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Abstract - The notion of affine structures arises 
in many fields of mathematics, including convex 
homogeneous cones, vertex algebras, and affine 
manifolds. On the other hand, it is well known that 
Frobenius Lie algebras correspond to the research 
of homogeneous domains. Moreover, there are 16 
isomorphism classes of 6-dimensional Frobenius 
Lie algebras over an algebraically closed field. 
The research studied the affine structures for the 
6-dimensional Borel subalgebra of a simple Lie 
algebra. The Borel subalgebra was isomorphic to the 
first class of Csikós and Verhóczki’s classification of 
the Frobenius Lie algebras of dimension 6 over an 
algebraically closed field. The main purpose was to 
prove that the Borel subalgebra of dimension 6 was 
equipped with incomplete affine structures. To achieve 
the purpose, the axiomatic method was considered 
by studying some important notions corresponding 
to affine structures and their completeness, Borel 
subalgebras, and Frobenius Lie algebras. A chosen 
Frobenius functional of the Borel subalgebra helped to 
determine the affine structure formulas well. The result 
shows that the Borel subalgebra of dimension 6 has 
affine structures which are not complete. Furthermore, 
the research also gives explicit formulas of affine 
structures. For future research, another  isomorphism 
class of 6-dimensional Frobenius Lie algebra still 
needs to be investigated whether it has complete affine 
structures or not.
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I. INTRODUCTION

There are 16 isomorphism classes of 
6-dimensional Frobenius Lie algebras over an 
algebraically closed field (Csikós & Verhóczki, 2007). 
One of them is a Frobenius Lie algebra whose basis is 

 and it is nothing but the first class of Csikós 
and Verhóczki’s classification. The non-zero brackets 
of this Frobenius Lie algebra are given as follows:

         (1)

In addition, this Frobenius Lie algebra is 
isomorphic to the Borel subalgebra of dimension 6 of 
the simple Lie algebra (Csikós & Verhóczki, 2007). 
Therefore, the means of the Borel subalgebra in this 
research is nothing but the  6-dimensional Frobenius 
Lie algebra over the complex field . Indeed, the 
research also suggests that this Frobenius Lie algebra 
is maximal solvable. 

The recent research of Frobenius Lie algebras 
has been done by Kurniadi and Ishi (2019). They 
obtained some results of 4-dimensional real Frobenius 
Lie algebras. Their main results stated that every 
irreducible unitary representation of Lie groups of 
4-dimensional real Frobenius Lie algebras was square-
integrable. Moreover, they found the Duflo-Moore 
operators for these square-integrable representations 
which are denoted in the group of Fourier transforms. 

On the other hand, the notions of principal 
elements of a Frobenius Lie algebra and their properties 
are studied by Diatta and Manga (2014). Furthermore, 
the discussion of a higher dimension of Frobenius Lie 
algebras is studied for the case of a semi-direct product 
of a vector space V which is isomorphic to the real 
vector space of dimension n and a Lie subalgebra 
h of the Lie algebra gl(V) of endomorphisms of V. A 
matrix Lie group gl(V) of the Lie algebra gl(V) can 
be realized as invertible matrices of n × n dimension. 
The result of this formula has been done by Kurniadi 
(2019). In this case, it was proved the necessary and 
sufficient conditions for the direct sum  to be a 
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real Frobenius Lie algebra. In another work, the notion 
of  Frobenius solvable Lie algebras with abelian 
nilradical has been also investigated by Alvarez, 
Rodríguez-Vallarte, and Salgado (2018). On the other 
hand, the notion of left symmetric algebras is induced 
by symplectic structures. It can be observed that this 
induction can be applied to a Frobenius functional of a 
Frobenius Lie algebra. In other words, it is well known 
that if g is a Frobenius Lie algebra, there is a certain 
linear functional, which is called Frobenius functional. 
The bilinear form on g at that point is non-degenerate. 
The previous research introduces the notion of systems 
of commuting matrices associated with left-symmetric 
algebra structures (Diatta, Manga, & Mbaye, 2020). 

