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Network Connectivity Game

We investigate the cost allocation strategy associat-
ed with the problem of providing service /communi-
cation between all pairs of network nodes. There is 
a cost associated with each link and the communica-
tion between any pair of nodes can be delivered via 
paths connecting those nodes. The example of a cost 
efficient solution which could provide service for all 
node pairs is a (non-rooted) minimum cost spanning 
tree. The cost of such a solution should be distribut-
ed among users who might have conflicting interests. 
The objective of this paper is to formulate the above 
cost allocation problem as a cooperative game, to be 
referred to as a Network Connectivity (NC) game, and 
develop a stable and efficient cost allocation scheme. 
The NC game is related to the Minimum Cost Span-
ning Tree games and to the Shortest Path games. The 
profound difference is that in those games the service 
is delivered from some common source node to the 
rest of the network, while in the NC game there is no 
source and the service is established through the two-
way interaction among all pairs of participating nodes. 
We formulate Network Connectivity (NC) game and 
construct an efficient cost allocation algorithm which 
finds some points in the core of the NC game. Finally, 
we discuss the Egalitarian Network Cost Allocation 
(ENCA) rule and demonstrate that it finds an addition-
al core point.
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1. Introduction

Consider a complete symmetric network in 
which all pairs of nodes need to communicate 
with each other. Examples of such communi-
cation networks are: telecommunication net-

works in which messages are exchanged be-
tween node pairs, networks of roads in which 
communities are connected to each other and 
are sending traffic to each other, train networks, 
etc. In such networks, the service is established 
and received by node pairs. For example, if the 
message is sent between two nodes of the com-
munication network, the service is received 
by a pair of nodes (one sending a message 
and one receiving). If connection (friendship) 
is established between two users of the social 
network (Facebook/LinkedIn) a pair of nodes 
is benefiting from this service/connection. If a 
pair of cities are connected in the road network, 
the pair of cities receives the network service. 
Consequently, it seems reasonable to assume 
that actors/players are pairs of network nodes 
which need to communicate or deliver some 
service to each other. Note that in most network 
cost allocation problems considered in the lit-
erature, the service cost is delivered from some 
source(s) to network users residing at nodes. In 
those cases, source nodes are typically not pay-
ing for the cost and it is natural to identify play-
ers with nodes who receive the service. In our 
case, there is no source and the service is estab-
lished for and by pairs of nodes. Our model is 
motivated by the natural context of a number 
of real networks (transportation networks, peer 
to peer telecommunication networks) in which 
service is established between pairs of nodes 
(cities, airports, computers, individual network 
users).
The communication in such networks is estab-
lished through edges/links. It is assumed that 
each undirected edge enables communication 
in both directions. The two-way communica-
tion between any two nodes in our network can 
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game in characteristic function form. Then we,  
develop the Network Connectivity Cost Alloca-
tion (NCCA) algorithm which efficiently finds 
some cost allocation solutions in the core of 
the NC game. Finally, we introduce the Egal-
itarian Network Cost Allocation (ENCA) rule 
which potentially generates an additional core 
point.

Hence, the main contributions of this work are:

1. the formulation of the NC game and 

2. the development and analysis of a com-
putationally tractable cost allocation 
scheme(s) for generating some stable cost 
allocation solutions for the NC game.

The remainder of the paper is organized as fol-
lows. In Section 2, we review some standard 
definitions and formulate the NC game in the 
characteristic function form. In Section 3, we 
present the Network Connectivity Cost Allo-
cation (NCCA) algorithm and prove that the 
NCCA algorithm efficiently generates some 
points in the core of the NC game. In Section 4, 
we discuss the Egalitarian Network Cost Allo-
cation (ENCA) rule and prove that it also gen-
erates a core allocation. Finally, in Section 5, 
we summarize our findings and discuss future 
research.

In another related study of link games [16], 
the cost of the minimum cost spanning tree is 
allocated among the players who are edges of 
the network. Clearly, if the network is com-
plete, then the players in link games would be 
all pairs of nodes like in our NC game under 
consideration. The main difference between the 
link game and the NC game is in the definition 
of the characteristic function. In the link game, 
the characteristic function value for the coali-
tion S of edges is the cost of the network con-
necting all endpoints of edges in that coalition 
without use of any edges out of that coalition. 
In the NC game, the characteristic function 
value for the coalition of pairs C is the cost of 
the cheapest network providing service to all 
pairs in C. Namely, we assume the monotonic 
version in which the service to the coalition 
of pairs C can be delivered using any network 
edges, including edges whose endpoints do not 
appear in C. (In Table 1 we summarize how the 
characteristic function is defined for those re-
lated games.)
The main objective of this paper is to develop a 
cost allocation scheme for the NC game which 
might have practical applications in various 
communication systems. The input to our cost 
allocation problem is the complete symmetric 
network G and the minimum cost non-root-
ed spanning tree in G. We then define the NC 

be delivered via any path connecting those two 
nodes. With each edge (link), we associate the 
cost of using that edge to establish the commu-
nication. We refer to a problem of finding the 
cheapest network which provides communi-
cation for a certain set of node pairs, as to the 
Network Connectivity (NC) problem. Herein, 
we study the special case of the NC problem in 
which all pairs of nodes require two-way com-
munication. For this special case, the cost ef-
ficient solution which provides connection be-
tween all node pairs is given by the minimum 
cost spanning tree. The cost of this solution is 
shared by users who possibly have conflicting 
objectives. However, they might cooperate in 
order to decrease their joint cost. These indi-
viduals or organizations are likely to support 
the network only if their expectations for a ''fair 
share'' of the cost are met.
There are multiple proposed solutions, but no 
unique one-size-fits-all approach to cost al-
location in networks. Cooperative game the-
ory has been used to analyze several classes 
of such problems. Some related examples in-
clude: spanning tree games [1‒6], Steiner tree 
games [7, 8], network flow games [9], cost al-
location arising from routing in networks [10], 
capacitated network design games [11], hub 
network games [12, 13], shortest path games 
[14], social enterprise tree network games [15] 
and link games [16]. For a survey and some 
references on cost allocation models in net-
works see, for example, [17]. A common ap-
proach in the above papers is to formulate the 
associated cost allocation problem as a coop-
erative game in characteristic function form, 
followed by the evaluation of various game 
theoretic solution concepts in the context of a 
particular problem. We take a similar approach 
in this study of the cost allocation problem as-
sociated with the Network Connectivity (NC) 
problem.
Cooperative game theory offers the concept of 
a cost allocation solution known as the core of 
a cooperative game. The core consists of sta-
ble cost allocation solutions which provide no 
incentive for any coalition of users to secede 
and build their own subnetwork, i.e. it avoids 
crosssubsidies.
Let us first informally describe the Network 
Connectivity (NC) game. Let G = (N, E) be a 

