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Abstract - The purpose of this research was to solve 
several problems in the rendering process such as slow 
rendering time and complex calculations, which caused 
inefficient rendering. This research analyzed the efficiency 
in the rendering process. This research was an experimental 
study by implementing a distributed rendering system with 
fine-grained and coarse-grained parallel decomposition 
in computer laboratory. The primary data used was the 
rendering time obtained from the rendering process of 
three scenes animation. Descriptive analysis method was 
used to compare performance using speedup and efficiency 
of parallel performance metrics. The results show that the 
distributed rendering method succeeds in increasing the 
rendering speed with speedup value of 9,43. Moreover, 
the efficiency of processor use is 94% when it is applied to 
solve the problem of slow rendering time in the rendering 
process.
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I. INTRODUCTION

Today, three-dimensional (3D) animations are 
widely used in broadcasting, advertisement, and movie 
industry. The process of generating 3D animation movies 
in accordance with the needs of the industry requires an 
understanding of production pipeline (Cantor & Valencia, 
2004). The animation is produced by sequent images. Each 
image is generated by rendering, which is the process of 
generating an idealistic image from a geometric 3D model 
and various graphics input data such as texture, material, 
color and light (Glez-Morcillo, Vallejo,  Albusac, Jiménez, 
& Castro-Schez, 2011).

Rendering is the process of generating an image from 
a model or calling a scene, which is done through a computer 
program. A scene file contains an object of geometry 

information, viewpoints, textures, lighting, and shadows. 
Then, it becomes the description of the virtual scene. The 
data will be processed in the rendering program to a digital 
image or raster image. Although rendering techniques 
vary, in general, the challenge is to produce images of 
two-dimensional (2D) representations of 3D stored in the 
file scene. It is also depicted in a pipeline graphics on the 
device rendering, such as Graphics Processing Unit (GPU) 
(Akenine-Möller, Haines, & Hoffman, 2008).

The parallel technique is the right solution when 
rendering performance becomes an issue. The applications 
such as real-time simulation, animation, virtual reality, 
photorealistic images, and scientific visualization have 
leveraged the use of parallelism to improve rendering time. 
Parallel rendering has been applied in almost all image-
making techniques used in computer graphics. It includes 
surface rendering and polygon, terrain, volume, ray-tracing, 
and radiosity. Even though the needs and approaches for 
each technique are different, there are some important 
concepts in understanding how parallelism applies in 
common rendering problems.

Parallel computing is a technology that has been 
developed. Its use ranges from the need for calculations 
in the laboratory of nuclear physics, the simulation of 
spacecraft, and weather forecasts. Parallel computing is 
the use of a collection of computer resources together to 
solve computing problems  (Culler, Singh, & Gupta, 1999). 
Fundamentally, parallel computers divide the problem into 
small to be done by each Central Processing Unit (CPU) 
at the same time (concurrent). This principle is known as 
parallelism.

Decomposition or division of workload is 
fundamental to parallel algorithms. It is because the purpose 
of parallel computing is to improve the process of solving 
problems using shared computer resources. Based on the 
division of objects, decomposition is divided into two: data 
decomposition (domain) and function decomposition (Silva 
& Buyya, 1999).

Decomposition can customize the problem handled as 
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in the repetition processing or large data input iteration. The 
used functions are very difficult to implement in parallel, so 
the data decomposition is better to be used. For the problems 
with various functions, function decomposition can be used. 
The determination of this decomposition is very influential 
on the performance or improvement of parallel computer 
processes.

Another important point in parallel algorithms 
is computation and communication comparisons. The 
computation means the process performed on each processor 
while communication is the process of information 
exchange that occurs between processors. A problem with 
simple functions generally provides a larger portion of 
computation than communication or granularity is called 
coarse grain. Meanwhile, a problem with many functions 
results in the number of linear communication with the 
amount of computation or Fine Grain Granularity.

Moreover, the parallel algorithm governs granularity. 
It enables the efficiency of the process in both computation 
and communication. The amounts of computation and 
communication also fit to be applied in parallel computer 
architecture.

