CUBO A Mathematical Journal Vol.18, $N^{\underline{O}}$ 01, (47–57). December 2016

S-paracompactness modulo an ideal

José Sanabria¹, Ennis Rosas¹, Neelamegarajan Rajesh², Carlos Carpintero¹, Amalia Gómez¹

> ¹ Departamento de Matemáticas, Universidad de Oriente, Cumaná, Venezuela.

² Department of Mathematics, Rajah Serfoji Govt. College, Thanjavur-613005, Tamilnadu, India.

jesanabri@gmail.com, ennisrafael@gmail.com, nrajesh_topology@yahoo.co.in, carpintero.carlos@gmail.com, amaliagomez1304@gmail.com

ABSTRACT

The notion of S-paracompactness modulo an ideal was introduced and studied in [15]. In this paper, we introduce and investigate the notion of α S-paracompact subset modulo an ideal which is a generalization of the notions of α S-paracompact set [1] and α -paracompact set modulo an ideal [7].

RESUMEN

La noción de S-paracompacidad módulo un ideal fue introducida y estudiada en [15]. En este artículo, introducimos e investigamos la noción de un subconjunto α S-paracompacto módulo un ideal, que es una generalización de las nociones de conjunto α S-paracompacto [1] y conjunto α -paracompacto módulo un ideal [7].

Keywords and Phrases: semi-open, ideal, S-paracompact. Research Partially Suported by Consejo de Investigación UDO.

2010 AMS Mathematics Subject Classification: 54A05, 54D20.

1 Introduction

The concept of α -paracompact subset modulo an ideal was defined and investigated by Ergun and Noiri [7]. The notions of S-paracompact spaces and α S-paracompact subsets were introduced in 2006 by Al-Zoubi [1] and also have been studied by Li and Song [13]. Very recently, Sanabria, Rosas, Carpintero, Salas and García [15] have introduced and investigated the concept of S-paracompact space with respect to an ideal as a generalization of the S-paracompact spaces. In this paper, we introduce the notion of α S-paracompact subset modulo an ideal which is a generalization of both α S-paracompact subset [1] and α -paracompact subset modulo an ideal.

2 Preliminaries

Throughout this paper, (X, τ) always means a topological space on which no separation axioms are assumed unless explicitly stated. If A is a subset of (X, τ) , we denote the closure of A and the interior of A by Cl(A) and Int(A), respectively. Also, we denote by $\wp(X)$ the class of all subset of X. A subset A of (X, τ) is said to be *semi-open* [11] (resp. *semi-preopen* [2]) if $A \subset Cl(Int(A))$ (resp. $A \subset Cl(Int(Cl(A)))$). The complement of a semi-open set is called a *semi-closed* set. The *semiclosure* of A, denoted by sCl(A), is defined by the intersection of all semi-closed sets containing A. The collection of all semi-open sets of a topological space (X, τ) is denoted by SO (X, τ) . A collection \mathcal{V} of subsets of a space (X, τ) is said to be *locally finite*, if for each $x \in X$ there exists $U_x \in \tau$ containing x and U_x intersects at most finitely many members of \mathcal{V} . A space (X, τ) is said to be *paracompact* (resp. S-*paracompact* [1]), if every open cover of X has a locally finite open (resp. semi-open) refinement which covers to X (we do not require a refinement to be a cover).

Lemma 2.1. Let (X, τ) be a space. Then, the following properties hold:

- (1) If (A, τ_A) is a subspace of (X, τ) , $B \subseteq A$ and $B \in SO(X, \tau)$, then $B \in SO(A, \tau_A)$ [11].
- (2) If $A \in \tau$ and $B \in SO(X, \tau)$, then $A \cap B \in SO(X, \tau)$ [4].
- (3) If (A, τ_A) is an open subspace of (X, τ) , $B \subseteq A$ and $B \in SO(A, \tau_A)$, then $B \in SO(X, \tau)$ [5].

An *ideal* \mathcal{I} on a nonempty set X is a nonempty collection of subset of X which satisfies the following two properties:

- (1) $A \in \mathcal{I}$ and $B \subset A$ implies $B \in \mathcal{I}$;
- (2) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$.

In this paper, the triplet (X, τ, \mathcal{I}) denote a topological space (X, τ) together with an ideal \mathcal{I} on X and will simply called a space. Given a space (X, τ, \mathcal{I}) , a set operator $(.)^* : \wp(X) \to \wp(X)$, called the *local function* [10] of A with respect to τ and \mathcal{I} , is defined as follows: for $A \subset X$, $A^*(\mathcal{I}, \tau) = \{x \in X : U \cap A \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$, where $\tau(x) = \{U \in \tau : x \in U\}$. When there is no chance for confusion, we will simply write A^* for $A^*(\mathcal{I}, \tau)$. In general, X^* is a proper subset of X. The hypothesis $X = X^*$ is equivalent to the hypothesis $\tau \cap \mathcal{I} = \emptyset$. According to [14], we call the ideals which satisfy this hypothesis τ -boundary ideals. Note that $\operatorname{Cl}^*(A) = A \cup A^*$ defines a Kuratowski closure for a topology $\tau^*(\mathcal{I})$, finer than τ . A basis $\beta(\mathcal{I}, \tau)$ for $\tau^*(\mathcal{I})$ can be described as follows: $\beta(\mathcal{I}, \tau) = \{V \setminus J : V \in \tau \text{ and } J \in \mathcal{I}\}$. When there is no chance for confusion, we will simply write τ^* for $\tau^*(\mathcal{I})$ and β for $\beta(\mathcal{I}, \tau)$. In the sequel, the ideal of nowhere dense (resp. meager) subsets of (X, τ) is denoted by \mathcal{N} (resp. \mathcal{M}).

