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The purpose of this study was to implement a reliable 
model for bathing water quality prediction using the 
Cogent Confabulation classifier and to compare it with 
other well-known classifiers. This study is a continu-
ation of a previously published work and focuses on 
the areas of Kaštela Bay and the Brač Channel, located 
in the Republic of Croatia. The Cogent Confabulation 
classifier is a thorough and simple method for data clas-
sification based on the cogency measure for observed 
classes. To implement the model, we used data sets 
constructed of remote sensing data (band values) and 
in situ measurements presenting ground-truth bathing 
water quality. Satellite data was retrieved from the Sen-
tinel-3 OLCI satellite and it was atmospherically cor-
rected based on the characteristics and specifications of 
band wavelengths. The results showed that the Random 
Forest, K-Nearest Neighbour, and Decision Tree clas-
sifiers outperformed the Cogent Confabulation clas-
sifier. However, results showed that the Cogent Con-
fabulation classifier achieved better results compared 
to classifiers based on Bayesian theory. Additionally, 
a qualitative analysis of the four best classifiers was 
conducted using spatial maps created in the QGIS tool.
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1. Introduction

Bathing sites in coastal areas are the main plac-
es for recreational activity during the summer 
period for many people. This type of activi-
ty provides a number of benefits for human 
health, both psychological and physical. Many 
countries generate a lot of income based on this 
activity and create jobs through coastal tourism. 
However, microbial contamination of bathing 
water poses a serious risk to public health, thus 
jeopardizing the health and economic benefits 
associated with bathing. Moreover, contamina-
tion of bathing water is most often caused by 
wastewater from sewage, agricultural runoff, 
or accidental discharge from the city sewage 
sources [1]. 
To actively monitor and classify bathing water 
quality, and provide information to the public 
for the purpose of protecting human health, the 
European Union adopted the Bathing Water Di-
rective (BWD) 2006/7/EC [2].
According to the BWD, member states must 
monitor at least two microbiological param-
eters of faecal bacteria (e.g. Escherichia coli 
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2.2. Algorithms

There are many examples of using machine 
learning (ML) methods to retrieve water quali-
ty status using remote sensing and in situ data. 
A well-written summary of the most used ML 
methods is presented in [21]. The authors con-
ducted a study of all the literature published 
between 2001 and 2021 on the application of 
ML methods to estimate water quality parame-
ters from satellite data. They concluded that the 
most common machine learning methods for 
water quality monitoring (regional and global) 
are Artificial Neural Networks (ANN), Support 
Vector Machines (SVM), Random Forest (RF), 
Decision Tree (DT), Multilayer Perceptron 
Neural Networks (MLP), Cubist, and Genetic 
Programming (GP). To the best of the knowl-
edge of the authors of this study, there are no 
records of articles that use the Cogent Confabu-
lation Classifier to retrieve water quality status.
In [22] and [23], the authors address the seg-
mentation and classification of natural land-
scape images primarily for the purpose of 
wildfire smoke detection by using Cogent Con-
fabulation Classifier. Furthermore, the authors 
in [24] suggest using a two-layered confabula-
tion architecture for artificial creatures to select 
appropriate behaviours. They implemented an 
arbiter that decides on the most appropriate be-
haviour among suggested behaviours from the 
two confabulation layers. Also, the authors in 
[25] present an interesting work where they 
generated user data and matched the probability 
distribution giving it an additional qualification 
by using confabulation theory. 
Based on these findings, we are motivated to 
apply this method on Sentinel-3 OLCI satellite 
imagery to retrieve the status of bathing water 
quality.

3. Methodology

3.1. Study Area

The study area addressed by this research (Fig-
ure 1) includes the Kaštela Bay and the Brač 
Channel, which are located near the town of 
Split in the south of the Republic of Croatia in 
Central-Southern Europe. The Kaštela Bay area 
is a more closed-off body of water compared to 

2. Related Work

2.1. Remote Sensing

Bathing water quality is influenced by numer-
ous optical and non-optical parameters, which 
are usually monitored through on-site water 
sampling. Coastal bathing water quality is of-
ten assessed based on on-site measurements 
that analyse the presence of bacteria such as 
Escherichia Coli, Intestinal Enterococci, Total 
Coliforms, and Faecal Coliforms [2]. The dis-
advantage of this approach is that all in situ 
measurements can provide information only for 
the sampling location. To obtain information on 
the water quality for the entire coastal bathing 
area, lakes, or seas, many studies propose water 
quality prediction models that use remote sens-
ing data together with in situ measurements 
[8]–[11].
The selection of suitable satellite data is based 
on its characteristics and limitations. Tempo-
ral, spatial, spectral, and radiometric resolu-
tion are considered the most common criteria 
for selecting suitable satellite images. In many 
studies, the focus is usually on the detection of 
optical parameters such as chlorophyll (Chl-a) 
[12], [13], coloured dissolved matter (CDOM) 
[12], [14], total suspended matter (TSM) [12], 
[15]–[17] or turbidity. These parameters were 
obtained using different satellite products ob-
tained by MODIS, Sentinel-2, Sentinel-3, 
Landsat-8, and MERIS satellites. However, 
in addition to optical parameters, physical pa-
rameters such as temperature, total phosphorus 
(TP) and total nitrogen can be measured [18], 
[19]. For example, the study [20] described ob-
taining temperature using Landsat-8 TIRS sat-
ellite images, which were then compared using 
different bacterial parameters to obtain bathing 
water quality.
Remote sensing can be a valuable source of 
data as an answer to the limitations of tradition-
al methods where collecting and interpreting 
information about remote objects can be per-
formed without physical contact with the ob-
ject. 