Speeding up the rendering process is necessary since 
rendering is a process that requires intensive computing and 
time-consuming resources to create a 2D image (Sheharyar 
& Bouhali, 2014). For example, in James Cameron’s film 
“Avatar”, a frame takes an average of 40 hours of rendering 
to produce 2D images. The film is approximately 2 hours 
with a rendered frame over 216.000 frames and must be 
rendered twice to produce stereoscopy images. Overall, it is 
estimated that it takes 2.000 years if it is done using a single 
computer (Glez-Morcillo & Vallejo, 2011). 

To reduce the rendering time, each frame can be 
computed in parallel or distributed to a group of computers 
on the network. A type of parallel processing is called 
Distributed Rendering (DR). Currently, there are many 
researchers in addressing the problem of rendering with 
parallel and distributed processing approaches. Sheharyar 
and Bouhali (2014) implemented a framework for 
building DR on cluster computers using a rendering farm 
management software called Qube! and OpenPBS as cluster 
management. Moreover, Wang, Zhao, Xu, and Liu (2013) 
conducted research by implementing a sort-first algorithm 
with adaptive dynamic load-balancing. It was able to solve 
the load-unbalance problem in rendering by adjusting the 
rendering load dynamically on the computer node. 

Then, Hong, Wang, and Shi (2014) used a 
performance-based approach for assigning work to DR 
based on rendering time performance index and providing 
a formula for evaluating rendering performance on nodes. 
Similarly, Kantert, Spiegelberg, Tomforde, Hähner, and 
Müller-Schloer (2015) introduced a Trusted Desktop 
Grid (TDG) technical approach with resource sharing 
to accelerate the rendering process among filmmaking 
companies. The built system was based on trust, so that 
from the security side, the grid could be isolated to avoid 
attacks with little impact on performance. 

DR can guarantee to reduce rendering time 
significantly. However, it depends on the rendering task 
assignment strategy which all rendering processes are not 
delayed due to many complex and complicated rendering 
tasks. Referring to the distribution of 3D frames or 
animations that will be rendered, two main strategies can 
be distinguished. There are fine-grained and coarse-grained 
(Glez-Morcillo & Vallejo, 2011). 

Fine-grained is a type of parallel decomposition in 
which the processors of multiple computers are connected 

in parallel to render on one frame only. Meanwhile, coarse-
grained is also a type of parallel decomposition. It renders 
the animation frames in succession on a separate computer 
processor. Thus, each CPU will compute the entire frame of 
animation with the same configuration parameters on each 
engine render.

In this research, a proposed method has been 
presented to implement a distributed rendering method 
using fine-grained and coarse-grained strategy. This 
model consists of three components: manager, server, and 
submitter or monitor. The manager manages the entire 
process and distributes the work among all the computers 
in DR environment. The server is the computer on the 
network used to render frames of animation. It will contact 
the manager and notify if it is ready to render. Then, the 
submitter or monitor is a computer that must have a 3D 
application. It is the machine that initiates a rendering job.

There are currently many researchers in rendering 
farms for 3D animation. This concept has been implemented 
in the movie business to accomplish photo-realistic images 
approach by parallelism. Wald, Benthin, Dietrich, and 
Slusallek (2003) built a render farm by using personal 
computer cluster for interactive ray tracing system with 
custom optimized renderers. However, it is only for non-
real-time rendering. In undergraduate research at the 
University of Wisconsin-Eau Claire, Bui, Boettcher, Jaeger, 
and Westphal (2013) utilized clusters for animation. In this 
project, an input animation scene file was processed to 
create a set of rendering jobs that generated a composed 
2D images to form an animated movie. The system was 
Distributed System for Automated Blender Rendering 
(DSABR). DSABR rendered animations by sending a task 
to a group of computers using the Work Queue framework. 

