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Abstract. This article presents a new model of the DISPRIN Model combination with two 

different level optimization methods. The new model of DISPRIN Model combination and 

Differential Evolution (DE) algorithm is called DISPRIN25-DE Models and its incorporation 

with Monte Carlo Simulation method called DISPRIN25-MC Models. The case study is Lesti 

Watershed (319.14 Km2) in East Java. The model test uses a 10-year daily data set, from 

January 1, 2007 to December 31, 2016. Data series Year 2007 ~ 2013 as a set of training data 

for calibration and data Year 2014 ~ 2016 as testing data set for model validation. Running 

program DISPRIN25-DE Models with input parameter value C_min = 0, C_max = 1, H_min = 

0, H_max = 600 mm obtained best fitness 0.044 m3/sec, NSE = 0.762 and PME = -0.059. The 

DISPRIN25-MC Models analysis generates a minimum RMSE of 0.056 m3/sec, NSE = 0.779, 

PME = -0.70. From the RMSE and NSE indicators it appears that both models can show an 

equivalent level of performance, but in terms of the PME indicator and iteration time is 

apparent The DISPRIN25-MC model has worse performance than the two DISPRIN25-DE 

models. 

Keywords: automatic, calibration, disprin model, rainfall-runoff 

1. Introduction 

A combination of metaheuristic methods with a conceptual hydrological model can produce a reliable 

and practical new model applied to divert the rainfall data series into runoff data. In the application the 

new model can perform automatic calibration by utilizing the rainfall data [P(t)], Evapotranspiration 

[Ep(t)] and runoff [Q(t)] with limited series length [10]. 

Several new models resulted from a combination of conceptual models of hydrology and 

metaheuristic methods have been successfully developed by previous researchers, among others; The 

combination of GA with HBV Modified Model  [15], CTSM Algorithm with HBV Model and NAM 

Model [13], combination of GA with HBV Modelling Model [8], Shuffle Complex Evolution 

Algorithm (SCE) with AFFDEF Model  [4], Combination Dynamically Dimensioned Search (DDS) 

Algorithm and SCE Algorithm with SWAT 2000 Model [21]. Xin'anjiang Models with SCE 

Algorithms [1], GA and GA hybrid [20]. 
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Metaheuristic methods for the automatic calibration of the Tank Model parameters have been 

widely proposed by world researchers, including a combination of Particle Swam Optimization (PSO) 

Algorithms with Tank Models [16], Tank Models combined with Marquard Algorithm [17], GA [13]. 

The combination of the Tank Models with the PSO Algorithm for flood discharge analysis with the 

hourly period in urban areas in Taiwan has also performed very well [7]. Multi Tank Model 6 tanks 

system combined with DDS Algorithm can show better results than the output of the Finite element 

method (FEM) model [9]. The Tank Model 8 tank system combined with DDS Algorithm and GA can 

perform well in predicting groundwater fluctuations in Japanese Yamagata. In this case the two 

developed models can show nearly the same error rate, but the DDS Algorithm based optimization 

method is more effective in terms of speed reaching convergent conditions [6, 11]. 

This article presents two new models result the combination of the DISPRIN Model (Dee 

Investigation Simulation Program for Regulating Network) as described by D.G. Jamieson & J.C. 

Wilkinson (1972) in Shaw, 1985, page 367 with parameter optimization method based on DE 

Algorithm and Monte Carlo Simulation Method. The new model of the combination of DISPRIN 25 

Model parameters with Algorithm DE called DISPRIN25-DE Model and its merger with Monte Carlo 

Simulation Method named DISPRIN25-MC Model [18]. The application program system is compiled 

using M-FILE MATLAB programming language with the reason of practicality in matrix operation 

and easiness in data management in graphical form. The results of this study are expected to be an 

alternative solution to solve the problem of limited river flow data which is often a classical constraint 

in water resource development activities in developing countries. 

2. Material and Methods 

1.1 Hydrological Model 

The DISPRIN model is included in the lumped model’s category which technically can be solved by 

using the analogy of the Sugawara Tank Model simulation. In "the UK's Water Resources Board's 

Model DISPRIN", this model was developed at the Dee River research program in the United States 

[12]. The scheme developed as the basis of simulation is shown Figure 1. 

