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In the era of intelligent systems, the safety and reliabil-
ity of software have received more attention. Software 
reliability testing is a significant method to ensure 
reliability, safety and quality of software. The intel-
ligent software technology has not only offered new 
opportunities but also posed challenges to software 
reliability technology.The focus of this paper is to ex-
plore the software reliability testing technology under 
the impact of intelligent software technology. In this 
study, the basic theories of traditional software and in-
telligent software reliability testing were investigated 
via related previous works, and a general software re-
liability testing framework was established. Then, the 
technologies of software reliability testing were ana-
lyzed, including reliability modeling, test case gener-
ation, reliability evaluation, testing criteria and testing 
methods. Finally, the challenges and opportunities of 
software reliability testing technology were discussed 
at the end of this paper.
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1. Introduction

In recent years, many large-scale complex 
systems (LSCSs) have been applied in safe-
ty-critical areas, such as aerospace, rail trans-
portation, finance, and military [1]. Software 
systems based on big data and artificial intel-
ligence (AI) technologies are also widely ap-
plied to such areas as image recognition [2], 
speech recognition [3], medical diagnosis [4], 

machine translation [5], and natural language 
reasoning [5]. Besides, they are increasingly 
being deployed in such security-critical areas 
as autopilot [6] and malware detection [7]. As 
software becomes more complex, intelligent 
and deployed extensively, its security and re-
liability are facing greater challenges, and the 
predictable and assessable behavior are of 
great significance to ensure its security and 
safety.
Software reliability engineering (SRE) is de-
fined by J. D. Musa [18] as "a series of tech-
nical and management activities of an engi-
neering nature carried out to achieve software 
reliability''. The ultimate goal of software reli-
ability testing (SRT) is to verify whether soft-
ware requirements are met by predicting and 
evaluating reliability of the system under test.
There are two reasons that motivate us to com-
pose this review.
As first, traditional software has presently been 
developed to a relatively mature degree due to 
various testing methods and model technolo-
gies. However there are still problems with test 
model application, evaluation standard design, 
and automation difficulties for large-scale soft-
ware in different fields. It is expected that some 
inspirations for solving these problems could 
be provided via conducting a summary of the 
current research status.
Secondly, although intelligent software based on 
big data and artificial intelligence has achieved 
remarkable acomplishments in machine trans-
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analysis, the testing process may be repetitive 
to a certain degree. Therefore, the realization of 
generating test cases and evaluating test results 
are mostly based on the model or derived model 
of the object under test, i.e. test models [21], 
[23], [24]. This type of testing, in which the test 
model is employed to formalize or semi-for-
malize the testing process, is also known as 
model-based testing. The software usage model 
is also a kind of testing model, which is an ab-
stract representation of software behavior and 
structure, and can be used as a driving model 
for the generation of test cases and automating 
test. After the reliability goals are determined, 
the software usage model can be constructed 
and the test cases can be generated through the 
model.

3.1.1. Usage Models 

In 1997, the unified modeling language (UML) 
was recognized as the standard modeling lan-
guage by the Object Management Group 
(OMG) and since then has been widely used to 
construct and optimize software usage models 

summarized the software reliability growth 
model (SRGM) and the tools, explaining vari-
ous software failures, performance testing, fault 
tolerance detection, and software system reli-
ability evaluation methods. In 2016, Kumar et 
al. [16] summarized SRGM, the tools and data-
sets, which divided SRGM into parametric and 
non-parametric models, and provided some ref-
erence datasets and software reliability tools.
A thorough study on traditional SRT and re-
lated evaluation models has been conducted 
in the above mentioned papers, and especially 
on SRGM. At present, the research direction of 
traditional SRT is becoming increasingly mul-
tidimensional. Therefore, it is necessary to ful-
ly understand the development of this field. In 
this chapter, we focus on the construction of us-
age models, generation of test cases, reliability 
evaluation technologies and so on.