Render farm framework belongs to (Patoli et al., 
2009). They adopted a Grid-based render farm “Condor” 
to use idle resources of the enterprises’ machines when it 
was free. The user required to install a small Condor slave 
program to be part of a Grid. 

Gooding, Arns, Smith, and Tillotson (2006) also 
offered a render farm. The design of the render farm was 
built upon the TerraGrid network. TerraGrid was a large grid 
computing architecture contributed mainly by universities. 
The problem faced was about the communication of 
master controllers and the worker computers. To reduce 
this problem, they used Condor. The other problem was 
the security of the system. To deal with this problem, a 
submission phase was designed having authentication and 
encryption.

On the other hand, there is also open source render 
farm such as DrQueue by adopting almost all renderers 
for distinct users, and mainly targeting the service quality. 
Moreover, there are commercial platforms including Qube, 
Deadline, and others. Those offer the system management 
to render farms that support managing user accounts and 
render fee (Fang, Zhao, & Wang, 2009).

On the other hand, remote render farm such as 
RenderRocket has exploit of a computing resource in a 
global online service environment. This method uses Grid 
or volunteer computing. Performing such remote rendering 
systems must consider design network interface and 
handle data access in this architecture (Anderson, 2004). 
The presented framework in this research claims that all 
render farm features can be provided at the same time. The 
preferred 3D software is open source Blender by the Script 
Generator feature. Theoretically, all 3D software can be 
integrated into this framework. 
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The purpose of this research is to implement the 
distributed rendering method with fine-grained and coarse-
grained strategies to increase rendering time and efficiency 
of processor use. It is expected to become a solution in 
production process of an animation project. Thus, the 
product can be done on time.

 
II. METHODS

Figure 1 is the architecture of the distributed rendering 
system. In this system, the machine manager acts as a 
network manager. It is the manager’s job to accommodate 
the efforts of all other machines in the distributed rendering 
environment. A rendering server is a machine on the network 
used to render frames of animation. It contacts manager and 
informs that this machine is ready to render. The rendering 
server starts 3ds Max when the manager sends a frame to 
be rendered. A submitter is a machine that must have an 
authorized copy of 3ds Max running. It initiates a rendering 
job. This machine also has a function as a monitor. It checks 
the current state of jobs that are rendering or that have been 
queued. Then, it can use schedule the rendering time. 

The monitor can get the valuable information 
pertaining to all the jobs in the render queue. The researchers 
use a file server to tell 3ds Max where it can find the 
information to render a scene. The 3ds Max must find the 
location of textures and other information and know where 
to put each frame that it renders.

The researchers implement a network model in 
client-server and use Transmission Control Protocol/Internet 
Protocol (TCP/IP) to handle network communication. Then, 
Server Message Block (SMB) protocol for the file server 
that acts as network file sharing.

A fine-grained strategy will be applied to the 
manager that will assign rendering servers to render one 
frame simultaneously. If there are ten rendering servers, one 
frame will be divided into sliced images, and the finished 
slice will be composed into one image. A fine-grained 
strategy workflow can be seen in Figure 2.

The workflow of fine-grained parallel decomposition 
strategy applied is as follows. First, the manager receives 
a render job submitted by the submitter with rendering 
settings using a fine-grained strategy. Second, the manager 
will assign tasks to render servers connected in the render 

farm to render by splitting the frames into chunks according 
to the number of render servers. Third, if the number of 
render servers is ten, the first stage of the ten render servers 
will render the frame fragments. Then, the second stage of 
the rendering server will be assigned to merge the finished 
pieces rendered into one rendered or intact image. If the 
number of frames to be rendered is more than one, the 
frames will be animated. Then, this process will be repeated 
until all the frames are finished in the rendering.

Moreover, a coarse-grained strategy will also be 
applied. The manager will assign each render server to 
render one frame simultaneously. If there are ten rendering 
servers, each server will render one frame. Thus, there are 
ten rendered frames simultaneously. If there are hundred 
frames in one animation, each server renders ten frames.

