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ABSTRACT

In this paper, we introduce the notion of impulsive asymptotically almost periodic

functions and prove some basic properties of such functions. Then, we discuss the

existence and exponential stability of positive asymptotically almost periodic solution

for an impulsive hematopoiesis model. An example is given to illustrate our results.

RESUMEN

En este art́ıculo, introducimos la noción de funciones impulsivas asintóticamente casi

periódicas y probamos algunas propiedades básicas para dichas funciones. Luego, dis-

cutimos la existencia y estabilidad exponencial de soluciones positivas asintóticamente

casi periódicas para un modelo impulsivo de hematopoyesis. Un ejemplo es dado para

ilustrar nuestros resultados.
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1 Introduction and preliminaries

In [8], Mackey and Glass proposed the following nonlinear delay differential equation

h ′(t) = −αh(t) +
β

1+ hn(t − τ)
(1.1)

as an appropriate model of hematopoiesis that describes the process of production of all types of

blood cells generated by a remarkable self-regulated system that is responsive to the demands put

upon it. In medical terms, h(t) denotes the density of mature cells in blood circulation at time t

and τ is the time delay between the production of immature cells in the bone marrow and their

maturation for release in circulating bloodstream. It is assumed that the cells are lost from the

circulation at a rate α, and the flux of the cells into the circulation from the stem cell compartment

depends on the density of mature cells at the previous time t− τ.

In this paper, we consider the existence and stability of asymptotically almost periodic solutions

for the following impulsive hematopoiesis model:

⎧
⎪⎨

⎪⎩

x′(t) = −a(t)x(t) + b(t)
1+xn(t−τ) , t ̸= tk,

∆x|t=tk = ckx(tk) + Ik(x(tk)), k ∈ Z,

(1.2)

where ∆x|t=tk = x(tk + 0) − x(tk − 0), τ ≥ 0 is a constant and the coefficients satisfy some

conditions, which will be listed in Section 3.

The direct impetus of this paper comes from two sources. The first source is some recent works

on the almost periodic solutions for hematopoiesis models without impulse effect (see, e.g., [4, 7]

and references therein); the second source is some recent works on periodic solutions and almost

periodic solutions for impulsive hematopoiesis models (see, e.g., [10, 1, 12] and references therein).

Stimulated by these works, we aim to make further study on this topic. As one will see, there are

two differences of our work from some earlier works on almost periodic solutions to equation (1.2)

(cf. [1, 12]). The first difference is that we do not assume that inf
t∈R

a(t) > 0 and −1 ≤ ck ≤ 0 for all

k ∈ Z. In fact, we weaken these assumptions to M(a) := lim
T→+∞

1
T

∫T
0 a(t)dt > 0 and −1 ≤ ck for

all k ∈ Z. The second difference is that we investigate the existence and stability of asymptotically

almost periodic solution to equation (1.2). To the best of our knowledge, it seems that until now

there is no results concerning asymptotically almost periodic solution to equation (1.2). Recall

that in 1940s, M. Fréchet [5] introduced the notion of asymptotically almost periodicity, which

turns out to be one of the most interesting and important generalizations of almost periodicity.

Throughout this paper, we denote by R the set of real numbers, by R+ the set of nonnegative

real numbers, by Z the set of integers, and by N the set of positive integers.

Now, let us recall some basic notations about classical almost periodic type functions (for

more details, we refer the reader to [2, 3]).
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Definition 1.1. A set P ⊂ Z (or R) is called relatively dense in Z (or R) if there exists a number

l ∈ N (or R+) such that ∀a ∈ Z (or R), [a, a+ l]
⋂

P ̸= ∅.

Definition 1.2. A continuous function f : R → R is called almost periodic if for every ε > 0,

P(ε, f) = {τ ∈ R : sup
t∈R

|f(t+ τ)− f(t)| < ε}

is relatively dense in R. We denote the set of all such functions by AP(R).

Definition 1.3. A sequence f : Z → R is called almost periodic if for every ε > 0,

P(ε, f) = {τ ∈ Z : sup
n∈Z

|f(n+ τ)− f(n)| < ε}

is relatively dense in Z. We denote the set of all such sequences by AP(Z).

Definition 1.4. A sequence f : Z → R is called asymptotically almost periodic if f = g+ h, where

g ∈ AP(Z) and h ∈ C0(Z), where C0(Z) is the set of all functions h : Z → R with lim
n→∞

h(n) = 0.