weighted complete symmetric network and let 
the set of players P consist of all pairs of net-
work nodes. The characteristic function value 
for each subset S of players is defined as the 
cost of the network which would provide ser-
vice to all node pairs in S.
This game is related to the extensively studied 
Minimum Cost Spanning Tree (MCST) games, 
Steiner Tree (ST) games and Shortest Path (SP) 
games. The profound difference between NC 
game and MCST, ST and SP games is that in 
the MCST, ST and SP games the service is de-
livered from a distinguished source node as in 
electric power networks, streaming TV services 
and in natural gas networks. In contrast, in the 
NC game there is no source and the communi-
cation is delivered between pairs of nodes, like 
in traffic systems (network of roads, trains or 
social peer to peer networks).
The non-emptiness of the core of the related 
MCST game was demonstrated and analyzed in 
the literature, see, e.g., [1‒3, 18‒20]. However, 
the entire core of the MCST game has not been 
characterized, see [21]. It turns out that for the 
ST game, stable cost allocations do not neces-
sarily exist, see, e.g., [22]. The sufficient con-
ditions for the existence of core points of the 
ST game, as well as the heuristic algorithm for 
finding them, were presented in [7, 8]. For ap-
proximation results on the ST problem and their 
application to associated cooperative games 
see, e.g., [23, 24]. 
In the related study of Social Enterprise Tree 
Network (SETN) games, [15] introduced several 
games in which the cost of non-rooted directed 
minimum cost spanning tree is allocated among 
network nodes. It was demonstrated therein 
that the core of the SETN game(s) is not emp-
ty. There are a couple of important differences 
between the SETN game and the NC game. In 
the SETN game, players are nodes and the val-
ue of the characteristic function for a coalition 
C ⊆ N is the cost of providing service from all 
network nodes in N to nodes in C. On the other 
hand, in the NC game the players are pairs of 
nodes and for any coalition S ⊆ N * N the value 
of the characteristic function is the cost of the 
cheapest network which provides service to all 
node pairs in S. Nevertheless, in this paper we 
use some ideas about allocating cuts from [15] 
and apply it to the NC game. 

Table 1. The characteristic functions.

Players / Tree Rooted tree Non-rooted tree

Nodes
MCST
Min cost network connecting coalition C to 
the root

SETN
Min cost network connecting coalition C to 
all nodes

Pairs of  
Nodes

Link (non-monotonic)
Min cost network connecting all endpoints 
of edges in coalition C but using only 
edges in C.

NC (monotonic)
Min cost network connecting all node pairs 
in C
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The players are 

P = {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}}.

The characteristic function values:

c({a, b}) = 4,
c({a, c}) = 5,
c({a, d}) = 7,
c({b, c}) = 3,
c({b, d}) = 3,
c({c, d}) = 4,
c({a, b}, {a, c}) = 7,
c({a, b}, {a, d}) = 7,
c({a, b}, {b, c}) = 7,
c({a, b}, {b, d}) = 7,
c({a, b}, {c, d}) = 8,
c({a, c}, {a, d}) = 9,
c({a, c}, {b, c}) = 7,
c({a, c}, {b, d}) = 8,
c({a, c}, {c, d}) = 9,
c({a, d}, {b, c}) = 10,
c({a, d}, {b, d}) = 7,
c({a, d}, {c, d}) = 9,
c({b, c}, {b, d}) = 6,
c({b, c}, {c, d}) = 6,
c({b, d}, {c, d}) = 6,
...,
c(P) = 10.

Consider the following coalitions: 

S = {{a, b}, {a, d}} and 
T = {{a, c}, {a, d}}. 

Then, 

 c(S) + c(T) = 7 + 9 = 16 and 
c(S 

∩
 T) + c(S ∩ T) = c({a, b}, {a, d}, {a, c}) +

+ c({a, d}) = 10 + 7 = 17, 

which violates the concavity constraint.
It can be verified that the cost allocation

 x = (xab, xac, xad, xbc, xbd, xcd) = (4, 0, 0, 3, 3, 0) 

is in the core of the above game (P, c). Al-
though this allocation is in the core, one might 
argue that it seems unfair that players {a, c}, 
{a, d} and {c, d} do not pay anything for their 
services. Our NCCA algorithm will enable us 
to generate additional core cost allocations in 
which more players will participate.
Our network connectivity cost allocation 
scheme for the NC game constructed in the 
next section will allocate the service cost based 
on certain cut sets in G. Hence, we need to de-
fine the concept of a cut set. For a directed edge 
l = (i, j) we refer to i as the tail and j as the 
head of l, and for a subset of vertices S ⊆ N, we 
denote by δ(S) the set of all directed edges hav-
ing their heads, but not their tails, in S. A subset 

2. Definitions and Preliminaries

Let G* = (N, E*) be a complete undirected 
weighted network with an edge weight (cost) 
function w*: E* → R+. (Remark: we equiva-
lently consider a directed version in which each 
edge (i, j) is replaced with two directed edges 
(i, j) and ( j, i) in the opposite direction each 
costing half of the original undirected edge. 
Hence, we actually consider the complete di-
rected weighted network G = (N, E) with an 
edge weight (cost) function w: E → R+ under 
the assumption that edge weights are symmet-
ric, i.e. w(i, j) = w( j, i), for all edges (i, j) ∈E. 
Moreover, we assume that when some service 
is enabled via edge (i, j) so is the service via 
edge ( j, i).
The service in this network is delivered be-
tween pairs of nodes. Consequently, we define 
players as all subsets of nodes of cardinality 
two, namely P = {{i, j}: i, j ∈N and i ≠ j}. The 
goal for each pair set {i, j}∈P is to establish the 
cheapest two way connection via directed paths 
p(i, j) and p( j, i) and deliver the service from 
i to j and j to i through those paths, respective-
ly. (Remark: Since we assumed that each link 
delivers service in both directions, paths p(i, j) 
and p( j, i) will use the same nodes and links in 
the opposite direction.)
Consider the following minimization problem. 
Find the minimum cost network T = (N, ET) in 
G such that for each pair of vertices {i, j} ∈P 
there exist directed paths p(i, j) and p( j, i) in T. 
The optimal solution T = (N, ET) is the direct-
ed (non-rooted) Minimum Cost Spanning Tree 
(MCST) in G. The objective is to allocate the 
cost of T among users in P. 
In order to analyze this cost allocation prob-
lem we define the associated cooperative game 
in the characteristic function form. Let P be a 
set of players and let us define a characteristic 
function c by c: 2|P| → R+, such that c(∅) = 0 
and for each Q ⊆ P, c(Q) is the characteristic 
function value. We can interpret the value of 
the characteristic c(Q) as the cost of providing 
service to a set of users in Q. The pair (P, c) is a 
cooperative game. 
Specifically, we define characteristic function c 
as follows. The value of c(P) is equal to the cost 
of the entire non-rooted minimum cost directed 
spanning tree T, i.e. the cost of providing service 