The workflow of coarse-grained decomposition 
strategy in Figure 3 is as follows. First, the manager 
receives a render job submitted by the submitter with 
rendering settings using a coarse-grained strategy. Second, 
the manager will assign tasks to render servers connected in 
render farm to render by dividing each frame according to 
the number of render servers. Third, if many render servers 
are n, the number of n servers will render many n frames. 
Moreover, if the number of frames to be rendered is more 
than one like frames of animation, the rendering process 
with many servers will run together until the number of 
rendered frames ends. 

The researchers conduct performance analysis to 
compare time rendering between existing and proposed 
methods. Rendering time is evaluated by the speedup and 
efficiency function equation (Eager, Zahorjan, & Lazowska, 
1989) as follows:

    (1)

Where, S(n) is speedup, T(1) is time rendering single 
computer,  and T(n) is time rendering (n) node. Meanwhile, 
the efficiency parameter is defined as the average use of 
n processors dedicated to rendering. The equation is as 
follows:

     (2)

Figure 1 Architecture of the Distributed Rendering System
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The E(n) is the efficiency of (n) processor, S(n) is 
speedup, and n is the number of n processor.

Start

User sends a job with 
fine-grained mode

Job file gets zipped & 
copied to Manager

Manager recieves the 
metadata (ZIP & XML)

Assigns the job to 
servers

Launch 3ds Max & 
loads the MAX files

Rendering a slice of 
image

Servers idle?
Yes

Combined final image

StopNo

Figure 2 DR Fine-Grained Procedure

Start

User sends a job with 
coarse-grained mode

Job file gets zipped & 
copied to Manager

Manager recieves the 
metadata (ZIP & XML)

Assigns the job to 
servers

Launch 3ds Max & 
loads the MAX files

Rendering a frame of 
animations

Servers idle?
Yes

Stop

No

Figure 3 DR Coarse-Grained Procedure

Table 1 Specification of Animations

Simple Medium Complex

Scene Name Wiring-Breaker Vortex-Tornado Robby vs Fly
Number of Frames 301 301 341
Animation Speed 30 30 30
Resolution 800 x 600 800 x 600 800 x 600
Polygon 23914 306 112899
Vertex 13531 287 57188
Light 3 1 2
Particle System - Vortex Space Wrap -
Number of Particles - 100000 -
Camera 1 1 1
Compression JPEG JPEG JPEG
Renderer Scanline Scanline Mental Ray

              
                              (a)     (b)    (c)

Figure 4 The Sample Frames of Animations 
(a)Wiring-Beaker, (b) Vortex-Tornado, and (c) Robby vs Fly
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III. RESULTS AND DISCUSSIONS

The experiments are conducted in a computer 
laboratory using a computing platform based on Intel 
Xeon W3520 2.67 GHz CPU, 4 GB RAM, and Microsoft 
Windows 7 Professional 64-bit with SP1 operating system. 
The distributed rendering is performed using Autodesk 
Backburner since it is a standard tool for handling rendering 
and compiling tasks for a range of software tools developed 
by Autodesk. 

In this experiment, three scenes of animation that 
comes with Autodesk 3ds Max are given in Table 1 and 
Figure 4. These scenes have different complexity including 
simple, medium, and complex animation. 

The researchers conduct experiments on three scenes 
by rendering using Local, Distributed Rendering with Fine-
Grained (DR FG), and Distributed Rendering with Coarse-
Grained (DR CG) method. The results of rendering time are 
reported in Table 2. The first rendering is conducted using 
Local (single computer). Then, DR FG with one additional 
server is registered. For DR CG process is the same with 
DR FG.

To verify a significant difference, the results of all 
methods are compared. The researchers perform the speedup 
and efficiency comparison on each method. Moreover, the 
researchers calculate the speedup using equation 1 and 
efficiency using equation 2. Then, the researchers compare 
the results as shown in Tables 3 and 4.