and Intestinal Enterococci). This Directive 
also complements the EU Water Framework 
Directive (WFD) and the EU Marine Strategy 
Framework Directive (MSFD). In situ mea-
surements are usually expensive, weather de-
pendent, and time consuming. Additionally, 
these measurements are not performed every 
day, so the measured bathing water status may 
change before the next scheduled measure-
ment. Water quality monitoring by performing 
in situ sampling is an important factor in envi-
ronmental sustainability, but it should consider 
other methods and sources of data to achieve 
timely and yet less expensive information on 
water quality status. 
This work is a continuation of the previously 
published work [3] and aims to continuously 
assess the state of bathing water quality for the 
area of the Kaštela Bay and the Brač Chan-
nel. This research used a larger data set than 
the one in the previous study. In addition, to 
accurately predict bathing water quality and 
achieve better data quality, a custom pixel-lev-
el atmospheric correction was used for satellite 
data. For the quantitative analysis and predic-
tion of bathing water quality, the same algo-
rithms as in the previous study were used in 
order to be able to compare the results. The 
focus of this paper is on a data-driven model 
based on the Cogent Confabulation Classifier, 
which achieved the best results in previous re-
search. The Cogent Confabulation theory was 
introduced by Robert Hech-Nielsen in 2005 
[3], where he proposed a new model of verte-
brate cognition – the maximisation of cogency. 
According to Hech-Nielsen's theory, the con-
fabulation could be cogent if the fundamen-
tal theorem of cognition is exploited by using 
certain restrictions (e.g., proper lexicons and 
knowledge). It was proposed as a new model 
of the fundamental mechanism of all aspects 
of cognition (vision, hearing, planning, move-
ment, etc.). In this paper, except quantitative-
ly as was the case in the previously published 
paper, the results are presented and described 
qualitatively using spatial maps. As in the pre-
vious paper, the aim of this study is to predict 
bathing water quality based on collected data 
– in situ and remote sensing data. 
In situ data on sea bathing water quality in Cro-
atian beaches is measured and publicly released 

by the Ministry of Environment and Energy of 
the Republic of Croatia [5]. 
Remote sensing can be used for environmental 
monitoring, especially in monitoring bodies of 
water such as lakes, seas, and oceans [6], be-
cause other data collection methods, such as the 
use of boats and buoys, are expensive, weath-
er-dependent, and difficult to maintain. In ad-
dition, remote sensing provides different types 
of data, such as panchromatic, multispectral, 
hyperspectral, and Synthetic Aperture Radar 
(SAR) data, which depend on the characteris-
tics of the sensors installed on the satellite. 
The collected remote sensing data used in this 
study was the Sentinel-3 satellite imagery ac-
quired using the Ocean and Land Colour In-
strument (OLCI), which is considered to be the 
predecessor of the Medium Resolution Imaging 
Spectroradiometer (MERIS) instrument hosted 
on Envisat. The OLCI was designed for ocean 
monitoring and is placed on the Sentinel-3 
satellite along with the Sea and Land Surface 
Temperature Radiometer (SLSTR) instrument. 
The combination of data from the OLCI and the 
SLSTR on the same date of the captured image, 
known as data fusion, enables more accurate 
predictions of bathing water quality. OLCI pro-
vides images with a spatial resolution of 300 m 
and a temporal resolution of two days (global 
coverage at the equator) [6]. It has a total of 21 
spectral bands ranging from the visible to the 
near infrared (400 nm to 1020 nm) of the elec-
tromagnetic spectrum [7].
With an explained approach the main goal of 
this study is to see whether the proposed da-
ta-driven model can be used to assess the bath-
ing water quality of the beaches of the Republic 
of Croatia quickly and accurately.
The rest of this paper is organized as follows. 
First, we outline the application of remote 
sensing and machine learning methods to as-
sess water quality status. Then the method-
ology of collecting data and how the Cogent 
Confabulation classifier can be used to predict 
bathing water quality is described. Finally, the 
results of quantitative and qualitative analysis 
are discussed as proof-of-concept, as well as 
ideas for future work related to this developed 
prototype for the classification of bathing wa-
ter quality.
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3.2.2. Satellite Imagery