to all pairs of nodes. The characteristic function 
value c(Q) for each subset of players Q, Q ⊆ P 
is the cost associated with the service received 
by Q. It represents the cost of delivering two-
way service between pairs in Q. Clearly, there 
is a question how should the above cost c(Q) be 
determined. For example, it could represent the 
cost of providing a service to a coalition Q by 
using only nodes appearing in Q or perhaps al-
lowing the use of nodes outside Q. If we allow 
the use of nodes out of Q, we might still restrict 
the coalition Q to use only edges of the optimal 
solution obtained for the grand coalition P, i.e.  
edges of the non-rooted directed spanning tree 
T = (N, ET) or allow Q to also use of edges in 
E \ ET. We choose to define the characteristic 
function more generally, and seek the cheapest 
network that would provide service to Q in G. 
Namely, we consider the monotonic version in 
which we allow the coalition Q to use nodes out 
of Q and any edges in E. Consequently, c(Q) 
represents the cost of a cheapest directed forest 
F in G such that for each {k, l}∈Q there exist 
directed paths p(k, l ) and p(l, k) in F. Then, the 
pair (P, c) is a cooperative game to be referred 
to as the Network Connectivity (NC) game.
Central to the theory of cooperative games is 
the solution concept referred to as the core of 
a game. The core C(P, c) of a game (P, c) con-
sists of all cost allocation vectors x ∈R|P| (x(P) 
= c(P)), such that x(Q) ≤ c(Q) for all Q ⊆ P. 
Observe that the core consists of all allocation 
vectors x which provide no incentive for any 
coalition to secede and build their own subnet-
work, i.e. there is no cross-subsidization.
A cost cooperative game (P, c) is called con-
cave or submodular if 

c(S) + c(T) ≥ c(S 
∩

 T) + c(S ∩ T) for all 
S, T ⊆ P. 

It is known that concave games [25] have 
non-empty cores. Next, we present an example 
of the NC game which is not concave but nev-
ertheless has a non-empty core.
Example 1. Consider the network depicted in 
Figure 1. This network is the directed equiva-
lent of the network used by [26] to demonstrate 
that the monotonic version of the minimum cost 
spanning tree game is not concave. We intro-
duce the NC game on this network. Bold links 
indicate the optimal NC network.

Figure 1. NC game is not concave.
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two, namely P = {{i, j}: i, j ∈N and i ≠ j}. The 
goal for each pair set {i, j}∈P is to establish the 
cheapest two way connection via directed paths 
p(i, j) and p( j, i) and deliver the service from 
i to j and j to i through those paths, respective-
ly. (Remark: Since we assumed that each link 
delivers service in both directions, paths p(i, j) 
and p( j, i) will use the same nodes and links in 
the opposite direction.)
Consider the following minimization problem. 
Find the minimum cost network T = (N, ET) in 
G such that for each pair of vertices {i, j} ∈P 
there exist directed paths p(i, j) and p( j, i) in T. 
The optimal solution T = (N, ET) is the direct-
ed (non-rooted) Minimum Cost Spanning Tree 
(MCST) in G. The objective is to allocate the 
cost of T among users in P. 
In order to analyze this cost allocation prob-
lem we define the associated cooperative game 
in the characteristic function form. Let P be a 
set of players and let us define a characteristic 
function c by c: 2|P| → R+, such that c(∅) = 0 
and for each Q ⊆ P, c(Q) is the characteristic 
function value. We can interpret the value of 
the characteristic c(Q) as the cost of providing 
service to a set of users in Q. The pair (P, c) is a 
cooperative game. 
Specifically, we define characteristic function c 
as follows. The value of c(P) is equal to the cost 
of the entire non-rooted minimum cost directed 
spanning tree T, i.e. the cost of providing service 

to all pairs of nodes. The characteristic function 
value c(Q) for each subset of players Q, Q ⊆ P 
is the cost associated with the service received 
by Q. It represents the cost of delivering two-
way service between pairs in Q. Clearly, there 
is a question how should the above cost c(Q) be 
determined. For example, it could represent the 
cost of providing a service to a coalition Q by 
using only nodes appearing in Q or perhaps al-
lowing the use of nodes outside Q. If we allow 
the use of nodes out of Q, we might still restrict 
the coalition Q to use only edges of the optimal 
solution obtained for the grand coalition P, i.e.  
edges of the non-rooted directed spanning tree 
T = (N, ET) or allow Q to also use of edges in 
E \ ET. We choose to define the characteristic 
function more generally, and seek the cheapest 
network that would provide service to Q in G. 
Namely, we consider the monotonic version in 
which we allow the coalition Q to use nodes out 
of Q and any edges in E. Consequently, c(Q) 
represents the cost of a cheapest directed forest 
F in G such that for each {k, l}∈Q there exist 
directed paths p(k, l ) and p(l, k) in F. Then, the 
pair (P, c) is a cooperative game to be referred 
to as the Network Connectivity (NC) game.
Central to the theory of cooperative games is 
the solution concept referred to as the core of 
a game. The core C(P, c) of a game (P, c) con-
sists of all cost allocation vectors x ∈R|P| (x(P) 
= c(P)), such that x(Q) ≤ c(Q) for all Q ⊆ P. 
Observe that the core consists of all allocation 
vectors x which provide no incentive for any 
coalition to secede and build their own subnet-
work, i.e. there is no cross-subsidization.
A cost cooperative game (P, c) is called con-
cave or submodular if 

c(S) + c(T) ≥ c(S 
∩

 T) + c(S ∩ T) for all 
S, T ⊆ P. 

It is known that concave games [25] have 
non-empty cores. Next, we present an example 
of the NC game which is not concave but nev-
ertheless has a non-empty core.
Example 1. Consider the network depicted in 
Figure 1. This network is the directed equiva-
lent of the network used by [26] to demonstrate 
that the monotonic version of the minimum cost 
spanning tree game is not concave. We intro-
duce the NC game on this network. Bold links 
indicate the optimal NC network.

Figure 1. NC game is not concave.
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Theorem 3. Let T = (N, ET) be the non-rooted 
Minimum Cost Directed Spanning Tree in a net-
work G = (N, E) and let (P, c) be the associated 
NC game. Then the NCCA algorithm generates 
a cost allocation in the core of this game.
Proof. First, we show that in the course of the 
NCCA algorithm, the entire cost of T gets allo-
cated. By construction, whenever any edge in 
ET was reduced by some amount, that amount 
was allocated. Further, by construction, Lemma 
1 and Lemma 2, the weights of all edges in ET 
are reduced to zero. Hence, in the course of the 
NCCA algorithm the entire cost of T has been 

allocated, i.e. c(P) = x(P). Next, we will show 
that the other core constraints are satisfied, 
namely that for each Q, Q ⊂ P, x(Q) ≤ c(Q).
For a coalition Q ⊂ P let F = (NQ, EQ) be the 
minimum cost directed forest providing service 
to Q and whose overall cost is c(Q). Let F con-
sist of K connected components

F1 = (NQ1
, EQ1

), ..., FK = (NQK
, EQK

)

which provide two way connections for all pairs 
of nodes in Q1, ..., QK, respectively, and 

Q = Q1
∩

 ... 
∩

 QK.