3 α S-paracompactness modulo an ideal

In this section, we shall introduce and study the αS -paracompact subsets modulo an ideal \mathcal{I} , which is a natural generalization of αS -paracompact subsets. First recall some notions of paracompactness.

Definition 3.1. A subset A of a space (X, τ) is said to be α -paracompact [3] (resp. α -almost paracompact [9]) if for any open cover \mathcal{U} of A, there exists a locally finite collection \mathcal{V} of open sets such that \mathcal{V} refines \mathcal{U} and $A \subset \bigcup \{V : V \in \mathcal{V}\}$ (resp. $A \subset \bigcup \{\operatorname{Cl}(V) : V \in \mathcal{V}\}$). A space (X, τ) is said to be paracompact (resp. almost-paracompact) if X is α -paracompact (resp. α -almost paracompact).

Definition 3.2. A subset A of a space (X, τ, \mathcal{I}) is said to be α -paracompact modulo \mathcal{I} [7] (briefly α -paracompact (mod \mathcal{I})), if for any open cover \mathcal{U} of A, there exist $I \in \mathcal{I}$ and a locally finite collection \mathcal{V} of open sets such that \mathcal{V} refines \mathcal{U} and $A \subset \bigcup \{V : V \in \mathcal{V}\} \cup I$.

A space (X, τ, \mathcal{I}) is said to be \mathcal{I} -paracompact or paracompact with respect to \mathcal{I} [16], if X is α -paracompact modulo \mathcal{I} . In the present, it is called paracompact modulo \mathcal{I} (or briefly paracompact (mod \mathcal{I})).

Definition 3.3. A subset A of a space (X, τ) is said to be α S-paracompact [1] if for any open cover \mathcal{U} of A, there exists a locally finite collection \mathcal{V} of open sets such that \mathcal{V} refines \mathcal{U} and $A \subset \bigcup \{V : V \in \mathcal{V}\}$. A space (X, τ) is said to be S-paracompact if X is α S-paracompact.

Now, we give the definition of αS -paracompact subset modulo an ideal \mathcal{I} .

Definition 3.4. A subset A of a space (X, τ, \mathcal{I}) is said to be α S-paracompact modulo \mathcal{I} (briefly α S-paracompact (mod \mathcal{I})), if for any open cover \mathcal{U} of A, there exist $I \in \mathcal{I}$ and a locally finite collection \mathcal{V} of semi-open sets such that \mathcal{V} refines \mathcal{U} and $A \subset \bigcup \{V : V \in \mathcal{V}\} \cup I$.

A space (X, τ, \mathcal{I}) is said to be \mathcal{I} -S-paracompact or S-paracompact with respect to \mathcal{I} [15], if X is α S-paracompact modulo \mathcal{I} . In the present, it is called S-paracompact modulo \mathcal{I} (or briefly S-paracompact (mod \mathcal{I})). We say that A is S-paracompact (mod \mathcal{I}) if $(A, \tau_A, \mathcal{I}_A)$ is S-paracompact (mod \mathcal{I}_A) as a subspace, where τ_A is the relative topology induced on A by τ and $\mathcal{I}_A = \{I \cap A : I \in \mathcal{I}\}$.

CUBO 18, 1 (2016)

Proposition 3.1. Let A be a subset of a space (X, τ) and \mathcal{I} an ideal on (X, τ) . Then, the following properties hold:

- (1) If A is α -paracompact (mod \mathcal{I}), then A is α S-paracompact (mod \mathcal{I}).
- (2) Every $I \in \mathcal{I}$ is an α S-paracompact (mod \mathcal{I}).
- (3) (X, τ, \mathcal{I}) is S-paracompact (mod \mathcal{I}) if there exists $I \in \mathcal{I}$ such that X I is α S-paracompact (mod \mathcal{I}).
- (4) A is α S-paracompact if and only if it is α S-paracompact (mod { \emptyset }).

Proof. (1) Follows from the fact that every open set is semi-open.

(2) Suppose that there exists $I \in \mathcal{I}$ such that I is not αS -paracompact (mod \mathcal{I}). Then, there exists an open cover \mathcal{U} of I such that $I \not\subset \bigcup \{V : V \in \mathcal{V}\} \cup J$ for every $J \in \mathcal{I}$ and every locally finite collection \mathcal{V} which refines \mathcal{U} . This is a contradiction, because $I \in \mathcal{I}$ and $I \subset \bigcup \{V : V \in \mathcal{V}\} \cup I$.

(3) Suppose that there exists $I \in \mathcal{I}$ such that X - I is α S-paracompact (mod \mathcal{I}) and let \mathcal{U} be an open cover of X. Then, \mathcal{U} is an open cover of X - I and hence there exist $J \in \mathcal{I}$ and a locally finite collection \mathcal{V} of semi-open sets such that \mathcal{V} refines \mathcal{U} and $X - I \subset \bigcup \{V : V \in \mathcal{V}\} \cup J$. Thus, $X = (X - I) \cup I \subset \bigcup \{V : V \in \mathcal{V}\} \cup (J \cup I)$ and as $J \cup I \in \mathcal{I}$, we have (X, τ, \mathcal{I}) is S-paracompact (mod \mathcal{I}).

(4) It is obvious.

Now, we give some comments related with the Proposition 3.1.

Remark 3.1. According to Proposition 3.1(1), every α -paracompact (mod \mathcal{I}) (resp. α S-paracompact) subset is α S-paracompact (mod \mathcal{I}), and from this point of view, the notion of α S-paracompact (mod \mathcal{I}) subset is a natural generalization of the notion of α -paracompact (mod \mathcal{I}) (resp. α S-paracompact) subset. On the other hand, in Example 2.11 of [13], it is shows that there exists a semiregular Hausdorff space X and a regular closed subset M of X such that M is an α S-paracompact (mod { \emptyset }) subset of X, but M is not α -paracompact (mod { \emptyset }). Thus, the converse of Proposition 3.1(1) in general is not true.

