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Abstract - In a public facility or private office 
where many people can get together, a fire detection 
device is a mandatory tool as an emergency alarm in 
the facility. However, the expense of the installation 
of the device is a troublesome matter. So, optimization 
is needed to minimize the number of these devices. 
The way to implement is to select the appropriate 
position to place the devices in public facilities. The 
research discussed the placement of the sensors in 
multi-story buildings. The multi-story buildings could 
be represented as cube composition graphs with the 
number of rooms, and the connectivity between the 
floor and its rooms was equal. The concept of this 
multi-story building was modeled into a generalized 
Petersen graph where a vertex represented a room, 
and an edge was the connectivity of rooms. The basis 
obtained on that metric dimension was represented as 
a sensor placed on the building. Then, the optimization 
of device placement was seen as determining the metric 
dimensions of the Petersen graph. In the research, the 
alternative sensor placements were computed using 
the graph metric dimension approach implemented 
in Python. The research successfully implements the 
metric dimension of 1P4,1 to 4P4,1 using Python code 
to obtain the alternative of its basis. A basic alternative 
indicates the location of the device placement like 
fire detectors, network access points, or other sensors 
inside a building.

Keywords: metric dimension, resolving set, generalized 
Petersen graph, python programming  

I. INTRODUCTION

The application of metric dimensions plays a role 
in robotic navigation, optimization of the placement of 
threat detection sensors, and classification of chemical 
compound data (Saenpholphat & Zhang, 2004). In 
the field of chemistry, the bonding of molecules of 
an element or chemical compound can be described 
as a graph. The recording of the bonds of chemical 
molecules is done by classifying the structure of the 
graphs depicted. Problems will arise if the graph 
depicted is a large one. The bigger the chemical graph 
is, the bigger the data need attention. The concept of 
metric dimensions is used to determine the molecules 
that form the basis of these large chemical graphs to 
facilitate the data collection process. Furthermore, the 
data entered are from these base molecules.

Moreover, in an important and public facility, 
a threat detection tool is obligatory as a form of 
security provision in the facility. However, spending 
on procuring and installing such tools is also a 
complicated problem. Therefore, optimization is 
required in determining the number of these detection 
tools. One way to achieve this goal is to pay attention to 
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the selection of the placement of such tools in critical 
and public facilities. This problem can be modeled 
into a graph by assuming the room in the facility as a 
vertex and the connection between rooms as an edge. 
Meanwhile, the optimization of the sensor placement 
is seen as determining the metric dimensions of the 
graph representing the substantial or public facility. 

The minimum determination of sensors and 
their placement rules on multi-story buildings is an 
interesting issue to review. The success of the research 
can be used to decide the location of the sensors 
and reduce the installation budget. In the research, 
alternative sensor arrangements are established by 
Python programming.

The definition of the metric dimension of a 
graph given in the following is taken from Chartrand, 
Eroh, Johnson, and Oellermann (2000). A graph is a 
set pair (V, E) where V(Q)  is an infinite set of objects 
called a vertex. Then, E(Q) is a set of unordered pairs 
of different vertices called edges. Each edge connects 
exactly two vertices, and each vertex can have many 
edges connecting them with the other. Suppose vertex 
u and v are elements of vertices on a connected graph
Q. The distance d(a,b)  is the length of the shortest
path between vertex a and b on Q. A sequenced set W
= (u1, u2, ..., uk) of vertices on connected graph Q and
vertex v on Q, r(W) = (d(v, u1), d(v, u2), ..., d(v, uk))
shows the representation of v on W. Set of W is called
resolving set of  Q. Every vertex on Q  has a different
representation. Then, elements of the resolving set are
called basis. The minimum cardinality of the resolving
set is called the metric dimension of Q, notated by
dim(Q).

In general, determining the metric dimension 
of a graph is a complex problem. So far, no effective 
algorithm can be used to determine the metric basis for 
any graph. It is due to the various shapes and structures 
of the graphs. However, some criteria, constraints, and 
the metric dimension of certain classes can already be 
demonstrated. For example, Chartrand et al. (2000) 
determined the metric dimension of a circle, path, 
and complete graphs. Meanwhile, Bača, Baskoro, 
Salman, Saputro, and Suprijanto (2011) studied the 
metric dimensions of several classes of regular graphs. 
Hernando, Mora, Pelayo, Seara, and Wood (2010) 
succeeded in determining all classes of graphs of order 
n and diameter d and having metric dimensions of n-d. 
Similarly, Simanjuntak, Uttunggadewa, and Saputro 
(2013) succeeded in determining the metric dimension 
of a graph composition of products with stars and 
obtained the metric dimensions of an amalgamation 
graph and Saputro et al. (2013) for lexicographic 
product of graphs. Next, Dudenko and Oliynyk (2017) 
determined a unicyclic graph of metric dimension 2. 
In the same year, Saputro, Mardiana, and Purwasih 
(2017) obtained metric dimension for comb product. 