 

 
 Figure 1. Simulation scheme of DISPRIN Models.  
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In the application of the DISPRIN Model a watershed should be divided into 3 zones according to 

their position and physical characteristics, i.e. up-land zone, hill-slope zone and bottom-slope zone. 

The up-land zone is located in an upstream basin that is physically sloped by a steep slope, zone hill-

slope located in a central basin with a relatively moderate surface slope and a bottom-slope zone 

located downstream of a watershed that tends to have a relatively flat surface slope. Each zone of the 

watershed is presented by two vertically arrayed tanks. The first tank or upper tank represents the 

combined surface and intermediate reservoir that contribute to the flow on the surface flow and the 

intermediate flow. The second tank or bottom tank is the reservoir sub-base that contributes to the 

flow of the sub-base flow. The tanks in each zone are interconnected with the principle of gravity 

flow. The horizontal outflow flow from the up-land zone tank group will flow in the hill-slope zone 

tank group, then the hill-slope zone tank group will drain the water in the bottom slope zone. In the 

vertical upstream flow, the upper tank will fill the bottom tank when there is sufficient water reservoir 

in the upper tank. However, if evapotranspiration is so dominant that it cannot be fulfilled by tank 

water reserves, the water reserves in the lower tanks will be taken at the value of the deficit. This 

process applies also to two tank groups in the hill-slope basin zone and bottom-slope zone. 

The flow through a tank can be solved through the continuity equation. If Tank B1 is reviewed, 

then the equation applies: 

SB1(t) = SB1(t-1) + qA1(t) - qB1(t) - qB2(t) + Py(t) – Ey(t)  (1) 

with, 

SB1(t)  = Water level Tank B1 period t [mm]. 

SB1(t-1) = Water level Tank B1 period t-1 [mm]. 

qA1(t)  = Horizontal flow Tank A1 period t [mm/day] 

Py(t)  = Precipitation on hill-slope zone period t [mm/day] 

Ey(t)  = Evapotranspiration on hill-slope zone period t [mm/day] 

qB1(t)  = Horizontal flow Tank B1period t [mm/day] 

  = cB1*[(SB1(t-1) + SB1(t)]/2) - hB1]   (2) 

qB2(t)  = Vertical flow Tank B1 period t [mm/day] 

  = cB2*[SB1(t-1) + SB1(t)]/2]    (3) 

cB1  = Horizontal flow coefficient Tank B1 

cB2  = Vertical flow coefficient Tank B1  

The Tank D1 accommodates the channel flow factor in the attenuation effect component. The 

water reservoir in this tank is not affected by the evapotranspiration process. The filling of water in the 

Tank D1 is only influenced by the percolation flow of the three watershed zones. At the beginning of 

the dry season the base flow in the river is caused by the intermediate flow and sub-base flow 

components. However, at the end of the dry season when the water reserves in the intermediate zone 

have been exhausted to meet evapotranspiration needs, the river flow is only supported by the Tank 

D1. High water catches on Tank D1 stated: 

SD1(t) = SD1(t-1 +qA4(t)+qB4(t)+qC4(t)  (4) 

In the DISPRIN Model stream flow is the result of translation effect of superposition of surface 

flow, sub base flow and base flow. The translation effect factor is presented by Tank D2. The water 

height in Tank D2 is calculated by the equation: 

SD2(t) = SD2(t-1)+qC1t(t)+ qC3t(t)+qD1(t)  (5) 

with, 

SD2(t)  = Water lavel Tank D2 period t,    

SD2(t-1)  = Water level Tank D2 period (t-1),   

qC1t(t)  = (Ab/A_DAS) * qC1(t), and  

qC3t(t)  = (Ab/A_DAS) * qC3(t). 
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Q (t) is the river runoff period t at the control point of the watershed in units according to the 

calculated analysis period. In data analysis with daily period input variables, then river runoff value in 

m3/second unit can be converted by equation: 

Q(t) = A_DAS * q(t)/(86.4)  (6) 