Table 2 The Results of Rendering Time

Method
Rendering Time (sec)

Wiring-
Beaker

Vortex-
Tornado Robby vs Fly

Local 716 2612 7054
DR FG 2 857 1575 4262
DR FG 3 692 1150 3109
DR FG 4 611 961 2441
DR FG 5 540 880 2038
DR FG 6 522 794 1864
DR FG 7 509 742 1734
DR FG 8 503 684 1586
DR FG 9 497 661 1490
DR FG 10 455 635 1387
DR CG 2 321 1394 3531
DR CG 3 251 922 2362
DR CG 4 178 713 1792
DR CG 5 158 572 1453
DR CG 6 135 477 1218
DR CG 7 120 421 1051
DR CG 8 112 409 922
DR CG 9 110 413 824
DR CG 10 105 378 748

Table 3 Speedup Comparisons

Method
Speedup

Wiring-
Beaker

Vortex-
Tornado Robby vs Fly

Local 1,00 1,00 1,00
DR FG 2 0,84 1,66 1,66
DR FG 3 1,03 2,27 2,27
DR FG 4 1,17 2,72 2,89
DR FG 5 1,33 2,97 3,46
DR FG 6 1,37 3,29 3,78
DR FG 7 1,41 3,52 4,07
DR FG 8 1,42 3,82 4,45
DR FG 9 1,44 3,95 4,73
DR FG 10 1,57 4,11 5,09
DR CG 2 2,23 1,87 2,00
DR CG 3 2,85 2,83 2,99
DR CG 4 4,02 3,66 3,94
DR CG 5 4,53 4,57 4,85
DR CG 6 5,30 5,48 5,79
DR CG 7 5,97 6,20 6,71
DR CG 8 6,39 6,39 7,65
DR CG 9 6,51 6,32 8,56
DR CG 10 6,82 6,91 9,43

Table 4 Efficiency Comparisons

Method
Efficiency (%)

Wiring-
Beaker

Vortex-
Tornado Robby vs Fly

Local 100 100 100
DR FG 2 42 83 83
DR FG 3 34 76 76
DR FG 4 29 68 72
DR FG 5 27 59 69
DR FG 6 23 55 63
DR FG 7 20 50 58
DR FG 8 18 48 56
DR FG 9 16 44 53
DR FG 10 16 41 51
DR CG 2 112 94 100
DR CG 3 95 94 100
DR CG 4 101 92 98
DR CG 5 91 91 97
DR CG 6 88 91 97
DR CG 7 85 89 96
DR CG 8 80 80 96
DR CG 9 72 70 95
DR CG 10 68 69 94
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In the first calculation, the researchers compare the 
speedup value for Wiring-Beaker scenes. DR FG method 
has good speedup compared to Local method (one server). 
The lowest value of speedup is 1,06 (two servers), and 
the highest is 1,86 (ten servers). For DR CG, the lowest 
speedup value is 2,23 (two servers), and the highest one is 
6,82 (ten servers).

From the results, it can be seen that DR FG for the 
process of rendering simple animations (Wiring-Beaker) on 
many different servers can improve rendering performance 
by utilizing the processor even though it is not maximized. 
It is explicitly seen that this animation sample is very 
simple. However, the large numbers of rendering processes 
cause a large amount of communication occurring between 
master and server rendering. If the scenario uses DR 
FG 5, the master assigns each frame to be rendered by 
five servers simultaneously. This means that there are five 
communications in one rendered frame. Thus, for this 
simple animation that has 301 frames, there will be 1.505 
communications on five servers and 3.010 communications 
on ten servers.

The next analysis is the efficiency of processor usage 
on each server. The calculation results can be seen in 
Table 4. For DR FG method, the highest efficiency value 
is 42% (two servers), and the lowest value is 16% (nine 
and ten servers). For DR CG the highest efficiency value 
is 112% (two servers), and the lowest value is 68% (ten 
servers).

Figure 5 Speedup Comparison 
of Wiring Beaker Animation

The speedup comparison graph of DR FG and CG 
method for simple animation (Wiring-Beaker) is shown in 
Figure 5. From the graph, it is known that speedup of DR 
FG has changed stagnantly in every increase in the number 
of servers. Unlike DR CG which has an increase in speedup 
proportional to the increase in the number of servers, there 
is a saturation starting from the number of servers from 
seven to ten.