In this paper Sentinel-3 OLCI Level-1B sat-
ellite data was used, where all OLCI spectral 
bands have calibrated, ortho-geolocated, and 
spatially resampled Top of Atmosphere (TOA) 
radiances [27].
Satellite imagery georeferenced in the WGS 84 
coordinate system (EPSG: 4326) was down-
loaded by using API from the Sentinel Hub EO 
Browser [28]. For the period of 1st of June 2016 
to 1st of October 2021, we collected satellite 
scenes where each scene contained 21 spectral 
bands (B01-B21). Band values were extracted 
for every performed in situ measurement where 
there was available satellite data. 
Some of the most common obstacles in the reli-
able classification of satellite scenes obtained by 
optical sensors are clouds and the atmosphere. 
However, Sentinel-3 does not have a conve-
nient cloud mask. Therefore, in this study, the 
bands B16, B17, and B21, specific for atmo-
spheric correction and clouds, were used. Satel-
lite data was examined in QGIS and discovered 
that pixels of these bands that refer to land or 
clouds have values higher than 0.17. According 
to this, only those satellite data that have values 

under this threshold were considered to achieve 
a more confident data set. In Figure 2a compar-
ison of true color image and bands B16, B17, 
and B21, on which threshold 0.17 was applied 
on each pixel, is presented. Satellite imagery 
describes the scene on the 30th of July 2022 
when the scene was affected by clouds. It can 
be noticed that the land and clouds have black 
pixels whose values are above 0.17, while pix-
els related to the sea are white.
Finally, after the applied data correction, the 
data set is determined as:

Date | Quality rating | Bands B01-B21
The overall data set of 747 measurements was 
shuffled and divided into two subsets - train and 
test, where 33% of the data set is used as the test 
data. In Figure 3 a histogram of the overall data 
set presented by quality rating density can be 
seen. As it is mentioned in Section 2.2.1 there 
have been more than 95% of measurements rat-
ed as ''excellent'', so we downsampled this data 
set by reducing the size of this major class to get 
a more balanced data set. The size is reduced by 
removing measurements when there were more 
than seven measurements rated as ''excellent'' 
on the same date.

the Brač Channel where the sewage system has 
not been established properly. Also, this area is 
known throughout history for environmental 
contamination with elemental mercury, several 
heavy metals, and radionuclides mainly caused 
by the PVC factory Jugovinil [26]. According 
to this, there are more incidents in the Kaštela 
Bay, where the bathing water is of inferior qual-
ity and below the allowed levels.
The Republic of Croatia is a tourist country, es-
pecially in summer periods, when this area is 
a swimming destination for many tourists. So, 
examining the bathing water quality of the Adri-
atic Sea, especially in the summer months when 
there is a higher tourist activity, is necessary to 
protect human health and the environment.

3.2. Data Set

The data set used in this paper is a combination 
of in situ and satellite band values. The collect-
ed data is related to the summer season between 
June 1st and October 1st from 2016 to 2021. All 
of the retrieved data is free and publicly avail-
able.

3.2.1. In situ 

Firstly, in situ data on bathing water quality is 
collected from the website ''Sea bathing water 
quality in Croatia'' [5] published by the Min-
istry of Environment and Energy, Croatia. The 
in situ data was collected using web scraping 
implemented in the Python programming lan-
guage, where the only in situ data for the study 
area is extracted and processed. Each in situ 
measurement has a flag that describes the level 
of bathing water quality. There are four possi-
ble quality flags according to the Bathing Wa-
ter Directive 2006/7/EC: ''poor'', ''sufficient'', 
''good'' and ''excellent'' quality. More than 95% 
of the measurements were rated as "excellent" 
according to the results of the annual assess-
ment of the quality of bathing water in Croatia 
carried out by the EU Directive for the period 
2016-2021. In the absence of data diversity, the 
in situ data set was split into two categories: 
"good" and "poor". The "good" category rep-
resents all measurements rated as "excellent", 
and the "poor" category represents all other 
measurement ratings.

Figure 1. The study area – European context – national context 
(Republic of Croatia) – the Kaštela Bay and the Brač Channel.

Figure 2. True colour map and B16, B17, B21 masks for the date 
30th of July 2022 for the study area.
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3.4. Evaluation

In this study, the performance of the Cogent 
Confabulation classifier is compared with other 
machine learning algorithms that use supervised 
learning to build the classifier. All algorithms 
are applied to the same data sets and a short de-
scription of each of them is given below:

 ● Decision Tree classifier – a non-paramet-
ric supervised learning method that utilis-
es knowledge-based information without 
making any assumptions about the data 
[31],

 ● K-Nearest Neighbours classifier – classi-
fies each test sample based on its k-nearest 
neighbours, which are found by calculat-
ing the distance between the test and train-
ing samples [32],