2.2 Calibration Model 

2.2.1 Fitness function 

The parameter calibration model is an analogy of solving the optimization problem to produce the 

optimal value of DISPRIN Model parameters. The objective function of the optimization process is 

the minimization of deviation curve of debit training data and the model simulation debit curve. In the 

metaheuristic method the objective function is expressed as a fitness function. In this article the fitness 

value is expressed as RMSE which is calculated by the equation [7, 21]: 

𝐹 = 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ [𝑄𝑡𝑟𝑎𝑖𝑛,𝑡 − 𝑄𝑠𝑖𝑚,𝑡]

2𝑁
𝑡=1  (7) 

 

with, F = fitness, QSim,t = discharge simulated period t, Qtraining, t = discharge training period t, N = 

number of data points. 

2.2.2 Parameter optimization based on Differential Evolution Algorithm (DE) 

DE includes stochastic search methods and population based search. DE has similarities with other 

evolutionary algorithms (EA), but differs in terms of distance and direction information from the 

current population used to guide the search process for better solutions. In the field of hydrological 

modelling the DE algorithm has been successfully applied for parameter optimization of SWAT 

Model 16 parameters [21]. The DE algorithm contains 4 components, namely; 1) initialization, 2) 

mutation, 3) recombination or crossover and 4) selection [2]. The process of calibrating the parameters 

in the DISPRIN25-DE Model systematically can be explained as follows: 

1)   Input training data set : Evapotranspiration [Ep(t)], Rainfall [P(t)], Observation Debit 

[Qtraining(t)] and area of up-land watershed zone [Au], hill-slope [Ah], bottom-slope [Ab]. 

2) Setting parameter DE : dimension (D), number of individual (N), upper limit (ub) and lower limit 

(lb) parameter value, and maximum generation number (maximum iteration). The value of D is 

corresponding to the number of optimized DISPRIN Model parameters. D = 25 for DISPRIN25-

DE Models. 

3) Initialization: the generation of the initial value of the 0th generation vector, the variables to j and 

vector ican be represented by the following notation. 

𝑥𝑗,𝑖,0 = 𝑙𝑏𝑗 + 𝑟𝑎𝑛𝑑𝑗(, 1)(𝑢𝑏𝑗 − 𝑙𝑏𝑗) (8) 

The random number is generated by the rand function, where the resulting number lies between 

(0,1). Index j denotes the variable to j. In case of minimization of function with 25 variables, then j 

will be worth 1,2,3, .... 25. 

4) Mutation, this process will produce population with size of N vector experiment. Mutation is done 

by adding two vector differences to the third vector by the following notation : 

𝑣𝑖,𝑔 = 𝑥𝑟0,𝑔 + 𝐹(𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔) (9) 

It appears that two randomly selected vector differences need to be scaled before being added to 

the third vector, xr0, g. Factor scale FЄ (0,1+) has real positive value to control population growth 

rate. The base vector index r0 is determined by a random way that different from the index for the 

target vector, i. Besides being different from each other and different from the index for the vector 

base and the target vector, the vector index of the increments r1 and r2 can be chosen once per 

mutant. 

5) Crossover, at this stage DE crosses every vector (xi, g) with mutant vector (vi, g), to form the vector 

of ui, g with the formula. 
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𝑢𝑖,𝑔 = 𝑢𝑗,𝑖,𝑔 = {
𝑣𝑗,𝑖,𝑔 → 𝑖𝑓 (𝑟𝑎𝑛𝑑(0,1) ≤ 𝐶𝑟𝑜𝑟𝑗 = 𝑗𝑟𝑎𝑛𝑑

𝑥𝑗,𝑖,𝑔 → 𝑖𝑓 (𝑟𝑎𝑛𝑑(0,1) > 𝐶𝑟𝑜𝑟𝑗 ≠ 𝑗𝑟𝑎𝑛𝑑
 (10) 

6) Selection, if trial vector ui,g has a goal function value smaller than the target destination function 

xi,g, then ui,g will replace the position xi,g in the population in the next generation. If the opposite 

happens then the target vector will remain in its position in the population. 

The process of analysis of items 4), 5), 6) is done repeatedly from generation 0 to the maximum 

generation specified (iter_max). Once the maximum generation is reached, then the optimal parameter 

values and the model simulation debit from the calibration stage are generatedand the model 

simulation debit from the calibration stage.. 

