
November 2011 587 C&RL News

Like many institutions, University of Min-
nesota recently adopted the Google Apps

for Education suite of tools for all students,
staff, and faculty. Since the University Li-
braries moved to Google Apps, we’ve been
discovering new ways to use the tools for
productivity and collaboration. One of the
most intriguing tools in the suite is Google
forms. In essence, Google forms provide
a user interface for entering data into a
Google spreadsheet: They’re an ideal tool
for applications such as surveys and evalu-
ations. Recently, we discovered a way to
extend Google forms by e-mailing custom-
ized information to each survey-taker based
on how they answered questions on a form.

Our need seemed straightforward: We
were creating a self-assessment tool for li-
brary staff to allow them to gauge their level
of expertise with various technologies. If the
staff member indicated that they needed to
know more about a topic, we wanted the
tool to tell them how to gain more expertise.
We mapped Yes/No statements (“I am aware
of, and can explain the key differences be-
tween citation managers.”) to content (the
Moodle site for an Introduction to Citation
Managers workshop); now we needed a
way to give the right content to each person.

Our ideal solution would:
• Provide a way to analyze results in

the aggregate.
• Appear uncomplicated and attractive.
• Have a “not-for-grade” feel.
• Allow multiple assessments in differ-

ent areas.
• Work with existing authentication

methods, rather than requiring a separate
user name or password.

• Provide context (a paragraph of text)
rather than just links.

• Give each staff member a way to return
to their custom content without retaking the
assessment.

We explored several solutions, but only
Google forms supported almost all of the
requirements natively.

Scripts, which are supported by Google
Docs spreadsheets and forms, are the key
to fulfilling our requirement for customized
feedback the user can see (almost) immedi-
ately, or save for later. Scripts are written in
JavaScript and allow the designer to change
the way a form or spreadsheet works. We
wrote a script that would build an HTML
fragment based on the user’s responses, and
sent that fragment as the body of an e-mail
when the user submitted the form.

Working with scripts
In this section, we’ll teach you how to create
a solution like ours by building an example
step by step. We assume that you know how
to create a Google form and add questions
to it. After setting up a sample form, we’ll
show you how to:

1) Open the script editor for a Google
form with Yes/No questions.

2) Write a procedure that runs when the
user submits the form.

3) Add code to send the user an e-mail
when they submit the form.

ACRL TechConnect

Janet Fransen, Megan Kocher, and Jody Kempf

Google forms for staff self-assessment
Creating customization

Janet Fransen is engineering librarian, e-mail
f ransen@umn.edu, Megan Kocher is l ibrar y
assistant III, e-mail: mkocher@umn.edu, and Jody
Kempf is instruction and outreach coordinator,
e-mail : j-kemp@umn.edu, at the Science and
Engineering Library at the University of Minnesota
© 2011 Janet Fransen, Megan Kocher, and Jody Kempf

C&RL News November 2011 588

4) Add a second sheet with responses
for each No answer.

5) Add code to generate the body of the
e-mail based on the user’s responses.

Open the script editor
You can add scripts to any Google spread-
sheet. To see for yourself, follow these
steps:

1) Create a new form in Google Docs.
2) Give the form a title, check the box

next to Automatically collect respondent’s
username and change the sample questions
to multiple choice questions with Yes and
No answers, as shown in Figure 1.

If you are working with the public version
of Google Docs, you won’t see the option to
collect the respondent’s username. Instead,
add a question with a text box for the respon-
dent to enter an e-mail address.

3) Click the Save button to save the form.
4) Go to the spreadsheet for this form by

clicking the See Responses button and choos-
ing Spreadsheet.

5) From the Spreadsheet menu, choose
Tools | Scripts | Script Editor. The script
editor opens, as shown in Figure 2.

Sending an e-mail from code
Once in the editor, you can add code to the

default myFunction procedure, or write
procedures of your own. You can run the
procedures you write from the spreadsheet’s
Tools menu, but more likely you’ll want your
procedures to run when something happens
in the spreadsheet itself. In our solution, the
code runs when the user submits an instance
of the form.

Much of the code you write will require
you to interact with some object: the spread-
sheet, the browser, or an e-mail message.
The Google Apps Script documentation
(http://code.google.com/googleapps/appss-
cript) describes all of the supported objects.

You can write scripts that read or edit
Google Apps objects such as calendar events
or contacts, or sends e-mail messages. For
our solution, we want to send an e-mail to
the person submitting the form.

In a general Google Apps form, you
could collect the submitter’s e-mail address
as part of the form. Because we work in a
Google Apps for Education environment,
we set up the form to automatically collect
the submitter’s user name. In either case,
the code will need to determine the e-mail
address based on the current instance of the
form. The information is part of the event,
which can be passed to the event handler
as an argument.

For a Form Submit event, the event
argument contains an array of the values
entered in the form’s spreadsheet. The ar-
ray elements are numbered starting at 0 for

Figure 1. To follow the example, add Yes/No
questions to the form. View this article online
for detailed images.

Figure 2. Use the script editor to add JavaScript
code.

November 2011 589 C&RL News

the submission’s time stamp. In our case,
the array element numbered 1 contains the
user name.

To make sure the event is passed to the
event handler, and change the code to send
an e-mail, follow these steps:

1) In the script editor, add a variable, e,
to the myFunction declaration:

function myFunction(e) {

2) Add a line of code to call the MailApp
object’s sendEmail method:

function myFunction(e) {

 MailApp.sendEmail(e.values[1],
”Suggested resources for you”,”Message
body”);

}

Note that in this and subsequent code
snippets, the code you need to add is in bold.
Surrounding lines of code are included for
context.