We denote the set of all such sequences by AAP(Z).

Definition 1.5. A set of sequences fλ : Z → R, λ belongs to some index set Λ, is called equi-almost

periodic if for every ε > 0,
⋂

λ∈Λ P(ε, fλ) is relatively dense in Z.

Next, let us recall some basic notations and properties about impulsive almost periodic type

functions (for more details, we refer the reader to [9, 11, 6]).

Let T be the set of all sequences {tk}k∈Z ⊂ R satisfying tk < tk+1 for all k ∈ Z, inf
k∈Z

|tk+1−tk| >

0, and

lim
k→+∞

tk = +∞, lim
k→−∞

tk = −∞.

It is easy to see that for every T = {tk}k∈Z ∈ T and a ∈ R, there holds T + a ∈ T . In addition, we

denote by PTC(R) the set of all functions f : R → R such that f is continuous on R \ T , and for

every tk ∈ T , f(tk − 0) = f(tk) and f(tk + 0) exists.

Definition 1.6. Let T = {tk}k∈Z ∈ T . A function f ∈ PTC(R) is said to be almost periodic if

(i) the set of sequences {Tj}j∈Z is equi-almost periodic, where Tj = {tjk : tjk = tk+j − tk, k ∈ Z} for

every j ∈ Z;

(ii) for every ε > 0, there exists δ > 0 such that if t ′ and t ′′ belong to the same interval of

continuity of f and |t ′ − t ′′| < δ, then |f(t ′)− f(t ′′)| < ε;

(iii) for every ε > 0, there exists a relatively dense set P(ε, f) in R such that |f(t + r)− f(t)| < ε

for every r ∈ P(ε, f) and every t ∈ R with |t− tk| > ε for all k ∈ Z.

We denote the set of all such functions by PTAP(R).
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Lemma 1.7. Let T = {tk}k∈Z ∈ T , and f, g ∈ PTAP(R). Then, the following assertions hold true:

(i) f+ g ∈ PTAP(R) and f · g ∈ PTAP(R).

(ii) f/g ∈ PTAP(R) provided that inf
t∈R

|g(t)| > 0.

(iii) k → f(tk) belongs to AP(Z).

(iv) PTAP(R) is a Banach space under the supremum norm.

(v) for every a ∈ R, f(· − a) ∈ PT+aAP(R).

Proof. (i)-(iii) have been proved in [9]. Moreover, by definition of PTAP(R), it is not difficult to

prove (iv) and (v). Here, we omit the details.

Remark 1.8. It is not difficult to show that a continuous function f ∈ PTAP(R) implies that

f ∈ AP(R).

We denote the set of all functions f ∈ PTC(R) with lim
t→∞

f(t) = 0 by PTC0(R). Next, let us

introduce the notion of impulsive asymptotically almost periodic functions.

Definition 1.9. Let T = {tk}k∈Z ∈ T . A function f ∈ PTC(R) is said to be be asymptotically

almost periodic if f = g+h, where g ∈ PTAP(R) and h ∈ PTC0(R). We denote the set of all such

functions by PTAAP(R).

Lemma 1.10. Let T = {tk}k∈Z ∈ T . The following assertions hold true:

(i) Let f = g+ h ∈ PTAAP(R), where g ∈ PTAP(R) and h ∈ PTC0(R). Then

{g(t) : t ∈ R} ⊂ {f(t) : t ∈ R}.

(ii) The decomposition of a function f ∈ PTAAP(R) is unique.

(iii) PTAAP(R) is a Banach space under the supremum norm.

(iv) Let f1, f2 ∈ PTAAP(R). Then f1 + f2 ∈ PTAAP(R), f1 · f2 ∈ PTAAP(R) and f1(· − a) ∈
PT+aAAP(R) for every a ∈ R.

(v) Let f1, f2 ∈ PTAAP(R). Then f1/f2 ∈ PTAAP(R) provided that inf
t∈R

|f2(t)| > 0.

(vi) Let f ∈ PTAAP(R). Then k → f(tk) belongs to AAP(Z).

Proof. (i) Since g is left continuous on R, it suffices to prove that

{g(t) : t ∈ R, t /∈ T } ⊂ {f(t) : t ∈ R}.
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We prove it by contradiction. Assume that there exists t ′ /∈ T such that

ε0 := inf
t∈R

|g(t ′)− f(t)| > 0.