S ⊆ N, is said to be a cut set of G = (N, E), if 
S ≠ ∅ and the undirected subgraph G(S) of G 
induced by S is connected. We denote by φ the 
set of all cut sets of G.
The non-rooted minimum spanning directed 
tree problem can be formulated as the follow-
ing integer programming problem:

IP(N ): min{wu: u(δ(S)) ≥ 1, for all S ∈φ,
u(i, j) - u( j, i) = 0 for all (i, j) ∈E, u ∈{0, 1}E},

where u ≡ u(i, j) = 1 if (i, j) ∈E is used in the 
directed spanning tree T, and 0 otherwise. Sim-
ilar integer programming formulation for the 
rooted minimum spanning tree is presented in 
[27]. Therein, the LP relaxation is used to de-
velop a primal-dual algorithm which generates 
some core allocations for the minimum cost 
spanning tree game. It was shown in the study 
of the social tree network game [15], that due to 
the integrality gap this primal-dual result does 
not hold for the minimum cost unrooted span-
ning tree game. Nevertheless, we will use some 
ideas from the above primal-dual algorithm for 
the minimum cost rooted spanning tree game 
to construct the cost allocation scheme for the 
NC game.

3. The Network Connectivity Cost 
Allocation (NCCA) Algorithm

Based on the results obtained in the MCST re-
lated literature, we intuitively expect that the 
core of the NC game is not empty. Indeed, in 
this section, we construct a Network Connec-
tivity Cost Allocation (NCCA) algorithm and 
demonstrate that it generates some core points 
of the NC game (P, c). This algorithm is a mod-
ification of the primal-dual algorithm used 
in the context of the minimum cost spanning 
tree games [27] and social enterprise network 
games [15].
The input to our algorithm is the symmet-
ric directed weighted complete network G = 
(N, E), the minimum cost non-rooted direct-
ed spanning tree T = (N, ET) in G obtained by 
some known algorithm and a set of players 
P = {{i, j}: i, j ∈N} and i ≠ j}. If we assume that 
the service for each edge is always established 
in both directions, then it is easy to verify that T 

is the optimal network which provides two-way 
service to all pairs of nodes in P. Note that in 
the absence of this assumption, for example, the 
Hamiltonian cycle could be a cheaper solution 
than the minimum cost directed spanning tree.
In the initial step of the NCCA algorithm, we 
set the cost allocation vector x ∈R|P| to zero, and 
then in each iteration, we will construct some 
cut set S and allocate some of the cost of edges 
in ET ∩ δ(S). 
In each subsequent step, we will construct a min-
imal cut set S, for which the weights of all edges 
in δ(S) have positive values. We refer to such 
cut sets as allocating cuts. We find the smallest 
weight edge in δ(S) and denote its weight by 
wS. Then for each (i, j) ∈δ(S) ∩ ET we allocate 
the amount wS arbitrarily to the users in the al-
locating set iS = {{i, s}, s ∈S} induced by the 
allocating cut set S. It will be demonstrated in 
the proof of Theorem 3 that this allocation does 
not violate core constraints. We also reduce the 
weights of all the edges in set δ(S) by wS. Once 
a directed edge e ∈ δ(S) has its weight reduced 
to zero (we refer to it as a directed zero edge), S 
cannot be used as an allocating cut. A directed 
path p0(k, l) is called a directed zero path if all 
of its edges are directed zero edges. Clearly, the 
idea of the algorithm is to use minimal cut sets 
in such a way to allocate as much cost as possi-
ble without violating core constraints.
Next, we will show that the NCCA algorithm 
generates points in the core of the NC game 
(P, c). We will demonstrate that the algorithm 
allocates the entire cost of the optimal non-root-
ed minimum cost directed spanning tree 
T = (N, ET) and that the cost allocation satisfies 
core constraints. We need a couple of Lemmas. 
Those two Lemmas were already proven in the 
context of the social enterprise tree network 
cost allocation algorithm [15], so we omit their 
proofs.
Lemma 1. The construction of the NCCA algo-
rithm implies that for each allocating cut set S 
of cardinality |S| > 1 considered in the course of 
the algorithm there exists a directed zero weight 
path between each pair of nodes contained in S.
Lemma 2. All edges in the network whose 
weights are reduced to zero during the execu-
tion of the NCCA algorithm must be the edges 
of the optimal non-rooted directed minimum 
cost spanning tree T = (N, ET).

Algorithm 1. The NCCA algorithm.

Input: A symmetric complete directed weighted network G = (N, E) with an edge weight (cost) function w: E → R+ 
with initial weights w(i, j) = W(i, j) and the optimal non-rooted minimum cost directed spanning tree 
T = (N, ET) in G obtained using some known algorithm.

Preprocessing: We modify the weights of G = (N, E) by increasing the weights of all edges that do not belong to T, 
by an arbitrarily small weight ε > 0

Note: By slightly increasing the above edge weights, we make the minimum cost directed spanning tree T in G 
unique.

1.    Initialization: 
2.    Set the cost allocations x{i, j} = x({i, j}) = 0, for all {i, j} ∈P.
3.        Main Step: 
4.        ''Find a potential allocating cut set S (the smallest in size)''.
5.            Do for k = 1, ... |N - 1|
6.                Do for each n ∈N
7.                    Let S = {n}.
8.                    Do until |S| = k or no additional nodes can be added to S
9.                        If ∃ (i, j) ∈δ(S) such that w(i, j) = 0, let S = S 

∩
 {i}

10.                  End Do
11.                  If for all e ∈δ(S), w(e) > 0
12.                      Let wS = min{w(e), e ∈δ(S)}.
13.                      For each (i, j) ∈δ(S) ∩ ET allocate the amount wS arbitrary to users in allocating set iS = {{i, s}, s ∈S}.
14.                      Do for all (i, j) ∈δ(S) ∩ ET