2.2.3 Parameter optimization base on Monte Carlo Simulation Method 

In the field of hydrological modelling Monte Carlo simulations have been successfully used to 

perform the uncertainty and sensitivity analysis of FORTRAN-HSPF model parameters [14]. The 

Monte Carlo method can also be used to estimate the value of Tank Model parameters [3] and 

successfully identify the value and structure of the HBV Model with great satisfaction [19]. The 

process parameter optimization of DISPRIN25 Model is done through the following stages [14]: 

1) Formulate a system of optimization model equations that will be simulated,  

2) Input training data sets, namely: Au, Ah, Ab, P (i), Ep (i) and Qobs(i), 

3) Input parameters Monte Carlo Method, ie: number of samples (N), and sample space limit (lb and 

ub) of each variable analyzed, i.e. 25 parameters Model DISPRIN. 

4) generates random numbers of uniform distributions or other probabilistic distributions of value 

[0,1], 

5) calculate the appropriate random variable for each model parameter under study based on the 

number and space of the desired sample, 

6) evaluate model performance by using random input parameter value result from step 5) according 

to the equation developed in step 1), 

7) steps 4) and 5) repeated as much as the number of samples given, and 

8) analyzing and discussing the output of the models presented in graphical form and statistical 

parameters. 

2.3 Model validation 

Model validation is done by reapplying the DISPRIN25 Model with input set of data testing and the 

optimal parameter value of the result of the calibration process. The simulated discharge from the 

model output will be compared with the discharge testing data, and the deviation test uses the RMSE, 

Nash-Shutclife Efficiency (NSE) and Persistence Model Efficiency (PME) indicators. NSE and PME 

are calculated by the formula [5]. 

𝑁𝑆𝐸 = 1 −
∑ (𝑞𝑡

𝑠𝑖𝑚−𝑞𝑡
𝑜𝑏𝑠)

2𝑁
𝑡=1

∑ (𝑞𝑡
𝑜𝑏𝑠−𝑞𝑡

𝑚𝑒𝑎𝑛)
2𝑁

𝑡=1

 (11) 

𝑃𝑀𝐸 = 1 −
∑ (𝑞𝑡

𝑠𝑖𝑚−𝑞𝑡
𝑜𝑏𝑠)

2𝑁
𝑡=1

∑ (𝑞𝑡
𝑜𝑏𝑠−𝑞𝑡−1

𝑜𝑏𝑠)
2𝑁

𝑡=1

 (12) 

2.4 Case Study 

The position of Lesti Watershed in unity of Brantas watershed is shown in Figure 2. Lesti Watershed 

has an area of 319.14 km2, divided into Up-land, hill-slope and bottom slope respectively of 67.02 

Km2, 114.89 Km2 and 137.23 Km2.The data series of hydroclimatology in this study is data of 

recording date from January 1, 2011 to December 31, 2013. Evapotranspiration data obtained from the 

analysis using Penmann Method with data input wind speed, air temperature, air humidity and the 

duration of solar irradiance monthly. Climatic parameters data obtained from the recording results 

from Karangkates Station. There are 4 rain gauge stations covered in Lesti Watershed, namely; St. 

Dampit, St. Turen, St. Wajak and St. Tirtoyudo. Rainfall data recorded in daily period. Average 
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regional precipitation is calculated by the Polygon Thiesen Method. Weighting factor of Polygon 

Thiesen in the four rain stations was 0.380, 0.09, 0.19 and 0.34, respectively. River flow data from the 

listing of St. AWLR Tawangrejeni is available in the hourly period. The transformation of the 

discharge data into a daily mean period is calculated by means of an algebraic average. Furthermore, 

the data series is divided into two groups. The first group as a set of data training for the calibration 

process and the second group as set of data testing for the model validation process. Set of 7-year 

training data, the record period of January 1, 2007 until December 31, 2013 and set of data testing 

from the record results of the period January 1, 2014 to December 31, 2016. Hydroclimological data in 

daily periods graphically shown Figure 3. Comparison of statistical parameters set of data training and 

data testing sets are shown in Table 1. Average, minimum, maximum, and varied sets of data testing 

tend to be larger than the set of data testing. 