Proposition 3.2. Let A be a subset of a space (X, τ) and \mathcal{I} an ideal on (X, τ) . Then, the following properties hold:

- (1) If A is a semi-open and α S-paracompact (mod \mathcal{I}) set and \mathcal{I} is τ -boundary, then A is α -almost paracompact.
- (2) A semi-preopen set A is α S-paracompact (mod \mathcal{N}) if and only if it is α -almost paracompact.

Proof. (1) Let \mathcal{U} be any open cover of A. Then there exist $I \in \mathcal{I}$ and a locally finite collection $\mathcal{V} = \{V_{\lambda} : \lambda \in \Lambda\}$ of semi-open sets such that \mathcal{V} refines \mathcal{U} and $A \subset \bigcup \{V_{\lambda} : \lambda \in \Lambda\} \cup I$. Since A is

 \Box

CUBO 18, 1 (2016)

semi-open, $A \subset Cl(Int(A))$ and as \mathcal{I} is τ -boundary, $Int(I) = \emptyset$. Now, by the locally finiteness of \mathcal{V} , the collection $\mathcal{V}' = \{Int(V_{\lambda}) : \lambda \in \Lambda\}$ is also locally finite, it follows that

$$\begin{array}{rcl} A & \subset & \operatorname{Cl}(\operatorname{Int}(A)) \subset \operatorname{Cl}\left(\operatorname{Int}\left(\bigcup_{\lambda \in \Lambda} V_{\lambda} \cup I\right)\right) \\ & \subset & \operatorname{Cl}\left(\operatorname{Int}\left(\bigcup_{\lambda \in \Lambda} \operatorname{Cl}(\operatorname{Int}(V_{\lambda})) \cup I\right)\right) \\ & = & \operatorname{Cl}\left(\operatorname{Int}\left(\operatorname{Cl}\left(\bigcup_{\lambda \in \Lambda} \operatorname{Int}(V_{\lambda})\right) \cup I\right)\right) \\ & = & \operatorname{Cl}\left(\operatorname{Int}\left(\operatorname{Cl}\left(\bigcup_{\lambda \in \Lambda} \operatorname{Int}(V_{\lambda})\right) \cup \operatorname{Int}(I)\right)\right) \\ & = & \operatorname{Cl}\left(\operatorname{Int}\left(\operatorname{Cl}\left(\bigcup_{\lambda \in \Lambda} \operatorname{Int}(V_{\lambda})\right) \cup \operatorname{Int}(I)\right)\right) \\ & \subset & \operatorname{Cl}\left(\operatorname{Int}\left(\operatorname{Cl}\left(\bigcup_{\lambda \in \Lambda} \operatorname{Int}(V_{\lambda})\right)\right)\right) \\ & \subset & \operatorname{Cl}\left(\bigcup_{\lambda \in \Lambda} \operatorname{Int}(V_{\lambda})\right) = \bigcup_{\lambda \in \Lambda} \operatorname{Cl}(\operatorname{Int}(V_{\lambda})). \end{array}$$

If $W_{\lambda} = \operatorname{Int}(V_{\lambda})$, then $A \subset \bigcup_{\lambda \in \Lambda} \operatorname{Cl}(W_{\lambda})$. Observe that W_{λ} is open for each $\lambda \in \Lambda$ and $W_{\lambda} \subset V_{\lambda} \subset U$ for some $U \in \mathcal{U}$, hence $\mathcal{W} = \{W_{\lambda} : \lambda \in \Lambda\}$ is a locally finite open refinement of \mathcal{U} . Therefore, A is α -almost paracompact.

(2) Similar to the proof of (1), if A is semi-preopen, then

$$\begin{array}{rcl} A & \subset & \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}(A))) \subset \operatorname{Cl}\left(\operatorname{Int}\left(\operatorname{Cl}\left(\bigcup_{\lambda \in \Lambda} V_{\lambda} \cup I\right)\right)\right) \\ & = & \operatorname{Cl}\left(\operatorname{Int}\left(\operatorname{Cl}\left(\bigcup_{\lambda \in \Lambda} V_{\lambda}\right) \cup \operatorname{Cl}(I)\right)\right) \\ & = & \operatorname{Cl}\left(\operatorname{Int}\left(\operatorname{Cl}\left(\bigcup_{\lambda \in \Lambda} V_{\lambda}\right) \cup \operatorname{Int}(\operatorname{Cl}(I))\right)\right) \\ & = & \operatorname{Cl}\left(\operatorname{Int}\left(\operatorname{Cl}\left(\bigcup_{\lambda \in \Lambda} V_{\lambda}\right)\right)\right) \\ & \subset & \operatorname{Cl}\left(\operatorname{Int}\left(\operatorname{Cl}\left(\bigcup_{\lambda \in \Lambda} \operatorname{Cl}(\operatorname{Int}(V_{\lambda}))\right)\right)\right) \\ & = & \operatorname{Cl}\left(\operatorname{Int}\left(\operatorname{Cl}\left(\bigcup_{\lambda \in \Lambda} \operatorname{Int}(V_{\lambda})\right)\right)\right) \\ & \subset & \operatorname{Cl}\left(\operatorname{Int}\left(\operatorname{Cl}\left(\bigcup_{\lambda \in \Lambda} \operatorname{Int}(V_{\lambda})\right)\right)\right) \\ & \subset & \operatorname{Cl}\left(\bigcup_{\lambda \in \Lambda} \operatorname{Int}(V_{\lambda}\right) = \bigcup_{\lambda \in \Lambda} \operatorname{Cl}(\operatorname{Int}(V_{\lambda})). \end{array}$$

Therefore, the proof follows.