15.                          Choose a{is}, {is} ∈iS such that { }is S
s S

a w
∈

=∑ .
16.                          Do for all {is} ∈iS
17.                              Let x{is}= x{is} + a{is}
18.                          EndDo
19.                      EndDo
20.                      Do for all e ∈δ(S)
21.                          Let w(e) = w(e) - wS
22.                          EndDo
23.                  EndIf
24.              EndDo
25.          EndDo
26.          End
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Theorem 3. Let T = (N, ET) be the non-rooted 
Minimum Cost Directed Spanning Tree in a net-
work G = (N, E) and let (P, c) be the associated 
NC game. Then the NCCA algorithm generates 
a cost allocation in the core of this game.
Proof. First, we show that in the course of the 
NCCA algorithm, the entire cost of T gets allo-
cated. By construction, whenever any edge in 
ET was reduced by some amount, that amount 
was allocated. Further, by construction, Lemma 
1 and Lemma 2, the weights of all edges in ET 
are reduced to zero. Hence, in the course of the 
NCCA algorithm the entire cost of T has been 

allocated, i.e. c(P) = x(P). Next, we will show 
that the other core constraints are satisfied, 
namely that for each Q, Q ⊂ P, x(Q) ≤ c(Q).
For a coalition Q ⊂ P let F = (NQ, EQ) be the 
minimum cost directed forest providing service 
to Q and whose overall cost is c(Q). Let F con-
sist of K connected components

F1 = (NQ1
, EQ1

), ..., FK = (NQK
, EQK

)

which provide two way connections for all pairs 
of nodes in Q1, ..., QK, respectively, and 

Q = Q1
∩

 ... 
∩

 QK.

S ⊆ N, is said to be a cut set of G = (N, E), if 
S ≠ ∅ and the undirected subgraph G(S) of G 
induced by S is connected. We denote by φ the 
set of all cut sets of G.
The non-rooted minimum spanning directed 
tree problem can be formulated as the follow-
ing integer programming problem:

IP(N ): min{wu: u(δ(S)) ≥ 1, for all S ∈φ,
u(i, j) - u( j, i) = 0 for all (i, j) ∈E, u ∈{0, 1}E},

where u ≡ u(i, j) = 1 if (i, j) ∈E is used in the 
directed spanning tree T, and 0 otherwise. Sim-
ilar integer programming formulation for the 
rooted minimum spanning tree is presented in 
[27]. Therein, the LP relaxation is used to de-
velop a primal-dual algorithm which generates 
some core allocations for the minimum cost 
spanning tree game. It was shown in the study 
of the social tree network game [15], that due to 
the integrality gap this primal-dual result does 
not hold for the minimum cost unrooted span-
ning tree game. Nevertheless, we will use some 
ideas from the above primal-dual algorithm for 
the minimum cost rooted spanning tree game 
to construct the cost allocation scheme for the 
NC game.

3. The Network Connectivity Cost 
Allocation (NCCA) Algorithm

Based on the results obtained in the MCST re-
lated literature, we intuitively expect that the 
core of the NC game is not empty. Indeed, in 
this section, we construct a Network Connec-
tivity Cost Allocation (NCCA) algorithm and 
demonstrate that it generates some core points 
of the NC game (P, c). This algorithm is a mod-
ification of the primal-dual algorithm used 
in the context of the minimum cost spanning 
tree games [27] and social enterprise network 
games [15].
The input to our algorithm is the symmet-
ric directed weighted complete network G = 
(N, E), the minimum cost non-rooted direct-
ed spanning tree T = (N, ET) in G obtained by 
some known algorithm and a set of players 
P = {{i, j}: i, j ∈N} and i ≠ j}. If we assume that 
the service for each edge is always established 
in both directions, then it is easy to verify that T 

is the optimal network which provides two-way 
service to all pairs of nodes in P. Note that in 
the absence of this assumption, for example, the 
Hamiltonian cycle could be a cheaper solution 
than the minimum cost directed spanning tree.
In the initial step of the NCCA algorithm, we 
set the cost allocation vector x ∈R|P| to zero, and 
then in each iteration, we will construct some 
cut set S and allocate some of the cost of edges 
in ET ∩ δ(S). 
In each subsequent step, we will construct a min-
imal cut set S, for which the weights of all edges 
in δ(S) have positive values. We refer to such 
cut sets as allocating cuts. We find the smallest 
weight edge in δ(S) and denote its weight by 
wS. Then for each (i, j) ∈δ(S) ∩ ET we allocate 
the amount wS arbitrarily to the users in the al-
locating set iS = {{i, s}, s ∈S} induced by the 
allocating cut set S. It will be demonstrated in 
the proof of Theorem 3 that this allocation does 
not violate core constraints. We also reduce the 
weights of all the edges in set δ(S) by wS. Once 
a directed edge e ∈ δ(S) has its weight reduced 
to zero (we refer to it as a directed zero edge), S 
cannot be used as an allocating cut. A directed 
path p0(k, l) is called a directed zero path if all 
of its edges are directed zero edges. Clearly, the 
idea of the algorithm is to use minimal cut sets 
in such a way to allocate as much cost as possi-
ble without violating core constraints.
Next, we will show that the NCCA algorithm 
generates points in the core of the NC game 
(P, c). We will demonstrate that the algorithm 
allocates the entire cost of the optimal non-root-
ed minimum cost directed spanning tree 
T = (N, ET) and that the cost allocation satisfies 
core constraints. We need a couple of Lemmas. 
Those two Lemmas were already proven in the 
context of the social enterprise tree network 
cost allocation algorithm [15], so we omit their 
proofs.
Lemma 1. The construction of the NCCA algo-
rithm implies that for each allocating cut set S 
of cardinality |S| > 1 considered in the course of 
the algorithm there exists a directed zero weight 
path between each pair of nodes contained in S.
Lemma 2. All edges in the network whose 
weights are reduced to zero during the execu-
tion of the NCCA algorithm must be the edges 
of the optimal non-rooted directed minimum 
cost spanning tree T = (N, ET).

Algorithm 1. The NCCA algorithm.

Input: A symmetric complete directed weighted network G = (N, E) with an edge weight (cost) function w: E → R+ 
with initial weights w(i, j) = W(i, j) and the optimal non-rooted minimum cost directed spanning tree 
T = (N, ET) in G obtained using some known algorithm.

Preprocessing: We modify the weights of G = (N, E) by increasing the weights of all edges that do not belong to T, 
by an arbitrarily small weight ε > 0

Note: By slightly increasing the above edge weights, we make the minimum cost directed spanning tree T in G 
unique.