 

 
 

Figure 2. Case studi, Lesti Watershed 

 

Table 1: Comparison of statistical parameters of training and testing data sets 

Statistic of parameters 
Discharge data (m3/sec) Rainfall data (mm/day) 

Training Testing Training Testing 

Mean 17.44 18.59 6.17 6.76 

Minimum 5.91 5.99 0.00 0.00 

Maximum 35.03 37.58 77.76 83.87 

Deviation standard 6.02 6.87 9.62 10.82 
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Figure 3: daily training and testing data set  

3. Result and discussion 

The DISPRIN Models implementation reference is still very limited so the feasibility limit of the 

parameters value becomes difficult to define. Referring to the application of the Sugawara’s Tank 

Model of various references, the minimum (LB_C) and maximum (UB_C) parameters of the tank 

outlet coefficient are "0" and "1" respectively. The initial high water catch and the position of the tank 

outlet are positive numbers whose value varies depending on the watershed hydrological 

characteristics being analyzed. In this article the minimum value of the initial parameter of the 

container and the position of the tank outlet (LB_H) is set to "0", and the maximum value (UB_H) is 

approached by trial and error. The results of the analysis by utilizing the application DISPRIN25-DE 

Model generated the relevant UB_H value is 600 mm. Further analysis using input value LB_C = 0, 

UB_C = 1, LB_H = 0, UB_H = 600 mm. The results of the DISPRIN25-DE Models analysis with the 

parameters inputN = 350 and Iter_max = 250 and the results of the DISPRIN25-MCModels analysis 

with the input sample number of 200,000 are shown in Table 2, Table 3 and Figure 4 to Figure 6. 

Table 2: Comparison of model performance indicator values 

Performance indicator Notation 
Calibration stage Validation stage 

DE MC DE MC 

Root Mean Square Error RMSE 0.044 0.056 0.086 0.100 

Nash-Sutcliffe Efficiency NSE 0.762 0.779 0.727 0.769 

Persistence Model Efficiency PME -0.059 -0.700 -0.128 -0.505 

Time of iteration t_iteration 126.67 172.59 - - 

 

The best fitness value or minimum RMSE at the calibration stage of the DISPRIN25-DE Models is 

obtained 0.044 m3/sec and the analysis of the DISPRIN25-MC Models with the sample input quantity 

of 200,000 is obtained 0.056 m3/sec. The progress of achieving the minimum RMSE values of the two 

models is shown in Figures 4 and 5. Based on the RMSE and NSE indicators both models can perform 

as well, but on the PME indicator the both model gives a negative value which means it does not 
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perform well, The DISPRIN25-DE model has much better performance than the DISPRIN25-MC 

Model. Model performance in the validation stage is generally decreased although not significant. This 

is understandable because the data training sets and data testing sets have different statistical 

parameters. In terms of the iteration the DISPRIN25-MC Model shows 30% longer than the 

DISPRIN25-DE model. From the various considerations, it can be concluded that the process 

optimization parameter DISPRIN25 Model based DE Algorithm is more effective than the analysis by 

applying Monte Carlo Simulation Method. 

 