Figure 6 The Efficiency Comparison
of Wiring-Beaker Animation

Comparison of efficiency for DR method with FG and 
CG strategies in the process of rendering simple animations 
is shown graphically in Figure 6. It shows that the efficiency 
value obtained by DR CG method is greater than DR FG 
method. This is an important note that DR FG method has 
not been able to maximize the distributed rendering process 
even with a large number of servers. Meanwhile, DR CG 
method can optimally perform the distributed rendering 
processes. It is because the utilization of processors on each 
used server has an average value of efficiency above 50%.

In the next calculation, the researchers compare 
the speedup value for Vortex-Tornado scenes. The 
implementation of DR FG method has a good speedup 
compared to Local method (one server). The lowest speedup 
value is 1,87 (two servers), and the highest value is 4,60 (ten 
servers). For DR CG method, the lowest speedup value is 
1,87 (two servers). It is equal to the speedup value of the DR 
FG. Then, the highest value is 6,91 (ten servers).

From speedup results, it is found that the 
implementation of DR FG for medium animation rendering 
process on many different servers can improve the rendering 
performance by utilizing the processor on the server even 
though it is not maximal. Although this animation has a 
small number of polygons, there are 100.000 particles. 
Thus, it causes the rendering process to be computationally 
intensive. There is a large amount of communication 
occurring between master computer and servers. With 
scenario using DR FG 2, the master will assign each frame 
to be rendered by two servers simultaneously. This means 
that two communications occur in one rendered frame. For 
this medium animation that has 301 frames rendered, 602 
communications will occur for two servers. Then, 3.010 
communications are for ten servers. This condition proves 
that DR FG has a communication ratio that is greater than 
the computational process or overhead.

Meanwhile, the implementation of DR CG for the 
same animation can have better speedup than DR FG. The 
maximum speedup value is 6,91 (ten servers), and the 
minimum is 1,87 (two servers). However, the speedup is 
saturated on the number of servers 8, 9, and 10. So, speedup 
value obtained cannot reach its linear value. For DR CG 2 
scenario, two frames will be rendered simultaneously for 
one-time communication between master and two servers. 
Thus, only 151 communications occur for rendering 301 
frames.  In 31 communications for DR CG 10 scenario, the 
number of servers is ten. This proves that DR CG has a ratio 
that is more computational than communication.

The next analysis of each DR method is to calculate 
the efficiency of processor usage on each node, the results 
can be seen in Table 4. For DR FG method, the highest 
efficiency value is 83% (two servers), and the lowest value 
is 41% (ten servers). For DR CG, the highest efficiency 
value is 94% (2 servers), and the lowest value is 69% (10 
servers).

Figure 7 Speedup Comparison 
of Vortex-Tornado Animation
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Speedup comparison of the DR FG and CG method 
for the graphical animation rendering process (Vortex-
Tornado) is graphically shown in Figure 7. From the graph, 
it is known that speedup from the implementation of DR 
FG tends to increase in every increase in the number of 
servers. However, the increase is not directly proportional 
to the increase in the number of servers. In contrast to the 
implementation of DR CG which has a trend of increasing 
speedup linearly to the increase in the number of servers, 
there is a saturation starting from eight to ten servers.

Figure 8 The Efficiency Comparison 
of Vortex-Tornado Animation

Efficiency comparison chart for implementation 
DR FG and CG in the rendering process of the animation 
medium (Vortex-Tornado) is shown in Figure 8. From 
the graph efficiency value obtained by DR CG method, 
it shows it is better than DR FG. It should be noted that 
the implementation of DR FG method has not been able 
to maximize the distributed rendering process even with a 
large number of servers. Although the efficiency looks good 
with the value of 83% in two servers, compared to CG DR 
with the same number of servers, the result is better with 
the value of 94%. In general, DR CG method can perform a 
maximally distributed rendering process, because the use of 
processors used has an average value above 60%.

