
147CIT. Journal of Computing and Information Technology, Vol. 28, No. 3, September 2020, 147–164
doi: 10.20532/cit.2020.1005155

Zhouxian Jiang, Honghui Li, Dalin Zhang, Rui Wang, Junwen Zhang,
Xiuru Li, Meng Zhang and Penghao Wang
Beijing Jiaotong University, China

A Review of Software Reliability
Testing Techniques

In the era of intelligent systems, the safety and reliabil-
ity of software have received more attention. Software
reliability testing is a significant method to ensure
reliability, safety and quality of software. The intel-
ligent software technology has not only offered new
opportunities but also posed challenges to software
reliability technology.The focus of this paper is to ex-
plore the software reliability testing technology under
the impact of intelligent software technology. In this
study, the basic theories of traditional software and in-
telligent software reliability testing were investigated
via related previous works, and a general software re-
liability testing framework was established. Then, the
technologies of software reliability testing were ana-
lyzed, including reliability modeling, test case gener-
ation, reliability evaluation, testing criteria and testing
methods. Finally, the challenges and opportunities of
software reliability testing technology were discussed
at the end of this paper.

ACM CCS (2012) Classification: Software and its en-
gineering → Software creation and management →
Software verification and validation → Software de-
fect analysis → Software testing and debugging

Keywords: software reliability, intelligent software,
test framework, test methods, evaluation methods

1. Introduction

In recent years, many large-scale complex
systems (LSCSs) have been applied in safe-
ty-critical areas, such as aerospace, rail trans-
portation, finance, and military [1]. Software
systems based on big data and artificial intel-
ligence (AI) technologies are also widely ap-
plied to such areas as image recognition [2],
speech recognition [3], medical diagnosis [4],

machine translation [5], and natural language
reasoning [5]. Besides, they are increasingly
being deployed in such security-critical areas
as autopilot [6] and malware detection [7]. As
software becomes more complex, intelligent
and deployed extensively, its security and re-
liability are facing greater challenges, and the
predictable and assessable behavior are of
great significance to ensure its security and
safety.
Software reliability engineering (SRE) is de-
fined by J. D. Musa [18] as "a series of tech-
nical and management activities of an engi-
neering nature carried out to achieve software
reliability''. The ultimate goal of software reli-
ability testing (SRT) is to verify whether soft-
ware requirements are met by predicting and
evaluating reliability of the system under test.
There are two reasons that motivate us to com-
pose this review.
As first, traditional software has presently been
developed to a relatively mature degree due to
various testing methods and model technolo-
gies. However there are still problems with test
model application, evaluation standard design,
and automation difficulties for large-scale soft-
ware in different fields. It is expected that some
inspirations for solving these problems could
be provided via conducting a summary of the
current research status.
Secondly, although intelligent software based on
big data and artificial intelligence has achieved
remarkable acomplishments in machine trans-

148 149Z. Jiang, H. Li, D. Zhang, R. Wang, J. Zhang, X. Li, M. Zhang and P. Wang A Review of Software Reliability Testing Techniques

analysis, the testing process may be repetitive
to a certain degree. Therefore, the realization of
generating test cases and evaluating test results
are mostly based on the model or derived model
of the object under test, i.e. test models [21],
[23], [24]. This type of testing, in which the test
model is employed to formalize or semi-for-
malize the testing process, is also known as
model-based testing. The software usage model
is also a kind of testing model, which is an ab-
stract representation of software behavior and
structure, and can be used as a driving model
for the generation of test cases and automating
test. After the reliability goals are determined,
the software usage model can be constructed
and the test cases can be generated through the
model.

3.1.1. Usage Models

In 1997, the unified modeling language (UML)
was recognized as the standard modeling lan-
guage by the Object Management Group
(OMG) and since then has been widely used to
construct and optimize software usage models

summarized the software reliability growth
model (SRGM) and the tools, explaining vari-
ous software failures, performance testing, fault
tolerance detection, and software system reli-
ability evaluation methods. In 2016, Kumar et
al. [16] summarized SRGM, the tools and data-
sets, which divided SRGM into parametric and
non-parametric models, and provided some ref-
erence datasets and software reliability tools.
A thorough study on traditional SRT and re-
lated evaluation models has been conducted
in the above mentioned papers, and especially
on SRGM. At present, the research direction of
traditional SRT is becoming increasingly mul-
tidimensional. Therefore, it is necessary to ful-
ly understand the development of this field. In
this chapter, we focus on the construction of us-
age models, generation of test cases, reliability
evaluation technologies and so on.

3.1. Model-Based Reliability Test Case
Generation

Given the fact that SRT requires as much data
as possible with high coverage for statistical

lation and natural language inference, it could
induce unexpected conditions that may lead
to accidents in safety-critical systems, such as
autonomous driving systems. Therefore, provi-
sion of some inspirations for a reliability test of
intelligent software in combination with tradi-
tional software engineering is expected.
In this paper, the background of SRT will be
introduced in Chapter 2; traditional SRT will
be summarized in Chapter 3; intelligent SRT
will be summarized in Chapter 4; traditional
software and intelligent SRT technology will
be compared in Chapter 5; the challenges and
opportunities will be proposed in Chapter 6; a
summary will be given in Chapter 7.

2. Background

Software reliability is closely related to system
input and system application.The IEEE Com-
puter Society of America has provided a defini-
tion of "software reliability" as follows:
1. probability that the software will not cause

failure in the systems under specified con-
ditions and for a specified period of time;

2. the ability of a program to perform the re-
quired functions under the conditions de-
scribed within a specified period of time.

The main process of SRT is to conduct a test
as per provisions in a real operating environ-
ment or in a simulated test environment, and
then adequately collect the test data and evalu-
ate software reliability [19]. However, there are
significant differences in logic and composition
between traditional and intelligent software,
which can be specifically described as follows.

 ● Traditional software is mainly to construct
a usage model, which has a relatively clear
content and can express the structure and
behavior of the software. Intelligent soft-
ware is often composed of neural networks
and intelligent algorithms. Therefore, the
components of intelligent software under
test are also different from traditional soft-
ware.

 ● The failure of traditional software is main-
ly related to the function, structure, and in-
ternal logic, while the failure of intelligent

software is more related to datasets, algo-
rithms and program frameworks.

 ● For traditional reliability evaluation, the
reliability evaluation models are gener-
ally modeled for analysis, evaluation and
prediction. However, as for intelligent
software current research still stops at test
methods and coverage criteria, it is obvi-
ous that more attention should be paid to
the testing and evaluation of intelligent
software.

In addition, a general SRT framework has been
proposed by combining the characteristics of
traditional software with intelligent software,
which presents the correlation between SRT and
software life cycle, as shown in Figure 1. The up-
per part of the figure is the life cycle of software
and the dotted line connection with the software
reliability test process at the bottom of the figure
indicates that the life cycle process is related to
the process of the software reliability test.
Figure 1 shows that software reliability testing
starts with the establishment of reliability goals,
then requirements are analyzed and a model is
built. Traditional software builds a usage model,
while intelligent software builds a deep learn-
ing algorithmic model. Intelligent software has
more steps of model training and verification
before software deployment than traditional
software. After the model is deployed, we need
to design test cases for execution and then col-
lect the failure data. In the evaluation stage, it
is necessary to design evaluation criteria for re-
liability. Besides, it should be analyzed wheth-
er the result meets the reliability goals. If not,
the fault shall be repaired and regression test-
ing shall be modified until the reliability goals
are reached. Finally, a report shall be generated
when the test is finished.
Due to limited space, the requirement analysis
part will not be introduced here, and we will
focus on the technologies of modeling, testing,
and evaluation.

3. Traditional Software Reliability
Testing

In 2012, Li et al. [14] summarized SRT as re-
liability testing, reliability evaluation and pre-
diction models. In 2015, Sharma et al. [15]

Figure 1. Universal SRT framework.

148 149Z. Jiang, H. Li, D. Zhang, R. Wang, J. Zhang, X. Li, M. Zhang and P. Wang A Review of Software Reliability Testing Techniques

analysis, the testing process may be repetitive
to a certain degree. Therefore, the realization of
generating test cases and evaluating test results
are mostly based on the model or derived model
of the object under test, i.e. test models [21],
[23], [24]. This type of testing, in which the test
model is employed to formalize or semi-for-
malize the testing process, is also known as
model-based testing. The software usage model
is also a kind of testing model, which is an ab-
stract representation of software behavior and
structure, and can be used as a driving model
for the generation of test cases and automating
test. After the reliability goals are determined,
the software usage model can be constructed
and the test cases can be generated through the
model.

3.1.1. Usage Models

In 1997, the unified modeling language (UML)
was recognized as the standard modeling lan-
guage by the Object Management Group
(OMG) and since then has been widely used to
construct and optimize software usage models

summarized the software reliability growth
model (SRGM) and the tools, explaining vari-
ous software failures, performance testing, fault
tolerance detection, and software system reli-
ability evaluation methods. In 2016, Kumar et
al. [16] summarized SRGM, the tools and data-
sets, which divided SRGM into parametric and
non-parametric models, and provided some ref-
erence datasets and software reliability tools.
A thorough study on traditional SRT and re-
lated evaluation models has been conducted
in the above mentioned papers, and especially
on SRGM. At present, the research direction of
traditional SRT is becoming increasingly mul-
tidimensional. Therefore, it is necessary to ful-
ly understand the development of this field. In
this chapter, we focus on the construction of us-
age models, generation of test cases, reliability
evaluation technologies and so on.

3.1. Model-Based Reliability Test Case
Generation

Given the fact that SRT requires as much data
as possible with high coverage for statistical

lation and natural language inference, it could
induce unexpected conditions that may lead
to accidents in safety-critical systems, such as
autonomous driving systems. Therefore, provi-
sion of some inspirations for a reliability test of
intelligent software in combination with tradi-
tional software engineering is expected.
In this paper, the background of SRT will be
introduced in Chapter 2; traditional SRT will
be summarized in Chapter 3; intelligent SRT
will be summarized in Chapter 4; traditional
software and intelligent SRT technology will
be compared in Chapter 5; the challenges and
opportunities will be proposed in Chapter 6; a
summary will be given in Chapter 7.

2. Background

Software reliability is closely related to system
input and system application.The IEEE Com-
puter Society of America has provided a defini-
tion of "software reliability" as follows:
1. probability that the software will not cause

failure in the systems under specified con-
ditions and for a specified period of time;

2. the ability of a program to perform the re-
quired functions under the conditions de-
scribed within a specified period of time.

The main process of SRT is to conduct a test
as per provisions in a real operating environ-
ment or in a simulated test environment, and
then adequately collect the test data and evalu-
ate software reliability [19]. However, there are
significant differences in logic and composition
between traditional and intelligent software,
which can be specifically described as follows.

 ● Traditional software is mainly to construct
a usage model, which has a relatively clear
content and can express the structure and
behavior of the software. Intelligent soft-
ware is often composed of neural networks
and intelligent algorithms. Therefore, the
components of intelligent software under
test are also different from traditional soft-
ware.

 ● The failure of traditional software is main-
ly related to the function, structure, and in-
ternal logic, while the failure of intelligent

software is more related to datasets, algo-
rithms and program frameworks.

 ● For traditional reliability evaluation, the
reliability evaluation models are gener-
ally modeled for analysis, evaluation and
prediction. However, as for intelligent
software current research still stops at test
methods and coverage criteria, it is obvi-
ous that more attention should be paid to
the testing and evaluation of intelligent
software.

In addition, a general SRT framework has been
proposed by combining the characteristics of
traditional software with intelligent software,
which presents the correlation between SRT and
software life cycle, as shown in Figure 1. The up-
per part of the figure is the life cycle of software
and the dotted line connection with the software
reliability test process at the bottom of the figure
indicates that the life cycle process is related to
the process of the software reliability test.
Figure 1 shows that software reliability testing
starts with the establishment of reliability goals,
then requirements are analyzed and a model is
built. Traditional software builds a usage model,
while intelligent software builds a deep learn-
ing algorithmic model. Intelligent software has
more steps of model training and verification
before software deployment than traditional
software. After the model is deployed, we need
to design test cases for execution and then col-
lect the failure data. In the evaluation stage, it
is necessary to design evaluation criteria for re-
liability. Besides, it should be analyzed wheth-
er the result meets the reliability goals. If not,
the fault shall be repaired and regression test-
ing shall be modified until the reliability goals
are reached. Finally, a report shall be generated
when the test is finished.
Due to limited space, the requirement analysis
part will not be introduced here, and we will
focus on the technologies of modeling, testing,
and evaluation.

3. Traditional Software Reliability
Testing

In 2012, Li et al. [14] summarized SRT as re-
liability testing, reliability evaluation and pre-
diction models. In 2015, Sharma et al. [15]

Figure 1. Universal SRT framework.

150 151Z. Jiang, H. Li, D. Zhang, R. Wang, J. Zhang, X. Li, M. Zhang and P. Wang A Review of Software Reliability Testing Techniques

that most use case models are constructed man-
ually, there is a possibility of errors that could
omit certain system use behaviors, and the gen-
erated test cases may ignore these behaviors.
For that reason, in 2017, Gebizli et al. [97] in-
troduced a method and the ARME toolset for
automatic refinement of the system models
based on test activities recorded by modeling
engineers. In 2018, Liu et al. [98] introduced a
new model-based test tool MTTool to simulate
complex software behaviors and generate test
cases from models.
The test case selection technique. In 2013,
Hadi et al. [99] introduced 320 different sim-
ilarity-based test case selection (STCS) tech-
niques and drew a comparison among them
with the aim of addressing the problem of
scalability in model-based testing. Afterwards,
Hadi proposed a method to determine the opti-
mal trade-off between the number of test cases
in operation and fault detection.
Application of usage models. In 2012, Wan et
al. [24] proposed an evaluation method to assess
the accuracy of the model used for various reli-
ability tests based on the Markov usage model
for web applications. In 2013, Wan et al. [100]
designed a model-based approach to generate

scenario test cases for nuclear digital security
systems by converting scenarios. In 2016, in
order to test large software products, Gebizli et
al. [101] proposed a method for system reuse of
hierarchical Markov chain usage models.
To sum up, the research on software usage
models and automatic generation of test cases
have emerged in the last decade, and a certain
specification has been formulated. However,
more thorough studies are needed to be con-
ducted regarding how to choose the appropriate
method to build the usage model, how to im-
prove the coverage of test cases, how to verify
the feasibility and correctness of testing models
in more fields, and regarding the development
and refinement of related tools.

3.2. Software Reliability Evaluation

After test execution is completed, the next step
is to evaluate software reliability [96], which
is generally calculated through the software
reliability model. According to the standards
IEEE1633-201[20] and GJBZ161-2012 (In
Chinese) [19], the reliability evaluation pro-
cess can be divided into six steps, i.e. failure

[23]. In addition, Markov Chain Model [25]
[26], Finite State Machine Model [27], UML
Model [28] [29], etc. are employed to construct
software usage models. According to the dif-
ferent modeling methods, usage models can be
broadly divided into four categories as follows.
UML-based usage models. Software systems
are visualized and built from different angles
through the four-level metamodel architecture
to form multiple views of the system. Common
modeling scenarios include the library system
[35], online store [36], web server [37], and in-
dustrial projects [136].
Markov-chain-based usage models. A con-
struction model based on Markov chain can
statistically reflect the structural and behavioral
characteristics of software, and perform statis-
tical calculations and analysis [22]. Common
modeling scenarios include ATM [26], and
MaTeLo [142].
Operation-profile-based usage models [30].
The operation profile of software can be used to
quantitatively describe the way that users actu-
ally use the software, and it is necessary to con-
sider the using habit for the software in various
modes and functions and the probability of use
in the construction of the profile model. Com-
mon modeling scenarios include Phone follow-
er software [41], and the space program [42].
Formal-language-based usage models. Func-
tional structure and scenario path of the system
are described through explicit formal mathe-
matical language, and usage models are con-
structed, such as finite state machines (FSM)
[27], Petri network [31], Z language [32], SOFL
language [33], etc. Common modeling scenari-
os are Web app [43], Embedded systems [137],
Mobile app [33], TWIN elevator system [138],
Multilift system [139] and so on.
In addition, there are other modeling methods,
such as grammar models [34], which can be
employed to describe program syntax.

3.1.2. Test Case Generation

After a usage model is constructed, test cases
can be automatically generated using that mod-
el. When the testset complies with the coverage
criteria, the generation of test cases can be ter-
minated [48]. In this paper, the usage models,

common modeling methods, and corresponding
methods of automatically generating test cases
have been sorted out, as shown in Figure 2.
It can be seen that there are many methods of
using the model to generate test cases. An ap-
propriate usage model shall be selected based
on the characteristics of the test goals, and then
an appropriate method shall be selected to gen-
erate test cases.

3.1.3. Research Trends in the Current Decade

In software engineering, software usage models
serve as an expression of formal ideas, which
is of great significance. In 2015, Saurabh et al.
[94] published a systematic literature review of
the use case specification methods, which pro-
vides a reference for the use of model-based
test case specification. In 2016, Utting et al.
[95] summarized the results of the model-based
testing field from 2006 to 2016, including the
modeling process, modeling language, tech-
niques for generating test cases from models,
and application examples.
Normalization and improvement of the con-
struction methods for software usage mod-
els. In 2010, Rita et al. [27] proposed a method
to develop test suites with formal specification
in the form of FSMs which is of some reference
value for FSM modeling. In the same year, Liu
et al. [47] extended the reliability information
in the UML model and automatically convert-
ed the UML model into a Markov chain-based
model.
Optimization of the test case generation
method. In 2010, Vahid et al. [49] proposed a
method based on UML 2.0 to supplement in-
formation to the sequence diagram for the con-
struction of the model and to apply a genetic
algorithm for the automatic generation of test
cases that can meet the task timing protocol.
Nayak et al. [28] transformed the UML activ-
ity diagram into an intermediate testable model
and generated test scenarios to identify all pos-
sible scenarios and check defects in the use case
scenarios.
Research on modeling tools. In 2015, Yue et
al. [96] proposed an automation framework for
deriving UML analysis models from use case
models, and the aToucan tool. Due to the fact

Figure 2. Usage models, modeling methods, and test cases generation methods.

