$, $\sigma_1 = \{\emptyset, \{a, b\}, X\}$, $\sigma_2 = \{\emptyset, \{a, c\}, X\}$. Then the identity function $f : (X, \tau_1, \tau_2) \rightarrow (X, \sigma_1, \sigma_2)$ is (i, j)- ω -semicontinuous but not (i, j)-semicontinuous.

Theorem 3.5. For a function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$, the following statements are equivalent:

- (1) f is (i, j)- ω -semicontinuous;
- (2) For each point $x \in X$ and each σ_i -open set F in Y such that $f(x) \in F$, there is a (i,j)- ω -semiopen set A in X such that $x \in A$, and $f(A) \subset F$;
- (3) The inverse image of each σ_i -closed set in Y is a (i, j)- ω -semiclosed in X;
- (4) For $A \subseteq X$, $f((i, j)-\omega$ -SCl $(A)) \subset \sigma_i$ -cl(f(A));
- (5) For $B \subseteq Y$, (i,j)- ω -SCl $(f^{-1}(B)) \subset f^{-1}(\sigma_i$ -cl(B));
- (6) For $C \subseteq Y$, $f^{-1}(\sigma_i \operatorname{-Int}(C)) \subset (i,j) \operatorname{-}\omega \operatorname{-}\operatorname{SInt}(f^{-1}(C))$.

Proof. - (1)⇒(2): Let $x \in X$ and F be a σ_i -open set of Y containing f(x). By (1), $f^{-1}(F)$ is (i, j)-ω-semiopen in X. Let $A = f^{-1}(F)$. Then $x \in A$ and $f(A) \subset F$.

 $(2) \Rightarrow (1)$: Let F be σ_i -open in Y and let $x \in f^{-1}(F)$. Then $f(x) \in F$. By (2), there is a (i, j)- ω -semiopen set U_x in X such that $x \in U_x$ and $f(U_x) \subset F$ implies $x \in U_x \subset f^{-1}(F)$. Hence $f^{-1}(F)$ is a (i, j)- ω -semiopen in X.

(1) \Leftrightarrow (3): This follows from the fact that for any subset B of Y, $f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$.

 $\begin{array}{l} (3) \Rightarrow (4): \ \mathrm{Let} \ A \subseteq X. \ \mathrm{Since} \ A \subset f^{-1}(f(A)), \ \mathrm{we} \ \mathrm{have} \ A \subset f^{-1}(\sigma_i \operatorname{-Cl}(f(A))). \ \mathrm{By} \ \mathrm{hypothesis} \ f^{-1}(\sigma_i \operatorname{-Cl}(f(A))) \\ \mathrm{Cl}(f(A))) \ \mathrm{is} \ \mathrm{a} \ (\mathfrak{i}, \mathfrak{j}) \text{-} \omega \text{-} \mathrm{semiclosed} \ \mathrm{set} \ \mathrm{in} \ X \ \mathrm{and} \ \mathrm{hence} \ (\mathfrak{i}, \mathfrak{j}) \text{-} \omega \text{-} \mathrm{SCl}(A)) \subset f^{-1}(\sigma_i \operatorname{-Cl}(f(A))). \ \mathrm{Follows} \ f((\mathfrak{i}, \mathfrak{j}) \text{-} \omega \text{-} \mathrm{SCl}(A))) \subset f(f^{-1}(\sigma_i \operatorname{-Cl}(f(A))) \subseteq \sigma_i \operatorname{-Cl}(f(A)). \end{array}$

(4)⇒(3): Let F be any σ_i -closed subset of Y. Then $f((i,j)-\omega$ -SCl $(f^{-1}(F)) \subset \sigma_i$ -cl $(f(f^{-1}(F))) \subset \sigma_i$ -cl(F) = F. Therefore, the $(i,j)-\omega$ -SCl $(f^{-1}(F)) \subset f^{-1}(F)$. Consequently, $f^{-1}(F)$ is a (i,j)- ω -semiclosed set in X.

