Right General Fractional Monotone Approximation

George A. Anastassiou
Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, U.S.A.,
ganastss@memphis.edu

Abstract

Here is introduced a right general fractional derivative Caputo style with respect to a base absolutely continuous strictly increasing function g . We give various examples of such right fractional derivatives for different g. Let f be p-times continuously differentiable function on $[a, b]$, and let L be a linear right general fractional differential operator such that $L(f)$ is non-negative over a critical closed subinterval J of $[a, b]$. We can find a sequence of polynomials Q_{n} of degree less-equal n such that $L\left(Q_{n}\right)$ is non-negative over J, furthermore f is approximated uniformly by Q_{n} over $[a, b]$. The degree of this constrained approximation is given by an inequality using the first modulus of continuity of $f^{(p)}$. We finish we applications of the main right fractional monotone approximation theorem for different g.

RESUMEN

Aquí introducimos una derivada fraccional derecha general al estilo de Caputo con respecto a una base de funciones absolutamente continuas estrictamente crecientes g . Damos varios ejemplos de dichas derivadas fraccionales derechas para diferentes g . Sea f una función p-veces continuamente diferenciable en $[a, b]$, y sea L un operador diferencial fraccional derecho general tal que $L(f)$ es no-negativo en un subintervalo cerrado crítico J de $[a, b]$. Podemos encontrar una sucesión de polinomios $L\left(Q_{n}\right)$ de grado menor o igual a n tal que $L\left(Q_{n}\right)$ es no-negativo en J, más aún f es aproximada uniformemente por Q_{n} en $[a, b]$. El grado de esta aproximación restringida es dada por una desigualdad usando el primer módulo de continuidad de $f^{(p)}$. Concluimos con aplicaciones del teorema principal de aproximación monótona fraccional derecha para diferentes g .

Keywords and Phrases: Right Fractional Monotone Approximation, general right fractional derivative, linear general right fractional differential operator, modulus of continuity.
2010 AMS Mathematics Subject Classification: 26A33, 41A10, 41A17, 41A25, 41A29.

1 Introduction and Preparation

The topic of monotone approximation started in [11] has become a major trend in approximation theory. A typical problem in this subject is: given a positive integer k, approximate a given function whose k th derivative is ≥ 0 by polynomials having this property.

In [4] the authors replaced the kth derivative with a linear ordinary differential operator of order k.

Furthermore in [1], the author generalized the result of [4] for linear right fractional differential operators.

To describe the motivating result here we need
Definition 1. ([5]) Let $\alpha>0$ and $\lceil\alpha\rceil=\mathrm{m}$, ($\lceil\cdot\rceil$ ceiling of the number $)$. Consider $\mathrm{f} \in \mathrm{C}^{\mathrm{m}}([-1,1])$. We define the right Caputo fractional derivative of f of order α as follows:

$$
\begin{equation*}
\left(D_{1-}^{\alpha} f\right)(x)=\frac{(-1)^{m}}{\Gamma(m-\alpha)} \int_{x}^{1}(t-x)^{m-\alpha-1} f^{(m)}(t) d t \tag{1}
\end{equation*}
$$

for any $x \in[-1,1]$, where Γ is the gamma function $\Gamma(v)=\int_{0}^{\infty} e^{-t} t^{v-1} d t, v>0$.
We set

$$
\begin{gather*}
D_{1-}^{0} f(x)=f(x) \tag{2}\\
D_{1-}^{m} f(x)=(-1)^{m} f^{(m)}(x), \quad \forall x \in[-1,1] \tag{3}
\end{gather*}
$$

In [1] we proved
Theorem 1.1. Let $\mathrm{h}, \mathrm{k}, \mathrm{p}$ be integers, h is even, $\mathrm{O} \leq \mathrm{h} \leq \mathrm{k} \leq \mathrm{p}$ and let f be a real function, $f^{(p)}$ continuous in $[-1,1]$ with modulus of continuity $\omega_{1}\left(f^{(p)}, \delta\right), \delta>0$, there. Let $\alpha_{j}(x), \mathfrak{j}=$ $h, h+1, \ldots, k$ be real functions, defined and bounded on $[-1,1]$ and assume for $x \in[-1,0]$ that $\alpha_{h}(x)$ is either \geq some number $\alpha>0$ or \leq some number $\beta<0$. Let the real numbers $\alpha_{0}=0<$ $\alpha_{1}<1<\alpha_{2}<2<\ldots<\alpha_{p}<p$. Here $D_{1-}^{\alpha_{j}} f$ stands for the right Caputo fractional derivative of f of order α_{j} anchored at 1 . Consider the linear right fractional differential operator

$$
\begin{equation*}
L:=\sum_{j=h}^{k} \alpha_{j}(x)\left[D_{1-}^{\alpha_{j}}\right] \tag{4}
\end{equation*}
$$

and suppose, throughout $[-1,0]$,

$$
\begin{equation*}
L(f) \geq 0 \tag{5}
\end{equation*}
$$

Then, for any $\mathfrak{n} \in \mathbb{N}$, there exists a real polynomial $\mathrm{Q}_{\mathrm{n}}(\mathrm{x})$ of degree $\leq \mathrm{n}$ such that

$$
\begin{equation*}
\mathrm{L}\left(\mathrm{Q}_{n}\right) \geq 0 \text { throughout }[-1,0] \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{-1 \leq x \leq 1}\left|f(x)-Q_{n}(x)\right| \leq C n^{k-p} \omega_{1}\left(f^{(p)}, \frac{1}{n}\right) \tag{7}
\end{equation*}
$$

where C is independent of n or f .

Notice above that the monotonicity property is only true on $[-1,0]$, see (5), (6). However the approximation property (7) it is true over the whole interval $[-1,1]$.

In this article we extend Theorem 1.1 to much more general linear right fractional differential operators.

We use here the following right generalised fractional integral.
Definition 2. (see also [8, p. 99]) The right generalised fractional integral of a function f with respect to given function g is defined as follows:

Let $\mathrm{a}, \mathrm{b} \in \mathbb{R}, \mathrm{a}<\mathrm{b}, \alpha>0$. Here $\mathrm{g} \in \operatorname{AC}([\mathrm{a}, \mathrm{b}])$ (absolutely continuous functions) and is strictly increasing, $\mathrm{f} \in \mathrm{L}_{\infty}([\mathrm{a}, \mathrm{b}])$. We set

$$
\begin{equation*}
\left(I_{b-; g}^{\alpha} f\right)(x)=\frac{1}{\Gamma(\alpha)} \int_{x}^{b}(g(t)-g(x))^{\alpha-1} g^{\prime}(t) f(t) d t, \quad x \leq b \tag{8}
\end{equation*}
$$

clearly $\left(\mathrm{I}_{\mathrm{b}-; \mathrm{g}}^{\alpha} \mathrm{f}\right)(\mathrm{b})=0$.
When g is the identity function id , we get that $\mathrm{I}_{\mathrm{b}-; \mathrm{id}}^{\alpha}=\mathrm{I}_{\mathrm{b}-}^{\alpha}$, the ordinary right RiemannLiouville fractional integral, where

$$
\begin{equation*}
\left(I_{b-}^{\alpha} f\right)(x)=\frac{1}{\Gamma(\alpha)} \int_{x}^{b}(t-x)^{\alpha-1} f(t) d t, \quad x \leq b \tag{9}
\end{equation*}
$$