150 151Z. Jiang, H. Li, D. Zhang, R. Wang, J. Zhang, X. Li, M. Zhang and P. Wang A Review of Software Reliability Testing Techniques

that most use case models are constructed man-
ually, there is a possibility of errors that could
omit certain system use behaviors, and the gen-
erated test cases may ignore these behaviors.
For that reason, in 2017, Gebizli et al. [97] in-
troduced a method and the ARME toolset for
automatic refinement of the system models
based on test activities recorded by modeling
engineers. In 2018, Liu et al. [98] introduced a
new model-based test tool MTTool to simulate
complex software behaviors and generate test
cases from models.
The test case selection technique. In 2013,
Hadi et al. [99] introduced 320 different sim-
ilarity-based test case selection (STCS) tech-
niques and drew a comparison among them
with the aim of addressing the problem of
scalability in model-based testing. Afterwards,
Hadi proposed a method to determine the opti-
mal trade-off between the number of test cases
in operation and fault detection.
Application of usage models. In 2012, Wan et
al. [24] proposed an evaluation method to assess
the accuracy of the model used for various reli-
ability tests based on the Markov usage model
for web applications. In 2013, Wan et al. [100]
designed a model-based approach to generate

scenario test cases for nuclear digital security
systems by converting scenarios. In 2016, in
order to test large software products, Gebizli et
al. [101] proposed a method for system reuse of
hierarchical Markov chain usage models.
To sum up, the research on software usage
models and automatic generation of test cases
have emerged in the last decade, and a certain
specification has been formulated. However,
more thorough studies are needed to be con-
ducted regarding how to choose the appropriate
method to build the usage model, how to im-
prove the coverage of test cases, how to verify
the feasibility and correctness of testing models
in more fields, and regarding the development
and refinement of related tools.

3.2. Software Reliability Evaluation

After test execution is completed, the next step
is to evaluate software reliability [96], which
is generally calculated through the software
reliability model. According to the standards
IEEE1633-201[20] and GJBZ161-2012 (In
Chinese) [19], the reliability evaluation pro-
cess can be divided into six steps, i.e. failure

[23]. In addition, Markov Chain Model [25]
[26], Finite State Machine Model [27], UML
Model [28] [29], etc. are employed to construct
software usage models. According to the dif-
ferent modeling methods, usage models can be
broadly divided into four categories as follows.
UML-based usage models. Software systems
are visualized and built from different angles
through the four-level metamodel architecture
to form multiple views of the system. Common
modeling scenarios include the library system
[35], online store [36], web server [37], and in-
dustrial projects [136].
Markov-chain-based usage models. A con-
struction model based on Markov chain can
statistically reflect the structural and behavioral
characteristics of software, and perform statis-
tical calculations and analysis [22]. Common
modeling scenarios include ATM [26], and
MaTeLo [142].
Operation-profile-based usage models [30].
The operation profile of software can be used to
quantitatively describe the way that users actu-
ally use the software, and it is necessary to con-
sider the using habit for the software in various
modes and functions and the probability of use
in the construction of the profile model. Com-
mon modeling scenarios include Phone follow-
er software [41], and the space program [42].
Formal-language-based usage models. Func-
tional structure and scenario path of the system
are described through explicit formal mathe-
matical language, and usage models are con-
structed, such as finite state machines (FSM)
[27], Petri network [31], Z language [32], SOFL
language [33], etc. Common modeling scenari-
os are Web app [43], Embedded systems [137],
Mobile app [33], TWIN elevator system [138],
Multilift system [139] and so on.
In addition, there are other modeling methods,
such as grammar models [34], which can be
employed to describe program syntax.

3.1.2. Test Case Generation

After a usage model is constructed, test cases
can be automatically generated using that mod-
el. When the testset complies with the coverage
criteria, the generation of test cases can be ter-
minated [48]. In this paper, the usage models,

common modeling methods, and corresponding
methods of automatically generating test cases
have been sorted out, as shown in Figure 2.
It can be seen that there are many methods of
using the model to generate test cases. An ap-
propriate usage model shall be selected based
on the characteristics of the test goals, and then
an appropriate method shall be selected to gen-
erate test cases.

3.1.3. Research Trends in the Current Decade

In software engineering, software usage models
serve as an expression of formal ideas, which
is of great significance. In 2015, Saurabh et al.
[94] published a systematic literature review of
the use case specification methods, which pro-
vides a reference for the use of model-based
test case specification. In 2016, Utting et al.
[95] summarized the results of the model-based
testing field from 2006 to 2016, including the
modeling process, modeling language, tech-
niques for generating test cases from models,
and application examples.
Normalization and improvement of the con-
struction methods for software usage mod-
els. In 2010, Rita et al. [27] proposed a method
to develop test suites with formal specification
in the form of FSMs which is of some reference
value for FSM modeling. In the same year, Liu
et al. [47] extended the reliability information
in the UML model and automatically convert-
ed the UML model into a Markov chain-based
model.
Optimization of the test case generation
method. In 2010, Vahid et al. [49] proposed a
method based on UML 2.0 to supplement in-
formation to the sequence diagram for the con-
struction of the model and to apply a genetic
algorithm for the automatic generation of test
cases that can meet the task timing protocol.
Nayak et al. [28] transformed the UML activ-
ity diagram into an intermediate testable model
and generated test scenarios to identify all pos-
sible scenarios and check defects in the use case
scenarios.
Research on modeling tools. In 2015, Yue et
al. [96] proposed an automation framework for
deriving UML analysis models from use case
models, and the aToucan tool. Due to the fact

Figure 2. Usage models, modeling methods, and test cases generation methods.

152 153Z. Jiang, H. Li, D. Zhang, R. Wang, J. Zhang, X. Li, M. Zhang and P. Wang A Review of Software Reliability Testing Techniques

of testing and evaluation of traditional software
cannot be applied to intelligent software direct-
ly. Zhang et al. [120] proposed the framework
of machine learning testing and summarized
the testing content, processes, attributes, meth-
ods, coverage criteria, applications, and testing
scenarios. However, they did not make a sum-
mary from the perspective of SRT. The current
reliability research of intelligent software main-
ly focuses on the testing methods and coverage
criteria. In this chapter, an overview of intel-
ligent software and relevant reliability testing
technologies will be discussed from the per-
spective of testing methods, frameworks, and
testing coverage criteria.

4.1. Intelligent Software Testing Methods

In reliability testing of intelligent software, it is
almost impossible to generate test cases manu-
ally. There are two problems to be solved:

 ● the Oracle problem [12] [13]: It is difficult
or impossible to verify the test results un-
der a given test case. This is a particularly
common case with intelligent software, es-
pecially for unsupervised learning;

 ● the problem of reliable test sets [12] [13]:
Since there is no possibility to make an ex-
haustive list of possible test cases, it is dif-
ficult to effectively select a subset of test
cases that can verify procedural correct-

ness. Intelligent software does not have
the same explicit logical coverage criteria
as traditional software, and the functions
model in Deep Neural Networks (DNNs)
are non-linear, so it would be more diffi-
cult to verify the adequacy and reliability
of the test set. Also, finding inputs in the
DNN that lead to high model coverage is
hard.

As a result, traditional software testing meth-
ods are not necessarily applicable to intelligent
software. In order to solve the above problems,
more testing methods for intelligent software
are proposed, such as Metamorphic Testing
[121], cross-referencing as Oracles Testing
[120], Concolic Testing [11], etc.

4.1.1. Metamorphic Testing

The method of metamorphic testing (MT) was
proposed for the first time in 1998, T. Y. Chen
[121] used the method to generate test cases.
Relevant researchers were pleasantly surprised
to find that MT can effectively relieve oracle
problems, and it could also contribute to pro-
viding an effective and reliable test set. The MT
timeline is shown in Figure 4.
2018 and 2019 studies showed that MT is ef-
fective in testing of intelligent software and
especially in real scenarios, such as automatic
driving systems.

definition, failure trend analysis, selection of
software reliability evaluation model, model
parameter estimation, model verification, and
reliability estimation and prediction.

3.2.1. Software Reliability Evaluation Models

Between 1956, when Weiss et al. [83] proposed
a hardware reliability evaluation method, and
1987, when Musa et al. [84] co-authored the
book Software Reliability – Evaluation, Pre-
diction and Application, the software reliability
issue was getting more comprehensive and apt
to more in-depth discussions. By the 1990s, re-
liability model technologies had developed to a
relatively high level of maturity. In 1991, Cai et
al. [102] reviewed the development of software
reliability models and concluded that almost all
previous software reliability models had been
developed in a probabilistic context. Wang et
al. [96] conducted a related review; Sharma et
al.[103] proposed to select a model by model
assumptions similarity; Musa et al. [104] pro-
posed five software reliability model evaluation
criteria, which have been more widely recog-
nized currently. Moreover, there are also many
researchers who have begun to study the uni-
versal model with integrated prediction frame-
work, neural networks, artificial intelligence
and other methods for software reliability inte-
grated prediction [105] [106]. It is evident that
after the 1990s, more attention is being paid to
the applicability of the model.
In 2016, Kumar et al.[16] provided a summary
of parametric and non-parametric modeling of
software reliability, and listed some tools and
datasets. In the next year, Zhang et al. [107]
analyzed and summarized SRGM, comparing
SRGMs typical at that time. At present, there
are various types of software reliability eval-
uation models, such as the JM model [17],
Musa model [90], GO model, LV model [143],
Schneidewind model [87], universal exponen-
tial model [88], generalized exponential model
[92], Shooman model [90], Yamada S model
[91], Duane model [93] and other classic mod-
els, as well as the Rome model [85], Keene's
development process model [86], which are all
mainly used to predict failures. In addition to
the classic model, there are models based on
the architecture [118] which can be divided into

path model, state model, component operation
profile model and others.
In addition, according to different modeling
methods, reliability models can be divided into
analytical models and heuristic models. Ac-
cording to whether the internal structure of soft-
ware is clear, evaluation models can be divided
into white box models, black box models, etc.

3.2.2. Research Trends in Current Decade

In the last section, we present research work on
software reliability evaluation and summarize
the research direction over the past ten years.
In 2010, Zeng et al. [78] proposed a software
reliability model selection method based on his-
torical software project experience. Ullah et al.
[80] [81] proposed a method to select the model
that best predicts Open Source Software (OSS)
residual defects. Vladimir et al. [107] pro-
posed a reliability comparison method, but this
method lacks more formal verification. Their
work focuses on how to better choose the eval-
uation model. In addition, Huang et al. [108]
are committed to studying the "change point"
problem in software reliability assessment, and
propose to incorporate multiple change points
into software reliability modeling. Domenico
et al. [115] studied optimization models. They
proposed a new reliability evaluation and im-
provement (RELAI) testing technology, which
can improve reliability through adaptive testing
schemes.
As shown in Figure 3, we have summarized the
software reliability evaluation research during
the last ten years into 6 directions, including:
model selection, solve the "change point" prob-
lem, imperfect debugging scheme, model opti-
mization, novel models, and field application.

4. Intelligent Software Reliability
Testing

With the advancement of intelligent software
technology, the reliability of intelligent soft-
ware has become a hot topic in this field. How-
ever, there are significant differences in the
models and testing methods between intelligent
software and traditional software. The methods

Figure 3. Research on software reliability evaluation technology over the past ten years.

152 153Z. Jiang, H. Li, D. Zhang, R. Wang, J. Zhang, X. Li, M. Zhang and P. Wang A Review of Software Reliability Testing Techniques

of testing and evaluation of traditional software
cannot be applied to intelligent software direct-
ly. Zhang et al. [120] proposed the framework
of machine learning testing and summarized
the testing content, processes, attributes, meth-
ods, coverage criteria, applications, and testing
scenarios. However, they did not make a sum-
mary from the perspective of SRT. The current
reliability research of intelligent software main-
ly focuses on the testing methods and coverage
criteria. In this chapter, an overview of intel-
ligent software and relevant reliability testing
technologies will be discussed from the per-
spective of testing methods, frameworks, and
testing coverage criteria.

4.1. Intelligent Software Testing Methods

In reliability testing of intelligent software, it is
almost impossible to generate test cases manu-
ally. There are two problems to be solved:

 ● the Oracle problem [12] [13]: It is difficult
or impossible to verify the test results un-
der a given test case. This is a particularly
common case with intelligent software, es-
pecially for unsupervised learning;

 ● the problem of reliable test sets [12] [13]:
Since there is no possibility to make an ex-
haustive list of possible test cases, it is dif-
ficult to effectively select a subset of test
cases that can verify procedural correct-

ness. Intelligent software does not have
the same explicit logical coverage criteria
as traditional software, and the functions
model in Deep Neural Networks (DNNs)
are non-linear, so it would be more diffi-
cult to verify the adequacy and reliability
of the test set. Also, finding inputs in the
DNN that lead to high model coverage is
hard.

As a result, traditional software testing meth-
ods are not necessarily applicable to intelligent
software. In order to solve the above problems,
more testing methods for intelligent software
are proposed, such as Metamorphic Testing
[121], cross-referencing as Oracles Testing
[120], Concolic Testing [11], etc.

4.1.1. Metamorphic Testing

The method of metamorphic testing (MT) was
proposed for the first time in 1998, T. Y. Chen
[121] used the method to generate test cases.
Relevant researchers were pleasantly surprised
to find that MT can effectively relieve oracle
problems, and it could also contribute to pro-
viding an effective and reliable test set. The MT
timeline is shown in Figure 4.
2018 and 2019 studies showed that MT is ef-
fective in testing of intelligent software and
especially in real scenarios, such as automatic
driving systems.

definition, failure trend analysis, selection of
software reliability evaluation model, model
parameter estimation, model verification, and
reliability estimation and prediction.

3.2.1. Software Reliability Evaluation Models

Between 1956, when Weiss et al. [83] proposed
a hardware reliability evaluation method, and
1987, when Musa et al. [84] co-authored the
book Software Reliability – Evaluation, Pre-
diction and Application, the software reliability
issue was getting more comprehensive and apt
to more in-depth discussions. By the 1990s, re-
liability model technologies had developed to a
relatively high level of maturity. In 1991, Cai et
al. [102] reviewed the development of software
reliability models and concluded that almost all
previous software reliability models had been
developed in a probabilistic context. Wang et
al. [96] conducted a related review; Sharma et
al.[103] proposed to select a model by model
assumptions similarity; Musa et al. [104] pro-
posed five software reliability model evaluation
criteria, which have been more widely recog-
nized currently. Moreover, there are also many
researchers who have begun to study the uni-
versal model with integrated prediction frame-
work, neural networks, artificial intelligence
and other methods for software reliability inte-
grated prediction [105] [106]. It is evident that
after the 1990s, more attention is being paid to
the applicability of the model.
In 2016, Kumar et al.[16] provided a summary
of parametric and non-parametric modeling of
software reliability, and listed some tools and
datasets. In the next year, Zhang et al. [107]
analyzed and summarized SRGM, comparing
SRGMs typical at that time. At present, there
are various types of software reliability eval-
uation models, such as the JM model [17],
Musa model [90], GO model, LV model [143],
Schneidewind model [87], universal exponen-
tial model [88], generalized exponential model
[92], Shooman model [90], Yamada S model
[91], Duane model [93] and other classic mod-
els, as well as the Rome model [85], Keene's
development process model [86], which are all
mainly used to predict failures. In addition to
the classic model, there are models based on
the architecture [118] which can be divided into

path model, state model, component operation
profile model and others.
In addition, according to different modeling
methods, reliability models can be divided into
analytical models and heuristic models. Ac-
cording to whether the internal structure of soft-
ware is clear, evaluation models can be divided
into white box models, black box models, etc.

3.2.2. Research Trends in Current Decade

In the last section, we present research work on
software reliability evaluation and summarize
the research direction over the past ten years.
In 2010, Zeng et al. [78] proposed a software
reliability model selection method based on his-
torical software project experience. Ullah et al.
[80] [81] proposed a method to select the model
that best predicts Open Source Software (OSS)
residual defects. Vladimir et al. [107] pro-
posed a reliability comparison method, but this
method lacks more formal verification. Their
work focuses on how to better choose the eval-
uation model. In addition, Huang et al. [108]
are committed to studying the "change point"
problem in software reliability assessment, and
propose to incorporate multiple change points
into software reliability modeling. Domenico
et al. [115] studied optimization models. They
proposed a new reliability evaluation and im-
provement (RELAI) testing technology, which
can improve reliability through adaptive testing
schemes.
As shown in Figure 3, we have summarized the
software reliability evaluation research during
the last ten years into 6 directions, including:
model selection, solve the "change point" prob-
lem, imperfect debugging scheme, model opti-
mization, novel models, and field application.

4. Intelligent Software Reliability
Testing

With the advancement of intelligent software
technology, the reliability of intelligent soft-
ware has become a hot topic in this field. How-
ever, there are significant differences in the
models and testing methods between intelligent
software and traditional software. The methods

Figure 3. Research on software reliability evaluation technology over the past ten years.

154 155Z. Jiang, H. Li, D. Zhang, R. Wang, J. Zhang, X. Li, M. Zhang and P. Wang A Review of Software Reliability Testing Techniques

4.1.2. Cross-Referencing as Test Oracles

Cross-referencing is a test oracle technique in
intelligent software testing, which includes dif-
ferential testing and N version programming.
Differential testing is a traditional software
testing technique that detects errors by observ-
ing whether similar applications may produce
different outputs for the same input [146] [122].
Differential testing is one of the main testing
methods for detecting compiler errors [123],
and it is closely related to N version program-
ming which aims to generate multiple func-
tionally equivalent programs based on a single
specification, thus resulting in a higher degree
of fault tolerance and robustness for combina-
tions of different versions [124].
Both DeepXplore [8] and DLFuzz [130] adopt
differential testing as a test benchmark to find
valid test inputs. I.e., test inputs that lead to dif-
ferent behavior between algorithms or models
are preferred during the test generation.