Let δ = min

{

inf
k∈Z

|t ′−tk|
2 , ε0

2

}

. Then, δ > 0. It follows from g ∈ PTAP(R) that there exists l > 0

such that for every n ∈ N, there is rn ∈ [n− t ′, n − t ′ + l] such that

|g(t ′ + rn)− g(t ′)| < δ ≤
ε0
2
.

Combing this with h ∈ PTC0(R), we have

ε0 ≤ |g(t ′)− f(t ′ + rn)|

≤ |g(t ′)− g(t ′ + rn)| + |h(t ′ + rn)|

≤
ε0
2

+ |h(t ′ + rn)| →
ε0
2
,

which is a contradiction. This completes the proof.

(ii) It suffices to show that 0 has unique decomposition. In fact, letting 0 = g+h ∈ PTAAP(R),

where g ∈ PTAP(R) and h ∈ PTC0(R), it follows from (i) that g = 0 and thus h = 0.

(iii) Note that PTC(R), PTC0(R) and PTAP(R) are all Banach spaces under the supremum

norm. Let {fn} ⊂ PTAAP(R) be a Cauchy sequence, and fn = gn + hn, where gn ∈ PTAP(R)

and hn ∈ PTC0(R). Then, it follows from (i) that {gn} and {hn} are both Cauchy sequences. The

remaining proof follows easily.

(iv) The proof follows from (i) and (v) of Lemma 1.7 and the boundedness of every function

in PTAP(R) (or PTC0(R)).

(v) It suffices to prove that 1/f ∈ PTAAP(R) if f ∈ PTAAP(R) with inf
t∈R

|f(t)| > 0. Let

f = g + h ∈ PTAAP(R), where g ∈ PTAP(R) and h ∈ PTC0(R). Moreover, inf
t∈R

|f(t)| > 0. By (i),

there holds inf
t∈R

|g(t)| > 0. The remaining proof follows from (ii) of Lemma 1.7 and

1

f
=

1

g
−

h

fg
.

(vi) The proof follows from (iii) of Lemma 1.7 and lim
k→∞

tk = ∞.

2 Linear inhomogenous equation

Throughout the rest of this paper, if there is no special statement, we assume that T = {tk}k∈Z ∈ T
and the set of sequences {Tj}j∈Z is equi-almost periodic, where Tj = {tjk : tjk = tk+j − tk, k ∈ Z} for

every j ∈ Z. By [9, Lemma 22], the following limit exists:

lim
t−s→+∞

i(s, t)

t− s
,
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where i(s, t) is the number of the terms of T ∩ [s, t]. We denote

p = lim
t−s→+∞

i(s, t)

t− s
.

Now, let us first consider the following linear inhomogenous equation:

⎧
⎪⎨

⎪⎩

x′(t) = −a(t)x(t) + f(t), t ̸= tk,

∆x|t=tk = ckx(tk) + Ik, k ∈ Z,

(2.1)

where a ∈ AP(R), ck is an almost periodic sequence, and Ik is an asymptotically almost periodic

sequence. Moreover, let T ′ ∈ T with T ⊂ T ′ and f ∈ PT ′AAP(R). Denote

M(a) = lim
T→+∞

1

T

∫T

0

a(t)dt, β = sup
k∈Z

|1+ ck|,

and

X(t, s) =

⎧
⎪⎪⎨

⎪⎪⎩

exp(−
∫t
s a(u)du), tk−1 < s ≤ t ≤ tk,

k∏

i=m

(1+ ci) · exp(−
∫t
s
a(u)du), tm−1 < s ≤ tm ≤ tk < t ≤ tk+1.

Definition 2.1. Let T = {tk}k∈Z ∈ T , T ′ ∈ T with T ⊂ T ′ and f ∈ PT ′C(R). We call that x is a

global solution of equation (2.1) if

⎧
⎪⎨

⎪⎩

x′(t) = −a(t)x(t) + f(t), t /∈ T ′,

∆x|t=tk = ckx(tk) + Ik, k ∈ Z.

(2.2)

We have the following results about equation (2.1):

Theorem 2.2. Let M(a) > p · lnβ. Then, equation (2.1) has a unique global solution x in

PTAAP(R). Moreover, we have

x(t) =

∫t

−∞

X(t, s)f(s)ds +
∑

tk<t

X(t, tk)Ik, t ∈ R.

Proof. We give the proof by four steps.