$\left(I_{b-}^{\alpha} f\right)(b)=0$.
When $g(x)=\ln x$ on $[a, b], 0<a<b<\infty$, we get
Definition 3. ([8, p. 110]) Let $0<\mathrm{a}<\mathrm{b}<\infty, \alpha>0$. The right Hadamard fractional integral of order α is given by

$$
\begin{equation*}
\left(J_{b-}^{\alpha} f\right)(x)=\frac{1}{\Gamma(\alpha)} \int_{x}^{b}\left(\ln \frac{y}{x}\right)^{\alpha-1} \frac{f(y)}{y} d y, \quad x \leq b \tag{10}
\end{equation*}
$$

where $\mathrm{f} \in \mathrm{L}_{\infty}([\mathrm{a}, \mathrm{b}])$.
We mention
Definition 4. The right fractional exponential integral is defined as follows: Let $\mathfrak{a}, \mathrm{b} \in \mathbb{R}, \mathrm{a}<\mathrm{b}$, $\alpha>0, f \in L_{\infty}([a, b])$. We set

$$
\begin{equation*}
\left(I_{b-; e^{x}}^{\alpha} f\right)(x)=\frac{1}{\Gamma(\alpha)} \int_{x}^{b}\left(e^{t}-e^{x}\right)^{\alpha-1} e^{t} f(t) d t, \quad x \leq b \tag{11}
\end{equation*}
$$

Definition 5. Let $\mathrm{a}, \mathrm{b} \in \mathbb{R}, \mathrm{a}<\mathrm{b}, \alpha>0$, $\mathrm{f} \in \mathrm{L}_{\infty}([\mathrm{a}, \mathrm{b}])$, $\mathrm{A}>1$. We introduce the right fractional integral

$$
\begin{equation*}
\left(I_{b-; A x}^{\alpha} f\right)(x)=\frac{\ln A}{\Gamma(\alpha)} \int_{x}^{b}\left(A^{t}-A^{x}\right)^{\alpha-1} A^{t} f(t) d t, \quad x \leq b \tag{12}
\end{equation*}
$$

We also give
Definition 6. Let $\alpha, \sigma>0,0 \leq a<b<\infty, f \in L_{\infty}([a, b])$. We set

$$
\begin{equation*}
\left(\mathrm{K}_{\mathrm{b}-; \mathrm{x}^{\sigma}}^{\alpha} \mathrm{f}\right)(\mathrm{x})=\frac{1}{\Gamma(\alpha)} \int_{x}^{\mathrm{b}}\left(\mathrm{t}^{\sigma}-x^{\sigma}\right)^{\alpha-1} \mathrm{f}(\mathrm{t}) \sigma \mathrm{t}^{\sigma-1} \mathrm{dt}, \quad \mathrm{x} \leq \mathrm{b} \tag{13}
\end{equation*}
$$

We introduce the following general right fractional derivative.
Definition 7. Let $\alpha>0$ and $\lceil\alpha\rceil=m,(\lceil\cdot\rceil$ ceiling of the number $)$. Consider $\mathrm{f} \in \operatorname{AC}^{\mathrm{m}}([\mathrm{a}, \mathrm{b}])$ (space of functions f with $\mathrm{f}^{(\mathrm{m}-1)} \in \mathrm{AC}([\mathrm{a}, \mathrm{b}])$). We define the right general fractional derivative of f of order α as follows

$$
\begin{equation*}
\left(D_{b-; g}^{\alpha} f\right)(x)=\frac{(-1)^{m}}{\Gamma(m-\alpha)} \int_{x}^{b}(g(t)-g(x))^{m-\alpha-1} g^{\prime}(t) f^{(m)}(t) d t \tag{14}
\end{equation*}
$$

for any $x \in[a, b]$, where Γ is the gamma function.
We set

$$
\begin{gather*}
D_{b-; g}^{m} f(x)=(-1)^{m} f^{(m)}(x), \tag{15}\\
D_{b-; g}^{0} f(x)=f(x), \quad \forall x \in[a, b] \tag{16}
\end{gather*}
$$

When $\mathrm{g}=\mathrm{id}$, then $\mathrm{D}_{\mathrm{b}-}^{\alpha} \mathrm{f}=\mathrm{D}_{\mathrm{b}-; \mathrm{id}}^{\alpha} \mathrm{f}$ is the right Caputo fractional derivative.
So we have the specific general right fractional derivatives.

Definition 8.

$$
\begin{align*}
& D_{b-; \ln x}^{\alpha} f(x)=\frac{(-1)^{m}}{\Gamma(m-\alpha)} \int_{x}^{b}\left(\ln \frac{y}{x}\right)^{m-\alpha-1} \frac{f^{(m)}(y)}{y} d y, \quad 0<a \leq x \leq b \tag{17}\\
& D_{b-; e^{x}}^{\alpha} f(x)=\frac{(-1)^{m}}{\Gamma(m-\alpha)} \int_{x}^{b}\left(e^{t}-e^{x}\right)^{m-\alpha-1} e^{t} f^{(m)}(t) d t, \quad a \leq x \leq b \tag{18}
\end{align*}
$$

and

$$
\begin{gather*}
D_{b-; A^{x}}^{\alpha} f(x)=\frac{(-1)^{m} \ln A}{\Gamma(m-\alpha)} \int_{x}^{b}\left(A^{t}-A^{x}\right)^{m-\alpha-1} A^{t} f^{(m)}(t) d t, \quad a \leq x \leq b \tag{19}\\
\left(D_{b-; x^{\sigma}}^{\alpha} f\right)(x)=\frac{(-1)^{m}}{\Gamma(m-\alpha)} \int_{x}^{b}\left(t^{\sigma}-x^{\sigma}\right)^{m-\alpha-1} \sigma t^{\sigma-1} f^{(m)}(t) d t, \quad 0 \leq a \leq x \leq b \tag{20}
\end{gather*}
$$

We mention
Theorem 1.2. (Trigub, [12], [13]) Let $\mathrm{g} \in \mathrm{C}^{p}([-1,1]), \mathrm{p} \in \mathbb{N}$. Then there exists real polynomial $\mathrm{q}_{\mathrm{n}}(\mathrm{x})$ of degree $\leq \mathrm{n}, \mathrm{x} \in[-1,1]$, such that

$$
\begin{equation*}
\max _{-1 \leq x \leq 1}\left|g^{(\mathfrak{j})}(x)-q_{n}^{(j)}(x)\right| \leq R_{p} n^{j-p} \omega_{1}\left(g^{(p)}, \frac{1}{n}\right) \tag{21}
\end{equation*}
$$

$j=0,1, \ldots, p$, where R_{p} is independent of n or g.