 ● Multi-Layer Perceptron classifier – a feed-
forward artificial neural network organized 
in three or more layers (input layer, hidden 
layer, and output layer) [33],

 ● Naive Bayes classifier is based on Bayes 
theorem and works on the principle that 
all the classified features are independent 
of each other. There are different types of 
Naive Bayes models, but in this study the 
following ones were used [34][35]:

 ○ Bernoulli – requires samples to be rep-
resented as binary-valued feature vec-
tors,

 ○ Complement – use the statistics from 
the complement of each class to calcu-
late the weights of the model,

 ○ Gaussian – ensures that the features are 
following normal Gaussian distribution 
and supports continuous data,

 ○ Multinomial – consider a feature vec-
tor that is used when there is a discrete 
count,

 ● Random Forest classifier – consists of de-
cision trees, where each tree votes for a 
particular class, and where more reliable 
predictions can be produced by combining 
a large number of decision trees [36].

The above algorithms were implemented using 
the Python programming language and the free 
software machine learning library scikit-learn. 
Python 3.7.15 [37] and scikit-learn library 1.0.2 
[38] versions were used to implement these al-
gorithms. To improve the performance of the 
selected machine learning algorithms, common 
hyperparameters were tuned to get the best fit 
for the data set. Hyperparameter tuning was per-
formed by using the Python class GridSearch-
CV provided by the scikit-learn library on a train 
data set consisting of 80% of all samples. This 
class loops through all parameters provided as 

3.3. Cogent Confabulation

Confabulation is the universal basic operation 
of thought. Hecht-Nielsen described in [29] 
that the term ''confabulation'' means ''a fast 
winners-take-all process proposed as the fun-
damental mechanism of all aspects of cogni-
tion (e.g. vision, hearing, planning, reasoning, 
etc.)''. According to him, ''confabulation theory 
hypothesizes that all aspects of cognition can be 
explained and implemented by using four fun-
damental elements: a universal modular system 
for representing the objects of the mental world, 
knowledge links, confabulation, and action 
command origination.'' Furthermore, the theo-
ry proposes that the underlying mathematical 
process of cognition is the maximization of co-
gency. Given that, the theory asserts that every 
decision-making process involved in cognition 
is a choice of conclusions that give the strongest 
support that the assumed facts used are true. 
Cogency is the probability of the assumed facts 
being true, given an assumption that the event is 
true. For example, in cogent confabulation theo-
ry, the true cogency of each class of water quali-
ty is approximated by the confabulation product 
of the single band's cogencies. These cogencies 
are determined as facts and formally expressed 
as p(b1, b2, ..., b21| x). The theory claims that the 
decision-making process involved in cognition 
is the selection of that conclusion which is most 
supportive of the assumed facts being true. 
The equation for calculation of the confabula-

tion product referred to as the ''winner-take-all'' 
strategy, where winner takes all in competition 
between the symbols receiving excitation with-
in a module [22][30] is shown in (1):

p(b1, b2, ..., b21 | x) = 
C * p(b1 | x) * p(b2 | x) * ... * p(b21 | x)       

(1)

where:
 ● b1, b2, ..., b21 represent band values,
 ● x stands for the premise of the argument 

(''good'' and ''poor''),
 ● and the factor C is a positive constant, 

where by using it cogency can be maxi-
mised by maximising the confabulation 
product [24].

To calculate the confabulation product, the first 
measure that was calculated was the cogency of 
each band for class ''good'', as well as for class 
''poor''. This was performed on a train data set. 
Figure 4 illustrates the entire procedure, from 
selecting and retrieving data from the applica-
tion domain to calculating the cogency of each 
band. Once the cogency is retrieved for all 
bands of both classes of bathing water quali-
ty, the calculation of the confabulation product 
was performed for the test data set. A result of 
this process is a quantitative analysis where 
evaluation measures of each applied classifier 
are calculated, and a qualitative analysis where 
a map as a spatial visualization of bathing water 
quality is generated.

Figure 3. Data distribution based on bathing water quality.

Figure 4. Research methodology – the flow chart presents procedures from  
data collection to data consolidation, where, for each band, cogency is  

calculated for two distinctive classes of bathing water quality.
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 ● False negative (FN) – the classifier incor-
rectly predicts bathing water quality as 
''good'', while actual in situ measurement 
is ''poor'' quality.