Last, the researchers compare speedup value for 
Robby vs Fly scenes. The implementation of the DR FG 
method has a good speedup compared to Local method 
(one server). The lowest value is 1,77 (two servers), and the 
highest value is 5,38 (ten servers). For the implementation 
of DR CG method, the lowest speedup value is 2,00 (two 
servers), and the highest speed is 9,43 (ten servers). The 
speedup and efficiency values for all rendering processes 
can be seen in Tables 3 and 4.

From the speedup results, it shows that DR FG for 
complex animation in the rendering process on a number 
of different servers can improve rendering performance by 
utilizing the processor. However, it has not been utilized 
maximally as it is the same as the previous animation 
samples. For complex animation samples with 341 frames, 
it causes a large amount of communication that occurs 
between master and servers. If the number of the server 
is two, the master will assign each frame to be rendered 
by two servers simultaneously. This means that two 
communications occur in one rendered frame. So, for this 
sample that has 341 frames, 682 communication will occur 
for the number of servers is 2 and 3.410 communications for 
the number of servers is 10. This means that communication 
is greater than the computing process.

Meanwhile, the implementation of DR CG has 
a better speedup than DR FG. The average of all values 
almost reaches a linear value according to the addition of the 
number of servers. This is because the DR CG can perform 
an efficient rendering process with less communication 
between the master computer and the server. With DR CG 
2 scenario, two frames will be rendered simultaneously for 
one-time communication between the master computer and 
two servers. Thus, there are only 171 communications for 
the rendering process in 341 frames. Moreover, it is only 35 
communications with ten servers. This proves that DR CG 
has a greater computational process than its communication.

Next, the analysis of each DR method is to calculate 
the efficiency of processor usage on each node. The results 
can be seen in Table 4. For the DR FG method, the highest 
efficiency value is 88% (two servers), and the lowest value 
is 19% (ten servers). For DR CG, the highest efficiency 
value is 100% (two servers), and the lowest value is 94% 
(ten servers).

Figure 9 Speedup Comparison 
of Robby vs Fly Animation

The speedup comparison graph of DR FG and CG 
method for the complex animation (Robby vs Fly) is shown 
in Figure 9. From Figure 9, it is known that speedup of 
DR FG tends to increase in every addition the number of 
servers, although it is not significant. In contrast, in DR CG, 
almost all speedup values are close to linear values.

Figure 10 Efficiency Comparison 
of Robby vs Fly Animation

The efficiency comparison chart for implementation 
DR FG and CG in the rendering process of the animation 
complex (Robby vs Fly) is shown in Figure 10. It can be 
seen that the efficiency value of DR CG method is greater 
than DR FG. This chart proves that the implementation of 
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DR FG method has not been able to maximize the processor 
in the distributed rendering process although there are 
many numbers of servers. Meanwhile, DR CG method can 
maximize the processor for distributed rendering processes 
and have an average value above 90% in this animation.

IV. CONCLUSIONS

Distributed rendering based on fine-grained 
and coarse-grained strategy is proposed to improve the 
performance of rendering in 3D animation. DR method 
with fine-grained is good for animation rendering processes 
at all levels of complexity. It can improve rendering 
performance. However, it does not maximally utilize the 
number of available servers. In this research, there are 
ten servers. It can be seen from the maximum speedup 
value obtained in complex animation samples. It is only 
5,38, and the efficiency of processor usage is 88% in 10 
servers. Meanwhile, the DR method with coarse-grained 
for the entire rendering process in all three animations can 
improve the rendering performance by almost reaching the 
number of servers used. In the complex animation sample, 
the maximum speedup value is 9,43, and the efficiency of 
processor usage is 100% in 10 servers. For future research, 
it is necessary to experiment on larger network coverage 
such as Grid and Cloud networks. Moreover, the future 
researchers can optimize the modeling process for animation 
that can speed up rendering time.
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