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Abstract - This research discussed the properties of 
Spatially Corrected Blundell-Bond (SCBB) in overcoming 
the problem of endogeneity and spatial dependence that 
occur in dynamic Spatial Durbin Model (SDM) panels. 
The properties of the estimator tested were unbiased and 
normality. The properties test of the estimator was carried 
out using the Monte Carlo simulation approach. From the 
results of this research, it finds that the SCBB estimator 
has unbiased properties and follows a normal distribution. 
Based on the property of the estimator obtained, the SCBB 
parameter estimation method in the dynamic SDM panel 
model works well in overcoming endogeneity and spatial 
dependence problems.
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I. INTRODUCTION

In some studies, the response variable is not only 
determined by the predictor variable at the same time. 
However, it is also determined by the response variable in 
the previous time. For example, in the case, it is inflation. 
In the Phillips Curve theory, it states that one of the factors 
that influence the magnitude of the inflation rate in a given 
period is the inflation rate of the previous period (De Pedro, 
2014).

In the dynamic model, the lag of the response 
variable as a predictor causes endogeneity problems. 
Endogeneity is the occurrence of a correlation between 
predictor variables and errors so that a method to overcome 
endogeneity problems is needed. One of them is Blundell 
and Bond System Generalized Method of Moment (GMM) 
Estimator, also known as BB-GMM. In overcoming 
endogeneity, the BB-GMM principle is to combine variable 
instrumental matrices that come from the moment of 
sample conditions in the form of first difference and form 
level. Instrumental variables are formed to overcome the 

correlation between predictor variables and errors that are 
the cause of endogeneity (Blundell & Bond, 1998).

In order to obtain more specific information, a 
study can be carried out in every area in a certain period. 
The possibility of inter-regional relations is called spatial 
dependence. Spatial dependence shows the function of the 
relationship between events at one point in a particular 
place and those around them (Haining, 1990). To overcome 
this problem, spatial econometrics is needed.

According to Elhorst (2014), in the spatial 
econometric model, there are three effects of spatial 
interactions. Those are the interaction between response 
variables, interactions between predictor variables, and the 
interaction effect between errors. Based on the interaction 
effect, one of the spatial models is Spatial Durbin Model 
(SDM). SDM is a spatial model that contains the effects 
of spatial interactions in response variables and predictor 
variables.

Elhorst (2014) explained that, if the problems 
faced are dynamic and contain spatial interaction effects, 
modeling is needed to overcome this problem, namely the 
dynamic spatial panel model. Dynamic panel spatial model 
is spatial modeling with lag time from the response variable. 
Dynamic panel models are characterized by a lag of response 
variables among predictor variables. Dynamic SDM panel 
models can be formed by adding lags of response variables 
in time as predictor variables in ordinary SDM equations. In 
the economic field, there are several examples of cases that 
need to be modeled using dynamic SDM panels. It includes 
economic growth and inflation.

In the dynamic SDM panel model,  spatial lag of 
response variables as predictor variables, and the predictor 
variables causes the possibility of spatial dependence. To 
overcome this problem, a method that can overcome the 
problem of spatial endogeneity and dependence is Spatially 
Corrected Blundell-Bond (SCBB). This method is an 
extension of the dynamic BB-GMM panel data method due 
to spatial linkages in predictor variables and errors (Cizek, 
Jacobs, Ligthart, & Vrijburg, 2015). 