The concept of metric dimensions is developing 
rapidly, one of which is about local multiset dimension 
introduced by Alfarisi, Dafik, Kristiana, and Agustin 
(2019). For example, Adawiyah, Agustin, Prihandini, 

Alfarisi, and Albirri (2019) determined the local 
multiset dimension of m-shadow graph. Meanwhile, 
Adawiyah, Prihandini, Albirri, Agustin, and Alfarisi 
(2019) analyzed it for unicyclic graph. Next, 
Okamoto, Phinezy, and Zhang (2010) obtained local 
metric dimension of graph. Next, Susilowati, Sa’adah, 
Fauziyyah, Erfanian, and Slamin (2020) searched for 
dominant metric dimension of graphs.  

One of the well-known graph classes is the 
Petersen graph. The Petersen graph is very popular to 
study because of its uniqueness as a counter-example 
and has interesting properties. Generalized Petersen 
graph of Pn,m, n ≥ 3 and 1 ≤ m ≤ [n−1/2] consists of 
n−outer cycle u1, u2, ..., un set of n radius u1, v1, 1 ≤ i ≤ 
n, and n edge v1, v1+m 1 ≤ i ≤ n with an index taken from 
the modulo n. 

Suppose there is a Generalized Petersen graph 
Pn,m. Some vertices on the outer cycle ui,i ϵ [1,n] for 
Generalized Petersen graph yth,y ϵ [1,x], x ≥ 1 is 
denoted by , while some vertices on the inner cycle 
vi,i ϵ [1,x] for Generalized Petersen graph, yth,y ϵ [1,x], 
x ≥ 1 are denoted by . Generalized Petersen graph 
xPn,m is obtained from x ≥ 1 graf Pn,m. Each vertex on 
the outer cycle  is connected 

by an edge . Then, the 
Petersen graph, xPn,m is referred to as a multi-story 
building with x number of floors.

In the research, it reviews the placement of 
sensors in multi-story buildings. A multi-story building 
can be presented as a graph of cube composition with 
location, and the number of rooms on each floor is 
equal. The concept of this multi-story building can be 
expressed as a modified Petersen graph. Then, the basis 
obtained on that metric dimension can be represented 
as a sensor placed on the building.  Last, Python 
programming is used to enumerate all alternatives of 
the sensor located in the building.

II. METHODS

The steps taken to determine sensor placement of 
generalized placement on generalized Petersen graph,  
(multi-story building) for some value of x is as xPn,1 
follows. First, it constructs the basis of the generalized 
Petersen graph, xPn,1 manually. As examples, Imran, 
Siddiqui, and Naeem (2018) obtained the metric 
dimension of the generalized Petersen graph Pn,1  of 2 
for n ≥ 3 odd number and 3 for even number. Asmiati, 
Aldino, Notiragayu, Zakaria, and Anshori (2020) 
determined the metric dimension of the generalized 
Petersen graph xPn,1 of x+1 for n odd number and x+2 
for n even number.

Next, the research gives an example of a basis 
or sensor placement on a generalized Petersen graph,  
xPn,1 (multi-story building), for some value of  x. The 
first is for x = 1, basis set   with 

 The representation of vertices graph Pn,1 can 
be seen in Table 1.
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For floor x = 4, basis set 
with  is the value of x from 

each vertex on the basis set. The representation of 
vertices graph 4Pn,1 with basis set W is shown in 
Table 2 (see Appendix).

Second, the research determines the input and 
parameter to get a potential basis. The algorithm is 
implemented in Python by following the results of 
Asmiati et al. (2020). This program needs two inputs 
consisting of s and n variables that respectively 
represent a number in xPn,1 . These inputs are managed 
by the computer program to generate the list of basis 
alternatives. The algorithm is initialized by setting the 
basis of (x + 1) vertices for n equal to an odd number 
or (x + 2) vertices for n equal to an even number. These 
vertices represent the number of basis vertices for the 
Petersen graph, xPn,1. The main algorithm is given as 
follows.