3.1. Model-Based Reliability Test Case 
Generation

Given the fact that SRT requires as much data 
as possible with high coverage for statistical 

lation and natural language inference, it could 
induce unexpected conditions that may lead 
to accidents in safety-critical systems, such as 
autonomous driving systems. Therefore, provi-
sion of some inspirations for a reliability test of 
intelligent software in combination with tradi-
tional software engineering is expected.
In this paper, the background of SRT will be 
introduced in Chapter 2;  traditional SRT will 
be summarized in Chapter 3; intelligent SRT 
will be summarized in Chapter 4; traditional 
software and intelligent SRT technology will 
be compared in Chapter 5; the challenges and 
opportunities will be proposed in Chapter 6; a 
summary will be given in Chapter 7. 

2. Background

Software reliability is closely related to system 
input and system application.The IEEE Com-
puter Society of America has provided a defini-
tion of "software reliability" as follows:
1. probability that the software will not cause 

failure in the systems under specified con-
ditions and for a specified period of time;

2. the ability of a program to perform the re-
quired functions under the conditions de-
scribed within a specified period of time.

The main process of SRT is to conduct a test 
as per provisions in a real operating environ-
ment or in a simulated test environment, and 
then adequately collect the test data and evalu-
ate software reliability [19]. However, there are 
significant differences in logic and composition 
between traditional and intelligent software, 
which can be specifically described as follows.

 ● Traditional software is mainly to construct 
a usage model, which has a relatively clear 
content and can express the structure and 
behavior of the software. Intelligent soft-
ware is often composed of neural networks 
and intelligent algorithms. Therefore, the 
components of intelligent software under 
test are also different from traditional soft-
ware.

 ● The failure of traditional software is main-
ly related to the function, structure, and in-
ternal logic, while the failure of intelligent 

software is more related to datasets, algo-
rithms and program frameworks.

 ● For traditional reliability evaluation, the 
reliability evaluation models are gener-
ally modeled for analysis, evaluation and 
prediction. However, as for intelligent 
software current research still stops at test 
methods and coverage criteria, it is obvi-
ous that more attention should be paid to 
the testing and evaluation of intelligent 
software.

In addition, a general SRT framework has been 
proposed by combining the characteristics of 
traditional software with intelligent software, 
which presents the correlation between SRT and 
software life cycle, as shown in Figure 1. The up-
per part of the figure is the life cycle of software 
and the dotted line connection with the software 
reliability test process at the bottom of the figure 
indicates that the life cycle process is related to 
the process of the software reliability test.
Figure 1 shows that software reliability testing 
starts with the establishment of reliability goals, 
then requirements are analyzed and a model is 
built. Traditional software builds a usage model, 
while intelligent software builds a deep learn-
ing algorithmic model. Intelligent software has 
more steps of model training and verification 
before software deployment than traditional 
software. After the model is deployed, we need 
to design test cases for execution and then col-
lect the failure data. In the evaluation stage, it 
is necessary to design evaluation criteria for re-
liability. Besides, it should be analyzed wheth-
er the result meets the reliability goals. If not, 
the fault shall be repaired and regression test-
ing shall be modified until the reliability goals 
are reached. Finally, a report shall be generated 
when the test is finished.
Due to limited space, the requirement analysis 
part will not be introduced here, and we will 
focus on the technologies of modeling, testing, 
and evaluation.

3. Traditional Software Reliability 
Testing

In 2012, Li et al. [14] summarized SRT as re-
liability testing, reliability evaluation and pre-
diction models. In 2015, Sharma et al. [15] 

Figure 1. Universal SRT framework.
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that most use case models are constructed man-
ually, there is a possibility of errors that could 
omit certain system use behaviors, and the gen-
erated test cases may ignore these behaviors. 
For that reason, in 2017, Gebizli et al. [97] in-
troduced a method and the ARME toolset for 
automatic refinement of the system models 
based on test activities recorded by modeling 
engineers. In 2018, Liu et al. [98] introduced a 
new model-based test tool MTTool to simulate 
complex software behaviors and generate test 
cases from models.
The test case selection technique. In 2013, 
Hadi et al. [99] introduced 320 different sim-
ilarity-based test case selection (STCS) tech-
niques and drew a comparison among them 
with the aim of addressing the problem of 
scalability in model-based testing. Afterwards, 
Hadi proposed a method to determine the opti-
mal trade-off between the number of test cases 
in operation and fault detection.
Application of usage models. In 2012, Wan et 
al. [24] proposed an evaluation method to assess 
the accuracy of the model used for various reli-
ability tests based on the Markov usage model 
for web applications. In 2013, Wan et al. [100] 
designed a model-based approach to generate 