The confusion matrix has been shown to be 
the most appropriate evaluation tool to com-
pare classifiers of rare events on an imbalanced 
data set. It is extremely useful for determining 
the following measures to evaluate the perfor-
mance of the tuned classification model [40]:

 ● Precision – represents the proportion of 
positive samples (TP) that were correctly 
classified to the total number of positive 
predicted samples (TP, FP),

TPPrecision
TP FP

=
+             

(2)

 ● Recall – represents the positive correctly 
classified samples to the total number of 
positive samples,

TPRecall
TP FN

=
+               

(3)

 ● F1-score – represents the harmonic mean 
of precision and recall,

*1 2* Precision RecallF score
Precision Recall

− =
+     

(4)

 ● Balanced Accuracy – represents the metric 
that is used to assess the performance of 
the classification model [41],

2
Sensitivity SpecificityBalanced

Accuracy
+

=
   

(5)

where Sensitivity and Specificity are defined as:
TPSensitivity

TP FN
=

+               
(6)

TNSpecificity
TN FP

=
+               

(7)

4. Results and Discussion

To evaluate the Cogent Confabulation classifier 
performance, the following metrics were used: 
precision, recall, F1-score, balanced accuracy, 
and confusion matrix. For the specified metrics, 
the binary type of averaging is used on the data. 
The reason the binary type of averaging was 
taken is that ground truth target values (y_test) 

and predicted targets returned by a classifier 
(y_pred) are binary. Thus, in binary classifica-
tion 0 stands for ''poor'' and 1 stands for ''good'' 
bathing water quality. These metrics are calcu-
lated for two different types of data sets:
1. including all Sentinel-3 OLCI bands,
2. including Sentinel-3 OLCI bands (B03, 

B04, B05, B06, B10, and B11) related to 
calculation of the Chl-a parameter [7], 
which is often used as an indicator of wa-
ter quality.

Furthermore, other machine learning classifiers 
were considered and compared with the Cogent 
Confabulation classifier for both data sets. As 
well, based on the obtained results, a visualiza-
tion of the quality of bathing water in the study 
area was made using the QGIS tool.

4.1. Case 1: All Sentinel-3 OLCI Bands

In the first case, all Sentinel-3 OLCI band val-
ues were included in the input data set. The main 
reason for including all wavelengths was to 
avoid losing any information that can be related 
to bathing water quality. In Figure 5, the results 
of the balanced accuracy measure, obtained af-
ter applying nine machine learning classifiers 
on a test data set, are shown in descending order. 
According to the measure of balanced accuracy, 
the Random Forest classifier proved to be the 
best (96.5%), followed by the K-Nearest Neigh-
bours (94.2%) and Decision Tree (93.5%) clas-
sifiers. The Cogent Confabulation classifier has 
a balanced accuracy of 75.6%, which puts this 
classifier in fourth place. The first three clas-
sifiers are far more complex than the Cogent 
Confabulation classifier, so they were expected 
to achieve better results. 
Furthermore, it is important to emphasize that the 
Cogent Confabulation classifier outperforms the 
Multi-layer perceptron classifier and all Naive 
Bayes based classifiers. Additionally, the Bayes-
ian and Cogent Confabulation theories are both 
based on probabilities, but they differ in their 
approach to determining the probability of an 
event. These classifiers can be seen as compet-
ing methods for representing the formal logic for 
inductive reasoning. The main difference is that 
the confidence of an occurred event in Bayes-
ian theory is represented as posterior probability, 
while in a Cogent Confabulation theory, the con-
fidence of conclusion is represented as cogency. 

params_grid with a number of cross-validation 
folds. The model performance is evaluated on 
all combinations and the result of the model 
which performed best in all cross-validation 
folds is stored in the best_estimator attribute. 
Table 1 lists parameters for each best estimator 
found through the grid for both data sets (Case 
1 and Case 2), described in the section Results 
and Discussion.
For each trained classifier a confusion matrix 
that shows the absolute and relative number of 
TP, TN, FP, and FN values was implemented. 
The test portion of the data set was classified, 

and each measurement was assigned to one of 
the subsets [39]:

 ● True positive (TP) – the classifier predicts 
bathing water quality as ''good'', and the in 
situ measurement shows the same,

 ● True negative (TN) – the classifier predicts 
bathing water quality as ''poor'', and the in 
situ measurement shows the same,

 ● False positive (FP) – the classifier incor-
rectly predicts bathing water quality as 
''poor'', while actual in situ measurement is 
''good'' quality,

Table 1. List of best parameters for tuning algorithms.

Algorithm
Best parameters

Best parameters Best parameters

Random Forest
{'max_features': 'log2', 

'n_estimators': 100}
{'max_features': 'log2', 
'n_estimators': 1000}

K-Nearest Neighbours
{'metric': 'manhattan', 

'n_neighbors': 3, 
'weights': 'distance'}

{'metric': 'manhattan', 
'n_neighbors': 3, 

'weights': 'distance'}

Decision Tree 

{'criterion': 'entropy', 
'max_depth': 9, 

'min_samples_leaf': 1, 
'min_samples_split': 3}

{'criterion': 'gini', 
'max_depth': 6, 

'min_samples_leaf': 3, 
'min_samples_split': 8}

Gaussian – Naïve Bayes
{'var_smoothing': 

0.01873817422860384}
{'var_smoothing': 