The research observes that this induction holds 
for a chosen Frobenius functional of the 6-dimensional 
Frobenius Lie algebra. Moreover, the research problem 
is to prove the existence of affine structures on Borel 
subalgebra of dimension 6 and show that this structure 
is not complete. The affine structures play important 
roles in many areas of mathematics, such as in convex 
homogeneous cones. The results can be improved to a 
higher dimension case. As the main result, the research 
tries to prove the following propositions.

Proposition 1. Let g be a Lie subalgebra of a 
simple Lie algebra with basis  whose non-
zero brackets are given by Equation (1), then g is a 
Borel subalgebra. Moreover, g is a Frobenius solvable 
Lie algebra, and it has affine structures written as 
following.

      (2)

The products on g are defined in Equation (3) 
for positive integers of . Furthermore, the 
affine structures on the Borel subalgebra g written in 
Equation (2) are not complete.

     (3)

The research will prove Proposition 1. Before 
proving the main result, it briefly reviews some 
basic notions of a Lie algebra, solvable Lie algebras, 
Frobenius Lie algebras, and affine structures. It starts 
with the notion of a Lie algebra as follows.

Definition 2 (Fujiwara & Ludwig, 2015). Let  
g be a vector space over a field of  or . Let 

 be a bilinear map defined by . 
If the following two conditions are satisfied  
and ,  g is said to be a Lie 
algebra.

Indeed, the basis and dimension of a Lie 
algebra can be understood from the notions of the 
basis and dimension of the vector space. Let g and 
g’ be Lie algebras over a field  or . It recalls a 
notion of a  homomorphism of the Lie algebra as a 
linear transformation of  of the vector spaces. 
It satisfies  for all  When 
the homomorphism of Lie algebra is bijective, it has 
a notion of an isomorphism of Lie algebra. Let g be a 
Lie algebra whose the derived series on g is defined as 
follows, for .  

.    (4)

Definition 3 (Hilgert & Neeb, 2011). Let g be 
a Lie algebra. The Lie algebra g is said to be solvable 
if there exists a positive integer of  such as 

. 
Let G be a Lie group with a Lie algebra of g and 

g* be the dual vector space of g. The Lie group G acts 
on the Lie algebra g by adjoint action, as denoted by 
Ad, and g* by coadjoint action as denoted by Ad*. The 
latter notation is written in Equation (5).

       (5)

Another notion of a Lie group or a Lie algebra 
corresponding to Frobenius Lie algebra is a stabilizer 
of a Lie group or a Lie algebra. It can be considered 
a chosen linear functional in a dual space of g. Then, 
by using the coadjoint action of Ad*, the notion of 
stabilizer is obtained. Therefore, the stabilizer  
of the Lie group of G at a point  is shown in 
Equation (6).

     (6)

Furthermore, by taking the Lie algebra of , 
it can be considered the stabilizer of the Lie algebra 
at a point . This notion is equal to {0} if g  is a 
Frobenius Lie algebra. This stabilizer of a Lie algebra 
can be written in the following formula.

     (7)

In this case, the notion ad* is an action of g 
on its dual vector space g*. In other words, ad* is a 
derivation of the coadjoint action of Ad*. It can be 
written in the following formula.

         (8)
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Definition 4 (Fujiwara & Ludwig, 2015). Let 
 be an element of g*. A coadjoint orbit of of a Lie 

group G is a set given in the following form.

.     (9)

Definition 5 (Csikós & Verhóczki, 2007). A 
Lie algebra g is said to be Frobenius if it has an open 
coadjoint orbit. In other words, a point of  exists 
in the dual vector space g*, such that its stabilizer of 

. 
To illustrate the explanation, the research shows 

an example from Fujiwara and Ludwig (2015). Let g 
be a real Lie algebra spanned by a basis of  
. The non-zero brackets of g are given by . 
This Lie algebra g can be written as a matrix realization 
in the following form.

   (10)

Let g* be a dual of the vector space of g. Indeed, 
the elements  and  in g*correspond to the elements 
x1 and x2 in g. In general, the element   with 
respect to coordinates  can be interpreted in 
the following matrix.