4.1.3. Concolic Testing

Concolic testing is a modern symbolic execu-
tion testing technique, which is an effective
way to automatically generate test cases. Sun
et al. [131] developed the first kind of concolic
testing approach for DNN in 2018, where rea-
sonable quantitative linear arithmetic (QLAR)
was adopted to express test requirements, and

test cases could be generated progressively for
a given set of test requirements, to improve
coverage by the shift between concrete execu-
tion and symbolic analysis. In 2019, they fur-
ther introduced a DNN testing and debugging
tool called DeepConcolic, which could detect
errors with sufficient rigor to be suitable for
testing DNN in security-related applications
[132]. DeepConcolic was the first kind of tool
to implement concolic testing techniques for
DNN and to provide users with a test tool to
investigate specific parts of DNN functionality.

4.2. Intelligent Software Testing Criteria

In order to evaluate the adequacy of intelligent
software testing, scholars have also proposed
a number of test coverage criteria when study-
ing intelligent software testing. Currently, there
are mainly three types of test coverage criteria:
structure-based test criteria, semantic test crite-
ria, and combination-based test criteria.
Structure-based test criteria. Such as neuron
coverage [8], k multi-segment neuron coverage
[133], boundary neuron coverage [133], Top-k
neuron coverage [133], MC/DC criteria [135].
This type of test criteria mainly focuses on the
internal structure of the neural network and con-
siders the factors related to neuron coverage.
Semantic-based test criteria. DeepImportance
[148] uses semantics of the neuron's influence
on the Deep Learning (DL) system as the test

sufficiency criterion. This type of method not
only considers the internal structure of the neu-
ral network, but it also considers semantics of
the neuron's influence on the DL system.
Combination-based testing criteria. DeepCT
[147] proposes t-way combined sparse cov-
erage, t-way combined dense coverage, and
(p, t)-integrity coverage. This type of method
mainly draws on the idea of combined testing
and considers the adequacy of neural network
testing from another perspective.
Based on the above, in 2019, Zhang et al. [134]
carried out further research on the test criteria,
conducting a large-scale investigation of the
essential diversity of neural networks, and de-
fined five indicators to quantify the diversity of
neuronal activities.

5. Reliability Testing of Traditional
Software vs. Intelligent Software

Based on the previous analysis, it becomes ob-
vious that traditional software and intelligent

software are very different in terms of consti-
tutive logic, test methods and test criteria. The
summary of comparison between traditional
and intelligent software, is shown in Figure 5.

6. Challenges and Opportunities

SRT covers a wide range of fields. Intelligent
software technologies have brought great op-
portunities and challenges to traditional soft-
ware reliability. The traditional SRT becomes
more intelligent, and reliability requirements
for intelligent software becomes more urgent.
Specifically, SRT techniques are facing the fol-
lowing challenges.
Challenges in test case generation. According
to Utting et al. [95], although model-based test-
ing and use of case techniques have made great
progress in theoretical research, they are slow in
industry application and the cost of application
is not economic, which is caused by modeling
activities and the ability of testers. The scale
of traditional software continues to expand and
intelligent software is often made up of large

Figure 4. History of metamorphic testing. Figure 5. Comparison of traditional and intelligent software.

154 155Z. Jiang, H. Li, D. Zhang, R. Wang, J. Zhang, X. Li, M. Zhang and P. Wang A Review of Software Reliability Testing Techniques

4.1.2. Cross-Referencing as Test Oracles

Cross-referencing is a test oracle technique in
intelligent software testing, which includes dif-
ferential testing and N version programming.
Differential testing is a traditional software
testing technique that detects errors by observ-
ing whether similar applications may produce
different outputs for the same input [146] [122].
Differential testing is one of the main testing
methods for detecting compiler errors [123],
and it is closely related to N version program-
ming which aims to generate multiple func-
tionally equivalent programs based on a single
specification, thus resulting in a higher degree
of fault tolerance and robustness for combina-
tions of different versions [124].
Both DeepXplore [8] and DLFuzz [130] adopt
differential testing as a test benchmark to find
valid test inputs. I.e., test inputs that lead to dif-
ferent behavior between algorithms or models
are preferred during the test generation.

4.1.3. Concolic Testing

Concolic testing is a modern symbolic execu-
tion testing technique, which is an effective
way to automatically generate test cases. Sun
et al. [131] developed the first kind of concolic
testing approach for DNN in 2018, where rea-
sonable quantitative linear arithmetic (QLAR)
was adopted to express test requirements, and

test cases could be generated progressively for
a given set of test requirements, to improve
coverage by the shift between concrete execu-
tion and symbolic analysis. In 2019, they fur-
ther introduced a DNN testing and debugging
tool called DeepConcolic, which could detect
errors with sufficient rigor to be suitable for
testing DNN in security-related applications
[132]. DeepConcolic was the first kind of tool
to implement concolic testing techniques for
DNN and to provide users with a test tool to
investigate specific parts of DNN functionality.

4.2. Intelligent Software Testing Criteria

In order to evaluate the adequacy of intelligent
software testing, scholars have also proposed
a number of test coverage criteria when study-
ing intelligent software testing. Currently, there
are mainly three types of test coverage criteria:
structure-based test criteria, semantic test crite-
ria, and combination-based test criteria.
Structure-based test criteria. Such as neuron
coverage [8], k multi-segment neuron coverage
[133], boundary neuron coverage [133], Top-k
neuron coverage [133], MC/DC criteria [135].
This type of test criteria mainly focuses on the
internal structure of the neural network and con-
siders the factors related to neuron coverage.
Semantic-based test criteria. DeepImportance
[148] uses semantics of the neuron's influence
on the Deep Learning (DL) system as the test

sufficiency criterion. This type of method not
only considers the internal structure of the neu-
ral network, but it also considers semantics of
the neuron's influence on the DL system.
Combination-based testing criteria. DeepCT
[147] proposes t-way combined sparse cov-
erage, t-way combined dense coverage, and
(p, t)-integrity coverage. This type of method
mainly draws on the idea of combined testing
and considers the adequacy of neural network
testing from another perspective.
Based on the above, in 2019, Zhang et al. [134]
carried out further research on the test criteria,
conducting a large-scale investigation of the
essential diversity of neural networks, and de-
fined five indicators to quantify the diversity of
neuronal activities.

5. Reliability Testing of Traditional
Software vs. Intelligent Software

Based on the previous analysis, it becomes ob-
vious that traditional software and intelligent

software are very different in terms of consti-
tutive logic, test methods and test criteria. The
summary of comparison between traditional
and intelligent software, is shown in Figure 5.

6. Challenges and Opportunities

SRT covers a wide range of fields. Intelligent
software technologies have brought great op-
portunities and challenges to traditional soft-
ware reliability. The traditional SRT becomes
more intelligent, and reliability requirements
for intelligent software becomes more urgent.
Specifically, SRT techniques are facing the fol-
lowing challenges.
Challenges in test case generation. According
to Utting et al. [95], although model-based test-
ing and use of case techniques have made great
progress in theoretical research, they are slow in
industry application and the cost of application
is not economic, which is caused by modeling
activities and the ability of testers. The scale
of traditional software continues to expand and
intelligent software is often made up of large

Figure 4. History of metamorphic testing. Figure 5. Comparison of traditional and intelligent software.

156 157Z. Jiang, H. Li, D. Zhang, R. Wang, J. Zhang, X. Li, M. Zhang and P. Wang A Review of Software Reliability Testing Techniques

Transactions on Medical Imaging, vol. 35, no. 5,
pp. 1153‒1159, 2016.
http://dx.doi.org/10.1109/TMI.2016.2553401

[5] O. Vinyals et al., ''Show and Tell: A Neural Image
Caption Generator'', in Proc. of the 2015 IEEE
Conference on Computer Vision and Pattern Rec-
ognition (CVPR), Boston, 2015, pp. 3156‒3164.
http://dx.doi.org/10.1109/CVPR.2015.7298935

[6] M. Bojarski et al., ''End to End Learning
for Self-Driving Cars'', arXiv e-prints, arX-
iv:1604.07316, 2016.

[7] K. Grosse et al., ''Adversarial Examples for Mal-
ware Detection'', in Proc. of the European Sym-
posium on Research in Computer Security, 2017.
http://dx.doi.org/10.1007/978-3-319-66399-9_4

[8] K. Pei et al., ''Deepxplore: Automated Whitebox
Testing of Deep Learning Systems'', in Proc. of
the 26th Symposium on Operating Systems Prin-
ciples, 2017, pp. 1–18.
http://dx.doi.org/10.1145/3132747.3132785

[9] Y. Tian et al., ''DeepTest: Automated Testing
of Deep-Neural-Network-Driven Autonomous
Cars'', in Proc. of the International Conference on
Software Engineering (ICSE), 2018, pp. 303–314.
https://doi.org/10.1145/3180155.3180220

[10] M. Zhang et al., ''DeepRoad: GAN-Based Met-
amorphic Autonomous Driving System Test-
ing'', ArXiv e-prints (Feb. 2018), 2018, arXiv:cs.
SE/1802.02295

[11] Y. Sun et al., ''DeepConcolic: Testing and De-
bugging Deep Neural Networks'', in Proc. of the
ICSE-Companion, Montreal, Canada, 2019, pp.
111–114.
http://dx.doi.org/10.1109/ICSE-Companion.2019.00051

[12] E. T. Barr et al., ''The Oracle Problem in Software
Testing: A Survey'', IEEE Transactions on Soft-
ware Engineering, vol. 41, no. 5, pp. 507–525,
2015.
http://dx.doi.org/10.1109/TSE.2014.2372785

[13] T. Y. Chen et al., ''Fault-Based Testing Without
the Need of Oracles'', Information & Software
Technolog, vol. 45, no. 1, pp. 1–9, 2003.
http://dx.doi.org/10.1016/S0950-5849(02)00129-5

[14] Z. Li et al., ''Reliability Engineering, 2nd edi-
tion'', Journal of Quality Technology, vol. 44, no.
4, pp. 394–395, 2012.
http://dx.doi.org/10.1080/00224065.2012.11917908

[15] L. K. Sharma et al., ''Software Reliability Growth
Models and Tools – A Review'', in Proc. of the
2015 2nd International Conference on Comput-
ing for Sustainable Global Development (INDIA-
Com), 2015, pp. 2057–2061.

[16] A. Kumar, ''Software Reliability Growth Models,
Tools and Data Sets A Review'', in Proc. of the

9th India Software Engineering Conference on –
ISEC, 2016, pp. 80–88.
http://dx.doi.org/10.1145/2856636.2856648

[17] Z. Jelinski et al., ''Software Reliability Research'',
Statistical Computer Performance Evaluation,
pp. 465–484, 1972.
https://doi.org/10.1016/B978-0-12-266950-7.50028-1

[18] J. D. Musa, ''Software Reliability Engineering'',
Wiley-IEEE Press, 1999.
https://doi.org/10.1002/0471722324.ch22

[19] ''Guide for Military Software Reliability Evalua-
tion'', in GJB/Z161-2012 (Revision of China Std
GJB/Z161-2012), pp. 1–47, 2012. (In Chinese)

[20] ''IEEE Recommended Practice on Software Re-
liability'', in IEEE Std 1633-2016 (Revision of
IEEE Std 1633-2008), pp. 1–261, 2017.
http://dx.doi.org/10.1109/IEEESTD.2017.7827907

[21] R. Serfozoand, Basics of Applied Stochastic Pro-
cesses, Springer, 2009.

[22] C. Zhenhua and W. Feng, ''Research on Software
Reliability Evaluation Method Based on Markov
Chain Usage Model'', Computer Engineering and
Design, vol. 28, no. 12, 2007. (In Chinese)

[23] I. Schieferdecker, ''Model-Based Testing'', IEEE
Software, vol. 29, no. 1, pp. 14–18, 2012.
http://dx.doi.org/10.1109/MS.2012.13

[24] B. Wan et al., ''Evaluating Reliability-Testing Us-
age Models'', in Proc. of the 2012 IEEE 36th An-
nual Computer Software and Applications Con-
ference, 2012, pp. 129–137.
http://dx.doi.org/10.1109/COMPSAC.2012.23

[25] J. A. Whittaker and M. G. Thomason, ''A Markov
Chain Model for Statistical Software Testing'',
IEEE Transactions on Software Engineering, vol.
20, no. 10, pp. 812–824, 1994.
http://dx.doi.org/10.1109/32.328991

[26] Y. Wang et al., ''A Method for Software Reliability
Test Case Design Based on Markov Chain Usage
Model'', in Proc. of the 2013 International Con-
ference on Quality, Reliability, Risk, Maintenance,
and Safety Engineering, 2013, pp. 1207–1210.
http://dx.doi.org/10.1109/QR2MSE.2013.6625785

[27] R. Dorofeeva et al., ''FSM-Based Conformance
Testing Methods: A Survey Annotated with Ex-
perimental Evaluation'', Information and Software
Technology, vol. 52, no. 12, pp. 1286–1297, 2010.
http://dx.doi.org/10.1016/j.infsof.2010.07.001

[28] A. Nayak and D. Samanta, ''Synthesis of Test
Scenarios Using UML Activity Diagrams'', Soft-
ware and Systems Modeling, vol. 10, no. 1, pp.
63–89, 2011.
http://dx.doi.org/10.1007/s10270-009-0133-4

[29] A. K. Jena et al., ''A Novel Approach for Test
Case Generation from UML Activity Diagram'',
in Proc. of the 2014 International Conference on

behavioral spaces. These factors have brought
huge challenges to generate effective test sets.
Challenges in testing evaluation criteria.
While traditional SRT has resulted in many cri-
teria, the applicability of those criteria to intel-
ligent software is a question that needs to be ex-
plored. At present, there is no uniform system
of definitions and criteria for reliability testing
of intelligent software. Besides, although much
work has been done exploring the ways how
to assess quality or adequacy of test data, there
is still a lack of systematic evaluation of how
different evaluation criteria relate to each other,
or how they relate to the ability of tests to detect
errors.
Challenges in evaluation model. As software
becomes increasingly complex and large, eval-
uation models are difficult to construct. The
construction of a broadly common set of eval-
uation models is also a challenge. Besides, cur-
rently there is no mature model for assessing
the reliability of intelligent software, and there
is an urgent demand for new evaluation meth-
ods.
Challenge in test oracle. Although DeepTest
[9] can effectively mitigate the oracle problem
by metamorphic testing, these metamorphic
relationships are proposed mostly by humans
and may contain false positives. Therefore, the
automatic identification and construction a re-
liable oracle for SRT is still a huge challenge.
In addition to the above challenges, there are
also many opportunities in the research of SRT,
two of which are mentioned below.
Intelligent methodological study of tradition-
al software reliability techniques. The devel-
opment of intelligent software technology has
brought more possibilities to ensure reliability
of traditional software. We can apply intelligent
software technology to improve automation
and efficiency of testing and evaluation, as well
as to reduce the cost of testing. Besides, the ma-
chine learning-based model can also be applied
in software reliability evaluation.
Research on reliability evaluation methods
for intelligent software. Intelligent software
is usually based on DNN models. There are no
mature methods and criteria for reliability eval-
uation. There is a series of mature theories and
methods on reliability evaluation for traditional

software, and applying them to reliability eval-
uation for intelligent software is also a direction
worth studying.

7. Conclusion

In this paper, we introduced a software reliabil-
ity testing technology, including traditional and
intelligent software reliability testing. Accord-
ing to previous work, we proposed a general
framework for SRT. Secondly, we introduced a
usage model, test methods and evaluation meth-
ods of traditional SRT. Moreover, we also sum-
marized the existing methods, frameworks and
test coverage criteria of intelligent SRT. Finally,
we compared reliability testing technologies of
intelligent software and traditional software,
and analyzed current challenges and opportu-
nities of SRT technology. Hopefully, our study
can help interested researchers understand the
current technologies of SRT, and provide guid-
ance for a more in-depth research.

Acknowledgment

This research was supported by Fundamental
Research Funds for the Central Universities,
No. 2019JBM026.

References

[1] M. Palviainen et al., ''The Reliability Estimation,
Prediction and Measuring of Component-Based
Software'', Journal of Systems and Software, vol.
84, no. 6, pp. 1054‒1070, 2011.
http://dx.doi.org/10.1016/j.jss.2011.01.048

[2] K. Simonyan and A. Zisserman, ''Very Deep Con-
volutional Networks for Large-Scale Image Rec-
ognition'', ArXiv preprint, vol. abs/1409.1556,
2014. Available:
http://arxiv.org/abs/1409.1556

[3] G. Hinton et al., ''Deep Neural Networks for
Acoustic Modeling in Speech Recognition: The
Shared Views of Four Research Groups'', IEEE
Signal Processing Magazine, vol. 29, no. 6, pp.
82‒97, 2012.
http://dx.doi.org/10.1109/MSP.2012.2205597

[4] H. Greenspan et al., ''Guest Editorial Deep Learn-
ing in Medical Imaging: Overview and Future
Promise of an Exciting New Technique'', IEEE

http://dx.doi.org/10.1109/TMI.2016.2553401
http://dx.doi.org/10.1109/CVPR.2015.7298935
http://dx.doi.org/10.1007/978-3-319-66399-9_4
http://dx.doi.org/10.1145/3132747.3132785
https://doi.org/10.1145/3180155.3180220
http://dx.doi.org/10.1109/ICSE-Companion.2019.00051
http://dx.doi.org/10.1109/TSE.2014.2372785
http://dx.doi.org/10.1016/S0950-5849(02)00129-5
http://dx.doi.org/10.1080/00224065.2012.11917908
http://dx.doi.org/10.1145/2856636.2856648
https://doi.org/10.1016/B978-0-12-266950-7.50028-1
https://doi.org/10.1002/0471722324.ch22
http://dx.doi.org/10.1109/IEEESTD.2017.7827907
http://dx.doi.org/10.1109/MS.2012.13
http://dx.doi.org/10.1109/COMPSAC.2012.23
http://dx.doi.org/10.1109/32.328991
http://dx.doi.org/10.1109/QR2MSE.2013.6625785
http://dx.doi.org/10.1016/j.infsof.2010.07.001
http://dx.doi.org/10.1007/s10270-009-0133-4
http://dx.doi.org/10.1016/j.jss.2011.01.048
http://arxiv.org/abs/1409.1556
http://dx.doi.org/10.1109/MSP.2012.2205597

156 157Z. Jiang, H. Li, D. Zhang, R. Wang, J. Zhang, X. Li, M. Zhang and P. Wang A Review of Software Reliability Testing Techniques

Transactions on Medical Imaging, vol. 35, no. 5,
pp. 1153‒1159, 2016.
http://dx.doi.org/10.1109/TMI.2016.2553401

[5] O. Vinyals et al., ''Show and Tell: A Neural Image
Caption Generator'', in Proc. of the 2015 IEEE
Conference on Computer Vision and Pattern Rec-
ognition (CVPR), Boston, 2015, pp. 3156‒3164.
http://dx.doi.org/10.1109/CVPR.2015.7298935

[6] M. Bojarski et al., ''End to End Learning
for Self-Driving Cars'', arXiv e-prints, arX-
iv:1604.07316, 2016.

