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Abstract - This research aimed to provide a 
theoretical framework for intrinsically nonlinear models 
with two additive error terms. To achieve this, an iterative 
Gauss-Newton via Taylor Series expansion procedures for 
Estimated Generalized Least Square (EGLS) technique 
was adopted. This technique was applied in estimating the 
parameters of an intrinsically nonlinear split-plot design 
model where the variance components were unknown. 
The unknown variance components were estimated via 
Maximum Likelihood Estimation (MLE) method. To 
achieve the numerical stability in the iterative process of 
estimating the parameters, Householder QR decomposition 
was used. The results show that EGLS method presented 
in this research is available and applicable to estimate 
linear fixed, random, and mixed-effect models. However, in 
practical situations, the functional form of the mean in the 
model is often nonlinear due to the dynamics involved in 
the system process. 
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I. INTRODUCTION

A Split-Plot (SP) experiment is simply a blocked 
experiment.  The experimental units are made of blocks for 
a compartment of the factors. Thus, there are two levels of 
experimental units. The blocks are usually called the Whole 
Plot (WP), and the experimental units within blocks are 
called split units, subplots, or SP. This implies two levels of 
randomization on the two levels of experimental units. One 
randomization determines the assignment of block-level 
treatments to WP. Then, as always in a blocked experiment, 
randomization of treatments to SP experimental units occurs 
within each block or WP (Montgomery, 2008; Jones & 
Nachtsheim, 2009). Hence, those are designed experiments 

that can be viewed as two combined or overlaid experiments 
on each other. In addition, Hinkelmann and Kempthrone 
(2008) put it as a superimposition of two similar or 
different forms of designs. Many researches have been 
done in estimating the parameters of the linear SP design, 
response surface, and optimal models respectively (Jones & 
Nachtsheim, 2009; Jones & Goos, 2012; Lu & Anderson-
Cook, 2014; Lu, Robinson, & Anderson-Cook, 2014; Lu, 
Anderson-Cook, & Robinson, 2011).

SP design in an experiment and its analysis are not 
new. It is applied in various fields outside agriculture from 
which it is originated from (Lu & Anderson-Cook, 2012; 
Lu, Anderson-Cook, & Robinson, 2012; Wang, Kowalski, 
& Vining, 2009; Myers, Montgomery, & Anderson-Cook, 
2009). Jones and Nachtsheim (2009) identified that all 
experiments in industries were SP experimental design. 
This is because it contains two types of factors, which are 
Hard-To-Change (HTC) factor and Easy-To-Change (ETC) 
factor. The HTC is the WP factor, and the ETC factor is the 
SP and subplot factor.

Milliken and Johnson (2009) stated that the SP 
experimental design was a multilevel design because of 
its hierarchal design structure. It has two units of different 
experimental sizes that the large experimental unit size is the 
WP and the small experimental unit size is the subplot or SP. 
Recently, Kulahci and Menon (2017) applied trellis plots to 
visualize multivariate data by allowing the condition during 
the preliminary data analysis stage of the SP experimental 
design data. Moreover, SP experimental design is applied to 
the equipment test to study three different explosive powers 
influenced by four different intensifiers and four different 
steel balls (Gao, Yang, & Shi, 2017).

Moreover, in the line of cost implication for the 
design, it has been found that SP experimental design 
is cheap regarding cost compared to other experimental 
design types. Despite its cheapness, it retains its statistical 
efficiency and adequacy compared to other randomized 
design of experiments. Anderson (2016) compared the 
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power efficiency of five factors in SP design (one HTC 
factor at three levels and each four ETC factor at two 
levels) and randomized design. He found out that the SP 
design had greater power efficiency for all the subplot 
factors compared to the randomized design. However, the 
SP design showed great weakness in power efficiency for 
the WP factor compared to the completely randomized 
design. The interaction between the HTC and ETC factors 
showed great power efficiency compared to the completely 
randomized design. He identified this interaction power 
efficiency for the SP experimental design as a bonus and 
a viable alternative to run an experiment as a completely 
randomized design when there was the presence of HTC 
factor like temperature. The same findings were seen in 
the research of Anderson and Whitcomb (2014). They 
employed power to the right size design of the experiment. 