0.15199110829529336}

Bernoulli – Naïve Bayes

{'alpha': 0.01, 
'binarize': 10.0, 

'class_prior': None, 
'fit_prior': True}

{'alpha': 10.0, 
'binarize': 8.5, 

'class_prior': None, 
'fit_prior': False}

Multi-Layer Perceptron

{'activation': 'tanh', 
'alpha': 0.0001, 

'hidden_layer_sizes': (10, 30, 
10), 

'learning_rate': 'adaptive', 
'solver': 'adam'}

{'activation': 'tanh', 
'alpha': 0.0001, 

'hidden_layer_sizes': (10, 30, 
10), 

'learning_rate': 'constant', 
'solver': 'adam'}

Complement – Naïve Bayes

{'alpha': 10.0, 
'class_prior': None, 
'fit_prior': True, 

'norm': True}

{'alpha': 10.0, 
'class_prior': None, 
'fit_prior': True, 
'norm': False}

Multinomial – Naïve Bayes
{'alpha': 0.01, 

'class_prior': None, 
'fit_prior': True}

{'alpha': 10.0, 
'class_prior': None, 
'fit_prior': False}
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 ● False negative (FN) – the classifier incor-
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''good'', while actual in situ measurement 
is ''poor'' quality.
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classifier had the lowest percentage (1,21%) in 
predicting false negative (FN) values, while the 
Random Forest classifier had the lowest per-
centage (0,4%) in predicting false positive (FP) 
values. Based on these estimated TP, TN, FP, 
and FN values we calculated evaluation metrics 
precision, recall, F1-score, and accuracy.

4.2. Case 2: Selected Sentinel-3 OLCI 
Bands

Phytoplankton abundance and biomass, usually 
expressed as chlorophyll-a (Chl-a) concentra-
tion, both indicate water quality in coastal and 
estuarine waters. Chl-a can be an effective mea-
sure of water trophic status. High concentrations 
of Chl-a can be the result of high levels of nu-
trients from fertilizers, septic systems, sewage 
treatment plants, and urban runoff which is es-
pecially characteristic of the Kaštela Bay area. 
Moreover, excess of this nutrient can cause the 
algae to grow or bloom in the freshwater of 
marine water systems and is recognized by the 
discoloration in the water, often in green, blue-
green, green-brown, or red colour. 

According to these results, the Cogent Confab-
ulation theory is more suitable for determining 
bathing water quality than the Bayesian theory. 
Also, it should be noted that all the classifiers 
based on Bayesian theory in this study had a 
balanced accuracy below 60%, which is a much 
lower percentage of balanced accuracy com-
pared to the Cogent Confabulation classifier.
The first four classifiers have achieved a high 
F1-score, as can be seen in Figure 6. This implies 
that there is a balance between the precision and 
recall metrics of these classifiers, which is im-
portant because the used data set has an uneven 
class distribution where the class representing 
‘good' bathing water quality is in the majority.  
By looking closely at each confusion matrix 
for the first four classifiers represented in Fig-
ure 7, it is evident that all these classifiers have 
predicted true positive (TP) values with a con-
fidence higher than 50%. The Cogent Confab-
ulation classifier shows results that are inferi-
or to those top three classifiers in predicting 
true negative (TN) values, where it had about 
10% fewer predicted TN values. Additionally, 
it is interesting to note that the Decision Tree Figure 7. Confusion matrices for the four best classifiers – data set of all bands.

Figure 6. F1-score results – data set of all bands.Figure 5. Balanced accuracy results – data set of all bands.
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Figure 6. F1-score results – data set of all bands.Figure 5. Balanced accuracy results – data set of all bands.
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Based on these facts, there was a meaningful 
reason why to select only the bands B03 (442.5 
nm), B04 (490 nm), B05 (510 nm), B06 (560 
nm), B10 (681.25 nm), and B11 (708.75 nm) 
that are characteristic for the detection of chlo-
rophyll. Having fewer features when imple-
menting the machine learning models results in 
less computation. Also, it speeds up retrieving 
and reading satellite data where there are now 
only six images to read instead of 21 as it was 
when we used all Sentinel-3 OLCI bands.
In Figure 8 results can be seen after applying 
nine machine learning classifiers to the test data 
set which includes only the selected bands re-
lated to Chl-a. It can be observed that compared 
to the results of classifiers which included all 
bands there is a small improvement in accuracy, 
which can even be said to be negligible. Again, 
the first four classifiers are Random Forest, De-
cision Tree, K-Nearest Neighbours, and Cogent 
Confabulation. This indicates that classifiers 
that take only six features related to the indi-
cators of water quality can classify well with 
the same confidence as those including all 21 
features. To assess the quality of performed ma-

chine learning models we have calculated F1-
score for each one and the results can be seen 
in Figure 9. F1-score is especially important in 
imbalanced class distribution as is the case in 
this study and when the FN and FP predictions 
are crucial as is the case with water quality 
which impacts human and animal health.
Figure 10 depicts the confusion matrix for the 
first four classifiers based on balanced accura-
cy for a data set that includes only the selected 
Sentinel-3 OLCI bands. It can be noticed that 
Cogent Confabulation for selected features can 
better predict TN values by approximately three 
percent more than it was in the case when all 
bands were considered. This is especially im-
portant because we are more interested in poor 
bathing water quality and how to detect it as 
quickly as possible. However, Random Forest, 
Decision Tree, and K-Nearest Neighbour clas-
sifiers still lead the way in predicting bathing 
water quality, where the percentage of accurate-
ly predicted TN values is around 36%. All clas-
sifiers based on Bayesian theory are still less 
reliable in bathing water quality prediction than 
the Cogent Confabulation classifier. Figure 9. F1-score results – data set of selected bands.