In [2], based on Theorem 1.2 we proved the following useful here result
Theorem 1.3. Let $\mathrm{f} \in \mathbb{C}^{p}([\mathrm{a}, \mathrm{b}]), \mathrm{p} \in \mathbb{N}$. Then there exist real polynomials $\mathrm{Q}_{n}^{*}(\mathrm{x})$ of degree $\leq n \in \mathbb{N}, x \in[a, b]$, such that

$$
\begin{equation*}
\max _{a \leq x \leq b}\left|f^{(j)}(x)-Q_{n}^{*(j)}(x)\right| \leq R_{p}\left(\frac{b-a}{2 n}\right)^{p-j} \omega_{1}\left(f^{(p)}, \frac{b-a}{2 n}\right) \tag{22}
\end{equation*}
$$

$\mathfrak{j}=0,1, \ldots, p$, where R_{p} is independent of n or g.
Remark 1.4. Here $\mathrm{g} \in \mathrm{AC}([\mathrm{a}, \mathrm{b}])$ (absolutely continuous functions), g is increasing over $[\mathrm{a}, \mathrm{b}]$, $\alpha>0$.

Let $\mathrm{g}(\mathrm{a})=\mathrm{c}, \mathrm{g}(\mathrm{b})=\mathrm{d}$. We want to calculate

$$
\begin{equation*}
I=\int_{a}^{b}(g(t)-g(a))^{\alpha-1} g^{\prime}(t) d t \tag{23}
\end{equation*}
$$

Consider the function

$$
\begin{equation*}
f(y)=(y-g(a))^{\alpha-1}=(y-c)^{\alpha-1}, \quad \forall y \in[c, d] \tag{24}
\end{equation*}
$$

We have that $\mathrm{f}(\mathrm{y}) \geq 0$, it may be $+\infty$ when $\mathrm{y}=\mathrm{c}$ and $0<\alpha<1$, but f is measurable on $[\mathrm{c}, \mathrm{d}]$. By [9], Royden, p. 107, exercise 13 d, we get that

$$
\begin{equation*}
(f \circ g)(t) g^{\prime}(t)=(g(t)-g(a))^{\alpha-1} g^{\prime}(t) \tag{25}
\end{equation*}
$$

is measurable on $[\mathrm{a}, \mathrm{b}]$, and

$$
\begin{equation*}
I=\int_{c}^{d}(y-c)^{\alpha-1} d y=\frac{(d-c)^{\alpha}}{\alpha} \tag{26}
\end{equation*}
$$

(notice that $(\mathrm{y}-\mathrm{c})^{\alpha-1}$ is Riemann integrable).
That is

$$
\begin{equation*}
I=\frac{(g(b)-g(a))^{\alpha}}{\alpha} \tag{27}
\end{equation*}
$$

Similarly it holds

$$
\begin{equation*}
\int_{x}^{b}(g(t)-g(x))^{\alpha-1} g^{\prime}(t) d t=\frac{(g(b)-g(x))^{\alpha}}{\alpha}, \quad \forall x \in[a, b] \tag{28}
\end{equation*}
$$

Finally we will use
Theorem 1.5. Let $\alpha>0, \mathbb{N} \ni \mathfrak{m}=\lceil\alpha\rceil$, and $\mathrm{f} \in \mathrm{C}^{\mathrm{m}}([\mathrm{a}, \mathrm{b}])$. Then $\left(\mathrm{D}_{\mathrm{b}-; \mathrm{g}}^{\alpha} \mathrm{f}\right)(\mathrm{x})$ is continuous in $x \in[a, b],-\infty<a<b<\infty$.

Proof. By [3], Apostol, p. 78, we get that g^{-1} exists and it is strictly increasing on $[\mathrm{g}(\mathrm{a}), \mathrm{g}(\mathrm{b})]$. Since g is continuous on $[a, b]$, it implies that g^{-1} is continuous on $[g(a), g(b)]$. Hence $f^{(m)} \circ g^{-1}$ is a continuous function on $[g(a), g(b)]$.

If $\alpha=m \in \mathbb{N}$, then the claim is trivial.
We treat the case of $0<\alpha<\mathrm{m}$.
It holds that

$$
\begin{gather*}
\left(D_{b-; g}^{\alpha} f\right)(x)=\frac{(-1)^{m}}{\Gamma(m-\alpha)} \int_{x}^{b}(g(t)-g(x))^{m-\alpha-1} g^{\prime}(t) f^{(m)}(t) d t= \\
\frac{(-1)^{m}}{\Gamma(m-\alpha)} \int_{x}^{b}(g(t)-g(x))^{m-\alpha-1} g^{\prime}(t)\left(f^{(m)} \circ g^{-1}\right)(g(t)) d t= \tag{29}\\
\frac{(-1)^{m}}{\Gamma(m-\alpha)} \int_{g(x)}^{g(b)}(z-g(x))^{m-\alpha-1}\left(f^{(m)} \circ g^{-1}\right)(z) d z
\end{gather*}
$$

An explanation follows.
The function

$$
\mathrm{G}(z)=(z-\mathrm{g}(\mathrm{x}))^{\mathrm{m}-\alpha-1}\left(\mathrm{f}^{(\mathrm{m})} \circ \mathrm{g}^{-1}\right)(z)
$$

is integrable on $[g(x), g(b)]$, and by assumption g is absolutely continuous : $[a, b] \rightarrow[g(a), g(b)]$.
Since g is monotone (strictly increasing here) the function

$$
(g(t)-g(x))^{m-\alpha-1} g^{\prime}(t)\left(f^{(m)} \circ g^{-1}\right)(g(t))
$$

is integrable on $[x, b]$ (see [7]). Furthermore it holds (see also [7]),

$$
\begin{gather*}
\frac{(-1)^{m}}{\Gamma(m-\alpha)} \int_{g(x)}^{g(b)}(z-g(x))^{m-\alpha-1}\left(f^{(m)} \circ g^{-1}\right)(z) d z= \\
\frac{(-1)^{m}}{\Gamma(m-\alpha)} \int_{x}^{b}(g(t)-g(x))^{m-\alpha-1} g^{\prime}(t)\left(f^{(m)} \circ g^{-1}\right)(g(t)) d t \tag{30}\\
=\left(D_{b-; g}^{\alpha} f\right)(x), \quad \forall x \in[a, b]
\end{gather*}
$$