 
Figure 4: Progress the best fitness value of DE Algorithm 

 
Figure 5: RMSE value of Monte Carlo Simulation 

results Sorted from large to small 

Table 3: DISPRIN25 Models optimum parameters 

Parameter Description 
Constraint Optimum parameters 

LBj UBj DE MC 

hA1 height of surface outlet up-land zone 0.00 600.00 0.07 69.95 

hA2 height of sub surface outlet up-land zone 0.00 600.00 600 433.8 

CA2 infiltration coefficient up-land zone 0.00 1.00 0.348 0.502 

CA3 sub surface coefficient up-land zone 0.00 1.00 0.499 0.0075 

CA4 percolation coefficient up-land zone 0.00 1.00 0.18 0.926 

SA1_0 initial storage of tank SA1 0.00 600.00 155.15 599.79 

SA2_0 initial storage of tank SA2 0.00 600.00 0 434.53 

hB1 height of surface outlet hill-slope zone 0.00 600.00 0 592.27 

hB2 height of sub surface outlet hill-slope zone 0.00 600.00 500.31 281.28 

CB2 infiltration coefficient hill-slope zone 0.00 1.00 0.672 0.954 

CB3 sub surface coefficient hill-slope zone 0.00 1.00 0.906 0.898 

CB4 percolation coefficient hill-slope zone 0.00 1.00 0.293 0.768 

SB1_0 initial storage of tank SB1 0.00 600.00 67.72 213.99 

SB2_0 initial storage of tank SB2 0.00 600.00 600 160.06 

hC1 height of surface outlet bottom-slope zone 0.00 600.00 0 434.89 

hC2 height of sub surface outlet bottom-slope zone 0.00 600.00 596.49 269.24 

CC2 infiltration coefficient bottom-slope zone 0.00 1.00 0.846 0.684 

CC3 sub surface coefficient bottom-slope zone 0.00 1.00 0.26 0.547 

CC4 percolation coefficient bottom-slope zone 0.00 1.00 0.506 0.829 

SC1_0 initial storage of tank SC1 0.00 600.00 164.48 221.5 

SC2_0 initial storage of tank SC2 0.00 600.00 600 79.31 

CD1 runoff coefficient 0.00 1.00 0 0.007 

CD2 runoff coefficient 0.00 1.00 0.007 0.386 

SC1_0 initial storage of tank (attenuation effect) 0.00 600.00 282.57 369.87 

SC2_0 initial storage of tank (translation effect) 0.00 600.00 591.1 2.97 
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Figure 6: Comparison of the discharge observed data series and the model output 

 

The comparison of the flow curve data and the curve from the model outcomes at the calibration 

stage and validation stage is shown Figure 6. Results from the DISPRIN25-MC model outcomes 

appear to be different at high flow conditions, where the results obtained tend to be under estimated. 

The resulting flow curves of the both models at the calibration stage can generally follow the seasonal 

trend of the training data flow curve. In low flow, normal flow and high flow conditions tend to place 

themselves in a moderate position. Fluctuations in the sharp flows that occur due to the high rainfall 

intensity in the daily period cannot be responded well. This condition is the cause of the low value of 

the resulting PME indicator. Taking to the simulation scheme and the total equation of the Model 

DISPRIN25 flow as shown in Figure 1, the existence of the translation effect factor (channel flow) is 

likely to be the factor causing this condition. The existence of the translation effect factor presented by 

a tank with a bottom outlet actually becomes an obstacle to model efforts in anticipating the 

fluctuation of sharp flows. Rapid flow changes due to the high rainfall intensity occurring in the 

accumulation of up-land zone tanks, hill-slope and bottom-slope are muted in translation effect tanks 

and are delivered slowly. In the minimum RMSE condition the optimal value of the DISPRIN25 

Model parameter is shown in Table 3 in column [5, 6]. The optimal value of DISPRIN25 Model 

parameters from the output of the two models gives different results because the resulting performance 

level is also significantly different. 

4. Conclusions 

Based on the RMSE, NSE, PME and iteration indicators the DE Algorithm is proven to work more 

effectively than Monte Carlo Simulation Methods in solving the parameterization problem of the 

DISPRIN25 Model. Testing Model DISPRIN25-DE on Lesti Watershed (319.14 Km2) with daily data 

set can show good performance both calibration stage and validation stage. Generally generated flow 

curves can follow the seasonal trend of the observation flow curve. In low flow conditions, the normal 

flow as well as the high flow curve from the outline of the model tend to place themselves in a 

moderate position. Fluctuations in the sharp flows that occur due to the high rainfall intensity of the 

daily period cannot be responded well. This condition is the cause of the low value of the resulting 

PME indicator. The translation effect factor presented by a tank with a basic outlet actually hampers 

the efforts of the DISPRIN25 Model in anticipating the occurrence of sharp fluctuations. Rapid flow 

changes due to the high rainfall intensity occurring in the accumulation of up-land zone tanks, hill-

slope and bottom-slope are muted in translation effect tanks and are delivered slowly. The optimal 
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value of DISPRIN25 Model parameters from the output of the two models gives different results 

because the resulting performance level is also different. 
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