Research on dynamic spatial panel modeling with 
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the SCBB method has been carried out by Jacobs, Ligthart, 
and Vrijburg (2009) in Spatial Error Model (SEM). Cizek 
et al. (2015) also conducted research in estimating SCBB 
parameters on spatial lag and errors.  Research using non-
dynamic SDM panels has been carried out. However, in 
the dynamic SDM panel model, Baltagi and Li (2006) 
compared non-dynamic SDM and dynamic SDM in the 46 
cigarette demand models in the United States. Estimated 
parameters were carried out by the QML method. Next, 
Lee and Yu (2010) considered spatial autoregressive panel 
models with spatial autoregressive disturbances. Lee and 
Yu (2014) researched the efficiency of GMM estimators of 
spatial dynamic panel data models with fixed effects. They 
applied GMM estimation methods on dynamic spatial panel 
models with multiple spatial lags. Then, Baltagi, Fingleton, 
and Pirotte (2014) performed estimation and forecasting 
parameters using a dynamic spatial panel with the GMM 
approach. Yu, De Jong, and Lee (2012) performed dynamic 
panel data models that allow for spatial interactions with 
QML and GMM. 

Su and Yang (2015) examined QML estimation of 
dynamic panel data models with spatial effects in the errors. 
Then, Shi and Lee (2017) applied dynamic spatial panel 
data models with interactive fixed effects using QML. Bai, 
Zhou, and Fan (2018) compared QML and GMM by using 
Monte Carlo simulation. 

Based on several studies conducted on dynamic 
spatial panels using SCBB described previously, no one has 
discussed the nature of the SCBB estimator in the dynamic 
SDM panel model. A good estimator is an estimator that 
fulfills the characteristics that are unbiased, consistent, 
and efficient. The validity of a parameter estimator can be 
evaluated from the estimator’s bias value. The estimator, 
having the smallest bias, has the greatest validity. 

Besides unbiased characteristics, the properties 
of normality are also very important for estimators. In 
statistics, the normality test is used to test whether a 
random variable is normally distributed or not. However, 
this required assumption is rarely perfectly fulfilled on real 
data. One of the frequently found facts is the existence of 
data with outlier values on the side. It fails to fulfill the 
assumption of error normality. The normal distribution is 
needed to use several statistical tools, such as regression 
analysis, t-test, f-test, or Analysis of Variance (ANOVA). 
The normality test is needed to answer the question of 
whether the representative sample requirements are met 
or not. Thus, the results of the study can be generalized 
to the population or can represent the population. The 
consequence of estimator that does not spread normally 
will cause under a prediction (underestimate) or above a 
prediction (overestimate) decision of the actual level of the 
predetermined trial.

Therefore, the researchers discuss the properties 
of the SCBB estimator on the dynamic SDM panel. It 
is to overcome the problem of endogeneity and spatial 
dependence. The purpose of this study is to analyze the 
unbiased and normal properties of SCBB estimators. 
To analyze the properties of estimators, Monte Carlo 
simulations are used. Simulation is useful for knowing 
various estimation characteristics in several different 
conditions. Monte Carlo simulations are also known as 
sampling simulation or Monte Carlo sampling technique. 
This simulation uses existing data (historical data) which 
is used for other purposes. The researchers look at the 
estimating properties of the SCBB method. The concept 
of the Monte Carlo method is random number generation 

representing the observed uncertainties or risks. In this 
research, the simulations are carried out. It is because 
there is no theoretical explanation about how the estimator 
properties generated by the SCBB estimator on the dynamic 
panel SDM.

 
II. METHODS

The data to analyze the property of SCBB estimator 
method is about the inflation rate in Indonesia from the 
second quarter of 2013 to the fourth quarter of 2017 in 
34 provinces in Indonesia. Inflation data is used because 
it is one of the dynamic economic problems. inflation is 
currently influenced by inflation in the previous period (lag 
inflation), it is can cause endogeneity problems (Blundell & 
Bond, 1998). Besides, inflation observed in several regions 
will lead to spatial dependence (Elhorst, 2014). 

There are several predictor variables in this study. 
First, it is economic growth (X1). Data on economic growth 
is obtained from Product (PDRB). Constant Domestic 
Regional Bruto (DRB) is used to determine real economic 
growth that is not influenced by price factors. In this study, 
the PDRB is based on constant prices in percent.