[7] K. Grosse et al., ''Adversarial Examples for Mal-
ware Detection'', in Proc. of the European Sym-
posium on Research in Computer Security, 2017.
http://dx.doi.org/10.1007/978-3-319-66399-9_4

[8] K. Pei et al., ''Deepxplore: Automated Whitebox
Testing of Deep Learning Systems'', in Proc. of
the 26th Symposium on Operating Systems Prin-
ciples, 2017, pp. 1–18.
http://dx.doi.org/10.1145/3132747.3132785

[9] Y. Tian et al., ''DeepTest: Automated Testing
of Deep-Neural-Network-Driven Autonomous
Cars'', in Proc. of the International Conference on
Software Engineering (ICSE), 2018, pp. 303–314.
https://doi.org/10.1145/3180155.3180220

[10] M. Zhang et al., ''DeepRoad: GAN-Based Met-
amorphic Autonomous Driving System Test-
ing'', ArXiv e-prints (Feb. 2018), 2018, arXiv:cs.
SE/1802.02295

[11] Y. Sun et al., ''DeepConcolic: Testing and De-
bugging Deep Neural Networks'', in Proc. of the
ICSE-Companion, Montreal, Canada, 2019, pp.
111–114.
http://dx.doi.org/10.1109/ICSE-Companion.2019.00051

[12] E. T. Barr et al., ''The Oracle Problem in Software
Testing: A Survey'', IEEE Transactions on Soft-
ware Engineering, vol. 41, no. 5, pp. 507–525,
2015.
http://dx.doi.org/10.1109/TSE.2014.2372785

[13] T. Y. Chen et al., ''Fault-Based Testing Without
the Need of Oracles'', Information & Software
Technolog, vol. 45, no. 1, pp. 1–9, 2003.
http://dx.doi.org/10.1016/S0950-5849(02)00129-5

[14] Z. Li et al., ''Reliability Engineering, 2nd edi-
tion'', Journal of Quality Technology, vol. 44, no.
4, pp. 394–395, 2012.
http://dx.doi.org/10.1080/00224065.2012.11917908

[15] L. K. Sharma et al., ''Software Reliability Growth
Models and Tools – A Review'', in Proc. of the
2015 2nd International Conference on Comput-
ing for Sustainable Global Development (INDIA-
Com), 2015, pp. 2057–2061.

[16] A. Kumar, ''Software Reliability Growth Models,
Tools and Data Sets A Review'', in Proc. of the

9th India Software Engineering Conference on –
ISEC, 2016, pp. 80–88.
http://dx.doi.org/10.1145/2856636.2856648

[17] Z. Jelinski et al., ''Software Reliability Research'',
Statistical Computer Performance Evaluation,
pp. 465–484, 1972.
https://doi.org/10.1016/B978-0-12-266950-7.50028-1

[18] J. D. Musa, ''Software Reliability Engineering'',
Wiley-IEEE Press, 1999.
https://doi.org/10.1002/0471722324.ch22

[19] ''Guide for Military Software Reliability Evalua-
tion'', in GJB/Z161-2012 (Revision of China Std
GJB/Z161-2012), pp. 1–47, 2012. (In Chinese)

[20] ''IEEE Recommended Practice on Software Re-
liability'', in IEEE Std 1633-2016 (Revision of
IEEE Std 1633-2008), pp. 1–261, 2017.
http://dx.doi.org/10.1109/IEEESTD.2017.7827907

[21] R. Serfozoand, Basics of Applied Stochastic Pro-
cesses, Springer, 2009.

[22] C. Zhenhua and W. Feng, ''Research on Software
Reliability Evaluation Method Based on Markov
Chain Usage Model'', Computer Engineering and
Design, vol. 28, no. 12, 2007. (In Chinese)

[23] I. Schieferdecker, ''Model-Based Testing'', IEEE
Software, vol. 29, no. 1, pp. 14–18, 2012.
http://dx.doi.org/10.1109/MS.2012.13

[24] B. Wan et al., ''Evaluating Reliability-Testing Us-
age Models'', in Proc. of the 2012 IEEE 36th An-
nual Computer Software and Applications Con-
ference, 2012, pp. 129–137.
http://dx.doi.org/10.1109/COMPSAC.2012.23

[25] J. A. Whittaker and M. G. Thomason, ''A Markov
Chain Model for Statistical Software Testing'',
IEEE Transactions on Software Engineering, vol.
20, no. 10, pp. 812–824, 1994.
http://dx.doi.org/10.1109/32.328991

[26] Y. Wang et al., ''A Method for Software Reliability
Test Case Design Based on Markov Chain Usage
Model'', in Proc. of the 2013 International Con-
ference on Quality, Reliability, Risk, Maintenance,
and Safety Engineering, 2013, pp. 1207–1210.
http://dx.doi.org/10.1109/QR2MSE.2013.6625785

[27] R. Dorofeeva et al., ''FSM-Based Conformance
Testing Methods: A Survey Annotated with Ex-
perimental Evaluation'', Information and Software
Technology, vol. 52, no. 12, pp. 1286–1297, 2010.
http://dx.doi.org/10.1016/j.infsof.2010.07.001

[28] A. Nayak and D. Samanta, ''Synthesis of Test
Scenarios Using UML Activity Diagrams'', Soft-
ware and Systems Modeling, vol. 10, no. 1, pp.
63–89, 2011.
http://dx.doi.org/10.1007/s10270-009-0133-4

[29] A. K. Jena et al., ''A Novel Approach for Test
Case Generation from UML Activity Diagram'',
in Proc. of the 2014 International Conference on

behavioral spaces. These factors have brought
huge challenges to generate effective test sets.
Challenges in testing evaluation criteria.
While traditional SRT has resulted in many cri-
teria, the applicability of those criteria to intel-
ligent software is a question that needs to be ex-
plored. At present, there is no uniform system
of definitions and criteria for reliability testing
of intelligent software. Besides, although much
work has been done exploring the ways how
to assess quality or adequacy of test data, there
is still a lack of systematic evaluation of how
different evaluation criteria relate to each other,
or how they relate to the ability of tests to detect
errors.
Challenges in evaluation model. As software
becomes increasingly complex and large, eval-
uation models are difficult to construct. The
construction of a broadly common set of eval-
uation models is also a challenge. Besides, cur-
rently there is no mature model for assessing
the reliability of intelligent software, and there
is an urgent demand for new evaluation meth-
ods.
Challenge in test oracle. Although DeepTest
[9] can effectively mitigate the oracle problem
by metamorphic testing, these metamorphic
relationships are proposed mostly by humans
and may contain false positives. Therefore, the
automatic identification and construction a re-
liable oracle for SRT is still a huge challenge.
In addition to the above challenges, there are
also many opportunities in the research of SRT,
two of which are mentioned below.
Intelligent methodological study of tradition-
al software reliability techniques. The devel-
opment of intelligent software technology has
brought more possibilities to ensure reliability
of traditional software. We can apply intelligent
software technology to improve automation
and efficiency of testing and evaluation, as well
as to reduce the cost of testing. Besides, the ma-
chine learning-based model can also be applied
in software reliability evaluation.
Research on reliability evaluation methods
for intelligent software. Intelligent software
is usually based on DNN models. There are no
mature methods and criteria for reliability eval-
uation. There is a series of mature theories and
methods on reliability evaluation for traditional

software, and applying them to reliability eval-
uation for intelligent software is also a direction
worth studying.

7. Conclusion

In this paper, we introduced a software reliabil-
ity testing technology, including traditional and
intelligent software reliability testing. Accord-
ing to previous work, we proposed a general
framework for SRT. Secondly, we introduced a
usage model, test methods and evaluation meth-
ods of traditional SRT. Moreover, we also sum-
marized the existing methods, frameworks and
test coverage criteria of intelligent SRT. Finally,
we compared reliability testing technologies of
intelligent software and traditional software,
and analyzed current challenges and opportu-
nities of SRT technology. Hopefully, our study
can help interested researchers understand the
current technologies of SRT, and provide guid-
ance for a more in-depth research.

Acknowledgment

This research was supported by Fundamental
Research Funds for the Central Universities,
No. 2019JBM026.

References

[1] M. Palviainen et al., ''The Reliability Estimation,
Prediction and Measuring of Component-Based
Software'', Journal of Systems and Software, vol.
84, no. 6, pp. 1054‒1070, 2011.
http://dx.doi.org/10.1016/j.jss.2011.01.048

[2] K. Simonyan and A. Zisserman, ''Very Deep Con-
volutional Networks for Large-Scale Image Rec-
ognition'', ArXiv preprint, vol. abs/1409.1556,
2014. Available:
http://arxiv.org/abs/1409.1556

[3] G. Hinton et al., ''Deep Neural Networks for
Acoustic Modeling in Speech Recognition: The
Shared Views of Four Research Groups'', IEEE
Signal Processing Magazine, vol. 29, no. 6, pp.
82‒97, 2012.
http://dx.doi.org/10.1109/MSP.2012.2205597

[4] H. Greenspan et al., ''Guest Editorial Deep Learn-
ing in Medical Imaging: Overview and Future
Promise of an Exciting New Technique'', IEEE

http://dx.doi.org/10.1109/TMI.2016.2553401
http://dx.doi.org/10.1109/CVPR.2015.7298935
http://dx.doi.org/10.1007/978-3-319-66399-9_4
http://dx.doi.org/10.1145/3132747.3132785
https://doi.org/10.1145/3180155.3180220
http://dx.doi.org/10.1109/ICSE-Companion.2019.00051
http://dx.doi.org/10.1109/TSE.2014.2372785
http://dx.doi.org/10.1016/S0950-5849(02)00129-5
http://dx.doi.org/10.1080/00224065.2012.11917908
http://dx.doi.org/10.1145/2856636.2856648
https://doi.org/10.1016/B978-0-12-266950-7.50028-1
https://doi.org/10.1002/0471722324.ch22
http://dx.doi.org/10.1109/IEEESTD.2017.7827907
http://dx.doi.org/10.1109/MS.2012.13
http://dx.doi.org/10.1109/COMPSAC.2012.23
http://dx.doi.org/10.1109/32.328991
http://dx.doi.org/10.1109/QR2MSE.2013.6625785
http://dx.doi.org/10.1016/j.infsof.2010.07.001
http://dx.doi.org/10.1007/s10270-009-0133-4
http://dx.doi.org/10.1016/j.jss.2011.01.048
http://arxiv.org/abs/1409.1556
http://dx.doi.org/10.1109/MSP.2012.2205597

158 159Z. Jiang, H. Li, D. Zhang, R. Wang, J. Zhang, X. Li, M. Zhang and P. Wang A Review of Software Reliability Testing Techniques

Issues and Challenges in Intelligent Computing
Techniques (ICICT), 2014, pp. 621–629.
http://dx.doi.org/10.1109/ICICICT.2014.6781352

[30] P. Runeson and B. Regnell, ''Derivation of an In-
tegrated Operational Profile and Use Case Mod-
el'', in Proc. of the Ninth International Sympo-
sium on Software Reliability Engineering, 1998,
pp. 70–79.
http://dx.doi.org/10.1109/ISSRE.1998.730843

[31] S. Garg et al.,''Analysis of Software Rejuvena-
tion Using Markov Regenerative Stochastic Petri
Net'', in Proc. of the International Symposium on
Software Reliability Engineering, 1995.
http://dx.doi.org/10.1109/ISSRE.1995.497656

[32] J. P. Bowen et al., ZUM '98: The Z Formal Spec-
ification Notation, Springer Berlin Heidelberg,
1998.

[33] Z. Jiang et al., An Improved Reliability Testing
Model Based on SOFL, Springer, 2017.

[34] P. M. Maurer, ''The Design and Implementation
of a Grammar-Based Data Generator'', Software-
Practice and Experience, vol. 22, no. 3, pp. 223–
244, 1992.

[35] X. Li et al., ''Consistency Checking of UML Re-
quirements'', in Proc. of the 10th IEEE Interna-
tional Conference on Engineering of Complex
Computer System, 2005, pp. 411–420.
http://dx.doi.org/10.1109/ICECCS.2005.28

[36] M. Lohmann et al., ''Executable Visual Con-
tracts'', in Proc. of the 2005 IEEE Symposium on
Visual Languages and Human-Centric Computin,
2005, pp. 63–70.
http://dx.doi.org/10.1109/VLHCC.2005.35

[37] X. Tian et al., ''Web Service Reliability Test
Method Based on Log Analysis'', in Proc. of the
2017 IEEE International Conference on Software
Quality, Reliability and Security Companion,
2017, pp. 195–199.
http://dx.doi.org/10.1109/QRS-C.2017.38

[38] M. Johansson and T. Olofsson, ''Bayesian Model
Selection for Markov, Hidden Markov, and Mul-
tinomial Models'', IEEE Signal Processing Let-
ters, vol. 14, no. 2, pp. 1291–132, 2007.
http://dx.doi.org/10.1109/LSP.2006.882094

[39] A. Pievatolo et al., ''A Bayesian Hidden Mar-
kov Model for Imperfect Debugging'', Reliabil-
ity Engineering & System Safety, vol. 103, pp.
11–21, 2012.
http://dx.doi.org/10.1016/j.ress.2012.03.003

[40] S. Assoudou and B. Essebbar, ''A Bayesian Model
for Markov Chains via Jeffrey's Prior'', Commu-
nications in Statistics - Theory and Methods, vol.
32, no. 11, pp. 2163–2184, 2003.
http://dx.doi.org/10.1081/STA-120024474

[41] K. S. Kumar and R. B. Misra, ''Software Opera-
tional Profile Based Test Case Allocation Using

Fuzzy Logic'', International Journal of Automa-
tion and Computing, vol. 4, no. 4, pp. 388–395,
2007.

[42] C. G. Bai et al., ''Bayesian Network Based Soft-
ware Reliability Prediction with an Operational
Profile'', Journal of Systems & Software, vol. 77,
no. 2, pp. 103–112, 2005.
http://dx.doi.org/10.1016/j.jss.2004.11.034

[43] T. He and H. Miao, ''Modeling and Composition
of Web Application Components using Extended
FSM'', in Proc. of the 2008 Fourth International
Conference on Natural Computation, 2008, pp.
363–368.
http://dx.doi.org/10.1109/ICNC.2008.889

[44] A. M. Mostafa et al., ''Toward a Formalization
of UML2.0 Metamodel using Z Specifications'',
in Proc. of the Eighth ACIS International Con-
ference on Software Engineering, Artificial In-
telligence, Networking, and Parallel/Distributed
Computing (SNPD 2007), 2007, pp. 694–701.
http://dx.doi.org/10.1109/SNPD.2007.508

[45] F. Huan et al., ''Review of Reliability Analysis
Based on Petri Nets'', Computer Science, 2014.
(In Chinese)

[46] C. Xiaolin, ''A Summary of the Automatic Gener-
ation of Test Cases Based on UML Model'', Mod-
ern Computer, vol. 7, 2018. (In Chinese)

[47] L. Yi et al., ''A Conversion Method from UML
Model to Reliability Analysis Model'', Journal of
Software, vol. 2, pp. 287–304, 2010. (In Chinese)

[48] J. Yan et al., ''Deriving Software Markov Chain
Usage Model from UML Models'', Journal of
Software, vol. 16, no. 8, 2005.
http://dx.doi.org/10.1360/jos161386

[49] V. Garousi et al., ''A Genetic Algorithm-Based
Stress Test Requirements Generator Tool and Its
Empirical Evaluation'', IEEE Transactions on
Software Engineering, vol. 36, no. 6, pp. 778–
797, 2010.
http://dx.doi.org/10.1109/TSE.2010.5

[50] A. T. Endo et al., ''Evaluating Test Suite Charac-
teristics, Cost, and Effectiveness of FSM-Based
Testing Methods'', Information and Software
Technology, vol. 55, no. 6, pp. 1045–1062, 2013.
https://doi.org/10.1016/j.infsof.2013.01.001

[51] A. L. Bonifacio et al., ''Model Partitions and
Compact Test Case Suites'', International Journal
of Foundations of Computer Science, vol. 23, no.
1, pp. 147–172, 2012.