Step 1. There exist M,ω > 0 such that

|X(t, s)| ≤ Me−ω(t−s)

for all t, s ∈ R with t ≥ s.
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It suffices to prove the above inequality for t − s being sufficiently large. Let α ∈ (0,M(a))

and q > p be such that ω := α− q lnβ > 0. It follows that

α(t− s) ≤
∫ t

s

a(u)du, i(s, t) ≤ q(t− s),

for all t, s ∈ R with t− s being sufficiently large. Then, we have

|X(t, s)| =

⎧
⎪⎪⎨

⎪⎪⎩

∣

∣

∣
e−

∫
t

s
a(u)du

∣

∣

∣
≤ e−α(t−s), tk−1 < s ≤ t ≤ tk

∣

∣

∣

∣

k∏

i=m

(1+ ci) · e−
∫
t

s
a(u)du

∣

∣

∣

∣

≤ βq(t−s) · e−α(t−s) = e−ω(t−s), tm−1 < s ≤ tm ≤ tk < t ≤ tk+1.

Step 2. x is a global solution of equation (2.1).

By Step 1 and direct calculations, one can obtain

x ′(t) = −a(t)x(t) + f(t), t /∈ T ′.

Moreover, it is not difficult to verify that ∆x|t=tk = ckx(tk) + Ik for k ∈ Z. In addition, for every

t ∈ T ′\T , there holds

x ′
+(t) = −a(t)x(t) + f(t+ 0), x ′

−(t) = −a(t)x(t) + f(t).

Step 3. x ∈ PTAAP(R).

Let f = g + h, where g ∈ PT ′AP(R) and h ∈ PT ′C0(R). Moreover, let Ik = Jk + Lk, where

k → Jk belongs to AP(Z) and k → Lk belongs to C0(Z). Then, we have

x(t) =

∫t

−∞

X(t, s)f(s)ds +
∑

tk<t

X(t, tk)Ik

=

∫t

−∞

X(t, s)g(s)ds +

∫t

−∞

X(t, s)h(s)ds +
∑

tk<t

X(t, tk)Jk +
∑

tk<t

X(t, tk)Lk

:= x1(t) + x2(t) + x3(t) + x4(t).

It follows from [9, Theorem 81] that x1 ∈ PT ′AP(R) and x3 ∈ PTAP(R). Noting that x1 is

continuous, we conclude that x1 ∈ AP(R). Noting that

x2(t) =

∫+∞

0

X(t, t− s)h(t− s)ds,

by using Step 1 and h ∈ PT ′C0(R), one can conclude that x2 is continuous and lim
t→∞

x2(t) = 0.

Again by using Step 1 and k → Lk belonging to C0(Z), one can conclude that x4 ∈ PTC0(R).

Combining all the above proof, we have x ∈ PTAAP(R).

Step 4. Uniqueness.
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Let y ∈ PTAAP(R) satisfying (2.2). Noting that y is continuous on T ′\T , by using equation

(2.1), it is not difficult to verify that

y(t) = X(t, s)y(s) +

∫t

s

X(t, s)f(s)ds +
∑

s≤ti<t

X(t, ti)Ii,

for all t, s ∈ R with t ≥ s. Letting s → −∞, noting that y is bounded and |X(t, s)| ≤ Me−ω(t−s),

we have

y(t) =

∫t

−∞

X(t, s)f(s)ds +
∑

tk<t

X(t, tk)Ik = x(t), t ∈ R.

This completes the proof.

3 Existence and stability

Now, let us discuss the existence and stability of asymptotically almost periodic solution for equa-

tion (1.2). For convenience, we only consider the case of n > 1. We first list some assumptions.

(H1) a ∈ AP(R), and ck is an almost periodic sequence with ck ≥ −1 for all k ∈ Z.

(H2) b ∈ PTAAP(R) is nonnegative, and for every x ∈ R+, k → Ik(x) is a nonnegative asymp-

totically almost periodic sequence. Moreover, there exists a constant L > 0 such that for all

x, y ∈ R+ and k ∈ Z, there holds |Ik(x)− Ik(y)| ≤ L|x − y|.

(H3) There exist M,ω > 0 such that |X(t, s)| ≤ Me−ω(t−s) for all t, s ∈ R with t ≥ s.

(H4) M∥b∥
ω · n2−1

4n
n

√

n+1
n−1 + ML

1−e−ωθ < 1, where θ = inf
k∈Z

|tk+1 − tk|.

Remark 3.1. It follows from Step 1 of the proof for Theorem 2.2 that (H3) holds ifM(a) > p·lnβ.