According to Anderson-Cook, Borror, and 
Montgomery (2009), there should be additional consideration 
for different costs associated with making changes at the 
WP and sub-plot levels. It is observed that for a completely 
randomized experiment, the total number of observations 
can be a practical substitute for the cost. Consequently, 
many of the optimal design criteria use the total number 
of design points as the penalty to balance the decrease in 
prediction variance for larger designs. Furthermore, in some 
SP design cases, it may be prohibitively expensive to do the 
equipment set-up for each of the WP. Therefore, the total 
number of WP in the designed experiment can be the only 
contributor to cost in these situations. In other situations, WP 
may be slightly more expensive than a sub-plot. However, 
the total cost of the experiment is more logically to be a 
weighted average of the number of WP and the number of 
sub-plots runs.

Estimating the variance component of the nonlinear 
model also involves the use of different methods. The 
methods can be the Maximum Likelihood Estimation 
(MLE), Residual Maximum Likelihood Estimation 
(RMLE), Quasi-maximum Likelihood Estimation (QMLE), 
Modified Maximum Likelihood Estimation (MMLE), 
Analysis of Variance (ANOVA), Minimum-Norm Quadratic 
Unbiased Estimation (MINQUE), Minimum Variance 
Quadratic Unbiased Estimation (MIVQUE), and others. 
The MINQUE and MIVQUE methods are developed to 
find unbiased quadratic estimators, which are invariant and 
minimize some matrix norm. 

Rasch and Masata (2006) stated that unfortunately, 
the solution in the most interesting cases depended on 
the unknown variance components. If they were replaced 
by estimates from the data, the solution would be neither 
unbiased nor quadratic any longer. However, they only 
identified the MINQUE and MIVQUE in variance 
components estimation. The same thing applied to other 
variance component estimation methods because in almost 
all cases of modeling with variance components, the 
population variance components were unknown. Therefore, 
since the estimated values obtained from the design data, 
which could have outliers, replacement of missing values, 
and others. The solution may not be unbiased for all other 
estimation methods.

Weerakkody and Johnson (1992) presented a two-
step residual-based approach for estimating the WP and 
subplot error variances separately. However, as identified 
by Ikeda, Matsuura, and Suzuki (2014), the estimator of the 
WP error variance in approach by Weerakkody and Johnson 
(1992) can be obtained only for the case of a > p (p = 1 + 
p1 + p2), where a is the number of runs in each WP unit. 

Then, p1 and p2 are levels of the WP and subplot effects. 
This condition is strict and not practical in many situations 
because it is only suitable for balanced designs. 

Hasegawa, Ikeda, Matsuura, and Suzuki (2010) 
proposed a different estimator for the WP error variance 
having more practical conditions than the one suggested 
by Weerakkody and Johnson (1992). Nevertheless, both 
of these approaches for estimating the two error variances 
can only be used in balanced designs, and their approaches 
are not compared to other methods such as ML, RMLE, 
ANOVA, and others. They cannot be used in unbalanced 
designs, which are frequently employed to reduce the 
number of experiments. 

Ikeda, Matsuura, and Suzuki (2014) did a modification 
of the two-step residual-based method proposed by 
Hasegawa et al. (2010) to make it available for application 
in balanced and unbalanced designs. Then, they compared 
their method with RMLE only. They concluded that their 
method could be an alternative to RMLE based on their 
simulation results. Their alternative method was not a better 
estimation method because it could perform poorly under 
a different simulation scenario and they did not compare 
it with other estimation technique like MLE. However, the 
methods introduced by Weerakkody and Johnson (1992), 
Hasegawa et al. (2010) and Ikeda, Matsuura, and Suzuki 
(2014) were only implemented for linear balanced and 
unbalanced SP design models. Nonlinear modeling of SP 
design has attracted few researches especially in estimating 
the parameters of the model. Although, it follows the same 
procedure used in parameter estimation for nonlinear 
regression. Gumpertz and Rawlings (1992) stated that when 
the objective of fitting a nonlinear function to data from 
SP experimental designs, a nonlinear model with variance 
components (WP variance, σ2

γ, SP variance, and σ2
ε) was 

appropriate. 
Nonlinear modeling of SP data, which has two error 

terms, is a special modeling case of a nonlinear model 
with variance components. The reason is that the model 
contains a nonlinear function for the mean part, g(X, θ), and 
the random effects (WP and subplot errors) are added to 
the mean function. Normal nonlinear regression modeling 
assumes that all the observations in the data set are 
uncorrelated and there is only one source of random error. 
If they are used to fit models with over one random error 
term, they give standard errors for the incorrect parameter 
estimates and other important quantities. Therefore, if a 
standard nonlinear regression program is used to analyze 
SP design data, the single variance estimate like Mean 
Squared Error (MSE) will be a compromise between the 
two error variances, MSEa and MSEb, from the SP analysis 
of variance (Gumpertz & Rawlings, 1992; Knezevic, Evans, 
Blankenship, Van Acker, & Lindquist, 2002; Blankenship, 
Stroup, Evans, & Knezevic, 2003).