 $(4) \Rightarrow (5)$: Let $B \subseteq Y$. Now, $f((i,j)-\omega-SCl(f^{-1}(B))) \subset \sigma_i-Cl(f(f^{-1}(B))) \subset \sigma_i-Cl(B)$. Consequently, $(i,j)-\omega-SCl(f^{-1}(B)) \subset f^{-1}(\sigma_i-Cl(B))$.

 $(5) \Rightarrow (4)$: Let B = f(A) where $A \subseteq X$. Then, (i, j)- ω -SCl $(A) \subset (i, j)$ - ω -SCl $(f^{-1}(B)) \subset f^{-1}(\sigma_i$ -Cl $(B)) = f^{-1}(\sigma_i$ -Cl(f(A))), and hence f((i, j)- ω -SCl $(A)) \subset \sigma_i$ -Cl(f(A)).

 $(1) \Rightarrow (6)$: Let $B \subseteq Y$. Clearly, $f^{-1}(\sigma_i \operatorname{-Int}(B))$ is a (i, j)- ω -semiopen and we have $f^{-1}(\sigma_i \operatorname{-Int}(B)) \subset (i, j)$ - ω -SInt $(f^{-1}\sigma_i \operatorname{-Int}(B)) \subset (i, j)$ - ω -SInt $(f^{-1}B)$.

 $(6) \Rightarrow (1)$: Let B be a σ_i -open set in Y. Then σ_i -Int(B) = B and $f^{-1}(B) \subset f^{-1}(\sigma_i$ -Int(B)) $\subset (i, j)$ - ω -SInt($f^{-1}(B)$). Hence, we have $f^{-1}(B) = (i, j)$ - ω -SInt($f^{-1}(B)$). This implies that $f^{-1}(B)$ is a (i, j)- ω -semiopen in X.

Definition 3.6. The graph G(f) of $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be (i, j)- ω -semiclosed in $X \times Y$, if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exists $U \in (i, j)$ - ω -SO(X, x), $i, j = \{1, 2\}$ with $i \neq j$ and a σ_i -open set V of Y containing y such that $(U \times V) \cap G(f) = \emptyset$.

Lemma 3.7. The graph G(f) of $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is (i, j)- ω -semiclosed in $X \times Y$ if and only if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exists $U \in (i, j)$ - ω -SO(X, x), $i, j = \{1, 2\}$ with $i \neq j$ and a σ_i -open set V of Y containing y such that $f(U) \cap V = \emptyset$.

Proof. The proof is an immediate consequence of Definition 3.6.

Theorem 3.8. If a function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a (i, j)- ω -semicontinuous function and (Y, σ_i) is T_1 $i = \{1, 2\}$, then G(f) is (i, j)- ω -semiclosed.

Proof. Let $(x, y) \in (X \times Y) \setminus G(f)$. Then $y \neq f(x)$. Since (Y, σ_i) is T_1 , there exist a σ_i -open set V and W of Y such that $f(x) \in V$ and $y \notin W$ and $V \cap W = \emptyset$. Since f is (i, j)- ω -semicontinuous, there exists $U \in (i, j)$ - ω -SO(X, x) such that $f(U) \subset V$. Therefore, $f(U) \cap W = \emptyset$. Therefore, by Lemma 3.7, G(f) is (i, j)- ω -semiclosed. □

Definition 3.9. A bitopological space X is said to be a (i,j)- ω -semi- T_2 space, if for each pair of distinct points $x, y \in X$, there exist $U, V \in (i,j)$ - ω -SO(X) containing x and y, respectively, such that $U \cap V = \emptyset$.

Theorem 3.10. If $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a (i, j)- ω -semicontinuous injective function and (Y, σ_i) is a T_2 space, then (X, τ_1, τ_2) is a ω -semi- T_2 space.

Proof. The proof follows from the definition.

Theorem 3.11. If $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is an injective (i, j)- ω -semicontinuous function with a (i, j)- ω -semiclosed graph, then X is a (i, j)- ω -semi- T_2 space.