52

As a consequence of Proposition 3.2, we obtain the following result.

Corollary 3.1. (Sanabria et al. [15]) Let \mathcal{I} be an ideal on a space (X, τ) . Then, the following properties hold:

(1) If \mathcal{I} is τ -boundary and (X, τ) is S-paracompact (mod \mathcal{I}), then (X, τ) is almost-paracompact.

(2) (X, τ) is S-paracompact (mod \mathcal{N}) if and only if it is almost-paracompact.

Theorem 3.1. If every open subset of a space (X, τ, \mathcal{I}) is α S-paracompact (mod \mathcal{I}), then every subspace of (X, τ, \mathcal{I}) is S-paracompact (mod \mathcal{I}).

Proof. Suppose that A is any subspace of (X, τ, \mathcal{I}) and let $\mathcal{U} = \{U_{\mu} : \mu \in \Delta\}$ be a τ_{A} -open cover of A. For every $\mu \in \Delta$ there exists $V_{\mu} \in \tau$ such that $U_{\mu} = V_{\mu} \cap A$. Put $V = \bigcup \{V_{\mu} : \mu \in \Delta\}$, then $V \in \tau$ and $\mathcal{V} = \{V_{\mu} : \mu \in \Delta\}$ is a τ -open cover of V. By hypothesis, there exist $I \in \mathcal{I}$ and a τ -locally finite collection $\mathcal{W} = \{W_{\lambda} : \lambda \in \Lambda\}$ of τ -semi-open sets such that \mathcal{W} refines \mathcal{V} and $V \subset \bigcup \{W_{\lambda} : \lambda \in \Lambda\} \cup I$. Then, we have

$$\begin{array}{ll} \mathsf{A} & = & \displaystyle \bigcup_{\mu \in \Delta} \mathsf{U}_{\mu} = \displaystyle \bigcup_{\mu \in \Delta} (\mathsf{V}_{\mu} \cap \mathsf{A}) = \left(\bigcup_{\mu \in \Delta} \mathsf{V}_{\mu} \right) \cap \mathsf{A} \\ \\ & = & \mathsf{V} \cap \mathsf{A} \subset \left(\bigcup_{\lambda \in \Lambda} W_{\lambda} \cup \mathsf{I} \right) \cap \mathsf{A} = \displaystyle \bigcup_{\lambda \in \Lambda} (W_{\lambda} \cap \mathsf{A}) \cup \mathsf{I}_{\mathsf{A}}, \end{array}$$

where $I_A = I \cap A \in \mathcal{I}_A$. If $x \in A$, then there exists $G_x \in \tau$ containing x such that $W_\lambda \cap G_x = \emptyset$ for all $\lambda \neq \lambda_1, \lambda_2, \ldots, \lambda_n$ and so $(W_\lambda \cap G_x) \cap A = \emptyset$ for all $\lambda \neq \lambda_1, \lambda_2, \ldots, \lambda_n$. It follows that $(W_\lambda \cap A) \cap (G_x \cap A) = \emptyset$ for all $\lambda \neq \lambda_1, \lambda_2, \ldots, \lambda_n$ and hence, the collection $\mathcal{H} = \{W_\lambda \cap A : \lambda \in \Lambda\}$ is τ_A -locally finite. If $W_\lambda \cap A \in \mathcal{H}$, then $W_\lambda \in \mathcal{W}$ and since \mathcal{W} refines $\mathcal{V}, W_\lambda \subseteq V_\mu$ for some $V_\mu \in \mathcal{V}$, which implies that $W_\lambda \cap A \subset V_\mu \cap A = U_\mu \in \mathcal{U}$. Therefore, \mathcal{H} refines \mathcal{U} . This shows that $\mathcal{H} = \{W_\lambda \cap A : \lambda \in \Lambda\}$ is a τ_A -locally finite collection of τ_A -semi-open sets which refines \mathcal{U} such that $A \subset \bigcup \{H : H \in \mathcal{H}\} \cup I_A$. Thus, every subspace of (X, τ, \mathcal{I}) is S-paracompact (mod \mathcal{I}).

The following result is an immediate consequence of Theorem 3.2.

Corollary 3.2. If every open subset of a space (X, τ, \mathcal{I}) is α S-paracompact (mod \mathcal{I}), then (X, τ, \mathcal{I}) is S-paracompact (mod \mathcal{I}).

Recall that a subset A of a space (X, τ) is said to be g-closed [12] if $Cl(A) \subset U$ whenever $A \subset U$ and $U \in \tau$.

Theorem 3.2. If (X, τ, \mathcal{I}) is S-paracompact (mod \mathcal{I}) and A is a g-closed subset of X, then A is α S-paracompact (mod \mathcal{I}).