In this research, a theoretical presentation of an 
iterative Gauss-Newton via Taylor series expansion 
procedures for Estimated Generalized Least Square (EGLS) 
technique for estimating intrinsically nonlinear SPD 
model parameters will be done. The variance components 
are unknown, and they are estimated via MLE method. 
Householder QR decomposition technique is adopted to 
achieve numerical stability during the iterative process of 
estimating the parameters in the model.

 
II. METHODS

The methodological approach for this research is 
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completely theoretical. No qualitative or quantitative data 
is used for estimating the intrinsically nonlinear SP design 
model. In achieving the objective, the use of EGLS method 
of parameter estimation is adopted. The EGLS is adopted 
due to the assumption that the SP model variance-covariance 
matrix is unknown. 

The variance-covariance matrix is estimated using 
MLE. The estimated variance-covariance matrix parameter. 
Then, V is substituted into the model to estimate the SP 
model parameters. The model parameters are estimated 
via an iterative Gauss-Newton via Taylor Series expansion 
procedure. This iterative system has to be used since the 
partially derived system of equation does not exist in 
a closed form. However, to achieve an asymptotically 
numerically stable parameter estimate, QR decomposition 
by Householder (1958) is implemented.

  
III. RESULTS AND DISCUSSIONS

The nonlinear SP model, which has Whole Plot Error 
(WPE) and Sub Plot Error (SPE) are special cases of the 
nonlinear model with random effects. It is also called the 
nonlinear model with variance components. The formulated 
model and assumptions are given as follows.

         (1)

Inserting the levels of the factors to be investigated 
(1) is as follows.

         (2)

Where, yijk is the response variable and i = 1, .... 
Moreover, S is as replicates or blocks and j = 1, ... Then, 
a levels the WP factor A and k = 1, .... Next, b levels the 
SP factor B, wijk  is the WP error and εijkl is the SP error. 
Meanwhile, f(xijkl,θ) is the nonlinear function for the mean.

There are three assumptions in this model. First, it is 
assumed that the WP and SP errors are random effects. 
Moreover, it is assumed that  and 

 .

Second, it lets  to be the model parameter estimate 
of θ. It follows an asymptotic normal distribution with 
mean   and variance , where F is the n × p matrix 
with elements . It has full column rank, 
p. This implies that the estimated response  follows an 
asymptotic normal distribution with mean y0 and variance  

 where fx is a p × 1 vector with elements    
 and V is the covariance matrix of the 

response vector.
Third, if the mean function,   parameters 

is p and the number of random effect is r, the number of 
observations in the data set, n, must be at least p + r +1. It 
estimates all of the parameters. This implies that it is n ≥ p 
+ r +1.

In EGLS estimation method, the covariance matrix 
of y is known as the Generalized Least Square (GLS) 
estimator, . It is to minimize the objective function 
With respect to θ. (Gumpertz & Rawlings, 1992).

        (3) 

Then, V is a known positive definite (non-singular) 
covariance matrix, which arises from the model as follows.

        (4)

It shows E(wijk) = 0, Cov(wijk) =  , E(εijkl) = 0 and 
Cov(εijkl) =  .

It lets the variance-covariance matrix of the 
observations var (y) be written as follows.

V =   +  
    
    =                      (5)

Using spectral decomposition, it can be seen that V 
is positive definite if and only if there exists a non-singular 
matrix P such as

V = PPt         (6)

Then, by multiplying model (4) by P-1 on both sides, 
it yields 

             (7)
 

                                                                               (8)

it defines T = , , and 
. Then the equation (5) becomes

T =   + E        (9) 

E(Φ) is 0 and V(E) = is . Thus, the GLS model 
has been transformed into an Ordinary Least Square 
(OLS) model. Hence, equation (9) is solved using the OLS 
technique. Taking the summation of both sides of equation 
(9) and square the researches have  

        (10)

L(θ*) = 

          =             (11)

By minimizing L(θ*) w.r.t. θ* and equating to zero 
the researches have the equation as follows:
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            (12)