And we can write

$$
\begin{align*}
& \left(D_{b-; g}^{\alpha} f\right)(x)=\frac{(-1)^{m}}{\Gamma(m-\alpha)} \int_{g(x)}^{g(b)}(z-g(x))^{m-\alpha-1}\left(f^{(m)} \circ g^{-1}\right)(z) d z \\
& \left(D_{b-; g}^{\alpha} f\right)(y)=\frac{(-1)^{m}}{\Gamma(m-\alpha)} \int_{g(y)}^{g(b)}(z-g(y))^{m-\alpha-1}\left(f^{(m)} \circ g^{-1}\right)(z) d z \tag{31}
\end{align*}
$$

Here $\mathrm{a} \leq \mathrm{y} \leq \mathrm{x} \leq \mathrm{b}$, and $\mathrm{g}(\mathrm{a}) \leq \mathrm{g}(\mathrm{y}) \leq \mathrm{g}(\mathrm{x}) \leq \mathrm{g}(\mathrm{b})$, and $0 \leq \mathrm{g}(\mathrm{b})-\mathrm{g}(\mathrm{x}) \leq \mathrm{g}(\mathrm{b})-\mathrm{g}(\mathrm{y})$.
Let $\lambda=z-g(x)$, then $z=g(x)+\lambda$. Thus

$$
\begin{equation*}
\left(D_{b-; g}^{\alpha} f\right)(x)=\frac{(-1)^{m}}{\Gamma(m-\alpha)} \int_{0}^{g(b)-g(x)} \lambda^{m-\alpha-1}\left(f^{(m)} \circ g^{-1}\right)(g(x)+\lambda) d \lambda \tag{32}
\end{equation*}
$$

Clearly, see that $g(x) \leq z \leq g(b)$, and $0 \leq \lambda \leq g(b)-g(x)$.

Similarly

$$
\begin{equation*}
\left(D_{b-; g}^{\alpha} f\right)(y)=\frac{(-1)^{m}}{\Gamma(m-\alpha)} \int_{0}^{g(b)-g(y)} \lambda^{m-\alpha-1}\left(f^{(m)} \circ g^{-1}\right)(g(y)+\lambda) d \lambda \tag{33}
\end{equation*}
$$

Hence it holds

$$
\begin{gather*}
\left(D_{b-; g}^{\alpha} f\right)(y)-\left(D_{b-; g}^{\alpha} f\right)(x)=\frac{(-1)^{m}}{\Gamma(m-\alpha)} \\
{\left[\int_{0}^{g(b)-g(x)} \lambda^{m-\alpha-1}\left(\left(f^{(m)} \circ g^{-1}\right)(g(y)+\lambda)-\left(f^{(m)} \circ g^{-1}\right)(g(x)+\lambda)\right) d \lambda+\right.} \\
\left.\int_{g(b)-g(x)}^{g(b)-g(y)} \lambda^{m-\alpha-1}\left(f^{(m)} \circ g^{-1}\right)(g(y)+\lambda) d \lambda\right] \tag{34}
\end{gather*}
$$

Thus we obtain

$$
\begin{gather*}
\left|\left(D_{b-; g}^{\alpha} f\right)(y)-\left(D_{b-; g}^{\alpha} f\right)(x)\right| \leq \frac{1}{\Gamma(m-\alpha)} . \\
{\left[\frac{(g(b)-g(x))^{m-\alpha}}{m-\alpha} \omega_{1}\left(f^{(m)} \circ g^{-1},|g(y)-g(x)|\right)+\right.} \tag{35}\\
\frac{\left.\left\|f^{(m)} \circ g^{-1}\right\|_{\infty,[g(a), g(b)]}\left((g(b)-g(y))^{m-\alpha}-(g(b)-g(x))^{m-\alpha}\right)\right]=:(\xi) .}{m-\alpha} .
\end{gather*}
$$

As $y \rightarrow x$, then $g(y) \rightarrow g(x)($ since $g \in A C([a, b]))$. So that $(\xi) \rightarrow 0$. As a result

$$
\begin{equation*}
\left(D_{b-; g}^{\alpha} f\right)(y) \rightarrow\left(D_{b-; g}^{\alpha} f\right)(x) \tag{36}
\end{equation*}
$$

proving that $\left(D_{b-; g}^{\alpha} f\right)(x)$ is continuous in $x \in[a, b]$.

2 Main Result

We present
Theorem 2.1. Here we assume that $\mathrm{g}(\mathrm{b})-\mathrm{g}(\mathrm{a})>1$. Let $\mathrm{h}, \mathrm{k}, \mathrm{p}$ be integers, h is even, $0 \leq$ $h \leq k \leq p$ and let $f \in C^{p}([a, b]), a<b$, with modulus of continuity $\omega_{1}\left(f^{(p)}, \delta\right), 0<\delta \leq b-a$. Let $\alpha_{j}(\mathrm{x}), \mathfrak{j}=\mathrm{h}, \mathrm{h}+1, \ldots, \mathrm{k}$ be real functions, defined and bounded on $[\mathrm{a}, \mathrm{b}]$ and assume for $x \in\left[a, g^{-1}(g(b)-1)\right]$ that $\alpha_{h}(x)$ is either \geq some number $\alpha^{*}>0$, or \leq some number $\beta^{*}<0$. Let the real numbers $\alpha_{0}=0<\alpha_{1} \leq 1<\alpha_{2} \leq 2<\ldots<\alpha_{p} \leq p$. Consider the linear right general fractional differential operator

$$
\begin{equation*}
L=\sum_{j=h}^{k} \alpha_{j}(x)\left[D_{b-; g}^{\alpha_{j}}\right] \tag{37}
\end{equation*}
$$

and suppose, throughout $\left[\mathrm{a}, \mathrm{g}^{-1}(\mathrm{~g}(\mathrm{~b})-1)\right]$,

$$
\begin{equation*}
L(f) \geq 0 \tag{38}
\end{equation*}
$$

Then, for any $\mathfrak{n} \in \mathbb{N}$, there exists a real polynomial $\mathrm{Q}_{\mathrm{n}}(\mathrm{x})$ of degree $\leq \mathrm{n}$ such that

$$
\begin{equation*}
\mathrm{L}\left(\mathrm{Q}_{\mathrm{n}}\right) \geq 0 \text { throughout }\left[\mathrm{a}, \mathrm{~g}^{-1}(\mathrm{~g}(\mathrm{~b})-1)\right] \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{x \in[a, b]}\left|f(x)-Q_{n}(x)\right| \leq C n^{k-p} \omega_{1}\left(f^{(p)}, \frac{b-a}{2 n}\right) \tag{40}
\end{equation*}
$$

where C is independent of n or f .

Proof. of Theorem 2.1
Here $h, k, p \in \mathbb{Z}_{+}, 0 \leq h \leq k \leq p$. Let $\alpha_{j}>0, j=1, \ldots, p$, such that $0<\alpha_{1} \leq 1<\alpha_{2} \leq 2<$ $\alpha_{3} \leq 3 \ldots<\ldots<\alpha_{p} \leq p$. That is $\left\lceil\alpha_{j}\right\rceil=j, j=1, \ldots, p$.