1.    Initialization: 
2.    Set the cost allocations x{i, j} = x({i, j}) = 0, for all {i, j} ∈P.
3.        Main Step: 
4.        ''Find a potential allocating cut set S (the smallest in size)''.
5.            Do for k = 1, ... |N - 1|
6.                Do for each n ∈N
7.                    Let S = {n}.
8.                    Do until |S| = k or no additional nodes can be added to S
9.                        If ∃ (i, j) ∈δ(S) such that w(i, j) = 0, let S = S 

∩
 {i}

10.                  End Do
11.                  If for all e ∈δ(S), w(e) > 0
12.                      Let wS = min{w(e), e ∈δ(S)}.
13.                      For each (i, j) ∈δ(S) ∩ ET allocate the amount wS arbitrary to users in allocating set iS = {{i, s}, s ∈S}.
14.                      Do for all (i, j) ∈δ(S) ∩ ET

15.                          Choose a{is}, {is} ∈iS such that { }is S
s S

a w
∈

=∑ .
16.                          Do for all {is} ∈iS
17.                              Let x{is}= x{is} + a{is}
18.                          EndDo
19.                      EndDo
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minimum cost spanning tree games. In fact, we 
might modify a set of players P to consist of 
all ordered pairs of nodes. In this situation, for 
each specific node i and all j ∈N, we can in-
terpret xij as the cost j pays to get service from 
i. That can be considered in the context of the 
rooted minimum cost spanning tree games. 
Consider for each i ∈N the rooted minimum 
cost spanning tree rooted in i and associated 
minimum spanning tree game (N \ {i}, c). Here, 
for each coalition S ⊆ N \ {i}, the characteristic 
function value c(S) is assumed to be the cost 
of minimum cost directed Steiner tree rooted in 
i which is spanning S 

∩
 {i}. It can be easily 

verified that by the construction of the NCCA 
algorithm and dual feasibility in minimum cost 
spanning tree games (see for example [27] and 
[15]), for each i ∈N the cost allocation (xij, j ∈N 

), satisfies the core constraints for the minimum 
spanning tree game (N \ {i}, c). However, note 
that the cost allocation (xij, j ∈N ), is not neces-
sarily a core allocation of the game (N \ {i}, c). 
Namely, due to overlapping of the above rooted 
trees, the NCCA algorithm might not allocate 
the entire cost of the minimum cost spanning 
tree rooted in i.
In the following example, we illustrate the 
NCCA algorithm.
Example 2. We consider in Figure 3 the same 
network as the one in Figure 1.
Let us follow the NCCA algorithm. Consid-
ered allocating cut sets are: {a}, {b}, {c}, {d}, 

{b, c, d}. During the algorithm when the cost is 
allocated to some pairs in iS (S being an allocat-
ing cut set), we allocate the cost equally to all 
considered node pairs. Consequently, the cost 
allocation is obtained as follows:

xab = 2 + 1.5 + 0.5 / 3, 
xac = 0.5 / 3,
xad = 0.5 / 3,
xbc = 1.5 + 1.5,
xbd = 1.5 + 1.5,
xcd = 0.

Thus, the cost allocation is

x = (xab, xac, xad, xbc, xbd, xcd) 
 = (22 / 6, 1 / 6, 1 / 6, 3, 3, 0).

In another execution of the above NCCA algo-
rithm on this network we could allocate the cost 
of each tree edge to the pair of end nodes of that 
edge. In that case, the cost allocation is 

x' = (4, 0, 0, 3, 3, 0).

Both of these cost allocation solutions are in the 
core. For the solution x' three players ({a, c}, 
{a, d}, {c, d}) have a free ride. Solution x in-
volves two of them but player {c, d} still has a 
free ride. It is easy to verify that all executions 
of the NCCA algorithm on this example enable 
a free ride for player {c, d}.

Note that, in order to demonstrate that the core 
constraints are satisfied, we do not need to find 
forest F explicitly.

If F = (NQ, EQ) is a single component spanning 
all nodes in N then F is a minimum cost span-
ning tree and can provide service to all players 
in P and c(Q) = c(P) = x(P) ≥ x(Q).

Otherwise, we start with a forest F = (NQ, EQ) 
and then keep adding to F some directed edges 
of the minimum cost spanning tree T = (N, ET) 
whose cost was paid by players in P \ Q in the 
course of the NCCA algorithm until we build a 
network F' which provides service to all players 
in P.
It is easy to verify that for each connected com-
ponent Fm = (NQm, EQm) of F there must exist 
a two-way connection between every pair of 
vertices in that component. Namely, FQm is a 
non-rooted directed Steiner tree spanning all 
nodes contained in the set of pairs Qm and pos-
sibly some other intermediate nodes. Hence, 
Fm = (NQm, EQm) actually provides service to all 
pairs of nodes {i, j}, i, j ∈NQm.
Observe that by construction, for each directed 
edge (i, j) ∈ET such that i ∉NQ the cost w(i, j) 
was allocated to some pairs of nodes which all 
contain i. Since vertex i ∉NQ, i is not contained 
in any vertex pair in Q and the entire cost of 
(i, j) is paid by some users in P \ Q.
Initially, F' = F.
Then, we add to F' all nodes in N \ NQ and all 
directed edges (i, j) ∈ET such that i ∉NQ and 
j ∉NQ. Clearly, if (i, j) was added to F' in this 
step, so was ( j, i) and the costs for both of these 
edges were paid by players in P \ Q. At this 
point F' consists of connected components

F1 = (NQ1
, EQ1

), ..., FK = (NQK 
, EQK

)

which comprise F and potentially some con-
nected components 

FK + 1 = (NK + 1, EK + 1), ..., FK + L = (NK + L, EK + L)

(subtrees of T and/or some isolated nodes) add-
ed to F. See Figure 2 for the illustration of this 
step. Note that by this construction 

NQ1 
∩

 ... 
∩

 NQK 
∩

  NK + 1 
∩

 ... 
∩

 NK + L = N .

Since, T = (N, ET) is a directed spanning tree, 
there exist directed edges in ET which connect 
all components of F' in G.
Next, we perform the main building step. 
Among pairs of opposite edges (i, j), ( j, i) ∈ ET, 
such that i and j are not in the same connect-
ed component of F', find the first such pair for 
which w(i, j) and w( j, i) were both reduced to 
zero during the course of the NCCA algorithm. 
Then i is in some connected component Fm of F' 
(and j is not in Fm) and every allocating cut set 
S such that (i, j) ∈δ(S) ∩ ET must have had an 
empty intersection with a node set of Fm. This 
is implied by Lemma 1 and Lemma 2. Name-
ly, for every two nodes in an allocating set S 
there are zero directed paths between them in 
both directions (Lemma 1) and these zero paths 
belong to the directed minimum cost span-
ning tree (Lemma 2). Consequently, if S had a 
non-empty intersection with the node set of Fm 
then the pair (i, j), ( j, i) ∈ ET could not have 
been a two way connection between two com-
ponents which was first reduced to zero. This 
further implies that the cost w(i, j) has been paid 
by users in P \ Q. By the same reasoning the 
edge ( j, i) is also paid by users in P \ Q. We 
add (i, j) and ( j, i) to F'. Now F' has one less 
connected component with all nodes being two 
way connected within each component. We re-
peat this building step until F' becomes a single 
connected component spanning all nodes in N.
As a result, we constructed a network F' which 
provides service to all pairs of nodes, i.e. to all 
players in P. Moreover, the cost of F' \ F did 
not exceed the cost of x(P \ Q) assigned by the 
NCCA.
Thus, x(P \ Q) + c(Q) ≥ c(P) = x(P), and then 
c(Q) ≥ x(P) - x(P \ Q) = x(Q). □
Corollary 4. Given an instance of the NC game 
on a graph G = (N, E) the NCCA algorithm runs 
O(|N |3) time.
Proof. For any given k, the algorithm examines 
at most n links for each of n nodes. Since k takes 
on the values 1 through |N - 1|, the running time 
of the NCCA algorithm is O(|N |3). □
Remark. The cost allocations obtained by the 
NCCA algorithm are telling us how much each 
pair of users are charged to establish their ser-
vice within the network. We might also in-
terpret the NCCA in the relation to the rooted 