Figure 10. Confusion matrices for the four best classifiers – data set of selected bands.Figure 8. Balanced accuracy results – data set of selected bands.
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4.3. Qualitative Analysis

The results of the classifier, except quantita-
tively as was the case in the previous sections, 
can be presented and described qualitatively 
using spatial maps. Maps provide a general de-
scription and visualization of data, but in most 
applications, it is necessary to find the spatial 
relationship between the data. One of the most 
basic techniques in map analysis is the com-
parison of two or more maps to establish the 
spatial relationship of the data. In this qualita-
tive analysis, a map of the actual bathing water 
quality measurements (Figure 11) and the one 
generated on the results of the classifier will 

be compared. As a case study, in situ measure-
ments of the bathing water quality sampled on 
July 6th, 2022, were taken as ground truth val-
ues. Also, for the same date, satellite images of 
the Sentinel-3 OLCI satellite were download-
ed. To make a qualitative analysis we took only 
classifiers trained on selected bands (B03, B04, 
B05, B06, B10, and B11) related to the detec-
tion of Chl-a. For simplicity as in quantitative 
analysis, the classifiers that showed the best 
results have been compared, namely: Random 
Forest (Figure 12), K-Nearest Neighbours (Fig-
ure 13), Decision Tree (Figure 14), and Cogent 
Confabulation (Figure 15).

This article was created as an extension of the 
study described in [3]. Increasing the data set 
and including the atmospheric correction led to 
a better result than the one that was achieved 
in the mentioned study. The Cogent Confabu-
lation classifier achieved much higher accuracy 
for both data sets. Furthermore, Random For-
est, Decision Tree, and K-Neighbors proved 
to be exceptionally good classifiers, which, by 
increasing the data set, achieved better results 

in predicting the bathing water quality than the 
Cogent Confabulation classifier. Table 2 and 
Table 3 show a comparison of the results from 
the previous study [3] with the new results that 
classifiers achieved by training on the new data 
sets. It can be noted that compared to the pre-
vious study, all classifiers achieved better and 
more reliable performance in terms of preci-
sion, recall, F1-score, and balanced accuracy 
metrics.

Table 2. Comparison of evaluation metrics results for all Sentinel-3 OLCI bands (Case 1).

Algorithm Precision Recall F1-score Accuracy

Random Forest Classifier
Old 0.9406 0.9973 0.9584 0.4986

New 0.9618 0.9934 0.9773 0.9651

K-Nearest Neighbours Classifier
Old 0.9382 0.9151 0.9265 0.4793

New 0.9600 0.9474 0.9536 0.9421

Decision Tree Classifier
Old 0.9429 0.9507 0.9468 0.5188

New 0.9786 0.9013 0.9384 0.9349

Cogent Confabulation Classifier
Old 0.9438 0.8740 0.9075 0.5239

New 0.8012 0.8487 0.8243 0.7559

Gaussian – Naïve Bayes
Old 0.9395 0.9781 0.9584 0.4890

New 0.7170 0.5000 0.5891 0.5921

Bernoulli – Naïve Bayes
Old 0.9407 1.0 0.9695 0.5

New 0.6894 0.5987 0.6408 0.5836

Multi-Layer Perceptron Classifier
Old 0.9407 1.0 0.9695 0.5

New 0.6494 0.9868 0.7833 0.5671

Complement – Naïve Bayes
Old 0.9367 0.5671 0.7065 0.4792

New 0.6481 0.9934 0.7844 0.5651

Multinomial – Naïve Bayes
Old 0.9407 1.0 0.9695 0.5

New 0.6194 0.6316 0.6254 0.5053

Table 3. Comparison of evaluation metrics results for selected Sentinel-3 OLCI bands (Case 2).