At this point, equation (12) has no closed form. 
Hence, it will be solved iteratively using the Gauss-Newton 
method via Taylor series expansion of  at first 
order of

 

                                                                             (13)

It shows that  around x = a. Then,   
is the remainder term which is reasonably small if p is 
sufficiently large. Therefore, the researches have the 
equation as follows:

                                                                             (14)

Let   

And    for all N cases and  

, then equation (14) becomes

       (15) 

It shows that D0 is the N×P derivative matrix with 
elements of {dijkl×p}.  This is equivalent to approximating the 
residuals for the model that is E(θ*) = T - η(θ*)  by

          = 
        =       (16)

It shows that z0 =  and  . 
Next, the researchers apply the QR decomposition by 
Householder (1958) to (16). This is due to its numerical 
stability characteristic for estimating the parameters in the 
model (Klotz, 2006). This is done to decompose D0 into the 
product of an orthogonal matrix and an inverted matrix. 

Theorem 1: If A is an m × n matrix with full column 
rank, A can be factored as A = QR.  It shows that Q is an 
m × n matrix whose column vectors forms an orthonormal 
basis for the column space of A and R as an n × n invertible 
upper triangular matrix.

Proof: Let m×n matrix have columns w1, w2,...
wn  m-vectors. In addition, it lets q1, q2,...qn, qn+1,...qm be 
orthonormal m-vectors such as:

,  if i ≠ j      (17)

Then Q is m×n with orthonormal columns, QTQ = I. 
If A is a square matrix (m = n), tQ is orthogonal that is QTQ 
= QQT = I. Hence,  qi is orthogonal to w1, w2,...wn. Therefore, 
it shows:

                                                                             (18)

This implies that A = QR

                                                                             (19)

It lets A = [w1  w2  …  wn] and R = w ∙ q ∙ Therefore, 
equation (19) is written as

                                                                             (20)

Equation (20) shows that R is n×n. It is upper 
triangular with nonzero diagonal elements and R is non-
singular. Meanwhile, diagonal elements are nonzero. 

Theorem 2: If A is an m×n matrix with full column 
rank, and A = QR is a QR-decomposition of A, the normal 
system for Ax = b can be expressed as Rx = QTb and the 
least squares solution can be expressed as   = R– 1QTb.

Proof: Let    = (ATA)– 1 ATb be the best approximate 
solution to Ax = b. Based on the orthonormal and orthogonal 
property exhibited by QR-decomposition, if it is A = QR , it 
shows AT = RTQT. Therefore, it is:

   = (ATA)– 1 ATb = (RTQT QR)– 1 RTQTb
       RTQT QR  = RTQTb (QT Q = 1)
  RT R  = RTQTb
    = R– 1QTb.                  (21)
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Based on the two stated and proved theorems on 
QR-decomposition, the decomposition of M0 is presented 
as M0 = QR.

It shows Q as an N×N orthogonal matrix that is QTQ 
= QQT = I . Then, R is an N×P triangular matrix that R is 
zero below the main diagonal. The researchers write Q and 
R as follows:

      (22)

It means Q1 is the first P columns and Q2 is the last 
N – P columns of Q. Then, it shows:

 
        (23)

with R1 a P×P upper triangular matrix with all 
elements greater than zero and R2 is a (N – P)×P lower 
matrix of zeros. Moreover, it shows:

       (24)

It means that  and  are of dimension P×N and 
(N – P)×N respectively. Therefore, it is   
geometrically. Then, Q columns define an orthogonal or 
orthonormal basis for the response space with the property. 
Moreover, P columns cover the expectation plane. Projection 
onto the expectation plane is very easy if the projection is in 
the coordinate system given by Q (Klotz, 2006).

Next is the transformation of the response vector, 
which is

       (25)

with components of

       (26)

and

       (27)

The projection of g onto the expectation plane is 
therefore simply given as  in the Q coordinates and   

 with as n the original coordinates. So, it 

is . This implies that  can now be 

easily estimated using backward solving (Klotz, 2006).

     (28)

In equation (28), it should be closer to y than  
and move to a better parameter value of  .Another 
iteration is performed by calculating new residuals z1 = 

 , a new derivative matrix M0, and a new increase. 
This process is continuously repeated until convergence is 
obtained, and until the increment becomes so small. There 
is no useful change in the elements of the parameter vector. 