Let $\mathrm{Q}_{n}^{*}(x)$ be as in Theorem 1.3
We have that

$$
\begin{equation*}
\left(D_{b-; g}^{\alpha_{j}} f\right)(x)=\frac{(-1)^{j}}{\Gamma\left(j-\alpha_{j}\right)} \int_{x}^{b}(g(t)-g(x))^{j-\alpha_{j}-1} g^{\prime}(t) f^{(j)}(t) d t \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(D_{b-; g}^{\alpha_{j}} Q_{n}^{*}\right)(x)=\frac{(-1)^{j}}{\Gamma\left(j-\alpha_{j}\right)} \int_{x}^{b}(g(t)-g(x))^{j-\alpha_{j}-1} g^{\prime}(t) Q_{n}^{*(j)}(t) d t \tag{42}
\end{equation*}
$$

$j=1, \ldots, p$.
Also it holds

$$
\begin{equation*}
\left(D_{b-; g}^{j} f\right)(x)=(-1)^{j} f^{(j)}(x), \quad\left(D_{b-; g}^{j} Q_{n}^{*}\right)(x)=(-1)^{j} Q_{n}^{*(j)}(x), \quad j=1, \ldots, p \tag{43}
\end{equation*}
$$

By [10, we get that there exists g^{\prime} a.e., and g^{\prime} is measurable and non-negative.
We notice that

$$
\begin{gather*}
\left|\left(D_{b-; g}^{\alpha_{j}} f\right)(x)-D_{b-; g}^{\alpha_{j}} Q_{n}^{*}(x)\right|= \\
\frac{1}{\Gamma\left(j-\alpha_{j}\right)}\left|\int_{x}^{b}(g(x)-g(t))^{j-\alpha_{j}-1} g^{\prime}(t)\left(f^{(j)}(t)-Q_{n}^{*(j)}(t)\right) d t\right| \leq \\
\frac{1}{\Gamma\left(j-\alpha_{j}\right)} \int_{x}^{b}(g(x)-g(t))^{j-\alpha_{j}-1} g^{\prime}(t)\left|f^{(j)}(t)-Q_{n}^{*(j)}(t)\right| d t \stackrel{\text { 22 }}{\leq} \\
\frac{1}{\Gamma\left(j-\alpha_{j}\right)}\left(\int_{x}^{b}(g(x)-g(t))^{j-\alpha_{j}-1} g^{\prime}(t) d t\right) R_{p}\left(\frac{b-a}{2 n}\right)^{p-j} \omega_{1}\left(f^{(p)}, \frac{b-a}{2 n}\right) \\
\stackrel{288}{=} \frac{(g(b)-g(x))^{j-\alpha_{j}}}{\Gamma\left(j-\alpha_{j}+1\right)} R_{p}\left(\frac{b-a}{2 n}\right)^{p-j} \omega_{1}\left(f^{(p)}, \frac{b-a}{2 n}\right) \leq \\
\frac{(g(b)-g(a))^{j-\alpha_{j}}}{\Gamma\left(j-\alpha_{j}+1\right)} R_{p}\left(\frac{b-a}{2 n}\right)^{p-j} \omega_{1}\left(f^{(p)}, \frac{b-a}{2 n}\right) . \tag{44}
\end{gather*}
$$

Hence $\forall x \in[a, b]$, it holds

$$
\begin{gather*}
\left|\left(D_{b-; g}^{\alpha_{j}} f\right)(x)-D_{b-; g}^{\alpha_{j}} Q_{n}^{*}(x)\right| \leq \\
\frac{(g(b)-g(a))^{j-\alpha_{j}}}{\Gamma\left(j-\alpha_{j}+1\right)} R_{p}\left(\frac{b-a}{2 n}\right)^{p-j} \omega_{1}\left(f^{(p)}, \frac{b-a}{2 n}\right), \tag{45}
\end{gather*}
$$

and

$$
\begin{gather*}
\max _{x \in[a, b]}\left|D_{b-; g}^{\alpha_{j}} f(x)-D_{b-; g}^{\alpha_{j}} Q_{n}^{*}(x)\right| \leq \\
\frac{(g(b)-g(a))^{j-\alpha_{j}}}{\Gamma\left(j-\alpha_{j}+1\right)} R_{p}\left(\frac{b-a}{2 n}\right)^{p-j} \omega_{1}\left(f^{(p)}, \frac{b-a}{2 n}\right), \tag{46}
\end{gather*}
$$

$j=0,1, \ldots, p$.
Above we set $D_{b-; g}^{0} f(x)=f(x), D_{b-; g}^{0} Q_{n}^{*}(x)=Q_{n}^{*}(x), \forall x \in[a, b]$, and $\alpha_{0}=0$, i.e. $\left\lceil\alpha_{0}\right\rceil=0$.

Put

$$
\begin{equation*}
s_{j}=\sup _{a \leq x \leq b}\left|\alpha_{h}^{-1}(x) \alpha_{j}(x)\right|, \quad j=h, \ldots, k \tag{47}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta_{n}=R_{p} \omega_{1}\left(f^{(p)}, \frac{b-a}{2 n}\right)\left(\sum_{j=h}^{k} s_{j} \frac{(g(b)-g(a))^{j-\alpha_{j}}}{\Gamma\left(j-\alpha_{j}+1\right)}\left(\frac{b-a}{2 n}\right)^{p-j}\right) \tag{48}
\end{equation*}
$$

I. Suppose, throughout $\left[a, g^{-1}(g(b)-1)\right], \alpha_{h}(x) \geq \alpha^{*}>0$. Let $Q_{n}(x), x \in[a, b]$, be a real polynomial of degree $\leq n$, according to Theorem 1.3 and (46), so that

$$
\begin{gather*}
\max _{x \in[a, b]}\left|D_{b-; g}^{\alpha_{j}}\left(f(x)+\eta_{n}(h!)^{-1} x^{h}\right)-\left(D_{b-; g}^{\alpha_{j}} Q_{n}\right)(x)\right| \leq \tag{49}\\
\frac{(g(b)-g(a))^{j-\alpha_{j}}}{\Gamma\left(j-\alpha_{j}+1\right)} R_{p}\left(\frac{b-a}{2 n}\right)^{p-j} \omega_{1}\left(f^{(p)}, \frac{b-a}{2 n}\right)
\end{gather*}
$$