CUBO

18, 1 (2016)

Proof. Suppose that A is a g-closed subset of an S-paracompact (mod \mathcal{I}) space (X, τ, \mathcal{I}) . Let $\mathcal{U} = \{U_{\mu} : \mu \in \Delta\}$ be an open cover of A. Since A is g-closed and $A \subset \bigcup \{U_{\mu} : \mu \in \Delta\}$, then $\mathrm{sCl}(A) \subset \bigcup \{U_{\mu} : \mu \in \Delta\}$. For each $x \notin \mathrm{Cl}(A)$ there exists a τ -open set G_x containing x such that $A \cap G_x = \emptyset$. Put $\mathcal{U}' = \{U_{\mu} : \mu \in \Delta\} \cup \{G_x : x \notin \mathrm{Cl}(A)\}$. Then \mathcal{U}' is an open cover of the S-paracompact (mod \mathcal{I}) space X and so, there exist $I \in \mathcal{I}$ and a locally finite collection $\mathcal{V} = \{V_\lambda : \lambda \in \Lambda\}$ of semi-open sets such that \mathcal{V} refines \mathcal{U} and $X = \bigcup \{V_\lambda : \lambda \in \Lambda\} \cup I$. For each $\lambda \in \Lambda$, either $V_\lambda \subset U_{\mu(\lambda)}$ for some $\mu(\lambda) \in \Delta$ or $V_\lambda \subset G_{x(\lambda)}$ for some $x(\lambda) \notin \mathrm{Cl}(A)$. Now, put $\Lambda_0 = \{\lambda \in \Lambda : V_\lambda \subset U_{\beta(\lambda)}\}$. Then $\mathcal{V}' = \{V_\lambda : \lambda \in \Lambda_0\}$ is a collection of semi-open sets which is locally finite and refines \mathcal{U} . Also,

$$\begin{split} X - \bigcup_{\lambda \in \Lambda_0} V_\lambda &= \left(\bigcup_{\lambda \in \Lambda} V_\lambda \cup I \right) - \bigcup_{\lambda \in \Lambda_0} V_\lambda = \bigcup_{\lambda \notin \Lambda_0} V_\lambda \cup I \\ &\subset \bigcup_{\lambda \notin \Lambda_0} G_{x(\lambda)} \cup I \subset (X - A) \cup I = X - (A - I), \end{split}$$

which implies $A - I \subset \bigcup_{\lambda \in \Lambda_0} V_{\lambda}$ and hence $A \subset \bigcup_{\lambda \in \Lambda_0} V_{\lambda} \cup I$. This shows that A is α S-paracompact (mod \mathcal{I}).

Theorem 3.3. Let (X, τ, \mathcal{I}) be a space. Then, the following properties hold:

- (1) If A is an open α S-paracompact (mod \mathcal{I}) subset of (X, τ , \mathcal{I}), then A is S-paracompact (mod \mathcal{I}).
- (2) If A is a clopen subset of (X, τ, \mathcal{I}) , then A is α S-paracompact (mod \mathcal{I}) if and only if it is S-paracompact (mod \mathcal{I}).

Proof. (1) Let A be an open α S-paracompact (mod \mathcal{I}) subset of (X, τ, \mathcal{I}) . Let $\mathcal{U} = \{U_{\mu} : \mu \in \Delta\}$ be a τ_{A} -open cover of A. Since A is τ -open, we have \mathcal{U} is a τ -open cover of A and hence, there exist $I \in \mathcal{I}$ and a τ -locally finite collection $\mathcal{V} = \{V_{\lambda} : \lambda \in \Lambda\}$ of τ -semi-open sets which refines \mathcal{U} such that $A \subset \bigcup \{V_{\lambda} : \lambda \in \Lambda\} \cup I$. It follows that $A \subset \bigcup \{V_{\lambda} \cap A : \lambda \in \Lambda\} \cup (I \cap A)$ and so, the collection $\mathcal{V}_{A} = \{V_{\lambda} \cap A : \lambda \in \Lambda\}$ is a τ_{A} -locally finite τ_{A} -semi-open refinement of \mathcal{U} and is an \mathcal{I}_{A} -cover of A. Therefore, A is S-paracompact (mod \mathcal{I}).

(2) If A is a clopen and α S-paracompact (mod \mathcal{I}) subset of (X, τ, \mathcal{I}) , then from (1) we obtain that A is is S-paracompact (mod \mathcal{I}). Conversely, let $\mathcal{U} = \{\mathbf{U}_{\mu} : \mu \in \Delta\}$ be a τ -open cover of A. The collection $\mathcal{V} = \{A \cap \mathbf{U}_{\mu} : \mu \in \Delta\}$ is a τ_{A} -open cover of the S-paracompact (mod \mathcal{I}) subspace $(A, \tau_{A}, \mathcal{I}_{A})$ and hence, there exist $\mathbf{I}_{A} \in \mathcal{I}_{A}$ and a τ_{A} -locally finite τ_{A} -semi-open refinement $\mathcal{W} = \{W_{\lambda} : \lambda \in \Lambda\}$ of \mathcal{V} such that $A = \bigcup \{W_{\lambda} : \lambda \in \Lambda\} \cup \mathbf{I}_{A}$. It is easy to see that \mathcal{W} refines \mathcal{U} and by Lemma 2.1(3), we have that $W_{\lambda} \in SO(X, \tau)$ for each $\lambda \in \Lambda$. To show $\mathcal{W} = \{W_{\lambda} : \lambda \in \Lambda\}$ is τ -locally finite, let $x \in X$. Si $x \in A$, then there exists $O_{x} \in \tau_{A} \subset \tau$ containing x such that O_{x} intersects at most finitely many members of \mathcal{W} . Otherwise $X \setminus A$ is a τ -open set containing x which intersects no member of \mathcal{W} . Therefore, \mathcal{W} is τ -locally finite and such that

CUBO 18, 1 (2016)

 $A = \bigcup \{W_{\lambda} : \lambda \in \Lambda\} \cup I_{A} \subset \bigcup \{W_{\lambda} : \lambda \in \Lambda\} \cup I \text{ for some } I \in \mathcal{I}. \text{ Thus, } A \text{ is } \alpha S\text{-paracompact (mod } \mathcal{I}).$

As a consequence of Theorem 3.3, we obtain the following result.

Corollary 3.3. Every clopen subspace of a S-paracompact (mod \mathcal{I}) space is S-paracompact (mod \mathcal{I}).