[52] V. Santiago et al., ''An Environment for Automat-
ed Test Case Generation from Statechart-Based
and Finite State Machine-Based Behavioral
Models'', in Proc. of the 2008 IEEE International
Conference on Software Testing Verification and
Validation Workshop, 2008, pp. 63–72.
http://dx.doi.org/10.1109/ICSTW.2008.7

[53] A. Kalaji et al., ''A Search-Based Approach for
Automatic Test Generation from Extended Finite
State Machine (EFSM)'', in Proc. of the 2009
Testing: Academic and Industrial Conference
– Practice and Research Techniques, 2009, pp.
131–132.
http://dx.doi.org/10.1109/TAICPART.2009.19

[54] A. S. Kalaji et al.,''An Integrated Search-Based
Approach for Automatic Testing from Extended
Finite State Machine (EFSM) Models'', Informa-
tion & Software Technology, vol. 53, no. 12, pp.
1297–1318, 2011.
http://dx.doi.org/10.1016/j.infsof.2011.06.004

[55] J. J. Li and W. E. Wong, ''Automatic Test Gener-
ation from Communicating Extended Finite State
Machine (CEFSM)-Based Models'', in Proc. of
the Fifth IEEE International Symposium on Ob-
ject-Oriented Real-Time Distributed Computing.
ISIRC 2002, 2002, pp. 181–185.
http://dx.doi.org/10.1109/ISORC.2002.1003693

[56] J. C. Huang, ''An Approach to Program Testing'',
ACM Computing Surveys, vol. 7, no. 3, pp. 113–
128, 1975.
http://dx.doi.org/10.1145/356651.356652

[57] T. S. Chow, ''Testing Software Design Modeled
by Finite-State Machines'', IEEE Transactions
on Software Engineering, vol. SE-4, no. 3, pp.
178–187, 1978.
http://dx.doi.org/10.1109/TSE.1978.231496

[58] W. E. Howden, ''Methodology for the Generation
of Program Test Data,'' IEEE Transactions on
Computers, vol. C-24, no. 5, pp. 554–560, 1975.
http://dx.doi.org/10.1109/T-C.1975.224259

[59] S. Pimont and J. C. Rault, ''A Software Reliabil-
ity Evaluation Based on a Structural and Behav-
ioral Analysis of Programs'', in Proc. of the 2nd
Int'l Conf. on Software Engineering. San Fran-
cisco: IEEE Computer Society Press, 1976, pp.
486–491.
http://www.informatik.uni-trier.de/~ley/db/conf/
icse/icse76.html

[60] S. Fujiwara et al., ''Test Selection Based on Finite
State Models'', IEEE Transactions on Software
Engineering, vol. 17, no. 6, pp. 591–603, 1991.
http://dx.doi.org/10.1109/32.87284

[61] D. P. Sidhu and T. Leung, ''Formal Methods for
Protocol Testing: A Detailed Study'', IEEE Trans-
actions on Software Engineering, vol. 15, no. 4,
pp. 413–426, 1989.
http://dx.doi.org/10.1109/32.16602

[62] L. Pan et al., ''DFSM-Based Minimum Test Cost
Transition Coverage Criterion'', Journal of Soft-
ware, vol. 22, no. 7, pp. 1457–1474, 2011.
http://dx.doi.org/10.3724/SP.J.1001.2011.03872

[63] K. Supaporn and R. Wanchai, ''Automated-Gener-
ating Test Case Using UML State Chart Diagrams'',
in Proc. of the SAICSIT, 2003, pp. 296–300.

[64] P. Samuel and A. T. Joseph, ''Test Sequence Gen-
eration from UML Sequence Diagrams'', in Proc.
of the Ninth ACIS International Conference on
Software Engineering, 2008, pp. 879–887.
http://dx.doi.org/10.1109/SNPD.2008.100

[65] J. Wen et al., ''Research on Regression Test Case
Generation Based on UML Sequence Diagram'',
Integration Technology, vol. 2, no. 3, pp. 75–78,
2013. (In Chinese)

[66] E. G. Cartaxo et al., ''Test Case Generation by
Means of UML Sequence Diagrams and Labeled
Transition Systems'', in Proc. of the 2007 IEEE
International Conference on Systems, Man and
Cybernetics, 2007, pp. 1292–1297.
http://dx.doi.org/10.1109/ICSMC.2007.4414060

[67] A. J. Offutt et al., ''Criteria for Generating Spec-
ification-Based Tests'', in Proc. of the Fifth IEEE
International Conference on Engineering of
Complex Computer Systems (ICECCS'99) (Cat.
No.PR00434), 1999, pp. 119–129.
http://dx.doi.org/10.1109/ICECCS.1999.802856

[68] H. Li et al., ''Software Reliability Metrics Select-
ing Method Based on Analytic Hierarchy Pro-
cess'', in Proc. of the 2006 Sixth International
Conference on Quality Software (QSIC'06), 2006,
pp. 337–346.
http://dx.doi.org/10.1109/QSIC.2006.59

[69] S. He et al., ''Experience Report: System Log
Analysis for Anomaly Detection'', in Proc. of
the 2016 IEEE 27th International Symposium on
Software Reliability Engineering (ISSRE), 2016,
pp. 207–218.
http://dx.doi.org/10.1109/ISSRE.2016.21

[70] K. D. Goseva-Popstojanova, ''A New Markov
Model of N Version Programming Systems'', in
Proc. of the 1991 International Symposium on Soft-
ware Reliability Engineering, 1991, pp. 210–215.

[71] N. Yunhui et al., ''Research on Software Reliabil-
ity Evaluation and Test Methods'', Reliability and
Environmental Testing of Electronic Products,
2009, 27 (z1). (In Chinese)

[72] C. Mengtian and Z. Yi-Cheng, ''Application of
Markov Chain Approach for Multi-Attributes
Dynamic Software Reliability Evaluation Under
Both AHP and Gray Correlation Methods'', Inter-
national Journal of Modern Physics, 2018.

[73] Y. Dai et al., ''Uncertainty Analysis in Software
Reliability Modeling by Bayesian Analysis with
Maximum-Entropy Principle'', IEEE Transac-
tions on Software Engineering, vol. 33, no. 11,
pp. 781–795, 2007.
http://dx.doi.org/10.1109/TSE.2007.70739

[74] S. A. Sherer, ''A Cost-Effective Approach to Test-
ing'', IEEE Software, vol. 8, no. 2, pp. 34–40,
1991.
http://dx.doi.org/10.1109/52.73747

http://dx.doi.org/10.1109/ICICICT.2014.6781352
http://dx.doi.org/10.1109/ISSRE.1998.730843
http://dx.doi.org/10.1109/ISSRE.1995.497656
http://dx.doi.org/10.1109/ICECCS.2005.28
http://dx.doi.org/10.1109/VLHCC.2005.35
http://dx.doi.org/10.1109/QRS-C.2017.38
http://dx.doi.org/10.1109/LSP.2006.882094
http://dx.doi.org/10.1016/j.ress.2012.03.003
http://dx.doi.org/10.1081/STA-120024474
http://dx.doi.org/10.1016/j.jss.2004.11.034
http://dx.doi.org/10.1109/ICNC.2008.889
http://dx.doi.org/10.1109/SNPD.2007.508
http://dx.doi.org/10.1360/jos161386
http://dx.doi.org/10.1109/TSE.2010.5
https://doi.org/10.1016/j.infsof.2013.01.001
http://dx.doi.org/10.1109/ICSTW.2008.7
http://dx.doi.org/10.1109/TAICPART.2009.19
http://dx.doi.org/10.1016/j.infsof.2011.06.004
http://dx.doi.org/10.1109/ISORC.2002.1003693
http://dx.doi.org/10.1145/356651.356652
http://dx.doi.org/10.1109/TSE.1978.231496
http://dx.doi.org/10.1109/T-C.1975.224259
http://www.informatik.uni-trier.de/~ley/db/conf/icse/icse76.html
http://www.informatik.uni-trier.de/~ley/db/conf/icse/icse76.html
http://dx.doi.org/10.1109/32.87284
http://dx.doi.org/10.1109/32.16602
http://dx.doi.org/10.3724/SP.J.1001.2011.03872
http://dx.doi.org/10.1109/SNPD.2008.100
http://dx.doi.org/10.1109/ICSMC.2007.4414060
http://dx.doi.org/10.1109/ICECCS.1999.802856
http://dx.doi.org/10.1109/QSIC.2006.59
http://dx.doi.org/10.1109/ISSRE.2016.21
http://dx.doi.org/10.1109/TSE.2007.70739
http://dx.doi.org/10.1109/52.73747

158 159Z. Jiang, H. Li, D. Zhang, R. Wang, J. Zhang, X. Li, M. Zhang and P. Wang A Review of Software Reliability Testing Techniques

Issues and Challenges in Intelligent Computing
Techniques (ICICT), 2014, pp. 621–629.
http://dx.doi.org/10.1109/ICICICT.2014.6781352

[30] P. Runeson and B. Regnell, ''Derivation of an In-
tegrated Operational Profile and Use Case Mod-
el'', in Proc. of the Ninth International Sympo-
sium on Software Reliability Engineering, 1998,
pp. 70–79.
http://dx.doi.org/10.1109/ISSRE.1998.730843

[31] S. Garg et al.,''Analysis of Software Rejuvena-
tion Using Markov Regenerative Stochastic Petri
Net'', in Proc. of the International Symposium on
Software Reliability Engineering, 1995.
http://dx.doi.org/10.1109/ISSRE.1995.497656

[32] J. P. Bowen et al., ZUM '98: The Z Formal Spec-
ification Notation, Springer Berlin Heidelberg,
1998.

[33] Z. Jiang et al., An Improved Reliability Testing
Model Based on SOFL, Springer, 2017.

[34] P. M. Maurer, ''The Design and Implementation
of a Grammar-Based Data Generator'', Software-
Practice and Experience, vol. 22, no. 3, pp. 223–
244, 1992.

[35] X. Li et al., ''Consistency Checking of UML Re-
quirements'', in Proc. of the 10th IEEE Interna-
tional Conference on Engineering of Complex
Computer System, 2005, pp. 411–420.
http://dx.doi.org/10.1109/ICECCS.2005.28

[36] M. Lohmann et al., ''Executable Visual Con-
tracts'', in Proc. of the 2005 IEEE Symposium on
Visual Languages and Human-Centric Computin,
2005, pp. 63–70.
http://dx.doi.org/10.1109/VLHCC.2005.35

[37] X. Tian et al., ''Web Service Reliability Test
Method Based on Log Analysis'', in Proc. of the
2017 IEEE International Conference on Software
Quality, Reliability and Security Companion,
2017, pp. 195–199.
http://dx.doi.org/10.1109/QRS-C.2017.38

[38] M. Johansson and T. Olofsson, ''Bayesian Model
Selection for Markov, Hidden Markov, and Mul-
tinomial Models'', IEEE Signal Processing Let-
ters, vol. 14, no. 2, pp. 1291–132, 2007.
http://dx.doi.org/10.1109/LSP.2006.882094

[39] A. Pievatolo et al., ''A Bayesian Hidden Mar-
kov Model for Imperfect Debugging'', Reliabil-
ity Engineering & System Safety, vol. 103, pp.
11–21, 2012.
http://dx.doi.org/10.1016/j.ress.2012.03.003

[40] S. Assoudou and B. Essebbar, ''A Bayesian Model
for Markov Chains via Jeffrey's Prior'', Commu-
nications in Statistics - Theory and Methods, vol.
32, no. 11, pp. 2163–2184, 2003.
http://dx.doi.org/10.1081/STA-120024474

[41] K. S. Kumar and R. B. Misra, ''Software Opera-
tional Profile Based Test Case Allocation Using

Fuzzy Logic'', International Journal of Automa-
tion and Computing, vol. 4, no. 4, pp. 388–395,
2007.

[42] C. G. Bai et al., ''Bayesian Network Based Soft-
ware Reliability Prediction with an Operational
Profile'', Journal of Systems & Software, vol. 77,
no. 2, pp. 103–112, 2005.
http://dx.doi.org/10.1016/j.jss.2004.11.034

[43] T. He and H. Miao, ''Modeling and Composition
of Web Application Components using Extended
FSM'', in Proc. of the 2008 Fourth International
Conference on Natural Computation, 2008, pp.
363–368.
http://dx.doi.org/10.1109/ICNC.2008.889

[44] A. M. Mostafa et al., ''Toward a Formalization
of UML2.0 Metamodel using Z Specifications'',
in Proc. of the Eighth ACIS International Con-
ference on Software Engineering, Artificial In-
telligence, Networking, and Parallel/Distributed
Computing (SNPD 2007), 2007, pp. 694–701.
http://dx.doi.org/10.1109/SNPD.2007.508

[45] F. Huan et al., ''Review of Reliability Analysis
Based on Petri Nets'', Computer Science, 2014.
(In Chinese)

[46] C. Xiaolin, ''A Summary of the Automatic Gener-
ation of Test Cases Based on UML Model'', Mod-
ern Computer, vol. 7, 2018. (In Chinese)

[47] L. Yi et al., ''A Conversion Method from UML
Model to Reliability Analysis Model'', Journal of
Software, vol. 2, pp. 287–304, 2010. (In Chinese)

[48] J. Yan et al., ''Deriving Software Markov Chain
Usage Model from UML Models'', Journal of
Software, vol. 16, no. 8, 2005.
http://dx.doi.org/10.1360/jos161386

[49] V. Garousi et al., ''A Genetic Algorithm-Based
Stress Test Requirements Generator Tool and Its
Empirical Evaluation'', IEEE Transactions on
Software Engineering, vol. 36, no. 6, pp. 778–
797, 2010.
http://dx.doi.org/10.1109/TSE.2010.5

[50] A. T. Endo et al., ''Evaluating Test Suite Charac-
teristics, Cost, and Effectiveness of FSM-Based
Testing Methods'', Information and Software
Technology, vol. 55, no. 6, pp. 1045–1062, 2013.
https://doi.org/10.1016/j.infsof.2013.01.001

[51] A. L. Bonifacio et al., ''Model Partitions and
Compact Test Case Suites'', International Journal
of Foundations of Computer Science, vol. 23, no.
1, pp. 147–172, 2012.

[52] V. Santiago et al., ''An Environment for Automat-
ed Test Case Generation from Statechart-Based
and Finite State Machine-Based Behavioral
Models'', in Proc. of the 2008 IEEE International
Conference on Software Testing Verification and
Validation Workshop, 2008, pp. 63–72.
http://dx.doi.org/10.1109/ICSTW.2008.7

[53] A. Kalaji et al., ''A Search-Based Approach for
Automatic Test Generation from Extended Finite
State Machine (EFSM)'', in Proc. of the 2009
Testing: Academic and Industrial Conference
– Practice and Research Techniques, 2009, pp.
131–132.
http://dx.doi.org/10.1109/TAICPART.2009.19

[54] A. S. Kalaji et al.,''An Integrated Search-Based
Approach for Automatic Testing from Extended
Finite State Machine (EFSM) Models'', Informa-
tion & Software Technology, vol. 53, no. 12, pp.
1297–1318, 2011.
http://dx.doi.org/10.1016/j.infsof.2011.06.004

[55] J. J. Li and W. E. Wong, ''Automatic Test Gener-
ation from Communicating Extended Finite State
Machine (CEFSM)-Based Models'', in Proc. of
the Fifth IEEE International Symposium on Ob-
ject-Oriented Real-Time Distributed Computing.
ISIRC 2002, 2002, pp. 181–185.
http://dx.doi.org/10.1109/ISORC.2002.1003693

[56] J. C. Huang, ''An Approach to Program Testing'',
ACM Computing Surveys, vol. 7, no. 3, pp. 113–
128, 1975.
http://dx.doi.org/10.1145/356651.356652

[57] T. S. Chow, ''Testing Software Design Modeled
by Finite-State Machines'', IEEE Transactions
on Software Engineering, vol. SE-4, no. 3, pp.
178–187, 1978.
http://dx.doi.org/10.1109/TSE.1978.231496

[58] W. E. Howden, ''Methodology for the Generation
of Program Test Data,'' IEEE Transactions on
Computers, vol. C-24, no. 5, pp. 554–560, 1975.
http://dx.doi.org/10.1109/T-C.1975.224259

[59] S. Pimont and J. C. Rault, ''A Software Reliabil-
ity Evaluation Based on a Structural and Behav-
ioral Analysis of Programs'', in Proc. of the 2nd
Int'l Conf. on Software Engineering. San Fran-
cisco: IEEE Computer Society Press, 1976, pp.
486–491.
http://www.informatik.uni-trier.de/~ley/db/conf/
icse/icse76.html

[60] S. Fujiwara et al., ''Test Selection Based on Finite
State Models'', IEEE Transactions on Software
Engineering, vol. 17, no. 6, pp. 591–603, 1991.
http://dx.doi.org/10.1109/32.87284

[61] D. P. Sidhu and T. Leung, ''Formal Methods for
Protocol Testing: A Detailed Study'', IEEE Trans-
actions on Software Engineering, vol. 15, no. 4,
pp. 413–426, 1989.
http://dx.doi.org/10.1109/32.16602

[62] L. Pan et al., ''DFSM-Based Minimum Test Cost
Transition Coverage Criterion'', Journal of Soft-
ware, vol. 22, no. 7, pp. 1457–1474, 2011.
http://dx.doi.org/10.3724/SP.J.1001.2011.03872

[63] K. Supaporn and R. Wanchai, ''Automated-Gener-
ating Test Case Using UML State Chart Diagrams'',
in Proc. of the SAICSIT, 2003, pp. 296–300.

[64] P. Samuel and A. T. Joseph, ''Test Sequence Gen-
eration from UML Sequence Diagrams'', in Proc.
of the Ninth ACIS International Conference on
Software Engineering, 2008, pp. 879–887.
http://dx.doi.org/10.1109/SNPD.2008.100

[65] J. Wen et al., ''Research on Regression Test Case
Generation Based on UML Sequence Diagram'',
Integration Technology, vol. 2, no. 3, pp. 75–78,
2013. (In Chinese)

[66] E. G. Cartaxo et al., ''Test Case Generation by
Means of UML Sequence Diagrams and Labeled
Transition Systems'', in Proc. of the 2007 IEEE
International Conference on Systems, Man and
Cybernetics, 2007, pp. 1292–1297.
http://dx.doi.org/10.1109/ICSMC.2007.4414060

[67] A. J. Offutt et al., ''Criteria for Generating Spec-
ification-Based Tests'', in Proc. of the Fifth IEEE
International Conference on Engineering of
Complex Computer Systems (ICECCS'99) (Cat.
No.PR00434), 1999, pp. 119–129.
http://dx.doi.org/10.1109/ICECCS.1999.802856

[68] H. Li et al., ''Software Reliability Metrics Select-
ing Method Based on Analytic Hierarchy Pro-
cess'', in Proc. of the 2006 Sixth International
Conference on Quality Software (QSIC'06), 2006,
pp. 337–346.
http://dx.doi.org/10.1109/QSIC.2006.59

[69] S. He et al., ''Experience Report: System Log
Analysis for Anomaly Detection'', in Proc. of
the 2016 IEEE 27th International Symposium on
Software Reliability Engineering (ISSRE), 2016,
pp. 207–218.
http://dx.doi.org/10.1109/ISSRE.2016.21

[70] K. D. Goseva-Popstojanova, ''A New Markov
Model of N Version Programming Systems'', in
Proc. of the 1991 International Symposium on Soft-
ware Reliability Engineering, 1991, pp. 210–215.