Get the input of x and n of xPn,1  from user;

Initialization of parameters of the graph;
Draw the graph;

if n is odd
set num_of_basis = x+1

else 
set num_of_basis = x+2;

basis = {};

repeat:
Searching potential_basis={v

i
,v

j
,v

k
,v

l
};

basis_criteria(potential_basis);
if potential_basis meet basis_criteria

put potential_basis to basis;
else 

if rest vertices is not empty
do repeat

 else
break;

print basis;

Table 1 Representation of Vertices Graph Pn,1 with Basis Set W

Vertex
Taken Basis

0 h − 1 1

1 h − 2 2

2 h − 3 3

⁝

h − 1 0 h − 2

h − 2 1 h − 3

⁝

1 n − h 0

1 h 2

2 h − 1 3

3 h − 2 4

⁝

h 1 h − 1

h − 1 2 h − 2

⁝

2 h − 1 1
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Third, it determines the basis candidate and 
visualizes the graph. The sub-algorithm for searching 
potential_basis is conducted by using the brute force 
approach. In this approach, the program will explore all 
possible compositions of the (x + 1) or (x + 2) vertices 
as potential basis. Each potential_basis is examined 
carefully. The basis_criteria is applied to decide 
whether the potential_basis will be incorporated as the 
set of basis or not. It works as follows.

Get the basis_candidate from the main 
program.
Compute their distances to all rest 
vertices.
Store their shortest distances.
Inspect these distances.
If representation of all vertices to the 
basis candidate is unique

the criteria match
return the basis_candidate

else
break

The sub-algorithm of basis_criteria receives 
parameter potential_basis from the main algorithm. 
The parameter is transformed as a local parameter 
called basis_candidate for further processing in this 
sub-algorithm. The distance between basis_candidate 
and the rest of the vertices is computed, and the shortest 
distances are stored. The criteria for the basis match 
whenever a uniqueness in their distances is found. 
In this case, the basis_candidate returns to the main 
program as a basis. Otherwise, the basis candidate is 
dropped, and the execution of this sub-algorithm is 
released. Then, the control of the running program is 
handed over to the main program.

Next, the process searches for the next potential_
basis in the main algorithm. The checking of each 
potential_basis is performed on basis_criteria. The 
flow execution ends after running out all composition 
of vertices in the graph. The final output is the list of 
the whole basis alternatives for the Petersen graph, 
xPn,1.

Last, it runs the program to get an alternative 
placement of basis or sensors. The result shows the 

visualization of the Petersen Graph as a representation 
of multi-story buildings.

III. RESULTS AND DISCUSSIONS

The research uses Python code to process the 
result using the hardware and software, as shown 
in Table 3. In the research, the results are generated 
for the Petersen graph of type 1P4,1, 2P4,1, 3P4,1, and 
4P4,1. The results have been collected to compare the 
running time and number of the basis for each type of 
Petersen Graph. This restriction is applied due to the 
system's limitation for running the code. The execution 
of a more complex type of the Petersen graph requires 
more resources than such a system.

The summary of the execution time and the 
number of the basis for each type of Petersen graph 
is reported in Table 4. The 1P4,1 has 32 bases that can 
be obtained in less than one second. When the layer 
of the Petersen graph is added on one layer to 2P4,1, 
the computation time is three times, and 989 bases 
are successfully identified. A significant increase in 
execution time and the number of these bases occurs 
for the Petersen graph in the three layers 3P4,1. In 
this case, the execution time becomes 91 seconds to 
formulate 26.106 bases. Both the time and the basis 
escalate around 30 folds compared to the former 
output. The number of bases rises significantly for 
4P4,1 with a total time of 3.107 seconds producing 
638.597 bases. Each one-layer expansion of P4,1 will 
increase the number of bases by about 25 folds with an 
exponential rate in time. It makes sense since the code 
runs a brute-force approach.

The drawing of the 1P4,1 in Table 4 can be 
observed in Figure 1. Some possible bases of 1P4,1 can 
be produced. It means that a single floor with a room 
layout corresponding to 1P4,1 can have 32 alternatives 
for sensor placement. The location of this placement 
refers to Figure 1. The sensor can be set in the room 
with a black vertex.

The visualization of a higher Petersen graph 
from 2P(4,1) to 4P(4,1) can only be derived for 
some samples due to insufficient system resources. 

Table 3 System Specification

Items Specification
Operating System Debian 10
Processor Intel® coreTM i3 CPU 2.3 GHz.
Memory (RAM) 4 GB DDR3
OS Architecture 64 bit
Python 3.7.3 [GCC 8.3.0]
Libraries ipython 7.13.0

jupyter 1.0.0
networkx 2.4
notebook 6.0.3
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The samples of the basis formation within the three-
dimensional representation for each Petersen graph are 
depicted in Figure 2. Assume that there are buildings 
with room connectivity represented by Figure 2. In 
parts (a) and (b), the buildings consist of four floors 
with eight rooms for each floor. Meanwhile, the rest 
have two and three floors. The placement of the sensor 
indicates red spots. The option of this placement can 
have many reasons, from technical aspects, regulation 
issues, cost consideration, esthetic view, or others.

