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Abstract. Predicting point and nonpoint source runoff of dissolved and suspended materials into 

their receiving streams is important to protecting water quality. Therefore, it is important to 

monitoring the condition of river water quality. The purpose of this study is to predict water 

quality in small streams using an Artificial Neural Network (ANN). The study focuses on small 

stream in tributary of Brantas River. The variables of interest are dissolved oxygen (DO), 

biochemical oxygen demand (BOD), chemical oxygen demand (COD), pH and temperature (T). 

To validate the performance of the trained ANN, it was applied to an unseen data set from a 

station in the region. The result show that the prediction of DO is 6.03 mg/litre, pH is 6,47 

mg/litre and temperature is 25.18°. With the relatively error was 15.63%, 12.64% and 14.12% 

respectively. It was finally concluded that ANN models are capable of simulating the water 

quality parameters. 
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1.  Introduction 

Rivers have received increasing amounts of attention due to their vicinity to large centres of 

population [6, 8]. Therefore, it is necessary to have reliable information on characteristic of water quality 

for effective pollution control and water resource management, especially in arid regions [5, 4]. 

In an effort to handle this problem, it is necessary to conduct accurate and efficient water quality 

monitoring activities as a reference to make efforts to manage the quality of river water [1, 7]. Therefore, 

the quality of river water can improve along with the increasing knowledge of human work more 

facilitated by the computer [3].  

An Artificial Neural Network (ANN) is a computational method inspired by the studies of the brain 

and nervous system in biological organisms [9]. ANN models have been used increasingly in various 

aspects of science and engineering because of its ability to model both linear and nonlinear systems 

without the need to make any assumptions as are implicit in most traditional statistical approaches [2].  

The main aim of the present work is to construct an artificial neural network (ANN) model of the 

Surabaya river water quality. The DO, BOD, COD, pH and temperature of the river water were taken 

as the dependent variables here and set of other parameters constituted the independent variables. In this 

study, ANN models have been identified for computing the DO, BOD, COD, pH and temperature of the 

river water. 
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2.  Material and Methods 

The data set used in this study was generated through continuous monitoring of the water quality of 

Surabaya river which is the tributary of Brantas river, the biggest river in East Java. This research was 

conducted on three water quality monitoring stations located in Surabaya river, namely Canggu 

Tambangan station, Perning Bridge and Jrebeng Bridge. Data of water quality parameter used is monthly 

data for 10 years (2006 -2015), and parameters used are DO, BOD, COD, pH and temperature. To 

calculate the discharge using monthly rainfall data for 10 years (2006-2015) from 3 nearest stations 

(Kemlaten, Krian, Bakalan). Field data for DO, pH and temperature were analyzed with the help of 

water quality checker (HORIBA U-50) device. Prediction analysis of water quality parameters by 

modeling the artificial neural networks using NeuroSolution 7.0 For Excel. The ANN network used for 

the present study is shown in Figure 1. In the modeling analysis used three scenarios that will be 

explained in the next section.  

 
 

Figure 1. Structure of a multi-layer feed forward Artificial Neural Network model 

 

The mathematical model of mass balance method can be used to determine the average concentration 

of downstream flow from point source and non-point sources pollutants (Figure 2).  

 

 
Figure 2. River Flow scheme for mass balance analysis  
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1. River flow before mixing with pollutant sources 
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4. River flow after mixing with pollutant sources. 
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3.  Result and Discussion 

3.1.  Analysis of water quality using artificial neural networks (ANN) 

In this study, the ANN method will be applied to predict water quality parameters (DO, BOD, COD, 

pH and temperature) at Jrebeng Bridge point. At the prediction stage with ANN method in this study 

will be made 3 (three) configuration. So it will be seen which configuration model has the best accuracy. 

The differences between the three scenarios lies in the input and desire variables. 