Second, it is Sertifikat Bank Indonesia (SBI) 
or interest rates (X2). The nominal interest rate is the 
benchmark interest rate (BI rate). The interest rate is the real 
interest rate obtained by the Fisher equation. The expected 
inflation rate reduces the nominal interest rate according to 
the equation of r = i - π or i = r + π. The r is the real interest 
rate, i is the nominal interest rate, and π is the inflation rate. 
The unit is in the form of a percent. 

Third, it is the money supply (X3). The amount of 
money in circulation used is the money supply in the narrow 
sense (M1). It consists of currency and demand deposits.

Fourth, it is administered prices index (X4). This 
index comes from the price of goods or services regulated 
by the government. Those are fuel prices, basic electricity, 
and water rates. This index describes the average price 
changes of fuel oil, basic electricity, and water consumed 
by households in a certain period.

Meanwhile, the response variable data is the inflation 
rate (Y). Then, the analysis is done using R software version 
3.4.1. Because the SCBB package is not yet available, 
coding is done manually based on the parameter estimation 
steps and the formula of the SCBB method.

III. RESULTS AND DISCUSSIONS

The first step taken in carrying out the analysis 
in this study is to form a spatial weighting matrix. The 
spatial weight matrix (W) is an important part of modeling 
involving spatial data. The Wij of the matrix for i=1,...,N 
and j=1,..,N is positive if locations i and j are considered 
as neighbors and zero otherwise. The spatial weight matrix 
is a non-negative size of N × N matrix that presents a set 
of relationships between units of spatial observations. The 
spatial weight matrix used is inverse distance. The spatial 
weight matrix by inverse distance method is based on 
the actual distance between locations in the field. Nearby 
locations get a greater weight value. The inverse distance is 
in Equation (1).

         (1)
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The measure of distance used in determining the 
weight size and the coordinates of the cartesian location are 
Euclidean distance (Brunsdon, Fotheringham, & Charlton, 
1996). Euclidean distance can be obtained by Equation (2).

          (2)

It shows that dij is a euclidean distance between i-th 
location and j-th location of the uj observation. Then, ui  is a 
latitude coordinates at location i,  is a latitude coordinates at 
location j, and vi is a longitude coordinate at location i. Last, 
uj is a longitude coordinate at location j.

The calculation of weight with inverse distance 
method is obtained from inverse distance results. Then, it 
is normalized. Row normalization is shown in Equation (3).

        (3)

After the spatial weight matrix has been obtained, a 
spatial dependence test is carried out. Spatial dependence 
shows the function of the relationship between variables 
at one point in a particular location. It is with the same 
variable in the surrounding location, which causes non-
autocorrelation assumptions not to be met. The test of 
spatial dependence uses moran test. According to Greene 
(2003), the Moran’s I equation for panel data is in Equation 
(4).

                                                                      (4)

It shows that n is several observation locations. 
Next, xit  is an observation value of location i (i= 1,2,...,n) at 
time t, xjt is an observation value of of location (j= 1,2,...,n) 
at time t, and  is an average observation. The test statistics 
uses Equation (5) and variance in Equation (6).

          (5)

          (6)

The range of the values from the Moran’s I equation 
test statistic is -1 to 1. If the value of Moran’s I equation is in 
the range of -1 ≤ I <0, there is negative spatial autocorrelation. 
Then, if the value of Moran’s I equation is in the range of 
0<I≤ 1, there is positive spatial autocorrelation. If the value 
is I = 0, there is no spatial autocorrelation. 

After testing the spatial dependence, a spatial model 
is formed. The model used in this study is the dynamic SDM 
panel. According to Elhorst (2014), the dynamic SDM panel 
model is by Equation (7).