The sensor may be installed into part (a). This 
option is because of the presence of signal noise that 
interferes with the sensor on the second and third floors. 
Therefore, the technician should install the sensors on 
the ground and on the highest floor. Another possibility 
of placement is in part (b). For example, there are 

technical obstacles to setting up sensors on the second 
and fourth floors. The sensors are eventually placed on 
the first and third floors. As another example in part (c), 
all sensors are equivalently distributed on each floor. 
This placement model meets one specified requirement 
of the sensor that all connected rooms can be accessed 
at most two rooms from the nearest sensor. Next, all 
yellow spots in part (c) satisfy this requirement. This 
sensor is a typical feature of Wi-Fi access points where 
each room should be reachable by the attached access 
points in a maximum of two consecutive rooms. On 
the contrary, in the last example in part (d), all sensors 
are positioned at the top floor on purpose by the wish 
of the owner of the building. The examples provided 
in parts (a) to (d) and many more are the possible 
reasons for selecting the placement design.

Table 4 Measurement Results

No. Type of Petersen 
Graph

Number of Vertices 
in Basis

Execution Time Number of Extracted 
Basis

1 3 ≤ 1 second 32

2 4 ≈ 3 seconds 989

3 5 ≈ 91 seconds 26.106

4 6 ≈ 3107 seconds 638.597

Figure 1 The Sample Configurations of Basis for 1P(4,1)
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IV. CONCLUSIONS

The number of bases of a graph can be defined 
as its metric dimension. The metric dimension of the 
graph approach can be used to compute all alternative 
bases of a generalized Petersen graph representing 
a multi-story building. The research successfully 
implements the metric dimension of 1P4,1 to 4P4,1 
using Python code to obtain the alternative of its 
basis. A basic alternative indicates the location of the 
device placement like fire detectors, network access 

points, or other sensors inside a building. The sensor 
placement and the number of sensor determination on 
multi-story buildings is an exciting topic to study. The 
accomplishment of the research can be used to manage 
the sensor placement as well as its costs.

The research can be developed by determining 
alternative sensor placements for real public facilities, 
such as offices or hospitals. These public facilities can 
be represented in graphs and find metric dimension. 
Next, future research can determine the basis, which is 
an alternative sensor placement in the public facility.

 
(a)                                              (b)

  
(c)                                            (d)

Figure 2 The Samples of Petersen Graph as Representation of Multi-Story Buildings
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APPENDIX

Table 2 The Representation of Vertices Graph 4Pn,1 with Basis Set W

Vertex
Taken Basis

0 h − 1 1

1 h − 2 2

2 h − 3 3

⁝

h − 1 0 h − 2

h − 2 1 h − 3

⁝

1 n − h 0

1 h 2

2 h − 1 3

3 hh − 2 4

⁝

h 1 h − 1

h − 1 2 h − 2

⁝

2 h − 1 1

1 h 2 1

2 h − 1 3 2

3 h − 2 4 3

⁝

h 1 h − 1 h − 2

h − 1 2 h − 2 h − 3

⁝

2 h − 1 1 0
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Table 2 The Representation of Vertices Graph 4Pn,1 with Basis Set W
(Continued)

Vertex
Taken Basis

2 h + 1 3 2

3 h 4 3

4 h − 1 5 4

⁝

h + 1 2 h h − 1

h 3 h − 1 h − 2

⁝

3 h 2 1

2 h + 1 3 2 1

3 h 4 3 2

4 h − 1 5 4 3

⁝

h + 1 2 h h − 1 h − 2

h 3 h − 1 h − 2 h − 3

⁝

3 h 2 1 0

3 h + 2 4 3 2

4 h + 1 5 4 3

5 h 6 5 4

⁝

h + 2 3 h + 1 h h − 1

h + 1 4 h h − 1 h − 2

⁝

4 h + 1 3 2 1
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Table 2 The Representation of Vertices Graph 4Pn,1 with Basis Set W
(Continued)

Vertex
Taken Basis

3 h + 2 4 3 2 1

4 h + 1 5 4 3 2

5 h 6 5 4 3

⁝

h + 2 3 h + 1 h h − 1 h − 2

h + 1 4 h v h − 2 h − 3

⁝

4 h + 1 3 2 1 0

4 h + 3 5 4 3 2

5 h + 2 6 5 4 3

6 h + 1 7 6 5 4

⁝

h + 3 4 h + 2 h + 1 h h − 1

h + 2 5 h + 1 h h − 1 h − 2

⁝

5 h + 2 4 3 2 1
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