Figure 2. The core constraint for the coalition Q.
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minimum cost spanning tree games. In fact, we 
might modify a set of players P to consist of 
all ordered pairs of nodes. In this situation, for 
each specific node i and all j ∈N, we can in-
terpret xij as the cost j pays to get service from 
i. That can be considered in the context of the 
rooted minimum cost spanning tree games. 
Consider for each i ∈N the rooted minimum 
cost spanning tree rooted in i and associated 
minimum spanning tree game (N \ {i}, c). Here, 
for each coalition S ⊆ N \ {i}, the characteristic 
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∩
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F1 = (NQ1
, EQ1

), ..., FK = (NQK 
, EQK

)

which comprise F and potentially some con-
nected components 

FK + 1 = (NK + 1, EK + 1), ..., FK + L = (NK + L, EK + L)

(subtrees of T and/or some isolated nodes) add-
ed to F. See Figure 2 for the illustration of this 
step. Note that by this construction 

NQ1 
∩

 ... 
∩

 NQK 
∩

  NK + 1 
∩

 ... 
∩

 NK + L = N .

Since, T = (N, ET) is a directed spanning tree, 
there exist directed edges in ET which connect 
all components of F' in G.
Next, we perform the main building step. 
Among pairs of opposite edges (i, j), ( j, i) ∈ ET, 
such that i and j are not in the same connect-
ed component of F', find the first such pair for 
which w(i, j) and w( j, i) were both reduced to 
zero during the course of the NCCA algorithm. 
Then i is in some connected component Fm of F' 
(and j is not in Fm) and every allocating cut set 
S such that (i, j) ∈δ(S) ∩ ET must have had an 
empty intersection with a node set of Fm. This 
is implied by Lemma 1 and Lemma 2. Name-
ly, for every two nodes in an allocating set S 
there are zero directed paths between them in 
both directions (Lemma 1) and these zero paths 
belong to the directed minimum cost span-
ning tree (Lemma 2). Consequently, if S had a 
non-empty intersection with the node set of Fm 
then the pair (i, j), ( j, i) ∈ ET could not have 
been a two way connection between two com-
ponents which was first reduced to zero. This 
further implies that the cost w(i, j) has been paid 
by users in P \ Q. By the same reasoning the 
edge ( j, i) is also paid by users in P \ Q. We 
add (i, j) and ( j, i) to F'. Now F' has one less 
connected component with all nodes being two 
way connected within each component. We re-
peat this building step until F' becomes a single 
connected component spanning all nodes in N.
As a result, we constructed a network F' which 
provides service to all pairs of nodes, i.e. to all 
players in P. Moreover, the cost of F' \ F did 
not exceed the cost of x(P \ Q) assigned by the 
NCCA.
Thus, x(P \ Q) + c(Q) ≥ c(P) = x(P), and then 
c(Q) ≥ x(P) - x(P \ Q) = x(Q). □
Corollary 4. Given an instance of the NC game 
on a graph G = (N, E) the NCCA algorithm runs 
O(|N |3) time.
Proof. For any given k, the algorithm examines 
at most n links for each of n nodes. Since k takes 
on the values 1 through |N - 1|, the running time 
of the NCCA algorithm is O(|N |3). □
Remark. The cost allocations obtained by the 
NCCA algorithm are telling us how much each 
pair of users are charged to establish their ser-
vice within the network. We might also in-
terpret the NCCA in the relation to the rooted 

Figure 2. The core constraint for the coalition Q.
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Let S = NS * NS be a coalition of users for which 
the service cost c(S) is the weight of a minimum 
cost tree TS = (NS, ES) used to provide service 
to S.
If TS is a subtree of T then by the construction 
players in S participate in payments only for 
edges of TS. In such a case obviously c(S) ≥ x(S). 
It remains to analyze the case when TS contains 
edge(s) which do not belong to the minimum 
cost spanning tree T. This situation is illustrated 
in Figure 4. Solid lines belong to the minimum 
cost spanning tree T and thick lines belong to 
TS. Note that the thick (dotted) link (i, j) be-
longs to TS but does not belong to T. If link (i, j) 
is added to T it creates a cycle C and (i, j) is the 
link with the largest weight in C. On the other 
hand removal of link (i, j) from TS breaks into 
two connected components like those circled 
in Figure 4. Clearly, every pair in S which has 
nodes in two different components of TS created 
by the removal of (i, j) from TS, participated in 
paying the costs of all links in cycle C except 
the link (i, j). Also note that C must be at least 
partially out of TS since otherwise (i, j) would 
not be needed in TS.

Let m be the number of pairs in S which used 
link (i, j) to deliver service to coalition S via 
TS and participated in paying part of the cost 
of links in the cycle C which are not in TS. 
Let l be the number of links which are in C 
but not in TS. It is easy to verify that each of 
those l links has also been partially paid by at 
least lm players which are not in S (these are 
players having one node in one of those l links 
and the other in one of those m pairs which 
used (i, j) in TS). Since the cost of each link 
is divided equally between all players which 
use it, then it follows that the users in S paid 
for each link (u, v) in C but not in TS at most 
m * w(u, v) / m * l Consequently, total amount 
that users in S paid for l links in C which are 
not in TS is at most 

max{w(u, v), (u, v) in C} = w(i, j).

Hence, if ENCA rule is applied, users in S pay 
at most the total weight of TS, i.e. c(S) ≥ x(S). □
Example 3. Consider now the network present-
ed in Figure 5. It is the same network which we 
analyzed in Example 2 but modified to undi-

Clearly, the NCCA algorithm provides numer-
ous core allocations. Naturally, we would like 
to determine whether there exist additional core 
allocations to those generated by the NCCA al-
gorithm. Moreover, is there a cost allocation 
rule which produces a core allocation which 
does not allow a free ride to any player? The 
affirmative answer is given in the next section.