3.1.1.  Discussion of configuration results 1 

Configuration I is conducted to predict parameters that can be measured directly in the field such as 

DO, pH and temperature. This is carry out to determine the current condition of water quality at the 

downstream point with no need to measure the downstream, only with measurement data in upstream 

and centre of the river. After that, also tried to predict BOD and COD only with input parameter of DO, 

pH and Temperature. From the results of ANN analysis in configuration 1 shows good results for DO, 

pH and Temperature parameters. But at the output of BOD and COD shows the RE is still high namely 

above 10% (Table 1). The lowest result in configuration 1 for DO, pH and temperature set in the 

configuration with the output of each parameter, then set in the composition of the same dataset and 

epoch namely the dataset 60:20:20 and epoch 5000 with RE DO = 4.50%, pH = 0.99% and Temperature 

=1.03%. 

Table 1. Relative error for configuration I with output for each parameter 

Parameter Epoch 

Relative Error (%) 

Dataset 

Composition 

50%:30%:20% 

Dataset 

Composition 

60%:20%:20% 

Dataset 

Composition 

60%:30%:10% 

DO 

1,000 10.55 8.73 9.21 

5,000 4.94 4.50 7.91 

10,000 10.00 6.13 9.78 

BOD  

 

1,000 30.10 32.95 41.72 

5,000 33.42 30.90 30.92 

10,000 30.30 40.34 36.18 

COD 

1,000 33.31 34.07 52.16 

5,000 40.10 36.01 42.64 

10,000 34.66 28.53 35.18 

pH 

1,000 1.15 1.17 1.29 

5,000 1.15 0.99 1.35 

10,000 1.44 1.12 1.20 

T 

1,000 1.32 1.43 1.38 

5,000 1.49 1.03 1.26 

10,000 1.50 1.30 1.48 

3.1.2.  Discussion of configuration results II 

Configuration II is conducted to predict water quality in the downstream with water quality 

parameters, in which the measurement can be done in the laboratory, with the requirement having the 

data of river water quality that will be measured on the upstream and downstream of the river. For 

instance, we will measure BOD and COD, the requirements we must have BOD and COD data on 

upstream and downstream and direct measurable supporting data such as DO, pH, and temperature at 3 

river sections ie upstream, middle and downstream. As well as required rainfall data from some nearby 

rain stations.  
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Table 2. Relative error for configuration II with BOD and COD output 

Parameter Epoch 

Relative Error (%) 

Dataset 

Composition 

50%:30%:20% 

Dataset 

Composition 

60%:20%:20% 

Dataset 

Composition 

60%:30%:10% 

BOD 

1,000 20.44 17.58 20.48 

5,000 18.49 15.59 16.15 

10,000 17.43 24.66 22.38 

COD 

1,000 23.62 16.91 18.54 

5,000 31.45 27.29 21.10 

10,000 24.95 18.51 19.25 

 

From the results of ANN analysis in configuration II shows the RE is still above 10% (Table 2). The 

lowest results in configuration 2 for BOD and COD are in different epoch but still in the same data set 

composition ie 60:20:20. For BOD Located on epoch 5,000 with a RE of 15.59% whereas COD located 

on epoch 1,000 with RE 16.91% 

3.1.3.  Discussion of configuration results III 

Configuration III is performed to predict BOD or COD parameters that cannot be measured directly 

in the field. Analyzes were performed using input data that can be measured directly in the field such as 

DO, pH and temperature. This was conducted to determine the current condition of BOD and COD 

condition without need to bring water sample to the laboratory but only with input parameter DO, pH 

and temperature, so it could save time and cost.  Here is an example of the best RE configuration III as 

shown in Table 3. 