      (7)

The Yt is an N×1 vector of response variable of 
each spatial unit – location (i=1,..., N) at time t, Yt-1 is an 
N×1vector of response variable for every location (i= 1,..., 

N) at time t − 1, Xt is an N × m  matrix of m predictor variables 
for every location (i= 1,..., N) at time t (t= 1,..., T), W is 
an N × N matrix of spatial weight matrix. Transformation 
of a dynamic SDM panel model on the Equation (4) is in 
Equation (8).

          (8)

Based on the Equation (7) by substituting variables, 
the dynamic SDM panel can be defined in Equation (9).

          (9)

After the dynamic SDM panel model is formed, 
the parameter estimation is performed using the SCBB 
parameter estimation method. It is to overcome the 
endogeneity and spatial dependence problems. The SCBB 
estimator method is an extension of the dynamic BB-GMM 
panel data method due to spatial linkages in predictor 
variables and errors. According to Jacobs et al. (2009), the 
SCBB estimation method can be derived through Equation 
(10). Then, it can briefly be written as Equation (11). The 
yBB is a 2N × 1 vector of the response variable.

                          (10)

yBB = zBBθ + uBB         (11)

The number of observations on the SCBB model 
is 2N (T−1) which will increase the efficiency of the 
estimation. 

The number of observations on the SCBB model is 
2N(T −1). It will increase the efficiency of the estimation. In 
the SCBB method, an instrument matrix is needed consisting 
of matrix instruments in the first difference equation and 
instrument variable matrix in the level equation. It is to 
overcome endogeneity. The instrument variable is said to 
be valid if it does not correlate with ∆ut and correlates with 
the variable ∆Yt−1.

The instrument matrix in the first difference (HD) 
equations is based on the moment of Equation (12).

E[y´(t−s) ∆u(t)] = 0 ; E[(Wy´(t−s) ∆u(t)) ∆u(t)] = 0 ;

E[H´(t−s) ∆u(t)] = 0

With H(t−s) = [Wy(t), Wy(t−1), Wx(t), x(t)].    (12)

Suppose T is 5, the instrument matrix in the first 
difference (HD) equation is Equation (13).

        (13)
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The instrument matrix on the equation level (HL) is 
based on Equation (14).

E[u´(t−s) ∆y(t)] = 0 ; E[u´(t−s) ∆Wy(t)] = 0 ;
E[u´(t−s) ∆H(t)] = 0       (14)

The instrument-level model matrix (HL) is in 
Equation (15).

   (15)

The instrument variabole matrix in SCBB (HSBB) is 
a combination of HD dan HL matrix in Equation (16).

        (16)

Based on instrument variables used in the instrument 
variable matrix, a number of instrument variables in SCBB 
is . After obtaining the instrument variable 

matrix, the estimation method by SCBB uses the GMM 
principle to obtain consistent expectations. Under the 
assumption of instrument variables, θ vector is a unique 
solution for the moment of the condition of the population 
in Equation (17). It corresponds with the moment of sample 
conditions in Equation (18).

E(g(θ)) = E(H´SBB uBB) = E(HSBB´( yBB − zBB θ)) = 0

        (17)

        (18)

Using the GMM principle, the SCBB estimator can 
be obtained by minimizing the weighted squared number 
from the sample condition. Based on the approach of 
Kelejian and Prucha (2010), the one-step estimator of 
SCBB is in Equation (19).

 = [z´BB HSBB  ÂSBB H´SBBz]− 1 =

 [z´BB HSBB  ÂSBB H´SBByBB]     (19)

In the BB-GMM principle, at this stage of selecting 
ÂSBB , it will not affect the consistency of the predicted 
results. However, by choosing the optimum weight of ÂSBB 
it will be estimated efficiently. To obtain optimal weight, the 
BB-GMM principle is used to adapt   It is obtained in the 
first stage by using Equation (20).

       (20)

By substituting the optimal weight ÃSBB SSBB, it 
obtains Equation (21).