It is expected that the new residual sum of square 
should be less than the initial estimate, but if it is otherwise, 
a small step in the direction  is introduced. A step factor    

λ is introduced such as  where λ is chosen to 
ensure that the new residual sum of squares is less than the 
initial estimate. A common method starts with λ = 1 and 
halves it until it is satisfied that the new residual sum of 
squares is less than the initial estimate. In actual practice the 
GLS, it is not possible to be implemented. This is because 
the variance-covariance matrix, V, is unknown. Therefore, 
an estimated V is obtained and substituted into equation 
(3), and the term of EGLS is used. There are many methods 
for estimating the variance components to substitute for V 
in equation (3). In this research, the procedure for MLE 
technique is presented. 

The MLE procedure for variance components 
estimation from nonlinear SP design model is presented. 
The MLE method used for this research is an iterative 
method for estimating the variance components. The 
method follows the maximum likelihood algorithm for the 
linear model with variance components by Hemmerle and 
Hartley (1973) and the procedure presented by Gumpertz 
and Rawlings (1992). The mean function of  is 

the first approximated through a first-order in Taylor series 
centered at  as shown in equation (15). Therefore, the 
log-likelihood function is given as:

        (29)

It means  is approximated by 

the surface and lets ln L to Γ become, 

        (30)

It shows that z0 = , , 

, and . Then, 

the gradient is given by:

        (31)

        (32)

Multiplying the partial derivative first term by VV–1 
and equating to zero gives the estimating equations as 
follows:

     (33)

        (34)
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The estimates of  and  are 
iteratively obtained at (h + 1)st iteration by substituting a 
prior estimate of  into equation (33) to get an updated 
estimate of . Then, the updated  and prior estimate 
of  are substituted into equation (34) to obtain updated 
estimates of the variance components. These two steps are 
iterated till convergence is achieved. Therefore, equations 
(33) and (34) become

        (35)

and

   

       

     
                                   (36)

When the further iteration does not improve the log 
likelihood, the solutions to the equations may turn out to be 
negative. In such scenario, the negative value resets to zero 
before the next iteration.

This research presents the procedure and steps in 
estimating the parameters for a SP design model that the 
mean part of the model can be any nonlinear function. Then, 
the variance components ( ) of the model are 
estimated via MLE technique. This is achieved by 
minimizing  the  objective  function, 

 that the estimates of   and 

  are iteratively obtained at (h + 1)st iteration 
by substituting a prior estimate of  to the estimating 
equation till convergence occurs. This is done by 
transforming the GLS nonlinear SPD model into an OLS 
nonlinear SPD model using iterative Gauss-Newton via 
Taylor Series expansion procedure approximated at first 
order. QR decomposition technique is introduced into the 
estimation system to achieve stability in the estimates.

The EGLS method presented in this research 
is available and applicable for estimating linear fixed, 
random and mixed-effect models. However, in practical 
situations, the functional form of the mean in the model is 
often nonlinear due to the dynamics involved in the system 
process. Since the parameters enter the model nonlinearly 
in which the model is intrinsically nonlinear, the closed 
form of the differentiated objective function does not exist. 
Hence, the use of an iterative Gauss-Newton via Taylor 
Series expansion procedure approximated at first order 
is adopted and implemented. These iterative procedures 
for estimating the parameters of the nonlinear SP models, 
statistical software such as the %NLINMIX SAS macro 
or SAS PROC NLMIXED can be used to handle all 
computations.

IV. CONCLUSIONS

This research addresses the variance estimation using 
MLE for the EGLS. The use of other variance-covariance 
estimation technique can be used such as RMLE technique, 
the two-step technique, and others. In addition, the MLE 
technique can be adopted to estimate intrinsically nonlinear 
SPD model parameters and its variance components using 
an iterative scoring method. This will involve a partial 
derivation at first and second order of the log-likelihood 
function.The results show that EGLS method presented is 
available and applicable to estimate linear fixed, random, 
and mixed-effect models. However, in practical situations, 
the functional form of the mean in the model is often 
nonlinear due to the dynamics involved in the system 
process.

Further research can be done by estimating the 
variance-covariance parameters using RMLE technique. 
It has the ability of producing estimates that are not 
downwardly biased. It is peculiar to MLE technique 
when the sample size is small. This can as well lead to 
biased standard error estimates. Moreover, an expectation 
maximization technique can be used as an alternative 
iteration technique for estimating the model parameters. 
This research objective is strictly theoretical. An application 
of the technique can be further researched on or using other 
research techniques suggested.
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