4. The Egalitarian Cost Allocation 
Rule

We now introduce the Egalitarian Network 
Cost Allocation (ENCA) rule. We divide the 
cost of each link equally between all users/
players which use that link. Next, we show that 
the ENCA rule generates a cost allocation in the 
core of the NC game. Since we work under the 
assumption that each edge consist of two sym-
metric directed links in the opposite direction, 
we can equivalently analyze this cost allocation 
rule on the undirected network.
Theorem 5. Let T = (N, ET) be the non-root-
ed Minimum Cost Spanning Tree in an undi-

rected network G = (N, E) with users/players 
P = N * N and let (P, c) be the corresponding 
NC game. Then the cost allocation x generated 
by the Egalitarian Network Cost Allocation rule 
is in the core of the game (P, c).
Proof. Clearly by definition of the ENCA rule 
x(P) = c(P). We will also demonstrate that 
for every coalition S ⊂ P, the core constraint 
c(S ) ≥ x(S ) holds. Let F be the minimum cost 
network providing service to all pairs in S. Note 
that F is some forest (we do not need to find 
this forest explicitly). If F has multiple connect-
ed components F1, ..., Fk then there could be 
no player (pair of nodes) in S which has nodes 
in two different components. Consequently, 
we can decompose S in such a way that S = S1∩

 ... 
∩

 Sk, and c(S1), ..., c(Sk) are the optimal 
connectivity costs of components F1, ..., Fk, re-
spectively, and c(S) = c(S1) + ... + c(Sk). This 
implies that it is enough to consider only those 
coalitions S for which the optimal solution con-
necting all players in S is the single connected 
component i.e. the tree TS = (NS, ES). Moreover, 
without loss of generality, we can assume that S 
consists of all pairs of nodes in NS (any proper 
subset would only pay less).

Figure 3. Allocations generated by the NCCA algorithm. Figure 4. The core constraint for the coalition S.
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Let S = NS * NS be a coalition of users for which 
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allocations to those generated by the NCCA al-
gorithm. Moreover, is there a cost allocation 
rule which produces a core allocation which 
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that F is some forest (we do not need to find 
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rected case. If we apply ENCA rule to that net-
work we get the following cost allocation:

xab = 4 / 3,
xac = 4 / 3 + 3 / 3,
xad = 4 / 3 + 3 / 3,
xbc = 3 / 3,
xbd = 3 / 3,
xcd = 3 / 3 + 3 / 3.

Hence, by Theorem 5 cost allocation,

x = (xab, xac, xad, xbc, xbd, xcd) 
 = (4 / 3, 7 / 3, 7 / 3, 1, 1, 2)

is in the core of the NC game and it does not 
allow free ride to any player.
Example 4. For the comparison with Moretti's 
link games, in Figure 6 we also present the net-
work taken from [16].
Let N = {a, b, c, d}, P = N * N, (N, c) our NC 
game and (N, c' ) Moretti's link game. Recall 
that in the link game each coalition can use only 
edges in the coalition while in NC game each 
coalition can use any network edge. Which 
game is more appropriate is application driven.
Clearly, by definition for each coalition S ⊆ P, 
c(S ) ≤ c'(S ). Consequently, the core of the NC 
game is a subset of the core of the link game. 
Please note that determining the entire core of 
these games remains an open question.

Moretti's decomposition algorithm (DA) found 
the following core cost allocation of the link 
game:

( )
( )

, , , , ,

1, 1, 0, 0, 1.5, 0.5 .

DA DA DA DA DA DA DA
ab ac ad bc bd cdx x x x x x x=

=

(It turns out that this particular allocation is also 
in the core of the NC game.)
Next, we apply our NCCA. Here, we modify 
the graph into a directed one. We replace each 
undirected edge with two directed edges in the 
opposite direction each having half of the orig-
inal weight. Allocating cuts are {1}, {2}, {3}, 
{4}, {1, 2, 3} and they lead to the following 
core allocation of the NC game:

( )
( )

, , , , ,

1, 1, 1/ 6, 0, 10 / 6, 1/ 6 .

NCCA NCCA NCCA NCCA NCCA NCCA NCCA
ab ac ad bc bd cdx x x x x x x=

=

Finally, if we apply our ENCA rule (on the un-
directed version), we get the core allocation of 
the NC game:

( )
( )

, , , , ,

3/12, 4 /12, 11/12, 7 /12, 8 /12, 15/12 .

ENCA ENCA ENCA ENCA ENCA ENCA ENCA
ab ac ad bc bd cdx x x x x x x=

=

Observe that the DA algorithm allowed two free 
riders, NCCA had one free rider and ENCA did 
not allow any free riders. Nevertheless, it re-
mains to investigate which of these allocations 
can be considered more fair.

5. Conclusions and Future Research

We studied the cost allocation problem associ-
ated with the network connectivity enterprise in 
which service is delivered among all network 
nodes via the non-rooted directed minimum 
cost spanning tree. We modeled this cost alloca-
tion problem as a cooperative game in charac-
teristic function form which we called the Net-
work Connectivity (NC) game. Our NC game is 
related to minimum cost spanning tree games 
and Steiner tree network games previously con-
sidered in the literature. The difference is that 
in those games the network service is delivered 
from a certain source to other network users, 
while in the NC games there is no central source 
and the service is delivered from all nodes.
The NC game is also related to the SETN games 
and Link games in which there is interaction 
between nodes but there is no source. Howev-
er, there are some substantial differences. In the 
SETN games, nodes are players, while in the 
NC game, the set of players consist of pairs of 
nodes. In the link games, the players are edg-
es which in case of a complete network would 
be all pairs of nodes. The main difference is 
in the definition of the characteristic function. 
In the link games, the coalition of edges is al-
lowed to use only links of that coalition. In our 
framework for the NC game, the best potential 
solution for a particular coalition could also use 
nodes and edges out of that coalition.

Our objective was to find cost allocations for 
which no coalition has incentive to secede and 
act on their own, or equivalently, to find some 
points in the core of the NC game. We demon-
strated that the core of our NC game is not 
empty and we constructed the cost allocation 
schemes NCAA and ENCA which efficiently 
find some core points.
We suggest avenues for future research of the 
NC game. It would be interesting to try to char-
acterize the set of core allocations and inves-
tigate if there is a procedure to obtain all core 
allocations. Furthermore, it would be interesting 
to try to compute the nucleolus of the NC game 
i.e. another specific (unique) core cost allocation 
solution with some desirable properties. Further, 
it would be interesting to determine whether 
there exists a cost monotonic and/or population 
monotonic cost allocation scheme for this game. 
Namely, the challenge is to determine if there ex-
ists a cost allocation scheme for which the cost 
reduction of some edge would not increase cost 
to any coalition and/or the addition of a play-
er would not increase the cost to any original 
player. The analysis and comparison of desir-
able properties of such various solutions should 
follow. Finally, it would be interesting to study 
the general case of the NC game in which we do 
not require service between all node pairs in the 
network. In this case, we would need to allocate 
the cost of the optimal solution for a grand coali-
tion which would be some Steiner forest instead 
of the minimum cost spanning tree.Figure 5. ENCA rule.

Figure 6. Comparison Link Game and NC game.
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