$j=0,1, \ldots, p$.
In particular $(j=0)$ holds

$$
\begin{equation*}
\max _{x \in[a, b]}\left|\left(f(x)+\eta_{n}(h!)^{-1} x^{h}\right)-Q_{n}(x)\right| \leq R_{p}\left(\frac{b-a}{2 n}\right)^{p} \omega_{1}\left(f^{(p)}, \frac{b-a}{2 n}\right) \tag{50}
\end{equation*}
$$

and

$$
\begin{gather*}
\max _{x \in[a, b]}\left|f(x)-Q_{n}(x)\right| \leq \eta_{n}(h!)^{-1}(\max (|a|,|b|))^{h}+R_{p}\left(\frac{b-a}{2 n}\right)^{p} \omega_{1}\left(f^{(p)}, \frac{b-a}{2 n}\right) \\
=\eta_{n}(h!)^{-1} \max \left(|a|^{h},|b|^{h}\right)+R_{p}\left(\frac{b-a}{2 n}\right)^{p} \omega_{1}\left(f^{(p)}, \frac{b-a}{2 n}\right)= \tag{51}\\
R_{p} \omega_{1}\left(f^{(p)}, \frac{b-a}{2 n}\right)\left(\sum_{j=h}^{k} s_{j} \frac{(g(b)-g(a))^{j-\alpha_{j}}}{\Gamma\left(j-\alpha_{j}+1\right)}\left(\frac{b-a}{2 n}\right)^{p-j}\right)(h!)^{-1} \max \left(|a|^{h},|b|^{h}\right)
\end{gather*}
$$

$$
\begin{gather*}
+R_{p}\left(\frac{b-a}{2 n}\right)^{p} \omega_{1}\left(f^{(p)}, \frac{b-a}{2 n}\right) \leq \\
R_{p} \omega_{1}\left(f^{(p)}, \frac{b-a}{2 n}\right) n^{k-p} \\
{\left[\left(\sum_{j=h}^{k} s_{j} \frac{(g(b)-g(a))^{j-\alpha_{j}}}{\Gamma\left(j-\alpha_{j}+1\right)}\left(\frac{b-a}{2}\right)^{p-j}\right)(h!)^{-1} \max \left(|a|^{h},|b|^{h}\right)+\left(\frac{b-a}{2}\right)^{p}\right]} \tag{52}
\end{gather*}
$$

We have found that

$$
\begin{align*}
& \max _{x \in[a, b]}\left|f(x)-Q_{n}(x)\right| \leq R_{p}\left[\left(\frac{b-a}{2}\right)^{p}+(h!)^{-1} \max \left(|a|^{h},|b|^{h}\right)\right. \\
& \left.\left(\sum_{j=h}^{k} s_{j} \frac{(g(b)-g(a))^{j-\alpha_{j}}}{\Gamma\left(j-\alpha_{j}+1\right)}\left(\frac{b-a}{2}\right)^{p-j}\right)\right] n^{k-p} \omega_{1}\left(f^{(p)}, \frac{b-a}{2 n}\right) \tag{53}
\end{align*}
$$

proving (40).
Notice for $j=h+1, \ldots, k$, that

$$
\begin{equation*}
\left(D_{b-; g}^{\alpha_{j}} x^{h}\right)=\frac{(-1)^{j}}{\Gamma\left(j-\alpha_{j}\right)} \int_{x}^{b}(g(t)-g(x))^{j-\alpha_{j}-1} g^{\prime}(t)\left(t^{h}\right)^{(j)} d t=0 \tag{54}
\end{equation*}
$$

Here

$$
L=\sum_{j=h}^{k} \alpha_{j}(x)\left[D_{b-; g}^{\alpha_{j}}\right]
$$

and suppose, throughout $\left[a, g^{-1}(g(b)-1)\right]$, Lf ≥ 0. So over $a \leq x \leq g^{-1}(g(b)-1)$, we get

$$
\begin{gather*}
\alpha_{h}^{-1}(x) L\left(Q_{n}(x)\right) \stackrel{\sqrt[54]{=}}{=} \alpha_{h}^{-1}(x) L(f(x))+\frac{\eta_{n}}{h!}\left(D_{b-; g}^{\alpha_{h}}\left(x^{h}\right)\right)+ \\
\sum_{j=h}^{k} \alpha_{h}^{-1}(x) \alpha_{j}(x)\left[D_{b-; g}^{\alpha_{j}} Q_{n}(x)-D_{b-; g}^{\alpha_{j}} f(x)-\frac{\eta_{n}}{h!} D_{b-; g}^{\alpha_{j}} x^{h}\right] \stackrel{49}{\geq} \tag{55}\\
\frac{\eta_{n}}{h!}\left(D_{b-; g}^{\alpha_{h}}\left(x^{h}\right)\right)-\left(\sum_{j=h}^{k} s_{j} \frac{(g(b)-g(a))^{j-\alpha_{j}}}{\Gamma\left(j-\alpha_{j}+1\right)}\left(\frac{b-a}{2 n}\right)^{p-j}\right) R_{p} \omega_{1}\left(f^{(p)}, \frac{b-a}{2 n}\right) \tag{56}\\
\stackrel{48}{=} \frac{\eta_{n}}{h!}\left(D_{b-; g}^{\alpha_{h}}\left(x^{h}\right)\right)-\eta_{n}=\eta_{n}\left(\frac{D_{b-; g}^{\alpha_{h}}\left(x^{h}\right)}{h!}-1\right)= \tag{57}\\
\eta_{n}\left(\frac{1}{\Gamma\left(h-\alpha_{h}\right) h!} \int_{x}^{b}(g(t)-g(x))^{h-\alpha_{h}-1} g^{\prime}(t)\left(t^{h}\right)^{(h)} d t-1\right)= \\
\eta_{n}\left(\frac{h!}{h!\Gamma\left(h-\alpha_{h}\right)} \int_{x}^{b}(g(t)-g(x))^{h-\alpha_{h}-1} g^{\prime}(t) d t-1\right) \stackrel{\sqrt{28}}{=}
\end{gather*}
$$

$$
\begin{gather*}
\eta_{n}\left(\frac{(g(b)-g(x))^{h-\alpha_{h}}}{\Gamma\left(h-\alpha_{h}+1\right)}-1\right)= \tag{58}\\
\eta_{n}\left(\frac{(g(b)-g(x))^{h-\alpha_{h}}-\Gamma\left(h-\alpha_{h}+1\right)}{\Gamma\left(h-\alpha_{h}+1\right)}\right) \geq \\
\eta_{n}\left(\frac{1-\Gamma\left(h-\alpha_{h}+1\right)}{\Gamma\left(h-\alpha_{h}+1\right)}\right) \geq 0 \tag{59}
\end{gather*}
$$

Clearly here $\mathrm{g}(\mathrm{b})-\mathrm{g}(\mathrm{x}) \geq 1$.
Hence

$$
\begin{equation*}
\mathrm{L}\left(\mathrm{Q}_{n}(x)\right) \geq 0, \text { for } x \in\left[a, g^{-1}(g(b)-1)\right] \tag{60}
\end{equation*}
$$