.      (11)

To relate the element  with the element 
, it is nice to apply a trace of a matrix. Using 

Equation (5), the elements  and  can be 
identified by the trace of the matrix multiplication. 
Then, it is obtained the following form.

      (12)

Furthermore, the Lie group G of the Lie algebra 
g has the matrix realization in Equation (13). It is easier 
to work in the matrix stage. To do that, let  be 
elements of  with , then the matrix realization 
for G is obtained as follows. 

.     (13)

By direct computations, there are two coadjoint 
orbits of G, which have the form in Equation (14). At 
the point of , the stabilizer of  is trivial. In 
other words, the coadjoint orbits  in Equation (14) 
are open. Therefore, g is the Frobenius Lie algebra of 
dimension 2.

    (14)

Definition 6 (Gerstenhaber & Giaquinto, 2009). 
Let g be a Frobenius Lie algebra and g*be the dual 
vector space of g. The point  in satisfying 

 is called a Frobenius functional. 

Let  and be an anti-symmetric bilinear 
form on g, it will become as follows. 

    (15)

The determinant of this anti-symmetric bilinear 
form in Equation (15) is equal to the determinant of 
the matrix  The entries are given by Equation 
(16) with respect to a basis of  of g 
with n is the dimension of g. The Lie algebra of g is a 
Frobenius if and only if  the determinant  
(Ooms, 1980). In other words, the Lie algebra of g is 
a Frobenius if and only if the anti-symmetric bilinear 
form of  is non-degenerate. This result is equivalent 
to the openness of the coadjoint orbit of   (Kurniadi 
& Ishi, 2019). 

                 (16)

In the previous example, it can be seen that the 
Lie group G of the Lie algebra  whose 
bracket is  has two open coadjoint orbits 
as written in Equation (14). Thus, it can be found a 
Frobenius functional of g of form . Furthermore, 
the matrix  corresponding to the Frobenius 
functional can be considered as having a determinant 
of . It implies that g is Frobenius Lie algebra. 

                    (17)

It is thought that to compute a Frobenius 
functional using coadjoint orbits computations is 
difficult. However, there is another alternative to 
find a Frobenius functional besides the computations 
of coadjoint orbits. It is introduced the notion of a 
Pfaffian of the square-alternating matrix (X) of 2k×2k 
dimension. It has det(X) = Pf(X)2. In this case, it 
constructs g-matrix with elements consisted of brackets 
in g. This matrix is named . This Pfaffian is 
contained in a symmetric algebra of S(g) of degree k. 
Then, the elements of g* correspond to the basis of 
the Lie algebra g. It forms the elements of symmetric 
algebra S(g), which are Frobenius functionals. This 
claim can be proven by Equation (16) if and only if 

 (Ooms, 1980). Let  be the 
Lie algebra whose bracket is given by .  It 
shows the formula as follows.

 

.    (18)

It can be seen that the determinant  is 
equal to . Indeed, the Pfaffian   is 
contained in symmetric algebra  of degree 
1. It claims that the elements  and  are 
Frobenius functionals. The claim is true based on 
Equation (17) since . The research 
shall apply this example to find Frobenius functionals 
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in the proof of Proposition 1. 
A Frobenius Lie algebra g has even dimension 

(Ooms, 1980; Csikós & Verhóczki, 2007). Indeed, 
at a Frobenius functional , an anti-symmetric 
bilinear form  defined on Equation (15) induces a 
symplectic form on a tangent space of the coadjoint 
orbit of . It is denoted by . On the other hand, 
it is well known that the tangent space of  is 
isomorphic to a quotient space . By definition of 
a Frobenius Lie algebra,  is trivial. Therefore, the 
dimension of a Frobenius Lie algebra is always even. 

The notion of left-symmetric algebras plays 
an important role in the result. In the notion of 
mathematical physics, the left-symmetric algebra 
is called pre-Lie algebra (Burde, 2006). The left-
symmetric algebra comes in mathematical physics, 
particularly in renormalization theory. It is noted here 
that a Lie algebra equipped with a left-symmetric 
algebra can be embedded as a subalgebra of certain 
special linear Lie algebra of  It consists of n × n 
matrices of trace equalling to zero (Diatta & Manga, 
2014). Roughly speaking, a left-symmetric structure 
on a Lie algebra satisfying brackets of g is called affine 
structures. The research will discuss this notion later. 
Let A be an algebra over C and a,b,c  be elements of A 
The associator of (a,b,c) is in Equation (19). The * is a 
bilinear product on A. 