 = [z´BB HSBB  ÃSBB H´SBBz]− 1 

 [z´BB HSBB  ÃSBB  H´SBByBB]     (21)

The zBB is an matrix predictor variable. Then, yBB 
matrix response variable is an HSBB. It is an instrument 
variable matrix of SCBB. The ÃSBB optimal weighting of 
SCBB is under the BB-GMM principle.

After the parameters are obtained, the validity of an 
instrumental variable is tested from the model obtained. 
To find out whether the instrument used is valid, the 
researchers do a test. Sargan test is used to determine the 
validity of the instrument variables. Its numbers exceed 
the estimated number of parameters (overidentifying 
conditions). Instrument variables are said to be valid if they 
are not correlated with errors. The Sargan test hypothesis is 
as follows.

H0 :   E(HSBB´, û) = 0 (valid instrument)

H1 :   E(HSBB´, û) ≠ 0 (valid instrument)

The test statistics is in Equation (22).

S = (û´HSBB)Â (H´SBB û) ~                     (22)

Then, HSBB is a matrix of instrument variable. Next, 
û is error component of the expected result, l is a number of 
instruments, and m is the number of parameters estimated. 

The S test statistic is asymptotically distributed by   
χ2 with a degree of freedom of the number of instruments 
minus the number of parameters used in the model (q). The 
test criteria are that H0 is accepted if the value is   It 

means that the instrument is valid. Instead, H0 is rejected if 
the value is   It means that the instrument is invalid. 

Besides using the S value, the test criteria can also be done 
by looking at the p-value. The H0 is accepted if it is p − 
value > α. It is rejected if it is p − value ≤ α . If H0 is rejected, 
it is necessary to add instrument variables by making pair 
combinations with other predictor variables. Those are 
previously assumed to be strictly exogenous.

After obtained a valid instrument variable, the 
further analysis of the estimator’s property generated from 
the SCBB method is carried out. Estimator’s property of 
SCBB on SDM performed with Monte Carlo Simulation. 
Monte Carlo simulation method is a numerical computation 
method by involving the sampling with random numbers. 
The key to the Monte Carlo method lies in the generation 
of random numbers. It represents the observed uncertainties 
or risks.

According to Rubinstein and Kroese (2016), 
there are several steps of Monte Carlo simulation. First, 
it determines the value of the initial parameter as a fixed 
parameter. The parameter value is obtained from estimating 
parameters from the initial data using SCBB. Historical data 
from predictor variables are fixed data. It will be used in 
the estimation of the next parameter. The data generation 
process is carried out at the error as an input for further 
parameter estimation.
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Second, it calculates the value of using the equation 
based on the parameters obtained in the first step and saves 
the value. Third, it generates the error values using a normal 
distribution. It is an error without being influenced by a 
time factor written with a time factor with . It 
is also an individual-influenced error and time written with 

.

Fourth, it calculates the value of yit by substituting 
the error value generated in the third step and the fixed 
parameter and fixed predictor variable in the first step. Fifth, 
it estimates the parameters using the input value of yit. It is 
obtained in this step and the fixed predictor variable in the 
first step. Sixth, it repeats the third to the sixth step around 
500 times. Thus, 500 parameters are obtained. Seventh, it 
analyzes the nature of the unbiased estimator. It is based 
on the results of the simulation by calculating the average 
value of the parameters. Those are assumed based on the 
number of replications. To see the normality properties, the 
Anderson-Darling test, and the histogram of each parameter 
of each replication are used.

An estimator is said to be unbiased if the estimator 
approaches the actual value of the expected parameter. In 
this study, the parameter that will be assumed is  Then, 
the parameter estimator is said to be unbiased if E( ) = θ.  
E( ) is the average value of the number of replications in 
the simulation. It uses Equation (23).

        (23)

Besides unbiased characteristics, the nature of the 
estimator tested is normality. Normality test estimator 
is very important to test the significance of parameters. 
Testing the significance of the parameters is done based 
on the distribution of the estimator. Violation of normal 
assumptions will result in parameter estimators becoming 
biased. One normal test is to use Anderson-Darling test 
statistics with the hypothesis as follows.