A further explanation follows: We know $\Gamma(1)=1, \Gamma(2)=1$, and Γ is convex and positive on $(0, \infty)$. Here $0 \leq h-\alpha_{h}<1$ and $1 \leq h-\alpha_{h}+1<2$. Thus

$$
\begin{equation*}
\Gamma\left(h-\alpha_{h}+1\right) \leq 1 \text { and } 1-\Gamma\left(h-\alpha_{h}+1\right) \geq 0 \tag{61}
\end{equation*}
$$

II. Suppose, throughout $\left[a, g^{-1}(g(b)-1)\right], \alpha_{h}(x) \leq \beta^{*}<0$.

Let $Q_{n}(x), x \in[a, b]$ be a real polynomial of degree $\leq n$, according to Theorem 1.3 and (46), so that

$$
\begin{gather*}
\max _{x \in[a, b]}\left|D_{b-; g}^{\alpha_{j}}\left(f(x)-\eta_{n}(h!)^{-1} x^{h}\right)-\left(D_{b-; g}^{\alpha_{j}} Q_{n}\right)(x)\right| \leq \tag{62}\\
\frac{(g(b)-g(a))^{j-\alpha_{j}}}{\Gamma\left(j-\alpha_{j}+1\right)} R_{p}\left(\frac{b-a}{2 n}\right)^{p-j} \omega_{1}\left(f^{(p)}, \frac{b-a}{2 n}\right)
\end{gather*}
$$

$j=0,1, \ldots, p$.
In particular $(j=0)$ holds

$$
\begin{equation*}
\max _{x \in[a, b]}\left|\left(f(x)-\eta_{n}(h!)^{-1} x^{h}\right)-Q_{n}(x)\right| \leq R_{p}\left(\frac{b-a}{2 n}\right)^{p} \omega_{1}\left(f^{(p)}, \frac{b-a}{2 n}\right) \tag{63}
\end{equation*}
$$

and

$$
\begin{gather*}
\max _{x \in[a, b]}\left|f(x)-Q_{n}(x)\right| \leq \eta_{n}(h!)^{-1}(\max (|a|,|b|))^{h}+R_{p}\left(\frac{b-a}{2 n}\right)^{p} \omega_{1}\left(f^{(p)}, \frac{b-a}{2 n}\right) \\
=\eta_{n}(h!)^{-1} \max \left(|a|^{h},|b|^{h}\right)+R_{p}\left(\frac{b-a}{2 n}\right)^{p} \omega_{1}\left(f^{(p)}, \frac{b-a}{2 n}\right) \tag{64}
\end{gather*}
$$

etc.
We find again that

$$
\max _{x \in[a, b]}\left|f(x)-Q_{n}(x)\right| \leq R_{p}\left[\left(\frac{b-a}{2}\right)^{p}+(h!)^{-1} \max \left(|a|^{h},|b|^{h}\right)\right.
$$

$$
\begin{equation*}
\left.\left(\sum_{j=h}^{k} s_{j} \frac{(g(b)-g(a))^{j-\alpha_{j}}}{\Gamma\left(j-\alpha_{j}+1\right)}\left(\frac{b-a}{2}\right)^{p-j}\right)\right] n^{k-p} \omega_{1}\left(f^{(p)}, \frac{b-a}{2 n}\right) \tag{65}
\end{equation*}
$$

reproving (40).
Here again

$$
L=\sum_{j=h}^{k} \alpha_{j}(x)\left[D_{b-; g}^{\alpha_{j}}\right]
$$

and suppose, throughout $\left[a, g^{-1}(g(b)-1)\right]$, Lf ≥ 0. So over $a \leq x \leq g^{-1}(g(b)-1)$, we get

$$
\begin{align*}
& \alpha_{h}^{-1}(x) L\left(Q_{n}(x)\right) \stackrel{54}{=} \alpha_{h}^{-1}(x) L(f(x))-\frac{\eta_{n}}{h!}\left(D_{b-; g}^{\alpha_{h}}\left(x^{h}\right)\right)+ \\
& \sum_{j=h}^{k} \alpha_{h}^{-1}(x) \alpha_{j}(x)\left[D_{b-; g}^{\alpha_{j}} Q_{n}(x)-D_{b-; g}^{\alpha_{j}} f(x)+\frac{\eta_{n}}{h!} D_{b-; g}^{\alpha_{j}} x^{h}\right] \stackrel{\sqrt{62}}{\leq} \tag{66}\\
& -\frac{\eta_{n}}{h!}\left(D_{b-; g}^{\alpha_{h}}\left(x^{h}\right)\right)+\left(\sum_{j=h}^{k} s_{j} \frac{(g(b)-g(a))^{j-\alpha_{j}}}{\Gamma\left(j-\alpha_{j}+1\right)}\left(\frac{b-a}{2 n}\right)^{p-j}\right) R_{p} \omega_{1}\left(f^{(p)}, \frac{b-a}{2 n}\right) \tag{67}\\
& \stackrel{48}{=}-\frac{\eta_{n}}{h!}\left(D_{b-; g}^{\alpha_{h}}\left(x^{h}\right)\right)+\eta_{n}=\eta_{n}\left(1-\frac{D_{b-; g}^{\alpha_{h}}\left(x^{h}\right)}{h!}\right)= \tag{68}\\
& \eta_{n}\left(1-\frac{1}{\Gamma\left(h-\alpha_{h}\right) h!} \int_{x}^{b}(g(t)-g(x))^{h-\alpha_{h}-1} g^{\prime}(t)\left(t^{h}\right)^{(h)} d t\right)= \\
& \eta_{n}\left(1-\frac{h!}{h!\Gamma\left(h-\alpha_{h}\right)} \int_{x}^{b}(g(t)-g(x))^{h-\alpha_{h}-1} g^{\prime}(t) d t\right) \stackrel{28}{=} \\
& \eta_{n}\left(1-\frac{(g(b)-g(x))^{h-\alpha_{h}}}{\Gamma\left(h-\alpha_{h}+1\right)}\right)= \tag{69}\\
& \eta_{n}\left(\frac{\Gamma\left(h-\alpha_{h}+1\right)-(g(b)-g(x))^{h-\alpha_{h}}}{\Gamma\left(h-\alpha_{h}+1\right)}\right) \stackrel{61}{\leq} \\
& \eta_{n}\left(\frac{1-(g(b)-g(x))^{h-\alpha_{h}}}{\Gamma\left(h-\alpha_{h}+1\right)}\right) \leq 0 . \tag{70}
\end{align*}
$$

Hence again

$$
\mathrm{L}\left(\mathrm{Q}_{\mathrm{n}}(x)\right) \geq 0, \quad \forall x \in\left[a, \mathrm{~g}^{-1}(\mathrm{~g}(\mathrm{~b})-1)\right]
$$

The case of $\alpha_{h}=h$ is trivially concluded from the above. The proof of the theorem is now over.