 

Table 3. Relative Error configuration III with BOD and COD output 

Parameter Epoch 

Relative Error (%) 

Dataset 

Composition 

50%:30%:20% 

Dataset 

Composition 

60%:20%:20% 

Dataset 

Composition 

60%:30%:10% 

BOD 

1,000 29.89 20.67 31.55 

5,000 32.25 33.20 50.87 

10,000 40.56 41.65 33.46 

COD 

1,000 30.58 32.68 26.85 

5,000 38.06 28.62 28.25 

10,000 27.57 31.55 36.43 

 

From the analysis results seen in the 3rd configuration apparently, the smallest RE is in the same 

epoch that is 1,000, but the results obtained is still better in the 2nd configuration, this is because in the 

3rd configuration RE is still above 20%. So, it can be concluded that the form of network architecture in 

the 2nd configuration can be used in BOD and COD forecasting. After conducted 90 times process of 

ANN analysis using Neurosolution for excel then the analysis result of the model with the smallest RE 

can be seen in Table 4. 
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Tabel 4. Selection of the Smallest Relative Error 

Parameter 

Smallest RE 

Epoch  Configuration  
Dataset composition 

Train : cros val : test 
RE (%) 

DO 5,000 1 60 % : 20% : 20% 4.50 

BOD 5,000 2 60 % : 20% : 20% 15.59 

COD 1,000 2 60 % : 20% : 20% 16.91 

pH 5,000 1 60 % : 20% : 20% 0.99 

Temperature  5,000 1 60 % : 20% : 20% 1.03 

3.2.  Comparison between model results and actual data 

Result of model and actual data analysis for DO, pH and temperature parameter at smallest RE 

located in the epoch and configuration as well as the same data set composition, namely epoch 5,000 

configurations 1 and data set composition 60:20:20. Comparison between model of analysis result and 

actual data for DO, pH and temperature parameter can be seen in Figure 3-8. The analysis shows that 

the model is already approaching the actual data, so it can be concluded that the model can be used to 

predict water quality condition.  

 

  
Figure 3. Comparison between DO actual and 

model 

 

Figure 4. Distribution of DO actual and model 

  
Figure 5. Comparison of pH actual and model Figure 6. Graph distribution of pH actual and 

model 

Model Actual 
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Figure 7. Comparison between temperature 

actual and model 

Figure 8. Graph of data distribution the output 

temperature of ANN and actual temperature 

3.3.  Water Quality Prediction  

For water quality prediction, the next conducted is to add the data of direct measurement results in 

the field which then put as input data and desired data using one of the running results of the parameter 

with the best output that has the smallest RE %. From the analysis result, it is known that the prediction 

of DO, pH and temperature conditions is 6.03 mg/litre, 6.47 and 25.18°C. Meanwhile, the differences 

of the result between model and field data for DO, pH and temperature respectively were 1.12, 0.73 and 

4.14, with an average RE of 14.14% (Table 5). 

 

Tabel 5. Comparison of Model and Measurement Data in the Field  

Point Parameter 
Value 

Difference KR % 
Model Field 

Jembatan Jrebeng 

DO (mg/litre) 6.03 7.15 1.12 15.63 

pH 6.47 5.74 0.73 12.64 

Temperature (°C) 25.18 29.32 4.14 14.12 

4.  Conclusions 

The smallest RE value of DO amounted 4.50%, pH 0.98% and Temperature 1.0267% located in 

configuration 1 with target of each parameter using epoch 5,000 and dataset composition of training 

60%, cross validation 20% and testing 20%. For the smallest RE of BOD 15.58% and COD 16.90% 

with configuration model 2, epoch 5,000, and dataset composition of Training 60% - cross validation 

20% - testing 20%. Predicted result value for DO parameter is 6.03 mg/litre and the field measurement 

value are 7.15 mg/litre has a difference of 1.12 mg/litre with a RE of 15.63%. The predicted value of 

ANN for pH amounted 6.46 and the field measurement value 5.74 has a difference of 0.73 with a RE of 

12.64%. The predicted value of ANN for temperature amounted 25.18°C and the field measurement 

value 29.32°C has a difference of 4.14°C with a RE of 14.12%.  The analysis results show that with an 

average RE rate of less than 15%, the ANN model can be used to predict water quality conditions, which 

will make it easier to predict water quality conditions for better river management. Suggestions for 

future research to use more data from multiple stations to obtain more accurate results and represent the 

overall river condition.  
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