scenario test cases for nuclear digital security 
systems by converting scenarios. In 2016, in 
order to test large software products, Gebizli et 
al. [101] proposed a method for system reuse of 
hierarchical Markov chain usage models.
To sum up, the research on software usage 
models and automatic generation of test cases 
have emerged in the last decade, and a certain 
specification has been formulated. However, 
more thorough studies are needed to be con-
ducted regarding how to choose the appropriate 
method to build the usage model, how to im-
prove the coverage of test cases, how to verify 
the feasibility and correctness of testing models 
in more fields, and regarding  the development 
and refinement of related tools.

3.2. Software Reliability Evaluation

After test execution is completed, the next step 
is to evaluate software reliability [96], which 
is generally calculated through the software 
reliability model. According to the standards 
IEEE1633-201[20] and GJBZ161-2012 (In 
Chinese) [19], the reliability evaluation pro-
cess can be divided into six steps, i.e. failure 

[23]. In addition, Markov Chain Model [25] 
[26], Finite State Machine Model [27], UML 
Model [28] [29], etc. are employed to construct 
software usage models. According to the dif-
ferent modeling methods, usage models can be 
broadly divided into four categories as follows. 
UML-based usage models. Software systems 
are visualized and built from different angles 
through the four-level metamodel architecture 
to form multiple views of the system. Common 
modeling scenarios include the library system 
[35], online store [36], web server [37], and in-
dustrial projects [136].
Markov-chain-based usage models. A con-
struction model based on Markov chain can 
statistically reflect the structural and behavioral 
characteristics of software, and perform statis-
tical calculations and analysis [22]. Common 
modeling scenarios include ATM [26], and 
MaTeLo [142].
Operation-profile-based usage models [30].
The operation profile of software can be used to 
quantitatively describe the way that users actu-
ally use the software, and it is necessary to con-
sider the using habit for the software in various 
modes and functions and the probability of use 
in the construction of the profile model. Com-
mon modeling scenarios include Phone follow-
er software [41], and the space program [42].
Formal-language-based usage models. Func-
tional structure and scenario path of the system 
are described through explicit formal mathe-
matical language, and usage models are con-
structed, such as finite state machines (FSM) 
[27], Petri network [31], Z language [32], SOFL 
language [33], etc. Common modeling scenari-
os are Web app [43], Embedded systems [137], 
Mobile app [33], TWIN elevator system [138], 
Multilift system [139] and so on.
In addition, there are other modeling methods, 
such as grammar models [34], which can be 
employed to describe program syntax.

3.1.2. Test Case Generation

After a usage model is constructed, test cases 
can be automatically generated using that mod-
el. When the testset complies with the coverage 
criteria, the generation of test cases can be ter-
minated [48]. In this paper, the usage models, 

common modeling methods, and corresponding 
methods of automatically generating test cases 
have been sorted out, as shown in Figure 2.
It can be seen that there are many methods of 
using the model to generate test cases. An ap-
propriate usage model shall be selected based 
on the characteristics of the test goals, and then 
an appropriate method shall be selected to gen-
erate test cases.

3.1.3. Research Trends in the Current Decade

In software engineering, software usage models 
serve as an expression of formal ideas, which 
is of great significance. In 2015, Saurabh et al. 
[94] published a systematic literature review of 
the use case specification methods, which pro-
vides a reference for the use of model-based 
test case specification. In 2016, Utting et al. 
[95] summarized the results of the model-based 
testing field from 2006 to 2016, including the 
modeling process, modeling language, tech-
niques for generating test cases from models, 
and application examples.
Normalization and improvement of the con-
struction methods for software usage mod-
els. In 2010, Rita et al. [27] proposed a method 
to develop test suites with formal specification 
in the form of FSMs which is of some reference 
value for FSM modeling. In the same year, Liu 
et al. [47] extended the reliability information 
in the UML model and automatically convert-
ed the UML model into a Markov chain-based 
model.
Optimization of the test case generation 
method. In 2010, Vahid et al. [49] proposed a 
method based on UML 2.0 to supplement in-
formation to the sequence diagram for the con-
struction of the model and to apply a genetic 
algorithm for the automatic generation of test 
cases that can meet the task timing protocol. 
Nayak et al. [28] transformed the UML activ-
ity diagram into an intermediate testable model 
and generated test scenarios to identify all pos-
sible scenarios and check defects in the use case 
scenarios.
Research on modeling tools. In 2015, Yue et 
al. [96] proposed an automation framework for 
deriving UML analysis models from use case 
models, and the aToucan tool. Due to the fact 