    (19)

Furthermore, left-symmetric structures on 
an algebra A are given by the following definition. 
Definition 7 (Burde, 2006). Let A be an algebra over C 
equipped with a bilinear product, as shown in Equation 
(20). Then, A is called a left-symmetric algebra if it 
satisfies Equation (21) for all a,b,c ϵ A. 

    (20)
                (21)

If Equation (21) is defined by Equation (22) 
for all a,b,c ϵ A, the research uses the notion of right-
symmetric algebra. A left-symmetric algebra is the 
opposite of a right-symmetric algebra. It means that 
if  a * b  is a product on a left-symmetric algebra, 

 is a product on a right-symmetric algebra. 
If A is a Lie algebra, such as g, the existence of affine 
structures can be shown.

.                (22)

Definition 8 (Burde, 2006). Let g be a Lie 
algebra. An affine structure on g is a bilinear product 
given by  Equation (20) satisfying Equation (21) and a 
bracket in Equation (23) for all . 

     (23)

The two conditions in Equations (21) and (22) 
are equivalent to a Lie algebra homomorphism and 

a 1-cocycle. To do that, the notion of g-module, the 
space of 1-coboundaries, and the space of 1-cocycles 
are necessary to be recalled. Using Equation (21) and 
substituting Equation (23) to Equation (24), it shows 
several forms.

     (24)
    (25)

Firstly, Equation (25) is equivalent to the Lie 
algebra homomorphism. Let L be a left multiplication 
on g defined by L(a)b = ab for all a,b ϵ g. As mentioned 
previously, Equation (25) is equivalent to a Lie algebra 
homomorphism L, and it shows the following form.

.       (26)
    (27)

Secondly, it shows that Equation (23) is 
equivalent to a 1-cocycle. Let gL be a g-module. In 
other words, Equation (23) is equivalent to a 1-cocyle 
of g-module gL in Equation (28) for  as an 
identity map on g. 

   (28)

Definition 9 (Diatta et al., 2020) Let g be 
a Lie algebra and θ be any symplectic form on g. 
The symplectic structure g induces a left-symmetric 
structure on g defined by Equation (29).

.     (29)

Definition 9 is very important in the research 
since it corresponds to the induction of a left-symmetric 
structure. On the other hand, each Frobenius Lie 
algebra has a Frobenius functional related to an anti-
symmetric bilinear form. In other words, by applying 
Equation (15), if g is a Frobenius Lie algebra, it has the 
following form.

      (30)

In this case,  is the anti-symmetric bilinear 
form on the Frobenius Lie algebra of g and  is its 
Frobenius functional. Moreover, it can define a left 
multiplication on a Lie algebra g. It defines  
using Equation (31) for every .  

      (31)

Definition 10 (Segal, 1992). Let g be a Lie 
algebra equipped with a left-symmetric structure. The 
left-symmetric algebra g is called complete if a map in 
Equation (32) is bijective. 
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     (32)

Lemma 11 (Burde, 1998). Let g be a left-
symmetric algebra. Then g is complete if and only if it 
satisfies the following conditions. First,  with 

 is a radical of g. Second, the trace of R(a) equals 
0 for all . Third, R(a) has no eigenvalues in . 
Fourth, R(a) is a nilpotent linear map for all . 

For example, a Lie algebra g spanned by 
 with non-zero brackets shown in 

Equation (33) has affine structures of the forms 
(Burde, 1998).

     (33)

    (34)

These structures are complete since for all 
, the trace of  is equal to 0. In contrast, in the 

previous example, the Lie algebra of g spanned by 
basis  with  has affine structures 
in Equation (35) (Diatta & Manga, 2014). However, 
the affine structure is not complete since there is  
with the trace of , which is not equal to zero. 