[71] N. Yunhui et al., ''Research on Software Reliabil-
ity Evaluation and Test Methods'', Reliability and
Environmental Testing of Electronic Products,
2009, 27 (z1). (In Chinese)

[72] C. Mengtian and Z. Yi-Cheng, ''Application of
Markov Chain Approach for Multi-Attributes
Dynamic Software Reliability Evaluation Under
Both AHP and Gray Correlation Methods'', Inter-
national Journal of Modern Physics, 2018.

[73] Y. Dai et al., ''Uncertainty Analysis in Software
Reliability Modeling by Bayesian Analysis with
Maximum-Entropy Principle'', IEEE Transac-
tions on Software Engineering, vol. 33, no. 11,
pp. 781–795, 2007.
http://dx.doi.org/10.1109/TSE.2007.70739

[74] S. A. Sherer, ''A Cost-Effective Approach to Test-
ing'', IEEE Software, vol. 8, no. 2, pp. 34–40,
1991.
http://dx.doi.org/10.1109/52.73747

http://dx.doi.org/10.1109/ICICICT.2014.6781352
http://dx.doi.org/10.1109/ISSRE.1998.730843
http://dx.doi.org/10.1109/ISSRE.1995.497656
http://dx.doi.org/10.1109/ICECCS.2005.28
http://dx.doi.org/10.1109/VLHCC.2005.35
http://dx.doi.org/10.1109/QRS-C.2017.38
http://dx.doi.org/10.1109/LSP.2006.882094
http://dx.doi.org/10.1016/j.ress.2012.03.003
http://dx.doi.org/10.1081/STA-120024474
http://dx.doi.org/10.1016/j.jss.2004.11.034
http://dx.doi.org/10.1109/ICNC.2008.889
http://dx.doi.org/10.1109/SNPD.2007.508
http://dx.doi.org/10.1360/jos161386
http://dx.doi.org/10.1109/TSE.2010.5
https://doi.org/10.1016/j.infsof.2013.01.001
http://dx.doi.org/10.1109/ICSTW.2008.7
http://dx.doi.org/10.1109/TAICPART.2009.19
http://dx.doi.org/10.1016/j.infsof.2011.06.004
http://dx.doi.org/10.1109/ISORC.2002.1003693
http://dx.doi.org/10.1145/356651.356652
http://dx.doi.org/10.1109/TSE.1978.231496
http://dx.doi.org/10.1109/T-C.1975.224259
http://www.informatik.uni-trier.de/~ley/db/conf/icse/icse76.html
http://www.informatik.uni-trier.de/~ley/db/conf/icse/icse76.html
http://dx.doi.org/10.1109/32.87284
http://dx.doi.org/10.1109/32.16602
http://dx.doi.org/10.3724/SP.J.1001.2011.03872
http://dx.doi.org/10.1109/SNPD.2008.100
http://dx.doi.org/10.1109/ICSMC.2007.4414060
http://dx.doi.org/10.1109/ICECCS.1999.802856
http://dx.doi.org/10.1109/QSIC.2006.59
http://dx.doi.org/10.1109/ISSRE.2016.21
http://dx.doi.org/10.1109/TSE.2007.70739
http://dx.doi.org/10.1109/52.73747

160 161Z. Jiang, H. Li, D. Zhang, R. Wang, J. Zhang, X. Li, M. Zhang and P. Wang A Review of Software Reliability Testing Techniques

[75] F. Wei, ''An Automatic Generation Method of
Transfer Probability of Markov Chain Model'',
Beijing: China Science and Technology Paper
Online, 2007. (In Chinese)

[76] G. S. Semmel and D. G. Linton, ''Determining
Optimal Testing Times for Markov Chain Usage
Models [Software Testing]'', in Proc. of the IEEE
Southeastcon '98 'Engineering for a New Era',
1998, pp. 1–4.
http://dx.doi.org/10.1109/SECON.1998.673276

[77] Y. Jiong et al., ''Software Statistical Test Acceler-
ation Based on Importance Sampling'', Computer
Engineering and Science, vol. 3, pp. 64–66, 2005.
(In Chinese)

[78] J. Zeng et al., ''A Prototype System of Software
Reliability Prediction and Estimation'', in Proc.
of the 2010 Third International Symposium on
Intelligent Information Technology and Security
Informatics, 2010, pp. 558–561.
http://dx.doi.org/10.1109/IITSI.2010.90

[79] C. Hsu and C. Huang, ''Optimal Weighted Com-
binational Models for Software Reliability Esti-
mation and Analysis'', IEEE Transactions on Re-
liability, vol. 63, no. 3, pp. 731–749, 2014.
http://dx.doi.org/10.1109/TR.2014.2315966

[80] N. Ullah et al., ''Selecting the Best Reliabili-
ty Model to Predict Residual Defects in Open
Source Software'', Computer, vol. 48, no. 6, pp.
50–58, 2015.

[81] U. Najeeb, ''A Method for Predicting Open Source
Software Residual Defects'', Software Quality
Journal, vol. 23, no. 1, pp. 55–76, 2015.

[82] H. Chen, ''Analysis and Comparison of Reliabil-
ity Models Based on Software Architecture'', in
Proc. of the 2016 IEEE International Confer-
ence of Online Analysis and Computing Science
(ICOACS), 2016, pp. 359–362.
http://dx.doi.org/10.1109/ICOACS.2016.7563115

[83] H. K. Weiss, ''Estimation of Reliability Growth in
a Complex System with a Poisson-Type Failure'',
Operations Research, vol. 4, no. 5, pp. 532–545,
1956.

[84] J. D. Musa et al., ''Software Reliability – Measure-
ment, Prediction, Application'', Software Reliabil-
ity: Measurement, Prediction, Application, 1987.

[85] J. McCall et al., ''Software Reliability Measure-
ment and Testing Guidebook'', Technical Report
RLTR-92-52, Rome Laboratory USAF, 1992.

[86] L. Minyan, Software Reliability Engineering,
Beijing: National Defense Industry Press, 2011,
pp. 282–296. (In Chinese)

[87] N. F. Schneidewind, ''Reliability Modeling for
Safety-Critical Software'', IEEE Transactions on
Reliability, vol. 46, no. 1, pp. 88–98, 1997.
http://dx.doi.org/10.1109/24.589933

[88] J. G. Shanthikumar, ''A General Software Re-
liability Model for Performance Prediction'',
Microelectronics Reliability, vol. 21, no. 5, pp.
671–682, 1981.

[89] M. L. Shooman, ''Structural Models forSoftware
Reliability Prediction'', in Proc. of the Inter-
national Conference on Software Engineering,
1976.

[90] J. D. Musa and K. Okumoto, ''A Logarithmic
Poisson Execution Time Model for Software Re-
liability Measurement'', International Conference
on Software Engineering, 1984, pp. 230–238.

[91] S. Yamada et al., ''S-Shaped Reliability Growth
Modeling for Software Error Detection'', IEEE
Transactions on Reliability, vol. R-32, no. 5, pp.
475–484, 1983.
http://dx.doi.org/10.1109/TR.1983.5221735

[92] K. M. Manjunatha and K. Harishchandra, ''Mod-
eling and Statistical Inference on Generalized
Inverse Exponential Software Reliability Growth
Model'', Far East Journal of Theoretical Statis-
tics, vol. 39, no. 1, pp. 67–77, 2012.

[93] J. T. Duane, ''Learning Curve Approach to Reli-
ability Monitoring'', IEEE Transactions on Aero-
space, vol. 2, no. 2, pp. 563–566, 1964.
http://dx.doi.org/10.1109/TA.1964.4319640

[94] S. Tiwari and A. Gupta, ''A Systematic Literature
Review of Use Case Specifications Research'', In-
formation & Software Technology, vol. 67, no. 2,
pp. 128–158, 2015.

[95] M. Utting et al., ''Chapter Two – Recent Advanc-
es in Model-Based Testing'', Advances in Com-
puters, vol. 101, pp. 53–120, 2016.

[96] W. Erwei, ''Review of Software Reliability Model
Research'', Software Engineering, no. 2, pp. 1–2,
2016. (In Chinese)

[97] C. Ş. Gebizli and H. Sözer, ''Automated Refine-
ment of Models for Model-Based Testing Using
Exploratory Testing'', Software Quality Journal,
vol. 25, no. 3, pp. 1–27, 2016.

[98] P. Liu and Z. Xu, ''MTTool: A Tool for Software
Modeling and Test Generation'', IEEE Access,
vol. 6, pp. 56222–56237, 2018.
http://dx.doi.org/10.1109/ACCESS.2018.2872774

[99] H. Hemmati et al., ''Achieving Scalable Mod-
el-Based Testing Through Test Case Diversity'',
ACM Transactions on Software Engineering and
Methodology, vol. 22, no. 1, pp. 1–42, 2013.

[100] W. H. Tseng and C. F. Fan, ''Systematic Scenar-
io Test Case Generation for Nuclear Safety Sys-
tems'', Information & Software Technology, vol.
55, no. 2, pp. 344–356, 2013.

[101] C. S. Gebizli and H. Sözer, ''Model-Based Soft-
ware Product Line Testing by Coupling Feature
Models with Hierarchical Markov Chain Usage
Models'', in Proc. of the 2016 IEEE Internation-

al Conference on Software Quality, Reliability
and Security Companion (QRS-C), 2016, pp.
278–283.
http://dx.doi.org/10.1109/QRS-C.2016.42

[102] K. Y. Cai et al., ''A Critical Review on Software
Reliability Modeling'', Reliability Engineering
& System Safety, vol. 32, no. 3, pp. 357–371,
1991.

[103] Sharma et al., Computer Systems Engineering,
Springer, 2014.

[104] J. D. Musa and K. Okumoto, ''Software Reliabil-
ity Models: Concepts, Classification, Compar-
isons, and Practice'', Electronic Systems Effec-
tiveness and Life Cycle Costing, 1983.

[105] Q. P. Hu et al., ''Robust Recurrent Neural Net-
work Modeling for Software Fault Detection
and Correction Prediction'', Reliability Engi-
neering and System Safety, vol. 92, no. 3, pp.
332–340, 2007.

[106] P. Kumar and Y. Singh, ''An Empirical Study of
Software Reliability Prediction Using Machine
Learning Techniques'', International Journal of
System Assurance Engineering and Manage-
ment, vol. 3, no. 3, pp. 194–208, 2012.

[107] C. Zhang et al., ''A Review of Software Reliabil-
ity Growth Models'', Journal of Software, vol. 9,
2017. (In Chinese)

[108] C. Huang and M. R. Lyu, ''Estimation and Anal-
ysis of Some Generalized Multiple Change-
Point Software Reliability Models'', IEEE
Transactions on Reliability, vol. 60, no. 2, pp.
498–514, 2011.
http://dx.doi.org/10.1109/TR.2011.2134350

[109] Y. Minamino et al., ''NHPP-Based Change-Point
Modeling for Software Reliability Evaluation
and its Application to Software Development
Management'', Annals of Operations Research,
vol. 244, no. 1, pp. 85–101, 2016.
http://dx.doi.org/10.1007/s10479-016-2148-x

[110] K. Y. Song et al., ''An NHPP Software Reliabil-
ity Model with S-Shaped Growth Curve Subject
to Random Operating Environments and Opti-
mal Release Time'', Applied Sciences, vol. 7, no.
12, p. 1304, 2017.
https://doi.org/10.3390/app7121304

[111] P. K. Kapur et al., ''A Unified Approach for De-
veloping Software Reliability Growth Models in
the Presence of Imperfect Debugging and Error
Generation'', IEEE Transactions on Reliability,
vol. 60, no. 1, pp. 331–340, 2011.
http://dx.doi.org/10.1109/TR.2010.2103590

[112] Q. Li and H. Pham, ''NHPP Software Reliability
Model Considering the Uncertainty of Operat-
ing Environments with Imperfect Debugging
and Testing Coverage'', Applied Mathematical
Modelling, vol. 51, pp. 68–85, 2017.
https://doi.org/10.1016/j.apm.2017.06.034

[113] F. Brosch et al., ''Architecture-Based Reliability
Prediction with the Palladio Component Mod-
el'', IEEE Transactions on Software Engineer-
ing, vol. 38, no. 6, pp. 1319–1339, 2012.
http://dx.doi.org/10.1109/TSE.2011.94

[114] C. Jin and S. W. Jin, ''Software Reliability Pre-
diction Model Based on Support Vector Regres-
sion with Improved Estimation of Distribution
Algorithms'', Applied Soft Computing Journal,
vol. 15, no. 2, pp. 113–120, 2014.
https://doi.org/10.1016/j.asoc.2013.10.016

[115] D. Cotroneo et al., ''RELAI Testing: A Tech-
nique to Assess and Improve Software Reliabil-
ity'', IEEE Transactions on Software Engineer-
ing, vol. 42, no. 5, pp. 452–475, 2016.
http://dx.doi.org/10.1109/TSE.2015.2491931

[116] P. Roy et al., Neuro-Genetic Approach on Logis-
tic Model Based Software Reliability Prediction,
Pergamon Press, Inc. 2015.

[117] J. Wang and C. Zhang, ''Software Reliability
Prediction Using a Deep Learning Model Based
on the RNN Encoder-Decoder'', Reliability En-
gineering & System Safety, 2017.

[118] X. Li et al., ''Reliability Analysis and Optimal
Version-Updating for Open Source Software'',
Information and Software Technology, vol. 53,
no. 9, pp. 929–936, 2011.
http://dx.doi.org/10.1016/j.infsof.2011.04.005

[119] G. Y. Park and S. C. Jang, ''A Software Reliabil-
ity Estimation Method to Nuclear Safety Soft-
ware'', Nuclear Engineering and Technology,
vol. 46, no. 1, pp. 55–62, 2014.
https://doi.org/10.5516/NET.04.2012.067

[120] J. M. Zhang et al., ''Machine Learning Testing:
Survey, Landscapes and Horizons'', 2019.

[121] T. Y. Chen et al., ''Metamorphic Testing: A New
Approach for Generating Next Test Cases'',
Technical Report HKUST-CS98-01, Department
of Computer Science, The Hong Kong Universi-
ty of Science and Technology, Tech. Rep., 1998.

[122] W. M. McKeeman, ''Differential Testing for
Software'', Digital Technical Journal, vol. 10,
no. 1, pp. 100–107, 1998.

[123] V. Le et al., ''Compiler Validation Via Equiva-
lence Modulo Inputs'', ACM SIGPLAN Notices,
vol. 49, pp. 216–226, 2014.
https://doi.org/10.1145/2666356.2594334

[124] A. Avizienis, ''The Methodology of N-Version
Programming'', Software Fault Tolerance, vol.
3, pp. 23–46, 1995.

[125] S. Segura et al., ''A Survey on Metamorphic
Testing'', IEEE Transactions on Software Engi-
neering, vol. 42, no. 9, pp. 805–824, 2016.
http://dx.doi.org/10.1109/TSE.2016.2532875

[126] T. Y. Chen et al., ''Metamorphic Testing: A Re-
view of Challenges and Opportunities'', ACM

http://dx.doi.org/10.1109/SECON.1998.673276
http://dx.doi.org/10.1109/IITSI.2010.90
http://dx.doi.org/10.1109/TR.2014.2315966
http://dx.doi.org/10.1109/ICOACS.2016.7563115
http://dx.doi.org/10.1109/24.589933
http://dx.doi.org/10.1109/TR.1983.5221735
http://dx.doi.org/10.1109/TA.1964.4319640
http://dx.doi.org/10.1109/ACCESS.2018.2872774
http://dx.doi.org/10.1109/QRS-C.2016.42
http://dx.doi.org/10.1109/TR.2011.2134350
http://dx.doi.org/10.1007/s10479-016-2148-x
https://doi.org/10.3390/app7121304
http://dx.doi.org/10.1109/TR.2010.2103590
https://doi.org/10.1016/j.apm.2017.06.034
http://dx.doi.org/10.1109/TSE.2011.94
https://doi.org/10.1016/j.asoc.2013.10.016
http://dx.doi.org/10.1109/TSE.2015.2491931
http://dx.doi.org/10.1016/j.infsof.2011.04.005
https://doi.org/10.5516/NET.04.2012.067
https://doi.org/10.1145/2666356.2594334
http://dx.doi.org/10.1109/TSE.2016.2532875

160 161Z. Jiang, H. Li, D. Zhang, R. Wang, J. Zhang, X. Li, M. Zhang and P. Wang A Review of Software Reliability Testing Techniques

[75] F. Wei, ''An Automatic Generation Method of
Transfer Probability of Markov Chain Model'',
Beijing: China Science and Technology Paper
Online, 2007. (In Chinese)

[76] G. S. Semmel and D. G. Linton, ''Determining
Optimal Testing Times for Markov Chain Usage
Models [Software Testing]'', in Proc. of the IEEE
Southeastcon '98 'Engineering for a New Era',
1998, pp. 1–4.
http://dx.doi.org/10.1109/SECON.1998.673276

[77] Y. Jiong et al., ''Software Statistical Test Acceler-
ation Based on Importance Sampling'', Computer
Engineering and Science, vol. 3, pp. 64–66, 2005.
(In Chinese)

[78] J. Zeng et al., ''A Prototype System of Software
Reliability Prediction and Estimation'', in Proc.
of the 2010 Third International Symposium on
Intelligent Information Technology and Security
Informatics, 2010, pp. 558–561.
http://dx.doi.org/10.1109/IITSI.2010.90

[79] C. Hsu and C. Huang, ''Optimal Weighted Com-
binational Models for Software Reliability Esti-
mation and Analysis'', IEEE Transactions on Re-
liability, vol. 63, no. 3, pp. 731–749, 2014.
http://dx.doi.org/10.1109/TR.2014.2315966

[80] N. Ullah et al., ''Selecting the Best Reliabili-
ty Model to Predict Residual Defects in Open
Source Software'', Computer, vol. 48, no. 6, pp.
50–58, 2015.