Lemma 3.1. Let A be a subset of a space (X, τ, \mathcal{I}) . If every open cover of A has a locally finite closed refinement \mathcal{V} such that $A \subset \bigcup \{V : V \in \mathcal{V}\} \cup I$ for some $I \in \mathcal{I}$, then \mathcal{V} has a locally finite open refinement \mathcal{W} such that $A \subset \bigcup \{W : W \in \mathcal{W}\} \cup I$.

Proof. Let \mathcal{U} be an open cover of A. By hypothesis, there exist $I \in \mathcal{I}$ and a locally finite closed refinement $\mathcal{V} = \{V_{\lambda} : \lambda \in \Lambda\}$ of \mathcal{U} such that $A \subset \bigcup \{V_{\lambda} : \lambda \in \Lambda\} \cup I$. For each $x \in A$, there exists an open set G_x containing x such that G_x intersects at most finitely many members of \mathcal{V} . Note that the collection $\mathcal{G} = \{G_x : x \in A\}$ is an open cover of A and again by hypothesis, there exist $J \in \mathcal{I}$ and a locally finite closed refinement $\mathcal{H} = \{H_{\mu} : \mu \in \Delta\}$ of \mathcal{G} such that $A \subset \bigcup \{H_{\mu} : \mu \in \Delta\} \cup J$. Now, as $\{H_{\mu} : H_{\mu} \cap V_{\lambda} = \emptyset\} \subset \mathcal{H}$, then the collection $\{H_{\mu} : H_{\mu} \cap V_{\lambda} = \emptyset\}$ is locally finite and $\bigcup \{H_{\mu} : H_{\mu} \cap V_{\lambda} = \emptyset\} = \bigcup \{Cl(H_{\mu}) : H_{\mu} \cap V_{\lambda} = \emptyset\} = Cl(\bigcup \{H_{\mu} : H_{\mu} \cap V_{\lambda} = \emptyset\})$, it follows that $O_{\lambda} = X - \bigcup \{H_{\mu} : H_{\mu} \cap V_{\lambda} = \emptyset\}$ is an open set and $V_{\lambda} \subset O_{\lambda}$, for each $\lambda \in \Lambda$. For each $\mu \in \Delta$ and $\lambda \in \Lambda$, we have

$$\mathsf{H}_{\mathfrak{u}} \cap \mathsf{O}_{\lambda} \neq \emptyset \Longleftrightarrow \mathsf{H}_{\mathfrak{u}} \cap \mathsf{V}_{\lambda} \neq \emptyset. \tag{(*)}$$

Since \mathcal{V} refines \mathcal{U} , for every $\lambda \in \Lambda$ there exists $U(\lambda) \in \mathcal{U}$ such that $V_{\lambda} \subset U(\lambda)$. Put $W_{\lambda} = O_{\lambda} \cap U(\lambda)$, then the collection $\mathcal{W} = \{W_{\lambda} : \lambda \in \Lambda\}$ is an open refinement of \mathcal{U} . Furthermore, if $x \in \Lambda$ there exists an open set D_x such that D_x intersects at most finitely many members of \mathcal{H} , it follows from (*) that \mathcal{W} is locally finite. Also, $A \subset \bigcup \{V_{\lambda} : \lambda \in \Lambda\} \cup I \subset \bigcup \{O_{\lambda} \cap U(\lambda) : \lambda \in \Lambda\} \cup I = A \subset \bigcup \{W_{\lambda} : \lambda \in \Lambda\} \cup I$.

The following theorem shows that, in the presence of the axiom of regularity, the notions of α -paracompact (mod \mathcal{I}) and α S-paracompact (mod \mathcal{I}) subsets are equivalent.

Theorem 3.4. Let \mathcal{I} be an ideal on a regular space (X, τ) and A be a subset of X. Then, A is α -paracompact (mod \mathcal{I}) if and only if it is α S-paracompact (mod \mathcal{I}).

Proof. Necessity is obvious from the definitions. To show sufficiency, assume A is an α S-paracompact (mod \mathcal{I}) subset of (X, τ, \mathcal{I}) and let $\mathcal{U} = \{U_{\mu} : \mu \in \Delta\}$ be an open cover of A. For each $x \in A$, there exists $\mu(x) \in \Delta$ such that $x \in U_{\mu(x)}$ and since (X, τ, \mathcal{I}) is a regular space, there exists an open set V_x such that $x \in V_x \subset Cl(V_x) \subset U_{\mu(x)}$. Thus, $\mathcal{V} = \{V_x : x \in A\}$ is an open cover of A and because A is α S-paracompact (mod \mathcal{I}), there exist $I \in \mathcal{I}$ and a locally finite semi-open refinement $\mathcal{W} = \{W_\lambda : \lambda \in \Lambda\}$ of \mathcal{V} such that $A \subset \bigcup\{W_\lambda : \lambda \in \Lambda\} \cup I$. Since \mathcal{W} refines \mathcal{V} , then for each $\lambda \in \Lambda$ there exists $x(\lambda) \in X$ such that $W_\lambda \subset V_{x(\lambda)}$ and so, $W_\lambda \subset Cl(W_\lambda) \subset Cl(V_{x(\lambda)}) \subset U_{\mu(x(\lambda))}$. Obviously the collection $\{Cl(W_\lambda) : \lambda \in \Lambda\}$ is a locally finite closed refinement of \mathcal{U} such that

 $A \subset \bigcup \{ \operatorname{Cl}(W_{\lambda}) : \lambda \in \Lambda \} \cup I$. By Lemma 3.1, the open cover \mathcal{U} of A has a locally finite open refinement \mathcal{H} such that $A \subset \bigcup \{ H : H \in \mathcal{H} \} \cup I$. Therefore, A is an α -paracompact (mod \mathcal{I}) subset of (X, τ, \mathcal{I}) .