Before presenting our results, we need to clarify that our definition of solution for equation

(1.2) has a slight difference with the classical definition of solution for equation (1.2).

Definition 3.2. We call that a function x ∈ PTC(R) is a global solution of equation (1.2) if
⎧
⎪⎨

⎪⎩

x′(t) = −a(t)x(t) + b(t)
1+xn(t−τ) , t ̸= tk, t ̸= tk + τ,

∆x|t=tk = ckx(tk) + Ik(x(tk)), k ∈ Z.

Moreover, we need to recall a Gronwall inequality to discuss the stability.

Lemma 3.3. [9, Lemma 2] Let u ∈ PTC(R) be nonnegative, s ∈ R and for all t ≥ s,

u(t) ≤ C+

∫t

s

γu(x)dx +
∑

s≤tk<t

βu(tk),
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where C ≥ 0, β ≥ 0 and γ > 0 are all constants. Then, there exists a constant C ′ > 0 such that

for all t ≥ s,

u(t) ≤ C ′(1+ β)i(s,t)eγ(t−s).

Theorem 3.4. Assume that (H1)-(H4) hold. Then, equation (1.2) has a unique nonnegative

asymptotically almost periodic solution. Moreover, the asymptotically almost periodic solution of

equation (1.2) is exponentially stability provided that

p ln(1+ LM) +
n2 − 1

4n
n

√

n + 1

n − 1
Meωτ∥b∥ < ω. (3.1)

Proof. Let ϕ ∈ PTAAP(R) with inf
t∈R

ϕ(t) ≥ 0. Consider

⎧
⎪⎨

⎪⎩

x′(t) = −a(t)x(t) + b(t)
1+ϕn(t−τ) , t ̸= tk,

∆x|t=tk = ckx(tk) + Ik(ϕ(tk)), k ∈ Z.

(3.2)

By Lemma 1.10, we have
b(·)

1+ϕn(· − τ)
∈ PT∪(T+τ)AAP(R).

Again by Lemma 1.10, we get k → ϕ(tk) belongs to AAP(Z). Then, by (H2), it is not difficult to

show that k → Ik(ϕ(tk)) belongs to AAP(Z).

Now, by Theorem 2.2, we know that for every ϕ ∈ PTAAP(R) with inf
t∈R

ϕ(t) ≥ 0, equation

(3.2) has a unique global solution xϕ ∈ PTAAP(R), which satisfies

xϕ(t) =

∫t

−∞

X(t, s)
b(s)

1+ϕn(s− τ)
ds +

∑

tk<t

X(t, tk)Ik(ϕ(tk)), t ∈ R.

Define a mapping F on Ω = {ϕ ∈ PTAAP(R) : inf
t∈R

ϕ(t) ≥ 0} by

F(ϕ)(t) =

∫t

−∞

X(t, s)
b(s)

1+ϕn(s− τ)
ds +

∑

tk<t

X(t, tk)Ik(ϕ(tk)), t ∈ R, ϕ ∈ Ω.

It is easy to see that Ω is a closed subset in PTAAP(R) and F(Ω) ⊂ Ω by the assumptions.

Noting that

sup
u≥0

∣

∣

∣

∣

∣

(

1

1+ un

) ′
∣

∣

∣

∣

∣

= sup
u≥0

nun−1

(1+ un)2
≤

n2 − 1

4n
n

√

n + 1

n − 1
,

we conclude by mean value theorem that

∣

∣

∣

∣

1

1+ xn
−

1

1+ yn

∣

∣

∣

∣

≤
n2 − 1

4n
n

√

n + 1

n − 1
· |x− y|, x, y ≥ 0.

Combining this with

|X(t, s)| ≤ Me−ω(t−s), t, s ∈ R, t ≥ s,
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for all ϕ,ψ ∈ Ω, there holds

∥F(ϕ)− F(ψ)∥

= sup
t∈R

|F(ϕ)(t)− F(ψ)(t)|

≤ sup
t∈R

∫t

−∞

Me−ω(t−s)b(s)ds ·
n2 − 1

4n
n

√

n + 1

n − 1
∥ϕ−ψ∥+ sup

t∈R

∑

tk<t

Me−ω(t−tk) · L∥ϕ−ψ∥

≤
M∥b∥
ω

·
n2 − 1

4n
n

√

n + 1

n − 1
∥ϕ−ψ∥+

∞∑

k=0

Me−kωθ · L∥ϕ− ψ∥

=

(

M∥b∥
ω

·
n2 − 1

4n
n

√

n+ 1

n− 1
+

ML

1− e−ωθ

)

· ∥ϕ−ψ∥.