[81] U. Najeeb, ''A Method for Predicting Open Source
Software Residual Defects'', Software Quality
Journal, vol. 23, no. 1, pp. 55–76, 2015.

[82] H. Chen, ''Analysis and Comparison of Reliabil-
ity Models Based on Software Architecture'', in
Proc. of the 2016 IEEE International Confer-
ence of Online Analysis and Computing Science
(ICOACS), 2016, pp. 359–362.
http://dx.doi.org/10.1109/ICOACS.2016.7563115

[83] H. K. Weiss, ''Estimation of Reliability Growth in
a Complex System with a Poisson-Type Failure'',
Operations Research, vol. 4, no. 5, pp. 532–545,
1956.

[84] J. D. Musa et al., ''Software Reliability – Measure-
ment, Prediction, Application'', Software Reliabil-
ity: Measurement, Prediction, Application, 1987.

[85] J. McCall et al., ''Software Reliability Measure-
ment and Testing Guidebook'', Technical Report
RLTR-92-52, Rome Laboratory USAF, 1992.

[86] L. Minyan, Software Reliability Engineering,
Beijing: National Defense Industry Press, 2011,
pp. 282–296. (In Chinese)

[87] N. F. Schneidewind, ''Reliability Modeling for
Safety-Critical Software'', IEEE Transactions on
Reliability, vol. 46, no. 1, pp. 88–98, 1997.
http://dx.doi.org/10.1109/24.589933

[88] J. G. Shanthikumar, ''A General Software Re-
liability Model for Performance Prediction'',
Microelectronics Reliability, vol. 21, no. 5, pp.
671–682, 1981.

[89] M. L. Shooman, ''Structural Models forSoftware
Reliability Prediction'', in Proc. of the Inter-
national Conference on Software Engineering,
1976.

[90] J. D. Musa and K. Okumoto, ''A Logarithmic
Poisson Execution Time Model for Software Re-
liability Measurement'', International Conference
on Software Engineering, 1984, pp. 230–238.

[91] S. Yamada et al., ''S-Shaped Reliability Growth
Modeling for Software Error Detection'', IEEE
Transactions on Reliability, vol. R-32, no. 5, pp.
475–484, 1983.
http://dx.doi.org/10.1109/TR.1983.5221735

[92] K. M. Manjunatha and K. Harishchandra, ''Mod-
eling and Statistical Inference on Generalized
Inverse Exponential Software Reliability Growth
Model'', Far East Journal of Theoretical Statis-
tics, vol. 39, no. 1, pp. 67–77, 2012.

[93] J. T. Duane, ''Learning Curve Approach to Reli-
ability Monitoring'', IEEE Transactions on Aero-
space, vol. 2, no. 2, pp. 563–566, 1964.
http://dx.doi.org/10.1109/TA.1964.4319640

[94] S. Tiwari and A. Gupta, ''A Systematic Literature
Review of Use Case Specifications Research'', In-
formation & Software Technology, vol. 67, no. 2,
pp. 128–158, 2015.

[95] M. Utting et al., ''Chapter Two – Recent Advanc-
es in Model-Based Testing'', Advances in Com-
puters, vol. 101, pp. 53–120, 2016.

[96] W. Erwei, ''Review of Software Reliability Model
Research'', Software Engineering, no. 2, pp. 1–2,
2016. (In Chinese)

[97] C. Ş. Gebizli and H. Sözer, ''Automated Refine-
ment of Models for Model-Based Testing Using
Exploratory Testing'', Software Quality Journal,
vol. 25, no. 3, pp. 1–27, 2016.

[98] P. Liu and Z. Xu, ''MTTool: A Tool for Software
Modeling and Test Generation'', IEEE Access,
vol. 6, pp. 56222–56237, 2018.
http://dx.doi.org/10.1109/ACCESS.2018.2872774

[99] H. Hemmati et al., ''Achieving Scalable Mod-
el-Based Testing Through Test Case Diversity'',
ACM Transactions on Software Engineering and
Methodology, vol. 22, no. 1, pp. 1–42, 2013.

[100] W. H. Tseng and C. F. Fan, ''Systematic Scenar-
io Test Case Generation for Nuclear Safety Sys-
tems'', Information & Software Technology, vol.
55, no. 2, pp. 344–356, 2013.

[101] C. S. Gebizli and H. Sözer, ''Model-Based Soft-
ware Product Line Testing by Coupling Feature
Models with Hierarchical Markov Chain Usage
Models'', in Proc. of the 2016 IEEE Internation-

al Conference on Software Quality, Reliability
and Security Companion (QRS-C), 2016, pp.
278–283.
http://dx.doi.org/10.1109/QRS-C.2016.42

[102] K. Y. Cai et al., ''A Critical Review on Software
Reliability Modeling'', Reliability Engineering
& System Safety, vol. 32, no. 3, pp. 357–371,
1991.

[103] Sharma et al., Computer Systems Engineering,
Springer, 2014.

[104] J. D. Musa and K. Okumoto, ''Software Reliabil-
ity Models: Concepts, Classification, Compar-
isons, and Practice'', Electronic Systems Effec-
tiveness and Life Cycle Costing, 1983.

[105] Q. P. Hu et al., ''Robust Recurrent Neural Net-
work Modeling for Software Fault Detection
and Correction Prediction'', Reliability Engi-
neering and System Safety, vol. 92, no. 3, pp.
332–340, 2007.

[106] P. Kumar and Y. Singh, ''An Empirical Study of
Software Reliability Prediction Using Machine
Learning Techniques'', International Journal of
System Assurance Engineering and Manage-
ment, vol. 3, no. 3, pp. 194–208, 2012.

[107] C. Zhang et al., ''A Review of Software Reliabil-
ity Growth Models'', Journal of Software, vol. 9,
2017. (In Chinese)

[108] C. Huang and M. R. Lyu, ''Estimation and Anal-
ysis of Some Generalized Multiple Change-
Point Software Reliability Models'', IEEE
Transactions on Reliability, vol. 60, no. 2, pp.
498–514, 2011.
http://dx.doi.org/10.1109/TR.2011.2134350

[109] Y. Minamino et al., ''NHPP-Based Change-Point
Modeling for Software Reliability Evaluation
and its Application to Software Development
Management'', Annals of Operations Research,
vol. 244, no. 1, pp. 85–101, 2016.
http://dx.doi.org/10.1007/s10479-016-2148-x

[110] K. Y. Song et al., ''An NHPP Software Reliabil-
ity Model with S-Shaped Growth Curve Subject
to Random Operating Environments and Opti-
mal Release Time'', Applied Sciences, vol. 7, no.
12, p. 1304, 2017.
https://doi.org/10.3390/app7121304

[111] P. K. Kapur et al., ''A Unified Approach for De-
veloping Software Reliability Growth Models in
the Presence of Imperfect Debugging and Error
Generation'', IEEE Transactions on Reliability,
vol. 60, no. 1, pp. 331–340, 2011.
http://dx.doi.org/10.1109/TR.2010.2103590

[112] Q. Li and H. Pham, ''NHPP Software Reliability
Model Considering the Uncertainty of Operat-
ing Environments with Imperfect Debugging
and Testing Coverage'', Applied Mathematical
Modelling, vol. 51, pp. 68–85, 2017.
https://doi.org/10.1016/j.apm.2017.06.034

[113] F. Brosch et al., ''Architecture-Based Reliability
Prediction with the Palladio Component Mod-
el'', IEEE Transactions on Software Engineer-
ing, vol. 38, no. 6, pp. 1319–1339, 2012.
http://dx.doi.org/10.1109/TSE.2011.94

[114] C. Jin and S. W. Jin, ''Software Reliability Pre-
diction Model Based on Support Vector Regres-
sion with Improved Estimation of Distribution
Algorithms'', Applied Soft Computing Journal,
vol. 15, no. 2, pp. 113–120, 2014.
https://doi.org/10.1016/j.asoc.2013.10.016

[115] D. Cotroneo et al., ''RELAI Testing: A Tech-
nique to Assess and Improve Software Reliabil-
ity'', IEEE Transactions on Software Engineer-
ing, vol. 42, no. 5, pp. 452–475, 2016.
http://dx.doi.org/10.1109/TSE.2015.2491931

[116] P. Roy et al., Neuro-Genetic Approach on Logis-
tic Model Based Software Reliability Prediction,
Pergamon Press, Inc. 2015.

[117] J. Wang and C. Zhang, ''Software Reliability
Prediction Using a Deep Learning Model Based
on the RNN Encoder-Decoder'', Reliability En-
gineering & System Safety, 2017.

[118] X. Li et al., ''Reliability Analysis and Optimal
Version-Updating for Open Source Software'',
Information and Software Technology, vol. 53,
no. 9, pp. 929–936, 2011.
http://dx.doi.org/10.1016/j.infsof.2011.04.005

[119] G. Y. Park and S. C. Jang, ''A Software Reliabil-
ity Estimation Method to Nuclear Safety Soft-
ware'', Nuclear Engineering and Technology,
vol. 46, no. 1, pp. 55–62, 2014.
https://doi.org/10.5516/NET.04.2012.067

[120] J. M. Zhang et al., ''Machine Learning Testing:
Survey, Landscapes and Horizons'', 2019.

[121] T. Y. Chen et al., ''Metamorphic Testing: A New
Approach for Generating Next Test Cases'',
Technical Report HKUST-CS98-01, Department
of Computer Science, The Hong Kong Universi-
ty of Science and Technology, Tech. Rep., 1998.

[122] W. M. McKeeman, ''Differential Testing for
Software'', Digital Technical Journal, vol. 10,
no. 1, pp. 100–107, 1998.

[123] V. Le et al., ''Compiler Validation Via Equiva-
lence Modulo Inputs'', ACM SIGPLAN Notices,
vol. 49, pp. 216–226, 2014.
https://doi.org/10.1145/2666356.2594334

[124] A. Avizienis, ''The Methodology of N-Version
Programming'', Software Fault Tolerance, vol.
3, pp. 23–46, 1995.

[125] S. Segura et al., ''A Survey on Metamorphic
Testing'', IEEE Transactions on Software Engi-
neering, vol. 42, no. 9, pp. 805–824, 2016.
http://dx.doi.org/10.1109/TSE.2016.2532875

[126] T. Y. Chen et al., ''Metamorphic Testing: A Re-
view of Challenges and Opportunities'', ACM

http://dx.doi.org/10.1109/SECON.1998.673276
http://dx.doi.org/10.1109/IITSI.2010.90
http://dx.doi.org/10.1109/TR.2014.2315966
http://dx.doi.org/10.1109/ICOACS.2016.7563115
http://dx.doi.org/10.1109/24.589933
http://dx.doi.org/10.1109/TR.1983.5221735
http://dx.doi.org/10.1109/TA.1964.4319640
http://dx.doi.org/10.1109/ACCESS.2018.2872774
http://dx.doi.org/10.1109/QRS-C.2016.42
http://dx.doi.org/10.1109/TR.2011.2134350
http://dx.doi.org/10.1007/s10479-016-2148-x
https://doi.org/10.3390/app7121304
http://dx.doi.org/10.1109/TR.2010.2103590
https://doi.org/10.1016/j.apm.2017.06.034
http://dx.doi.org/10.1109/TSE.2011.94
https://doi.org/10.1016/j.asoc.2013.10.016
http://dx.doi.org/10.1109/TSE.2015.2491931
http://dx.doi.org/10.1016/j.infsof.2011.04.005
https://doi.org/10.5516/NET.04.2012.067
https://doi.org/10.1145/2666356.2594334
http://dx.doi.org/10.1109/TSE.2016.2532875

162 163Z. Jiang, H. Li, D. Zhang, R. Wang, J. Zhang, X. Li, M. Zhang and P. Wang A Review of Software Reliability Testing Techniques

Computing Surveys, vol. 51, no. 1, pp. 4:1–4:27,
2018.
https://doi.org/10.1145/3143561

[127] X. Xie et al., ''Application of Metamorphic Test-
ing to Supervised Classifiers'', in Proc. of the
2009 Ninth International Conference on Quality
Software, 2009, pp. 135–144.
http://dx.doi.org/10.1109/QSIC.2009.26

[128] X. Xie et al., ''METTLE: A METamorphic Test-
ing Approach to Assessing and Validating Un-
supervised Machine Learning Systems'', IEEE
Transactions on Reliability, vol. 69, no. 4, pp.
1293–1322, 2020.
http://dx.doi.org/10.1109/TR.2020.2972266

[129] Z. Q. Zhou and L. Q. Sun, ''Metamorphic Test-
ing of Driverless Cars'', Communications of the
ACM, vol. 62, no. 3, pp. 61–67, 2019.
https://doi.org/10.1145/3241979

[130] J. Guo et al., ''Coverage Guided Differential Ad-
versarial Testing of Deep Learning Systems'',
IEEE Transactions on Network Science and En-
gineering, vol. 8, no. 2, pp. 933–942, 2020.
http://dx.doi.org/10.1109/TNSE.2020.2997359

[131] Y. Sun et al., ''Concolic Testing for Deep Neu-
ral Networks'', in Proc. of the 2018 33rd IEEE/
ACM International Conference on Automated
Software Engineering, 2018, pp. 109–119.
http://dx.doi.org/10.1145/3238147.3238172

[132] Y. Sun et al., ''DeepConcolic: Testing and De-
bugging Deep Neural Networks'', in Proc. of the
2019 IEEE/ACM 41st International Conference
on Software Engineering: Companion Proceed-
ings, 2019, pp. 111–114.
http://dx.doi.org/10.1109/ICSE-Companion.2019.00051

[133] M. Lei et al., ''DeepGauge: Comprehensive and
Multi-Granularity Testing Criteria for Gauging
the Robustness of Deep Learning Systems'',
2018.

[134] Z. Zhang and X. Xie, ''On the Investigation of
Essential Diversities for Deep Learning Test-
ing Criteria'', in Proc. of the 2019 IEEE 19th
International Conference on Software Qual-
ity, Reliability and Security (QRS), 2019, pp.
394–405.
http://dx.doi.org/10.1109/QRS.2019.00056

[135] Y. Sun et al., ''Structural Test Coverage Criteria
for Deep Neural Networks'', ACM Transactions
on Embedded Computing Systems, vol. 18, no.
5, pp. 1–23, 2019.
https://doi.org/10.1109/ICSE-Companion.2019.00134

[136] M. Z. Iqbal et al., ''Applying UML/MARTE on
Industrial Projects: Challenges, Experiences,
and Guidelines'', Software & Systems Modeling,
vol. 14, no. 4, pp. 1367–1385, 2015.
http://dx.doi.org/10.1007/s10270-014-0405-5

[137] M. Shin et al., ''Analyzing Dynamic Behavior
of Large-Scale Systems Through Model Trans-

formation'', International Journal of Software
Engineering and Knowledge Engineering, vol.
15, no. 1, pp. 35–60, 2005.
http://dx.doi.org/10.1142/S0218194005001896

[138] S. Preibusch and F. Kammüller, ''Checking the
TWIN Elevator System by Translating Object-Z
to SMV'', International Workshop on Formal
Methods for Industrial Critical Systems Spring-
er, Berlin, Heidelberg, 2007.

[139] A. Rasoolzadegan et al., ''Reliable Yet Flexi-
ble Software Through Formal Model Transfor-
mation (Rule Definition)'', Knowledge and In-
formation Systems, vol. 40, pp. 79–126, 2014.
https://doi.org/10.1007/s10115-013-0621-2

[140] J. H. Poore et al., ''A Constraint-Based Ap-
proach to the Representation of Software Usage
Models'', Information and Software Technology,
vol. 42, no. 12, pp. 825–833, 2000.
https://doi.org/10.1016/S0950-5849(00)00101-4

[141] F. Zhen and C. Peng, ''A System Test Methodol-
ogy Based on the Markov Chain Usage Model'',
in Proc. of the 8th International Conference on
Computer Supported Cooperative Work in De-
sign, Xiamen, China, 2004, pp. 160–165.

[142] H. Le Guen et al., ''Reliability Estimation for Sta-
tistical Usage Testing Using Markov Chains'', in
Proc. of the 15th International Symposium on Soft-
ware Reliability Engineering, 2004, pp. 54–65.
http://dx.doi.org/10.1109/ISSRE.2004.33

[143] B. Littlewood and J. L. Verrall, ''A Bayesian Re-
liability Growth Model for Computer Software'',
Journal of the Royal Statistical Society, vol. 22,
no. 3, pp. 332–346, 1973.

[144] B. B. Sagar et al., ''Exponentiated Weibull Distri-
bution Approach Based Inflection S-Shaped Soft-
ware Reliability Growth Model'', Ain Shams Engi-
neering Journal, vol. 7, no. 3, pp. 973–991, 2016.
https://doi.org/10.1016/j.asej.2015.05.009

[145] Z. Xiaonan et al., ''A New Method on Software
Reliability Prediction'', Mathematical Problems
in Engineering, vol. 2013, p. 385372, 2013.
http://dx.doi.org/10.1155/2013/385372

[146] M. D. Davis and E. J. Weyuker, ''Pseudo-Ora-
cles for Non-Testable Programs'', in Proc. of the
ACM 81 Conference, pp. 254–257, 1981.
http://dx.doi.org/10.1145/800175.809889

[147] L. Ma et al., ''DeepCT: Tomographic Combina-
torial Testing for Deep Learning Systems'', in
Proc. of the 2019 IEEE 26th International Con-
ference on Software Analysis, Evolution and Re-
engineering (SANER), 2019, pp. 614–618.
http://dx.doi.org/10.1109/SANER.2019.8668044

[148] S. Gerasimou et al., ''Importance-Driven Deep
Learning System Testing'', in Proc. of the 2020
IEEE/ACM 42nd International Conference on
Software Engineering: Companion Proceeding,
2020, pp. 322–323.