Proposition 3.3. If A is an α S-paracompact (mod \mathcal{I}) subset of a space (X, τ , \mathcal{I}) and B is a subset of X with $\vartheta(B) \in \mathcal{I}$, then $A \cap Cl(B)$ is α S-paracompact (mod \mathcal{I}).

Proof. Let \mathcal{U} be an open cover of $A \cap Cl(B)$. Then $\mathcal{U}' = \mathcal{U} \cup \{X - Cl(B)\}$ is an open cover of A and so, there exist $I \in \mathcal{I}$ and a locally finite semi-open refinement $\mathcal{V} = \{V_{\lambda} : \lambda \in \Lambda\}$ of \mathcal{U}' such that $A \subset \bigcup \{V_{\lambda} : \lambda \in \Lambda\} \cup I$. Then, $\partial(Cl(B)) \subset \partial(B) \in \mathcal{I}$ and

$$A\cap \mathrm{Cl}(B)\subset \bigcup_{\lambda\in\Lambda}V_\lambda\cap\mathrm{Int}(\mathrm{Cl}(B))\cup J,$$

where $J = [(\bigcup\{V_{\lambda} : \lambda \in \Lambda\}) \cap \partial(Cl(B))] \cup (I \cap Cl(B)) \in \mathcal{I}$. Thus, the collection $\mathcal{V}' = \{V_{\lambda} \cap Int(Cl(B)) : \lambda \in \Lambda\}$ is a locally finite semi-open refinement of \mathcal{U} such that $A \cap Cl(B) \subset \bigcup\{V : V \in \mathcal{V}'\} \cup J$. Therefore, $A \cap Cl(B)$ is α S-paracompact (mod \mathcal{I}).

The following result follows from Proposition 3.3 and the fact that the topological frontier of a semi-open (resp. semi-closed) set is nowhere dense.

Corollary 3.4. If A is an α S-paracompact (mod \mathcal{N}) subset of a space (X, τ, \mathcal{I}) and B is either semi-open or semi-closed, then $A \cap Cl(B)$ is α S-paracompact (mod \mathcal{N}).

Remark 3.2. If $\{V_{\lambda} : \lambda \in \Lambda\}$ is a locally finite collection of subsets of a space (X, τ) , then the collection $\{\partial(V_{\lambda}) : \lambda \in \Lambda\}$ is locally finite.

According to [7], if \mathcal{I} is an ideal on a space (X, τ) and \mathfrak{F} is the collection of all closed sets of (X, τ) , then the collection $\{A \subset X : \operatorname{Cl}(A) \in \mathcal{I}\}$ is an ideal contained in \mathcal{I} . The ideal generated by the collection of whole closed sets in \mathcal{I} is denoted by $\langle \mathcal{I} \cap \mathfrak{F} \rangle$. It is clear that $\langle \mathcal{I} \cap \mathfrak{F} \rangle = \{A \subset X : \operatorname{Cl}(A) \in \mathcal{I}\}$.

Proposition 3.4. Let A be a subset of a space (X, τ, \mathcal{I}) . If A is α S-paracompact (mod $\langle \mathcal{I} \cap \mathfrak{F} \rangle$) and $\mathcal{N} \subset \mathcal{I}$, then Cl(A) is α S-paracompact (mod \mathcal{I}).

Proof. Let \mathcal{U} be an open cover of Cl(A). By hypothesis, there exist $I_A \in \langle \mathcal{I} \cap \mathfrak{F} \rangle$ and a locally finite collection $\mathcal{V} = \{V_\lambda : \lambda \in \Lambda\}$ of semi-open sets such that \mathcal{V} refines \mathcal{U} and $A \subset \bigcup \{V_\lambda : \lambda \in \Lambda\} \cup I_A$. Then,

$$\operatorname{Cl}(A) \subset \bigcup_{\lambda \in \Lambda} \operatorname{Cl}(V_{\lambda}) \cup \operatorname{Cl}(I_{A}) = \left(\bigcup_{\lambda \in \Lambda} V_{\lambda}\right) \cup \left(\bigcup_{\lambda \in \Lambda} \vartheta(V_{\lambda})\right) \cup \operatorname{Cl}(I_{A}).$$

By Remark 3.2, the collection $\{\partial(V_{\lambda}) : \lambda \in \Lambda\}$ is locally finite and $\partial(V_{\lambda}) \in \mathcal{N}$ for each $\lambda \in \Lambda$. Thus, by [6, Lemma 2.1], we have $\bigcup \{\partial(V_{\lambda}) : \lambda \in \Lambda\} \in \mathcal{N} \subset \mathcal{I}$. Put $I = \bigcup \{\partial(V_{\lambda}) : \lambda \in \Lambda\} \cup Cl(I_{A})$, then $I \in \mathcal{I}$ and $Cl(A) \subset \bigcup_{\lambda \in \Lambda} V_{\lambda} \cup I$. Therefore, Cl(A) is α S-paracompact (mod \mathcal{I}).

CUBO

18, 1 (2016)

Since \mathcal{N} is the ideal of nowhere dense subsets of (X, τ) , $A \in \mathcal{N}$ if and only if $Cl(A) \in \mathcal{N}$. In the case that $\mathcal{I} = \mathcal{N}$, then $\langle \mathcal{I} \cap \mathfrak{F} \rangle = \mathcal{N}$. The following corollary is a direct consequence of Proposition 3.4.

Corollary 3.5. If A is an α S-paracompact (mod \mathcal{N}) subset of a space (X, τ, \mathcal{I}) , then Cl(A) is α S-paracompact (mod \mathcal{N}).