3) Save the script.
4) To re-save the trigger

choose Triggers |Current
Script’s Triggers and then
click Save.

5) Click Authorize on
the popup window that ap-
pears to allow your script
to send e-mail.

6) Move to the spread-
sheet window.

7) Choose Form | Go
to live form to open a new
instance of the form.

8) Choose responses for the questions
and uncheck the Send me a copy box.

9) Click Submit.
10) Close the acknowledgement win-

dow and check your e-mail. Shortly, you
should receive the Suggested Resources
message.

Adding responses to the spreadsheet
As the solution stands now, the submitter
receives the same message every time. To
customize the message, we need to build the
body of the message based on the submit-
ter’s responses. To make our solution easy
to maintain, we chose to put the responses
into the spreadsheet itself. The code looks for
No answers in the set of answers (indicating
the submitter wants more information) and
adds text from the corresponding spreadsheet
cell to the body of the message. By using
this method, the code is written once and
never touched again. Everything subject to
change—the number and text of questions,
the responses for each—can be changed from
the spreadsheet or form itself rather than in
the code.

To make the required changes to the
spreadsheet, follow these steps:

1) Add a second sheet to the spreadsheet
and name it Response.

2) Select the first column (A) and choose
Edit | Named Ranges | Define new range
from the menu.

3) Name the range Resources, as shown
in Figure 3.

4) Click Save, then click Done to close the
Range Names dialog box.

The Resources column will hold the
response text. Note that the example only
includes text, but you can include HTML if
you like. You can use column B to help you
keep track of which response matches to
which question or column on Sheet1.

Figure 3. Naming cells or ranges of cells makes it easier to refer to
them in the script.

C&RL News November 2011 590

5) Add text to the Response sheet, as
shown in Figure 4.

Generating the body of the e-mail
Now that the responses are in place, you can
write the code to send appropriate resources.
This requires looping through the items in the
e.values array, starting with item 2. (Remem-
ber that items 0 and 1 contain the time stamp
and the user name.) If looping in JavaScript
is new to you, see the resource list at the end
of the article for some suggested resources.

To get to spreadsheet content not entered
in the form, you need to use the Google
Spreadsheet object model. The object at
the top of this hierarchical model is Spread-
sheetApp. You can use the SpreadsheetApp
object to find the active spreadsheet, and
then refer to sheets, cells, or ranges within
that spreadsheet as needed.

To add code for the custom response,
follow these steps:

1) Use the SpreadsheetApp object to get
the Resources range with the active spread-
sheet. Now that the procedure contains more
code, the code snippets include only enough
for context rather than the entire procedure.
In the script editor, add the following code:

function myFunction(e) {

 var resourceRange = SpreadsheetApp.
getActiveSpreadsheet().getRangeByName
(“Resources”);

2) Add a variable for the body of the
message:

v a r r a n g e = S p r e a d s h e e t A p p .
g e t A c t i v e . S p r e a d s h e e t () .
getRangeByName(“Resources”);

var resourceLines = “”;

3) Figure out how many questions there
were on the form:

var resourceLines = “”;

var len=e.values.length;

4) Loop through the responses, looking
for No answers:

Var len=e.values.length;

for(var i=2; i<len; i++) {

 var response = e.values[i];

 if (response == “No”) {
}

 }

5) For No responses, use the Range ob-
ject’s getCell method to get the response
using row,column coordinates, and append
its value (as well as an HTML line break) to
the resourceLines string:

 if (response == “No”) {

var newLine = resourceRange.
getCell(i-1,1).getValue();

resourceLines += newLine;

resourceLines += “

”;

 }

6) Change the sendMail arguments to

send the resourceLines value as the body of
the e-mail. Note that if the output includes
HTML tags, the method call must be adjusted
to send HTML:

Figure 4. The user receives the text in column A if
they answer “No” to the corresponding question.

November 2011 591 C&RL News

 resourceLines += “

”;

 }

}

MailApp.sendEmail(e.values[1] ,
“Suggested resources for you” ,
resourceLines, {“htmlBody” : resourceLines});

}

7) Save the script.
8) At this point, your script should look

like Figure 5.
9) Return to the spreadsheet and choose

Form | Go to live form.
10) Choose No for the question respons-

es, and uncheck the Send me a copy box.
11) Click Submit.
12) Close the acknowledgement win-

dow, and check your e-mail. The response
should be similar to Figure 6.

Conclusion
In this article we’ve introduced you to
Google’s scripting platform by showing you
how we put together a solution to our par-
ticular problem. You can use Google scripts
for much more, both within spreadsheets and
in a Google Site. Check out the references at
the end of the article for tutorials and many
more examples.2

Notes
1. To see a working example of the solu-

tion presented here, go to http://z.umn.edu
/googlescript. You can view the Google spread-
sheet and make a copy of your own. To take
a sample assessment and receive the response
e-mail yourself, go to http://z.umn.edu/umn-
capim and click the Library Staff Assessment and
Training link in the navigation menu on the left.

2. There are extensive resources available on
the Web, which will give you samples of code
that does something similar to what you need.
Try searching for JavaScript and an appropriate
keyword(s) to search for helpful examples.
There are many JavaScript books available. One
popular example is David Flanagan, JavaScript:
The Definitive Guide: Activate Your Web Pages
(Beijing; Farnham: O’Reilly, 2011).

Google offers extensive script documenta-
tion on its Web site. Start with these pages:

• http://code.google.com/googleapps/ap-
psscript/.

• http://code.google.com/googleapps/ap-
psscript/guide.html.

• http://code.google.com/googleapps/ap-
psscript/allservices.html.

Figure 6. The e-mail message contains basic text,
but could include HTML formatting.

Figure 5. The script editor uses colors to make the code easier to read.