 
      (35)

II. METHODS

The research applies an axiomatic method 
by studying some important notions corresponding 
to affine structures (Diatta et al., 2020), Borel 
subalgebras, and Frobenius Lie algebras (Csikós 
& Verhóczki, 2007). It lets g be the 6-dimensional 
Borel subalgebra of a simple Lie algebra. Since g 
is isomorphic to the Frobenius Lie algebra, there 
exists a Frobenius functional of . It implies that the 
alternating bilinear form of  in Equation (15) is 
non-degenerate. Therefore, using alternating bilinear 
form , the affine structure on 6-dimensional Borel 
subalgebra is induced from a Frobenius functional to 
prove the existence of affine structures. Moreover, 
the explicit formulas of the affine structures are also 
considered. 

Figure 1 describes the process in the fishbone 
diagram. In the first step, the research can deduce that 
a given Lie algebra is the Borel subalgebra of a simple 
Lie algebra and the Frobenius Lie algebra (Csikós & 
Verhóczki, 2007). However, the research gives detailed 
proof of its interest. In the second step, since the Borel 
subalgebra is Frobenius, a Frobenius functional of  
exists that the bilinear form  defined by Equation 
(15) is non-degenerate or symplectic form. In the third 
and fourth steps, the research constructs a bilinear 
product in Equation (20).

Moreover, the symplectic form  defined 
before inducing affine structures of the Borel 
subalgebra is in Equation (30). It proves the existence 
of affine structures on the Borel subalgebra. Finally, 
it obtains the formulas of affine structures written in 
Equation (2) and their completeness.

Figure 1  Fishbone Diagram

III. RESULTS AND DISCUSSIONS

In this section, the main results stated in 
Proposition 1 will be proven. The argument is divided 
into four parts as follows. First, the research will 
prove that the 6-dimensional Borel subalgebra of g is 
Frobenius. Second, it will show the existence of affine 
structures on g. Third, it will give the explicit formulas 
of affine structures on g. Last, it will prove that affine 
structures are not complete.  

Let g be the given Lie algebra with basis 
 that non-zero brackets are given by Equation 

(1). First, it shows that g is the Borel subalgebra of a 
simple Lie algebra, and g is the Frobenius Lie algebra. 
It defines that the Borel subalgebra is maximal solvable 
Lie subalgebra. To see it, the research considers the 
derived series on g in Equation (36).

      
      (36)

Hence, there is a positive integer k = 3, like 
 The g is solvable. Since this Lie algebra 

is a subalgebra of a simple Lie algebra, by using 
the definition of a simple Lie algebra, it shows 
that subalgebra g is maximal. Thus, g is the Borel 
subalgebra of a simple Lie algebra. 

The research will complete the proof that g is 
the Frobenius Lie algebra even though it is already 
shown by Csikós and Verhóczki (2007). It is denoted 
that  is a matrix of g-entries that the 
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entries are defined by the brackets of g. Hence, it has 
Equation (37).

     (37)

This matrix is also called the structure matrix. 
The determinant of the structure matrix  
can be considered. It implies the formula of Pfaffian 

, which is contained in a symmetric 
algebra S(g)of degree three. The formulas are obtained 
as follows.

    (38)

    (39)

As discussed before, it is claimed that 
 is the Frobenius functional. Of course, 

the research can choose another Frobenius functional 
in g* corresponding to Equation (39). To prove this, 
it obtains the matrix . The entries are defined 
in Equation (16). In other words, it just computes 
the value of the linear functional   at the 
bracket of . It shows  for 
every entry in the matrix . Therefore, it 
results in Equation (40). Since it shows determinant 

, the claim is true. In other words,  
 is the Frobenius functional. It implies 

that the Borel subalgebra is the Frobenius Lie algebra 
as desired. 

    (40)

Second, it shows the existence of affine 
structures on the Borel subalgebra g. It defines the anti-
symmetric or alternating bilinear form of  on g in 
Equation (15). Indeed,  is symplectic form because 
g  is the Frobenius Lie algebra. A bilinear product on 
g is given Equation (20) for , . In 
addition, for any , it has Equation (41) and 
since elements , it can 
write them in Equation (42).