Proof. Let x_1 and x_2 be any pair of distinct points of X. Then $f(x_1) \neq f(x_2)$, so $(x_1, f(x_2)) \in (X \times Y) \setminus G(f)$. Since the graph G(f) is (i, j)- ω -semiclosed, there exist a (i, j)- ω -semiopen set U containing x_1 and $V \in \sigma_i$ containing $f(x_2)$ such that $f(U) \cap V = \emptyset$. Since f is (i, j)- ω -semicontinuous, $f^{-1}(V)$ is a (i, j)- ω -semiopen set containing x_2 such that $U \cap f^{-1}(V) = \emptyset$. Hence X is (i, j)- ω -semi- T_2 . □

Definition 3.12. A collection $\{U_{\alpha} : \alpha \in I\}$ of (i, j)-semiopen sets in a bitopological space X is called a (i, j)-semiopen cover of a subset A of X, if $A \subseteq \bigcup_{\alpha \in I} U_{\alpha}$.

Definition 3.13. A bitopological space X is said to be (i, j)-semi Lindeloff, if every (i, j)-semi open cover of X has a countable subcover. A subset A of bitopological space X is said to be (i, j)-semi Lindeloff relative to X, if every cover of A by (i, j)-semiopen sets of X has a countable subcover.

Theorem 3.14. If X is a bitopological space such that every (i, j)-semiopen subset is (i, j)-semi Lindeloff relative to X. Then every subset is (i, j)-semi Lindeloff relative to X

Theorem 3.15. For a bitopological space X. The following properties are equivalent:

- (1) X is (i, j)-semi Lindeloff.
- (2) Every countable cover of X by (i, j)-semiopen sets has a countable subcover.

Proof. (2)⇒(1): Since every (i, j)-semiopen set is (i, j)-ω-semiopen, the proof follows. (1)⇒(2): Let {U_α : α ∈ I} be any cover of X by (i, j)-ω-semiopen sets of X. For each x ∈ X, there exists an α_x ∈ I such that x ∈ U_{α_x}. Since U_{α_x} is a (i, j)-ω-semiopen, then there exists a (i, j)-semiopen set V_{α_x} such that x ∈ V_{α_x} and V_{α_x} − U_{α_x} is countable. The family {V_α : α ∈ I} is a (i, j)-semiopen cover of X and X is (i, j)-semi Lindeloff. Therefore there exists a countable subcover α_{x_i} with i ∈ N such that X = ⋃_{i∈N} V_{α_{x_i}. Since X = ⋃_{i∈N} [(V_{α_{x_i} − U_{α_{x_i}) ∪ U_{α_{x_i}] = ⋃_{i∈N} [(V_{α_{x_i} − U_{α_{x_i}) ⋃_{i∈N} U_{α_{x_i}]. Since V_{α_{x_i} − U_{α_{x_i} is a countable set, for each α(x_i), there exists a countable subset I_{α(x_i)} of I such that V_{α_{x_i} − U_{α_{x_i} ⊆ ⋃_{I_{α(x_i)} U_α and therefore X ⊆ ⋃_{i∈N} (⋃_{α∈I_{α(x_i)} U_α) ∪ (⋃_{i∈N} U_{α(x_i)}). □}}}}}}}}}}}}}

Definition 3.16. A bitopological space X is called pairwise Lindeloff if each pairwise open cover of X has a countable subcover.

Theorem 3.17. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a (i, j)- ω -semicontinuous function. If X is (i, j)-semi Lindeloff, then Y is pairwise Lindeloff.

Proof. Let $\{U_{\alpha} : \alpha \in I\}$ be any cover of Y by σ_i -open sets. Then $\{f^{-1}(U_{\alpha}) : \alpha \in I\}$ is a (i, j)- ω -semiopen cover of X. Since X is (i, j)-semi Lindeloff, there exists a countable subset I_0 of I such that $X = \bigcup_{\alpha \in I_0} U_{\alpha}$. Therefore, Y is a pairwise Lindeloff.

Definition 3.18. A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be:

- 1 (i, j)- ω -semiopen if f(U) is a (i, j)- ω -semiopen set in Y for every τ_i -open set U of X.
- 2 (i,j)- ω -semiclosed if f(U) is a (i,j)- ω -semiclosed set in Y for every τ_i -closed set U of X.