H0:  is normally distributed

H1:  is not normally distributed

Anderson-Darling test statistics are in Equation (24).

A2 = − n − S                   (24)
 

Where it is:

        (25)

It shows that F(Zi) is the normal standard cumulative 
distribution function of i. The H0 is accepted if the value 
is A2 ≤ A2 

table or the p-value > α(0,05). It means that the 
estimator is normally distributed. Before doing spatial 
modeling, the researchers test the spatial dependence. 
Testing spatial dependence uses the Moran Index test with 
the hypothesis as follows.

H0 : Ӏ = 0 (no spatial autocorrelation)

H1 : Ӏ ≠ 0 (there is spatial autocorrelation)
 
 

 Tabel 1 Spatial Dependence

Period I Z(I) P-Value
2013q3 0,1275 4,5987 0,0000
2013q4 0,1177 4,7320 0,0000
2014q1 0,1142 4,2498 0.0000
2014q2 0,1104 4,1133 0,0000
2014q3 0,0981 3,7645 0,0001
2014q4 0,1078 4,0657 0,0000
2015q1 0,0975 3,7348 0,0002
2015q2 0,0965 3,7204 0,0001
2015q3 0,0904 3,5396 0,0004
2015q4 0,0847 3,3639 0,0007
2016q1 0,0768 3,1240 0,0018
2016q2 0,0838 3,3330 0,0008
2016q3 0,0844 3,3923 0,0006
2016q4 0,0890 3,5546 0,0003
2017q1 0,0926 3,6751 0,0002
2017q2 0,0802 3,3281 0,0008
2017q3 0,0625 2,8244 0,0047
2017q4 0,0572 2,6940 0,0071

Table 1 shows the results of the calculation of the 
Moran index using inverse weighting distance. The results 
of testing spatial dependence show that there is spatial 
dependence in this study. It can be seen from significant 
at α = 5% for the entire study period. After showing there 
is spatial dependence, the researchers conduct dynamic 
panel spatial regression analysis using the SCBB parameter 
estimation method.

The simulation is done by generating an error value 
using a normal distribution. An error from the individual i 
without being influenced by a time factor is written with 

. Then, an unknown error from every individual 
(i=1,2,...,n)  at time t is with . The simulation 
results obtain parameters of τ, ρ, δ, β1, β2, β3, β4, λ1, λ2, λ3, λ4,         
as 500, respectively.

In the dynamic SDM panel parameter values, the 
simulation results are carried out an average calculation. It 
is to see the nature of irregularities and normality testing 
of the SCBB estimator based on the normality test along 
with the histogram formed. In this discussion, the bias 
values of each parameter will be presented based on the 
average value of estimate parameter result using the SCBB 
parameter estimation method with Monte Carlo simulation. 
It is done with 500 replications. The average value of the 
parameters is used to see the nature of the irregularities of 
SCBB estimators. The estimator is said to be unbiased if the 
average or expected value of the estimator is the same as the 
value of the parameter. A good estimator has a very small 
or near zero bias value. The bias value is obtained from the 
difference between the estimated value of the parameter 
and the actual parameter value. The bias values of each 
parameter are presented in Table 2.

In Table 2, it can be seen that the parameter values 
generated using the SCBB parameter estimation method in 
the dynamic SDM model produce a very small bias value. 
It is even close to zero. This shows that the estimator of 
the SCBB parameter satisfies one of the properties of the 
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predictor’s goodness which is not biased. This means that 
the SCBB parameter estimation method works well in 
the dynamic SDM panel model. Furthermore, the nature 
of the estimator discussed is the nature of normality. The 
test results using the Anderson Darling normality test are 
presented in Table 3.