Then, by (H4), F is a contraction and thus F has a unique fixed point in Ω, i.e., equation (1.2)

has a unique nonnegative asymptotically almost periodic solution.

Let x be the above asymptotically almost periodic solution of equation (1.2). Next, let us

discuss the stability of x. Let y be an arbitrary solution of equation (1.2) on [t0,+∞). It is not

difficult to verify that

x(t) = X(t, t0)x(t0) +

∫t

t0

X(t, s)
b(s)

1+ xn(s − τ)
ds+

∑

t0≤tk<t

X(t, tk)Ik(x(tk)), t ≥ t0,

and

y(t) = X(t, t0)y(t0) +

∫t

t0

X(t, s)
b(s)

1+ yn(s− τ)
ds +

∑

t0≤tk<t

X(t, tk)Ik(y(tk)), t ≥ t0.

Letting u(t) = x(t)− y(t), we have for all t ≥ t0,

|u(t)| ≤ Me−ω(t−t0)|u(t0)|+N∥b∥
∫t

t0

Me−ω(t−s)|x(s−τ)−y(s−τ)|ds+L
∑

t0≤tk<t

Me−ω(t−tk)|u(tk)|,

where N = n2−1
4n

n

√

n+1
n−1 . Letting v(t) = eωt|u(t)|, we get for all t ≥ t0,

v(t) ≤ Mv(t0) +NM∥b∥
∫t

t0

eωs |x(s− τ)− y(s− τ)|ds+ LM
∑

t0≤tk<t

v(tk)

= Mv(t0) +NM∥b∥
∫t−τ

t0−τ

eωτeωs|x(s)− y(s)|ds + LM
∑

t0≤tk<t

v(tk)

≤ Mv(t0) +NMeωτ∥b∥
∫t

t0−τ

v(s)ds + LM
∑

t0≤tk<t

v(tk)

≤ C+NMeωτ∥b∥
∫t

t0

v(s)ds + LM
∑

t0≤tk<t

v(tk),
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where C = Mv(t0) +NMeωττ ·maxs∈[t0−τ,t0] v(s). Combining this with Lemma 3.3, we have

v(t) ≤ C ′(1+ LM)i(t0,t) · eNMeωτ∥b∥(t−t0), t ≥ t0.

By (3.1), we can choose q > p such that

q ln(1+ LM) +NMeωτ∥b∥ < ω.

Noting the definition of p, we deduce that for sufficiently large t, there holds

(1 + LM)i(t0,t) ≤ (1+ LM)q(t−t0) = eq(t−t0) ln(1+LM),

which means that

v(t) ≤ C ′e

[

q ln(1+LM)+NMeωτ∥b∥

]

(t−t0)
,

i.e.,

|x(t)− y(t)| ≤ C ′e
−

[

ω−q ln(1+LM)+NMeωτ∥b∥

]

(t−t0)
.

Thus, y(t) converges exponentially to x(t) when t → +∞.

At last, we give a simple example to illustrate our results, which does not aim at generality.

Example 3.5. Let n = 2,

tk = k+
1

4
| sink − sin

√
2k|, a(t) = 20+ 20(sin 600t + sin 600πt),

b(t) =
1

10

(

| cos t+ cosπt|+
1

1+ t2

)

, ck = 1−
sin k + sin

√
3k + e−k2

3
,

and

Ik(x) =
cos2 k+ cos2

√
3k+ e−k2

10
| cos x|.

It is easy to verify that (H1) and (H2) hold with L = 3
10 . Also, one can show that (H3) holds with

M = 10
√
e and ω = 18. Moreover, we have ∥b∥ = 3

10 and

θ = inf
k∈Z

|tk+1 − tk| ∈ [
1

2
, 1], p = lim

t−s→+∞

i(s, t)

t− s
≤ 2.

By direct calculations, one can get

M∥b∥
ω

·
n2 − 1

4n
n

√

n + 1

n − 1
+

ML

1− e−ωθ
< 1,

i.e., (H4) holds. Also, one can verify that

p ln(1+ LM) +
n2 − 1

4n
n

√

n + 1

n − 1
M∥b∥ < ω,

which means that (3.1) holds if τ is sufficiently small.

Remark 3.6. In the above example, one can easily see that inf
t∈R

a(t) < 0 and ck > 0 for all k ∈ Z.
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