Received: December 2020
Revised: April 2021

Accepted: April 2021

Contact addresses:
Zhouxian Jiang

Beijing Jiaotong University
China

e-mail: zhouxianjiang@bjtu.edu.cn

Honghui Li
Beijing Jiaotong University

China
e-mail: hhli@bjtu.edu.cn

Dalin Zhang
Beijing Jiaotong University

China
e-mail: dalin@bjtu.edu.cn

Rui Wang
Beijing Jiaotong University

China
e-mail: rui.wang@bjtu.edu.cn

Junwen Zhang
Beijing Jiaotong University

China
e-mail: zjw@bjtu.edu.cn

Xiuru Li
Beijing Jiaotong University

China
e-mail: 17120462@bjtu.edu.cn

Meng Zhang
Beijing Jiaotong University

China
e-mail: 18120468@bjtu.edu.cn

Penghao Wang
Beijing Jiaotong University

China
e-mail: wangpenghao@bjtu.edu.cn

Zhouxian Jiang was born in Guangxi province, China in 1996. She
received a BSc degree incomputer engineering from Beijing Jiaotong
University, Beijing, China, in 2017. She is currently pursuing a PhD
in software engineering at Beijing Jiaotong University, Beijing, China.
Since 2017, she has worked in the Software Evaluation Laboratory of
Beijing Jiaotong University. Her research interests include deep learning
testing, software reliability testing, formal methods, and in particular the
application of formal methods to deep learning testing. Ms Jiang has
been engaged in software testing for 3 years, and has participated in
more than 10 software evaluation projects, research projects, as well as
National Key Research and Development Projects (China).

Honghui Li received her MSc degree in computer science from the
Central South University, Changsha, China, in 1987. Her research inter-
ests include software testing technology and testautomation. Currently,
she is a Professor at the School of Computer and Information Technol-
ogy, Beijing Jiaotong University, Beijing, China. She is currently the
Deputy Director of the Engineering Research Center of Network Man-
agement Technology for High Speed Railway of MOE, Beijing, China.
She has long been engaged in software quality assurance technology,
high-reliability software, data mining analysis, and railway information
technology. She has undertaken national-level provincial and ministeri-
al research such as the National 863 Program, the Nuclear High-Level
Project, and the China Railway Corporation.

Dalin Zhang received the B.E. degree in computer science, the MSc
degree in science, and the PhD degree in computer science, all from
the Beijing University of Posts and Telecommunications, in 2008, 2010,
and 2014, respectively. In 2017, he was a postdoctoral researcher with
the School of Electronics and Computer Engineering, Purdue Univer-
sity, USA. He is currently an Associat Professor of computer science
and software engineering at Beijing Jiaotong University. His current
research interests include railway information technology, software en-
gineering, and information security. His research focuses on developing
applications of program analysis and software testing for improving
software reliability, security, and performance, as well as software engi-
neering and data mining and programming languages.

Rui Wang received the B.E. degree (2011) and M.E. degree (2014) in
electronic and information engineering from Beijing Jiaotong Universi-
ty, Beijing, China, and the PhD degree (2018) in computer science from
the Institut National des Sciences Appliquées de Toulouse, France. She
did her doctoral research work in the dependable computing and fault
tolerance group of the Laboratory for Analysis and Architecture of Sys-
tems, French National Centre for Scientific Research, Toulouse, France.
From 2018 to 2020, she was engaged in a postdoc research at Beijing Ji-
aotong University. Since 2020, she has been an Assistant Professor at the
Computer and Information Technology School in the same university.
Her main fields of interest include quality assurance and testing for ar-
tificial intelligence systems, robustness of machine learning algorithms,
dependability assessment of safety critical systems, and quantitative
measurement of uncertainty.

Junwen Zhang received the B.E. degree (1988) and M.E. degree
(1997) from Beijing Jiaotong University, China, and the PhD degree
(2000) in electronic and information engineering from the same institu-
tion. Currently, he is an Associate Professor at the School of Computer
and Information Technology, Beijing Jiaotong University, China. Since
2000 Dr. Zhang has participated in a number of scientific research proj-
ects, including railway information sharing cloud computing applica-
tion technology, rail transit network verification and testing laboratory
platform construction. His main research directions are software testing,
information security, artificial intelligence.

https://doi.org/10.1145/3143561
http://dx.doi.org/10.1109/QSIC.2009.26
http://dx.doi.org/10.1109/TR.2020.2972266
https://doi.org/10.1145/3241979
http://dx.doi.org/10.1109/TNSE.2020.2997359
http://dx.doi.org/10.1145/3238147.3238172
http://dx.doi.org/10.1109/ICSE-Companion.2019.00051
http://dx.doi.org/10.1109/QRS.2019.00056
https://doi.org/10.1109/ICSE-Companion.2019.00134
http://dx.doi.org/10.1007/s10270-014-0405-5
http://dx.doi.org/10.1142/S0218194005001896
https://doi.org/10.1007/s10115-013-0621-2
https://doi.org/10.1016/S0950-5849(00)00101-4
http://dx.doi.org/10.1109/ISSRE.2004.33
https://doi.org/10.1016/j.asej.2015.05.009
http://dx.doi.org/10.1155/2013/385372
http://dx.doi.org/10.1145/800175.809889
http://dx.doi.org/10.1109/SANER.2019.8668044

162 163Z. Jiang, H. Li, D. Zhang, R. Wang, J. Zhang, X. Li, M. Zhang and P. Wang A Review of Software Reliability Testing Techniques

Computing Surveys, vol. 51, no. 1, pp. 4:1–4:27,
2018.
https://doi.org/10.1145/3143561

[127] X. Xie et al., ''Application of Metamorphic Test-
ing to Supervised Classifiers'', in Proc. of the
2009 Ninth International Conference on Quality
Software, 2009, pp. 135–144.
http://dx.doi.org/10.1109/QSIC.2009.26

[128] X. Xie et al., ''METTLE: A METamorphic Test-
ing Approach to Assessing and Validating Un-
supervised Machine Learning Systems'', IEEE
Transactions on Reliability, vol. 69, no. 4, pp.
1293–1322, 2020.
http://dx.doi.org/10.1109/TR.2020.2972266

[129] Z. Q. Zhou and L. Q. Sun, ''Metamorphic Test-
ing of Driverless Cars'', Communications of the
ACM, vol. 62, no. 3, pp. 61–67, 2019.
https://doi.org/10.1145/3241979

[130] J. Guo et al., ''Coverage Guided Differential Ad-
versarial Testing of Deep Learning Systems'',
IEEE Transactions on Network Science and En-
gineering, vol. 8, no. 2, pp. 933–942, 2020.
http://dx.doi.org/10.1109/TNSE.2020.2997359

[131] Y. Sun et al., ''Concolic Testing for Deep Neu-
ral Networks'', in Proc. of the 2018 33rd IEEE/
ACM International Conference on Automated
Software Engineering, 2018, pp. 109–119.
http://dx.doi.org/10.1145/3238147.3238172

[132] Y. Sun et al., ''DeepConcolic: Testing and De-
bugging Deep Neural Networks'', in Proc. of the
2019 IEEE/ACM 41st International Conference
on Software Engineering: Companion Proceed-
ings, 2019, pp. 111–114.
http://dx.doi.org/10.1109/ICSE-Companion.2019.00051

[133] M. Lei et al., ''DeepGauge: Comprehensive and
Multi-Granularity Testing Criteria for Gauging
the Robustness of Deep Learning Systems'',
2018.

[134] Z. Zhang and X. Xie, ''On the Investigation of
Essential Diversities for Deep Learning Test-
ing Criteria'', in Proc. of the 2019 IEEE 19th
International Conference on Software Qual-
ity, Reliability and Security (QRS), 2019, pp.
394–405.
http://dx.doi.org/10.1109/QRS.2019.00056

[135] Y. Sun et al., ''Structural Test Coverage Criteria
for Deep Neural Networks'', ACM Transactions
on Embedded Computing Systems, vol. 18, no.
5, pp. 1–23, 2019.
https://doi.org/10.1109/ICSE-Companion.2019.00134

[136] M. Z. Iqbal et al., ''Applying UML/MARTE on
Industrial Projects: Challenges, Experiences,
and Guidelines'', Software & Systems Modeling,
vol. 14, no. 4, pp. 1367–1385, 2015.
http://dx.doi.org/10.1007/s10270-014-0405-5

[137] M. Shin et al., ''Analyzing Dynamic Behavior
of Large-Scale Systems Through Model Trans-

formation'', International Journal of Software
Engineering and Knowledge Engineering, vol.
15, no. 1, pp. 35–60, 2005.
http://dx.doi.org/10.1142/S0218194005001896

[138] S. Preibusch and F. Kammüller, ''Checking the
TWIN Elevator System by Translating Object-Z
to SMV'', International Workshop on Formal
Methods for Industrial Critical Systems Spring-
er, Berlin, Heidelberg, 2007.

[139] A. Rasoolzadegan et al., ''Reliable Yet Flexi-
ble Software Through Formal Model Transfor-
mation (Rule Definition)'', Knowledge and In-
formation Systems, vol. 40, pp. 79–126, 2014.
https://doi.org/10.1007/s10115-013-0621-2

[140] J. H. Poore et al., ''A Constraint-Based Ap-
proach to the Representation of Software Usage
Models'', Information and Software Technology,
vol. 42, no. 12, pp. 825–833, 2000.
https://doi.org/10.1016/S0950-5849(00)00101-4

[141] F. Zhen and C. Peng, ''A System Test Methodol-
ogy Based on the Markov Chain Usage Model'',
in Proc. of the 8th International Conference on
Computer Supported Cooperative Work in De-
sign, Xiamen, China, 2004, pp. 160–165.

[142] H. Le Guen et al., ''Reliability Estimation for Sta-
tistical Usage Testing Using Markov Chains'', in
Proc. of the 15th International Symposium on Soft-
ware Reliability Engineering, 2004, pp. 54–65.
http://dx.doi.org/10.1109/ISSRE.2004.33

[143] B. Littlewood and J. L. Verrall, ''A Bayesian Re-
liability Growth Model for Computer Software'',
Journal of the Royal Statistical Society, vol. 22,
no. 3, pp. 332–346, 1973.

[144] B. B. Sagar et al., ''Exponentiated Weibull Distri-
bution Approach Based Inflection S-Shaped Soft-
ware Reliability Growth Model'', Ain Shams Engi-
neering Journal, vol. 7, no. 3, pp. 973–991, 2016.
https://doi.org/10.1016/j.asej.2015.05.009

[145] Z. Xiaonan et al., ''A New Method on Software
Reliability Prediction'', Mathematical Problems
in Engineering, vol. 2013, p. 385372, 2013.
http://dx.doi.org/10.1155/2013/385372

[146] M. D. Davis and E. J. Weyuker, ''Pseudo-Ora-
cles for Non-Testable Programs'', in Proc. of the
ACM 81 Conference, pp. 254–257, 1981.
http://dx.doi.org/10.1145/800175.809889

[147] L. Ma et al., ''DeepCT: Tomographic Combina-
torial Testing for Deep Learning Systems'', in
Proc. of the 2019 IEEE 26th International Con-
ference on Software Analysis, Evolution and Re-
engineering (SANER), 2019, pp. 614–618.
http://dx.doi.org/10.1109/SANER.2019.8668044

[148] S. Gerasimou et al., ''Importance-Driven Deep
Learning System Testing'', in Proc. of the 2020
IEEE/ACM 42nd International Conference on
Software Engineering: Companion Proceeding,
2020, pp. 322–323.

Received: December 2020
Revised: April 2021

Accepted: April 2021

Contact addresses:
Zhouxian Jiang

Beijing Jiaotong University
China

e-mail: zhouxianjiang@bjtu.edu.cn

Honghui Li
Beijing Jiaotong University

China
e-mail: hhli@bjtu.edu.cn

Dalin Zhang
Beijing Jiaotong University

China
e-mail: dalin@bjtu.edu.cn

Rui Wang
Beijing Jiaotong University

China
e-mail: rui.wang@bjtu.edu.cn

Junwen Zhang
Beijing Jiaotong University

China
e-mail: zjw@bjtu.edu.cn

Xiuru Li
Beijing Jiaotong University

China
e-mail: 17120462@bjtu.edu.cn

Meng Zhang
Beijing Jiaotong University

China
e-mail: 18120468@bjtu.edu.cn

Penghao Wang
Beijing Jiaotong University

China
e-mail: wangpenghao@bjtu.edu.cn

Zhouxian Jiang was born in Guangxi province, China in 1996. She
received a BSc degree incomputer engineering from Beijing Jiaotong
University, Beijing, China, in 2017. She is currently pursuing a PhD
in software engineering at Beijing Jiaotong University, Beijing, China.
Since 2017, she has worked in the Software Evaluation Laboratory of
Beijing Jiaotong University. Her research interests include deep learning
testing, software reliability testing, formal methods, and in particular the
application of formal methods to deep learning testing. Ms Jiang has
been engaged in software testing for 3 years, and has participated in
more than 10 software evaluation projects, research projects, as well as
National Key Research and Development Projects (China).

Honghui Li received her MSc degree in computer science from the
Central South University, Changsha, China, in 1987. Her research inter-
ests include software testing technology and testautomation. Currently,
she is a Professor at the School of Computer and Information Technol-
ogy, Beijing Jiaotong University, Beijing, China. She is currently the
Deputy Director of the Engineering Research Center of Network Man-
agement Technology for High Speed Railway of MOE, Beijing, China.
She has long been engaged in software quality assurance technology,
high-reliability software, data mining analysis, and railway information
technology. She has undertaken national-level provincial and ministeri-
al research such as the National 863 Program, the Nuclear High-Level
Project, and the China Railway Corporation.

Dalin Zhang received the B.E. degree in computer science, the MSc
degree in science, and the PhD degree in computer science, all from
the Beijing University of Posts and Telecommunications, in 2008, 2010,
and 2014, respectively. In 2017, he was a postdoctoral researcher with
the School of Electronics and Computer Engineering, Purdue Univer-
sity, USA. He is currently an Associat Professor of computer science
and software engineering at Beijing Jiaotong University. His current
research interests include railway information technology, software en-
gineering, and information security. His research focuses on developing
applications of program analysis and software testing for improving
software reliability, security, and performance, as well as software engi-
neering and data mining and programming languages.

Rui Wang received the B.E. degree (2011) and M.E. degree (2014) in
electronic and information engineering from Beijing Jiaotong Universi-
ty, Beijing, China, and the PhD degree (2018) in computer science from
the Institut National des Sciences Appliquées de Toulouse, France. She
did her doctoral research work in the dependable computing and fault
tolerance group of the Laboratory for Analysis and Architecture of Sys-
tems, French National Centre for Scientific Research, Toulouse, France.
From 2018 to 2020, she was engaged in a postdoc research at Beijing Ji-
aotong University. Since 2020, she has been an Assistant Professor at the
Computer and Information Technology School in the same university.
Her main fields of interest include quality assurance and testing for ar-
tificial intelligence systems, robustness of machine learning algorithms,
dependability assessment of safety critical systems, and quantitative
measurement of uncertainty.

Junwen Zhang received the B.E. degree (1988) and M.E. degree
(1997) from Beijing Jiaotong University, China, and the PhD degree
(2000) in electronic and information engineering from the same institu-
tion. Currently, he is an Associate Professor at the School of Computer
and Information Technology, Beijing Jiaotong University, China. Since
2000 Dr. Zhang has participated in a number of scientific research proj-
ects, including railway information sharing cloud computing applica-
tion technology, rail transit network verification and testing laboratory
platform construction. His main research directions are software testing,
information security, artificial intelligence.

https://doi.org/10.1145/3143561
http://dx.doi.org/10.1109/QSIC.2009.26
http://dx.doi.org/10.1109/TR.2020.2972266
https://doi.org/10.1145/3241979
http://dx.doi.org/10.1109/TNSE.2020.2997359
http://dx.doi.org/10.1145/3238147.3238172
http://dx.doi.org/10.1109/ICSE-Companion.2019.00051
http://dx.doi.org/10.1109/QRS.2019.00056
https://doi.org/10.1109/ICSE-Companion.2019.00134
http://dx.doi.org/10.1007/s10270-014-0405-5
http://dx.doi.org/10.1142/S0218194005001896
https://doi.org/10.1007/s10115-013-0621-2
https://doi.org/10.1016/S0950-5849(00)00101-4
http://dx.doi.org/10.1109/ISSRE.2004.33
https://doi.org/10.1016/j.asej.2015.05.009
http://dx.doi.org/10.1155/2013/385372
http://dx.doi.org/10.1145/800175.809889
http://dx.doi.org/10.1109/SANER.2019.8668044

164 Z. Jiang, H. Li, D. Zhang, R. Wang, J. Zhang, X. Li, M. Zhang and P. Wang

Xiuru Li received the MSc degree in software engineering from Beijing
Jiaotong University, China in 2020. He has been engaged in software
development for four years. His area of research is mainly in the appli-
cation of machine learning in railway systems.

Meng Zhang received the BEng degree (2017) in computer engineer-
ing from Beijing Jiaotong University, China. He is currently an MSc
student of software engineering at Beijing Jiaotong University, China.
Since 2018, his research includes information security technology, soft-
ware testing technology, especially in the field of test automation, and
the automatic generation of test data.

Penghao Wang received an MSc (2020) degree in software engineering
from Beijing Jiaotong University, China. He is now working as a test
and development engineer at the China Electronics Technology Cloud.
His work domain includes Platform-as-a-Service (PaaS) platform soft-
ware automation testing and engineering efficiency improvement.

 HistoryItem_V1
 Shuffle

 Group size: 1
 Shuffle type: Normal, or perfect bound
 Rule: 1 1

 1
 1
 1
 1 1
 704
 286
 2
 2

 CurrentAVDoc

 Normal

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0
 Quite Imposing Plus 3
 1

 1

 HistoryList_V1
 qi2base