Lemma 3.2. [7] If $\{A_{\lambda} : \lambda \in \Lambda\}$ is a locally finite collection of meager sets of a space (X, τ) , then $\bigcup \{A_{\lambda} : \lambda \in \Lambda\}$ is meager.

Theorem 3.5. If $\{A_{\lambda} : \lambda \in \Lambda\}$ is a locally finite collection of α S-paracompact (mod \mathcal{M}) subsets of a space (X, τ) , then $\bigcup \{A_{\lambda} : \lambda \in \Lambda\}$ is α S-paracompact (mod \mathcal{M}).

Proof. Let \mathcal{U} be an open cover of $\bigcup \{A_{\lambda} : \lambda \in \Lambda\}$ and put $\mathcal{U}_{\lambda} = \{U \in \mathcal{U} : U \cap A_{\lambda} \neq \emptyset\}$ for each $\lambda \in \Lambda$. By the hypothesis, there exist $M_{\lambda} \in \mathcal{M}$ and a locally finite collection \mathcal{V}_{λ} of semi-open sets such that \mathcal{V}_{λ} refines \mathcal{U}_{λ} and $A_{\lambda} \subset \bigcup \{V : V \in \mathcal{V}_{\lambda}\} \cup M_{\lambda}$. Then, we have

$$A_{\lambda} \subset \bigcup_{V \in \mathcal{V}_{\lambda}} (V \cap \operatorname{Int}(\operatorname{Cl}(A_{\lambda}))) \cup \bigcup_{V \in \mathcal{V}_{\lambda}} (V \cap \mathfrak{d}(\operatorname{Cl}(A_{\lambda}))) \cup M_{\lambda}.$$

For each $V \in \mathcal{V}_{\lambda}$ and each $\lambda \in \Lambda$, $V \cap \partial(\operatorname{Cl}(A_{\lambda}))$ is nowhere dense and the collection $\{V \cap \partial(\operatorname{Cl}(A_{\lambda})) : V \in \mathcal{V}_{\lambda}, \lambda \in \Lambda\}$ is locally finite, so by [6, Lemma 2.1], the union of all elements of $\{V \cap \partial(\operatorname{Cl}(A_{\lambda})) : V \in \mathcal{V}_{\lambda}, \lambda \in \Lambda\}$ is a nowhere dense set. By Lemma 3.2, we obtain $\bigcup\{M_{\lambda} : \lambda \in \Lambda\} \in \mathcal{M}$ and

$$M = \bigcup_{\lambda \in \Lambda} \bigcup_{V \in \mathcal{V}_{\lambda}} V \cap \partial(\mathrm{Cl}(A_{\lambda})) \cup \bigcup_{\lambda \in \Lambda} M_{\lambda} \in \mathcal{M}.$$

Now, the collection $\{V \cap \operatorname{Int}(\operatorname{Cl}(A_{\lambda})) : V \in \mathcal{V}_{\lambda}, \lambda \in \Lambda\}$ of semi-open sets is locally finite and refines \mathcal{U} and also

$$\bigcup_{\lambda \in \Lambda} A_{\lambda} \subset \bigcup_{\lambda \in \Lambda} \bigcup_{V \in \mathcal{V}_{\lambda}} V \cap \operatorname{Int}(\operatorname{Cl}(A_{\lambda})) \cup M.$$

Therefore, $\bigcup \{A_{\lambda} : \lambda \in \Lambda\}$ is α S-paracompact (mod \mathcal{M}).

References

- [1] K. Y. Al-Zoubi: S-paracompact spaces, Acta. Math. Hungar. 110 (1-2) (2006), 165-174.
- [2] D. Andrijević: Semi-preopen sets, Mat. Vesnik 38 (1986), 24-32.
- [3] C. E. Aull, α-paracompact subsets, Proc. Second Prague Topological Symp. 1966, Acad. Pub. House Czechoslovak Acad. Sci., Prague (1967), 45-51.
- [4] S. G. Crossley, S. K. Hildebrand: Semi-closure, Texas J. Sci. 22 (1971), 99-112.
- [5] S. G. Crossley, S. K. Hildebrand: Semi-topological properties, Fund. Math. 74 (1972), 233-254.

- [6] N. Ergun, T. Noiri: On α^{*}-paracompactness subsets, Bull. Math. Soc. Sci. Math. Roumanie 36 (84) (1992), 259-268.
- [7] N. Ergun, T. Noiri: Paracompactness modulo an ideal, Math. Japonica 42 (1) (1995), 15-24.
- [8] T. R. Hamlett, D. Rose, D. Janković: Paracompactness with respect to an ideal, Internat. J. Math. & Math. Sci. 20 (3) (1997), 433-442.
- [9] I. Kovačević: Locally almost paracompact spaces, Review of Research, Faculty of Science, Univ. Novi Sad 10 (1980), 85-91.
- [10] K. Kuratowski: Topologie I, Warszawa, 1933.
- [11] N. Levine: Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- [12] N. Levine: Generalized closed sets in topology, Rend. Circ. Mat. Palermo 19 (1970), 89-96.
- [13] P.-Y. Li, Y.-K. Song: Some remarks on S-paracompact spaces, Acta. Math. Hungar. 118 (4) (2008), 345-355.
- [14] R. L. Newcomb: Topologies wich are compact modulo an ideal, Ph. D. Dissertation, Univ. of Cal. at Santa Barbara, 1967.
- [15] J. Sanabria, E. Rosas, C. Carpintero, M. Salas-Brown and O. García. S-Paracompactness in ideal topological spaces, Mat. Vesnik 68 (3) (2016), 192-203.
- [16] M. I. Zahid: Para H-closed spaces, locally para H-closed spaces and their minimal topologies, Ph. D. Dissertation, Univ. of Pittsburgh, 1981.