Table 2 Parameter of Bias Value

Parameters Parameter
fixed

Average 
parameters 

of simulation 
results

Bias Value

τ     -0,009216 -0,009205 1,12E-05
ρ  0,999837  0,986808 1,16E-03
δ  0,008684  0,008674 1,05E-05
β1  5,28e-10  5,28e-10 6,65E-13
β2 -1,003093 -1,001751 1,34E-03
β3 -3,18e-11 -3,18e-11 3,99E-14
β4  0,000362  0,000362 4,89E-07
λ1 -2,12e-10 -2,12e-10 2,84E-13
λ2  1,003999  1,002643 1,36E-03
λ3 -1,95e-10 -1,95e-10 2,61E-13
λ4 -0,000356 -0,000356 4,82E-07

Based on the Anderson Darling test in Table 3, it 
can be seen that all parameters generated using the SCBB 
parameter estimation method in the dynamic panel SDM 
model have a p-value > α(0,05). With a real level of 5%, it 
can prove that SCBB estimators are normally distributed. 
Normality of the estimator properties can also be seen based 
on the histogram of each parameter. The histogram of each 
parameter is presented in Figures 1-11.

Table 3 The Results of Anderson 
Darling Test Statistics

parameters Anderson 
Darling Test 

Statistics

p-value Decision

τ     0,64081 0,09418 Unbiased
ρ 0,65452 0,08711 Unbiased
δ 0,65457 0,08708 Unbiased
β1 0,53600 0,16910 Unbiased
β2 0,67043 0,07956 Unbiased
β3 0,51126 0,19490 Unbiased
β4 0,62470 0,10320 Unbiased
λ1 0,64954 0,08961 Unbiased
λ2 0,62470 0,10320 Unbiased
λ3 0,64986 0,08945 Unbiased
λ4 0,62568 0,10270 Unbiased

Figure 1 Histogram of  Tau Parameters

                 

                Figure 2 Histogram of  Rho Parameters      Figure 3 Histogram of  Sigma Parameters
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    Figure 4 Histogram of  Beta1 Parameters                      Figure 5 Histogram of  Beta2  Parameters

  

       

                Figure 6 Histogram of  Beta3 Parameters      Figure 7 Histogram of  Beta4  Parameters
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Based on the histogram in Figure 1 to Figure 11, it 
can be seen that all parameter values of τ, ρ, δ, β1, β2, β3, 
β4, λ1, λ2, λ3, λ4 from monte carlo simulation results with 
500 replications show normal distribution respectively. 
This is consistent with Anderson Darling’s test that 
the parameter values of the SCBB estimator following 
the normal distribution. The results of this study are in 
accordance with research conducted by Cizek et al. (2015) 
that  the estimator is normal and Kukenova and Monteiro 
(2009) that the estimator has a small bias. The distribution 
center for the parameters τ, ρ, δ, β1, β2, β3, β4, λ1, λ2, λ3, λ4 is 
around the value of -0,009205; 0,986808; 0,008674; 5,28e-
10; -1,001751; -3,18e-11; 0,000362; -2,12e-10; 1,002643; 
-1,95e-10; and -0,000356 respectively.

IV. CONCLUSIONS

The SCBB estimator on the dynamic SDM panel 
satisfies the properties of the estimator’s goodness. It 
is unbiased and has normal distribution. The bias value 
generated in each parameter is very small and close to zero. 
This means that SCBB estimators work well in overcoming 
problems with endogeneity and spatial dependence. 

The researchers conclude that in the cases containing 
endogeneity and spatial dependence, the SCBB method can 
be used to handle it. In this research,  the properties of other 
estimators have not been analyzed of such as efficiency 
and consistency. For further research, it is recommended to 
analyze the properties of other estimators.

   
               Figure 8 Histogram of  Lamda1 Parameters                  Figure 9 Histogram of  Lamda2 Parameters

   

              Figure 10 Histogram of  Lamda3 Parameters   Figure 11 Histogram of  Lamda4 Parameters
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