Algorithm Precision Recall F1-score Accuracy

Random Forest Classifier
Old 0.9407 1.0 0.9695 0.5

New 0.9618 0.9934 0.9773 0.9651

K-Nearest Neighbours Classifier
Old 0.9463 0.9178 0.9319 0.5459

New 0.9664 0.9474 0.9568 0.9474

Decision Tree Classifier
Old 0.9387 0.9644 0.9514 0.4822

New 0.9645 0.8947 0.9283 0.9211

Cogent Confabulation Classifier
Old 0.9472 0.8356 0.8880 0.5482

New 0.8298 0.7697 0.7986 0.7586

Multi-Layer Perceptron Classifier
Old 0.9407 1.0 0.9695 0.5

New 0.6754 0.8487 0.7522 0.5980

Bernoulli – Naïve Bayes
Old 0.9407 1.0 0.9695 0.5

New 0.7143 0.5263 0.6061 0.5947

Complement – Naïve Bayes
Old 0.9405 0.6493 0.7682 0.4986

New 0.6727 0.4868 0.5649 0.5539

Multinomial – Naïve Bayes
Old 0.9407 1.0 0.9695 0.5

New 0.6727 0.4868 0.5649 0.5539

Gaussian – Naïve Bayes
Old 0.9401 0.9890 0.9640 0.4945

New 0.6446 0.5132 0.5714 0.5303
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Figure 11. In situ measurements representing bathing  
water quality for the date 6th of July 2022.

Figure 12. Classification of bathing water quality for the date 6th of July 2022,  
using Random Forest Classifier.

Figure 13. Classification of bathing water quality for the date 6th of July 2022,  
using K-Nearest Neighbours Classifier.

Figure 14. Classification of bathing water quality for the date 6th of July 2022,  
using Decision Tree Classifier.
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In the images obtained by applying the four best 
classifiers, it can be noticed that the classifiers 
made a prediction of the "poor" bathing wa-
ter quality only along the coast. The classifiers 
made predictions based on the band values for 
each pixel, and since they were trained with in 
situ measurements only available for the coast, 
the classifier's predictions will be based on that 
input. That is why the predictions of the clas-
sifier are mostly focused on the coast instead 
of the open sea, which we consider clean since 
we have many more sources of pollution on the 
coast. In Figure 12, satellite images have been 
added to predicted ''poor'' classes of several lo-
cations predicted by the Random Forest classi-
fier, for which we do not have in situ measure-
ments to confirm this. However, if we look at the 
locations that the classifier singled out as having 
''poor'' bathing water quality, we will notice that 
it is mainly ports and the coastal area where the 
rivers flow into the sea (Jadro and Cetina rivers). 
The problem with in situ measurement is that 
it refers to only one point, while satellite data 
together with trained classifiers can provide re-
sults for a larger area. Thus, by using satellite 
imagery bathing water quality can be obtained 
almost every day (according to Sentinel-3 tem-

poral resolution). Having this in mind, these 
classifiers may have predicted some contami-
nants that may have been missed during the sea 
sampling campaign. Moreover, the generated 
spatial maps could be a good reference point 
when sampling the sea so that all potential pol-
lution could be detected in a timely manner.
The empirical results reported herein should be 
considered in the light of some limitations. First, 
classifiers are tuned with some hyperparameters, 
but there could always be another better combi-
nation which can lead to a more confident result 
and avoid overfitting. Second, the data set could 
be expanded by focusing on a larger study area 
which will not only include coast in situ mea-
surements but also on open sea as well.

5. Conclusion

In this study, a Cogent Confabulation classifier 
is implemented to predict bathing water quality. 
This classifier is compared with other machine 
learning classifiers based on the calculation of 
different types of performance metrics. Also, 
results are represented in the form of maps to 
find spatial relationships between data. The 
results suggest that the Cogent Confabulation 

classifier did not outperform Random Forest, 
K-Nearest Neighbours, and Decision Tree clas-
sifiers, but it did outperform four types of Naïve 
Bayes classifiers for both cases of using differ-
ent sets of data. Due to an imbalanced data set, 
binary averaging for all used metrics was per-
formed. Although the performance metrics did 
not show that the Cogent Confabulation classi-
fier performs better than other used classifiers, 
this classifier could be considered a promising 
classifier for solving other similar problems 
rather than some well-known classifiers which 
are usually more complex.
In future work, to make this model even more re-
liable, data fusion should be considered, where 
different satellite data and data collected by us-
ing an unmanned aerial vehicle (UAV) could be 
combined. Increasing the size of the data set, 
especially when it contains data from different 
sources, could give a higher level of detail in 
images observed at different wavelengths of the 
electromagnetic spectrum. Having this in mind 
it is reasonable to believe that this will lead to 
more sophisticated results for better prediction 
of bathing water quality.
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this classifier could be considered a promising 
classifier for solving other similar problems 
rather than some well-known classifiers which 
are usually more complex.
In future work, to make this model even more re-
liable, data fusion should be considered, where 
different satellite data and data collected by us-
ing an unmanned aerial vehicle (UAV) could be 
combined. Increasing the size of the data set, 
especially when it contains data from different 
sources, could give a higher level of detail in 
images observed at different wavelengths of the 
electromagnetic spectrum. Having this in mind 
it is reasonable to believe that this will lead to 
more sophisticated results for better prediction 
of bathing water quality.
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