      (41)

    (42)

In this term, let z be the product of x and y. If 
it computes Equation (41) with respect to the basis 

, it will obtain the scalars of γk, k =1,2,... ,6 
written in the terms αi and βj, 1 ≤ i, j ≤ 6. In other 
words,  is not all zero. It happens 
because the stabilizer of  is trivial, such as  

.  Thus, there are affine structures on the 
Borel subalgebra of g. 

Third, the research gives the detailed formulas 
of affine structures on g as follows. It computes 
for z = x1 completely, and another follows these 
computations in a similar way. Moreover, Equation 
(43) can be considered, and using Equations (1) and 
(42), Equation (44) is also obtained.

     (43)

    (44)

Equations (45) and (46) are computed by 
substituting Equation (44) to  and substituting 
Equations (43) to (45). These computations are based 
on the Borel subalgebra brackets in Equation (1). 
Moreover, the induced left-symmetric algebra helps to 
get these formulas. On the other hand, Equations (47) 
and (48) are obtained by direct calculations of anti-
symmetric bilinear form . 

             (45)

             (46)

   (47)

               (48)

The left computations are γ1, γ2, γ3, γ4, and γ5. 
The computations follow γ6 with respect to the Borel 
subalgebra brackets. In other words, the formulas are 
written in Equation (49). 
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     (49)

It obtains the products xy in Equation (50) with 
γi,1 ≤ i, j ≤ 6 It is considered by Equations (48) and 
(49). Choosing the suitable αi and βj,1 ≤ i, j ≤ 6, it has 
the desired formula in Equation (2), which is nothing 
but affine structures on the 6-dimensional Borel 
subalgebra of g. 

.     (50)

Last, for affine structures, the research chooses 
the point . The matrix representation of R(x1) 
is shown by Equation (51) that the trace is equal to 
−8. Using Lemma 10, affine structures on g are not 
complete.

     (51)

The main result equips the results in Burde 
(2006) about Milnor’s question of the existence of 
complete affine structures on a solvable Lie algebra. 
The results show that not every solvable Lie algebra 
has complete affine structures. The affine structures 
and their completeness on remain isomorphism classes 
of 6-dimensional Frobenius Lie algebras still need to 
be studied. 

In the lower dimension case, there are three 
isomorphism classes of 4-dimensional Frobenius 
Lie algebra over a field of characteristic ≠2 (Csikós 
& Verhóczki, 2007). The research conjectures that 
all 4-dimensional real Frobenius Lie algebras are 
solvable. Another previous research computes the 
coadjoint orbits of Lie groups of 4-dimensional real 
Frobenius Lie algebras (Kurniadi & Ishi, 2019). 
Therefore, it can find all Frobenius functionals. The 
research also conjectures that these Frobenius Lie 
algebras have affine structures which are not complete. 
It needs to investigate more about these statements for 
future research. 

IV. CONCLUSIONS

The notion of affine structures arises in convex 
homogeneous cones, vertex algebras, and affine 
manifolds. On the other hand, it is well known that 
Frobenius Lie algebras correspond to the research of 
bounded homogeneous domains in . Furthermore, 
one of 16 isomorphism classes of 6-dimensional 
Frobenius Lie algebras over an algebraically closed 
field is the Borel subalgebra. The research studies 
the affine structures for the 6-dimensional Borel 
subalgebra of a simple Lie algebra. The result shows 
that the 6-dimensional Borel subalgebra of a simple 
Lie algebra has affine structures. The research also 

gives the explicit formulas of affine structures on this 
Lie algebra in Equation (2). It proves that the affine 
structure on this solvable Lie algebra is not complete. 
The main research is stated and proven in Proposition 
1. 

In the research, the result is just for the 
6-dimensional Borel subalgebra. Therefore, for 
future research, there are 15 isomorphism classes of 
6-dimensional Frobenius Lie algebra that still need to 
be investigated whether it has affine structures or not. 
Furthermore, it is interesting to consider whether these 
affine structures complete or not.
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