Theorem 3.19. For a function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) f is a (i, j)-w-semiopen.
- (2) $f(\tau_i Int(U)) \subseteq (i, j) \omega SCl(f(U))$, for each subset U of X.
- (3) $\tau_i Int(f^{-1}(V)) \subseteq f^{-1}((i,j)-\omega$ -SInt(V), for each subset V of Y.

Proof. (1) \Rightarrow (2): Let U be any subset of X. Then $\tau_i - Int(U)$ is a τ_i -open set of X. Then $f(\tau_i - Int(U))$ is a (i, j)- ω -semiopen set of Y. Since $f(\tau_i - Int(U)) \subseteq f(U)$, $f(\tau_i - Int(U)) = (i, j)$ - ω -SInt($f(\tau_i - Int(U)) \subseteq (i, j)$ - ω -SInt(f(U)).

 $(2) \Rightarrow (3)$:Let V be any subset of Y. Then $f(\tau_i - Int(f^{-1}(V))) \subseteq (i, j)-\omega$ -SInt $(f(f^{-1}(V)))$. Hence $\tau_i - Int(f^{-1}(V)) \subseteq f^{-1}((i, j)-\omega$ -SInt(V)).

 $(3) \Rightarrow (1)$: Let U be any τ_i -open set of X. Then $\tau_i - Int(U) = U$. Now, $V = \tau_i - Int(V) \subseteq \tau_i - Int(V) = Int($

 $Int(f^{-1}(f(V)) ⊆ f^{-1}((i,j)-ω-SInt(f(V)))).$ Which implies that $f(V) ⊆ f(f^{-1}((i,j)-ω-SInt(f(V)))) ⊆ (i,j)-ω-SInt(f(V)).$ Hence f(V) is a (i,j)-ω-semiopen set of Y. Thus f is (i,j)-ω-semiopen. □

Theorem 3.20. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a function, then f is a (i, j)- ω -semiclosed function if and only if for each subset V of X, the (i, j)- ω -SCl $(f(V)) \subseteq f(\tau_i - Cl(V))$.

Proof. Let f be a (i, j)-ω-semiclosed function and V be any subset of X. Then $f(V) \subseteq f(\tau_i - Cl(V))$ and $f(\tau_i - Cl(V))$ is a (i, j)-ω-semiclosed set of Y. Hence (i, j)-ω-SCl(f(V)) \subseteq (i, j)-ω-SCl($f(\tau_i - Cl(V))$) = $f(\tau_i - Cl(V))$. Conversely, let V be a τ_i -closed set of X. Then $f(V) \subseteq (i, j)$ -ω-SCl(f(V)) $\subseteq f(\tau_i - Cl(V))$ = f(V). Hence f(V) is a (i, j)-ω-semiclosed set of Y. Therefore, f is a (i, j)-ω-semiclosed function

Definition 3.21. A bitopological space X is said to be (i, j)- ω -semiconnected, if X cannot be expressed as the union of two nonempty disjoint (i, j)- ω -semiopen sets.

Definition 3.22. A bitopological space X is said to be pairwise connected [5], if it cannot be expressed as the union of two nonempty disjoint sets U and V such that U is τ_i -open and V is τ_j -open, where $i, j = \{1, 2\}$ and $i \neq j$.

Theorem 3.23. A (i,j)- ω -semicontinuous image of a (i,j)- ω -semiconnected space is pairwise connected.

Proof. The proof is clear.

Received: March 2015. Accepted: May 2015.

References

- S. Bose, Semi-open sets, Semi-Continuity and semi-open mappings in bitopological spaces, Bull. Calcutta Math. Soc., 73(1981), 237-246.
- [2] H. Z. Hdeib, ω-closed mappings, Revista Colombiana Mat., 16(1982), 65-78.
- [3] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc., 13, pp. 71-89, (1963).
- [4] H. Maki, R. Chandrasekhara Rao and A. Nagoor Gani, On generalizing semi-open sets and preopen sets, Pure Appl. Math. Math. Sci, 49 (1999), pp 17-29.
- [5] W. J. Pervin, Connectedness in Bitopological spaces, Ind. Math., 29 (1967), 369-372.