We make

Remark 2.2. By Theorem 1.5 we have that $\mathrm{D}_{\mathrm{b}-; \mathrm{g}}^{\alpha_{j}} \mathrm{f}$ are continuous functions, $\mathfrak{j}=0,1, \ldots, p$. Suppose that $\alpha_{h}(x), \ldots, \alpha_{k}(x)$ are continuous functions on $[a, b]$, and $L(f) \geq 0$ on $\left[a, g^{-1}(g(b)-1)\right]$ is replaced by $\mathrm{L}(\mathrm{f})>0$ on $\left[\mathrm{a}, \mathrm{g}^{-1}(\mathrm{~g}(\mathrm{~b})-1)\right]$. Disregard the assumption made in the main theorem on $\alpha_{\mathrm{h}}(\mathrm{x})$. For $\mathrm{n} \in \mathbb{N}$, let $\mathrm{Q}_{\mathrm{n}}(\mathrm{x})$ be the $\mathrm{Q}_{\mathrm{n}}^{*}(\mathrm{x})$ of Theorem 1.3, and f as in Theorem 1.3 (same as in Theorem [2.1]). Then $\mathrm{Q}_{\mathrm{n}}(\mathrm{x})$ converges to $\mathrm{f}(\mathrm{x})$ at the Jackson rate $\frac{1}{\mathrm{n}^{p+1}}$ ([|6] , p. 18, Theorem VIII) and at the same time, since $\mathrm{L}\left(\mathrm{Q}_{\mathrm{n}}\right)$ converges uniformly to $\mathrm{L}(\mathrm{f})$ on $[\mathrm{a}, \mathrm{b}], \mathrm{L}\left(\mathrm{Q}_{\mathrm{n}}\right)>0$ on $\left[\mathrm{a}, \mathrm{g}^{-1}(\mathrm{~g}(\mathrm{~b})-1)\right]$ for all n sufficiently large.

3 Applications (to Theorem (2.1)

1) When $g(x)=\ln x$ on $[a, b], 0<a<b<\infty$.

Here we would assume that $b>a e, \alpha_{h}(x)$ restriction true on $\left[a, \frac{b}{e}\right]$, and

$$
\begin{equation*}
L f=\sum_{j=h}^{k} \alpha_{j}(x)\left[D_{b-; \ln x}^{\alpha_{j}} f\right] \geq 0 \tag{72}
\end{equation*}
$$

throughout $\left[a, \frac{b}{e}\right]$.
Then $L\left(Q_{n}\right) \geq 0$ on $\left[a, \frac{b}{e}\right]$.
2) When $g(x)=e^{x}$ on [a, b], $a<b<\infty$.

Here we assume that $b>\ln \left(1+e^{a}\right), \alpha_{h}(x)$ restriction true on $\left[a, \ln \left(e^{b}-1\right)\right]$, and

$$
\begin{equation*}
\operatorname{Lf}=\sum_{j=h}^{k} \alpha_{j}(x)\left[D_{b-; e^{x}}^{\alpha_{j}} f\right] \geq 0 \tag{73}
\end{equation*}
$$

throughout $\left[a, \ln \left(e^{b}-1\right)\right]$.
Then $L\left(Q_{n}\right) \geq 0$ on $\left[a, \ln \left(e^{b}-1\right)\right]$.
3) When, $A>1, g(x)=A^{x}$ on [a,b], $a<b<\infty$.

Here we assume that $b>\log _{A}\left(1+A^{a}\right)$, $\alpha_{h}(x)$ restriction true on $\left[a, \log _{A}\left(A^{b}-1\right)\right]$, and

$$
\begin{equation*}
\operatorname{Lf}=\sum_{j=h}^{k} \alpha_{j}(x)\left[D_{b-; A x}^{\alpha_{j}} f\right] \geq 0 \tag{74}
\end{equation*}
$$

throughout $\left[a, \log _{A}\left(A^{b}-1\right)\right]$.
Then $L\left(Q_{n}\right) \geq 0$ on $\left[a, \log _{A}\left(A^{b}-1\right)\right]$.
4) When $\sigma>0, g(x)=x^{\sigma}, 0 \leq a<b<\infty$.

Here we assume that $b>\left(1+a^{\sigma}\right)^{\frac{1}{\sigma}}, \alpha_{h}(x)$ restriction true on $\left[a,\left(b^{\sigma}-1\right)^{\frac{1}{\sigma}}\right]$, and

$$
\begin{equation*}
L f=\sum_{j=h}^{k} \alpha_{j}(x)\left[D_{b-; \chi^{\sigma}}^{\alpha_{j}} f\right] \geq 0 \tag{75}
\end{equation*}
$$

throughout $\left[a,\left(b^{\sigma}-1\right)^{\frac{1}{\sigma}}\right]$.
Then $L\left(Q_{n}\right) \geq 0$ on $\left[a,\left(b^{\sigma}-1\right)^{\frac{1}{\sigma}}\right]$.
Received: April 2015. Accepted: July 2015.

References

[1] G.A. Anastassiou, Right Fractional Monotone Approximation, J. Applied Functional Analysis, Vol. 10, No.'s 1-2 (2015), 117-124.
[2] G.A. Anastassiou, Left gereral fractional monotone approximation theory, submitted, 2015.
[3] T. Apostol, Mathematical Analysis, Addison-Wesley Publ. Co., Reading, Massachusetts, 1969.
[4] G.A. Anastassiou, O Shisha, Monotone approximation with linear differential operators, J. Approx. Theory 44 (1985), 391-393.
[5] A.M.A. El-Sayed, M. Gaber, On the finite Caputo and finite Riesz derivatives, Electronic Journal of Theoretical Physics, Vol. 3, No. 12 (2006), 81-95.
[6] D. Jackson, The Theory of Approximation, Amer. Math. Soc. Colloq., Vol. XI, New York, 1930.
[7] Rong-Qing Jia, Chapter 3. Absolutely Continous Functions, https:// www.ualberta.ca/~rjia/Math418/Notes/Chap.3.pdf
[8] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier, New York, NY, USA, 2006.
[9] H.L. Royden, Real Analysis, second edition, Macmillan Publishing Co., Inc., New York, 1968.
[10] Anton R. Schep, Differentiation of Monotone Functions, people. math.sc.edu/schep/diffmonotone.pdf.
[11] O. Shisha, Monotone approximation, Pacific J. Math. 15 (1965), 667-671.
[12] S.A. Teljakovskii, Two theorems on the approximation of functions by algebraic polynomials, Mat. Sb. 70 (112) (1966), 252-265 [Russian]; Amer. Math. Soc. Trans. 77 (2) (1968), 163-178.
[13] R.M. Trigub, Approximation of functions by polynomials with integer coeficients, Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962), 261-280 [Russian].