Figure 2. Usage models, modeling methods, and test cases generation methods.
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of testing and evaluation of traditional software 
cannot be applied to intelligent software direct-
ly. Zhang et al. [120] proposed the framework 
of machine learning testing and summarized 
the testing content, processes, attributes, meth-
ods, coverage criteria, applications, and testing 
scenarios. However, they did not make a sum-
mary from the perspective of SRT. The current 
reliability research of intelligent software main-
ly focuses on the testing methods and coverage 
criteria. In this chapter, an overview of intel-
ligent software and relevant reliability testing 
technologies will be discussed from the per-
spective of testing methods, frameworks, and 
testing coverage criteria.

4.1. Intelligent Software Testing Methods

In reliability testing of intelligent software, it is 
almost impossible to generate test cases manu-
ally. There are two problems to be solved:

 ● the Oracle problem [12] [13]: It is difficult 
or impossible to verify the test results un-
der a given test case. This is a particularly 
common case with intelligent software, es-
pecially for unsupervised learning;

 ● the problem of reliable test sets [12] [13]: 
Since there is no possibility to make an ex-
haustive list of possible test cases, it is dif-
ficult to effectively select a subset of test 
cases that can verify procedural correct-

ness. Intelligent software does not have 
the same explicit logical coverage criteria 
as traditional software, and the functions 
model in Deep Neural Networks (DNNs) 
are non-linear, so it would be more diffi-
cult to verify the adequacy and reliability 
of the test set. Also, finding inputs in the 
DNN that lead to high model coverage is 
hard.

As a result, traditional software testing meth-
ods are not necessarily applicable to intelligent 
software. In order to solve the above problems, 
more testing methods for intelligent software 
are proposed, such as Metamorphic Testing 
[121], cross-referencing as Oracles Testing 
[120], Concolic Testing [11], etc.

4.1.1. Metamorphic Testing 

The method of metamorphic testing (MT) was 
proposed for the first time in 1998, T. Y. Chen 
[121] used the method to generate test cases. 
Relevant researchers were pleasantly surprised 
to find that MT can effectively relieve oracle 
problems, and it could also contribute to pro-
viding an effective and reliable test set. The MT 
timeline is shown in Figure 4. 
2018 and 2019 studies showed that MT is ef-
fective in testing of intelligent software and 
especially in real scenarios, such as automatic 
driving systems.

definition, failure trend analysis, selection of 
software reliability evaluation model, model 
parameter estimation, model verification, and 
reliability estimation and prediction.

3.2.1. Software Reliability Evaluation Models

Between 1956, when Weiss et al. [83] proposed 
a hardware reliability evaluation method, and 
1987, when Musa et al. [84] co-authored the 
book Software Reliability – Evaluation, Pre-
diction and Application, the software reliability 
issue was getting more comprehensive and apt 
to more in-depth discussions. By the 1990s, re-
liability model technologies had developed to a 
relatively high level of maturity. In 1991, Cai et 
al. [102] reviewed the development of software 
reliability models and concluded that almost all 
previous software reliability models had been 
developed in a probabilistic context. Wang et 
al. [96] conducted a related review; Sharma et 
al.[103] proposed to select a model by model 
assumptions similarity; Musa et al. [104] pro-
posed five software reliability model evaluation 
criteria, which have been more widely recog-
nized currently. Moreover, there are also many 
researchers who have begun to study the uni-
versal model with integrated prediction frame-
work, neural networks, artificial intelligence 
and other methods for software reliability inte-
grated prediction [105] [106]. It is evident that 
after the 1990s, more attention is being paid to 
the applicability of the model.
In 2016, Kumar et al.[16] provided a summary 
of parametric and non-parametric modeling of 
software reliability, and listed some tools and 
datasets. In the next year, Zhang et al. [107] 
analyzed and summarized SRGM, comparing 
SRGMs typical at that time. At present, there 
are various types of software reliability eval-
uation models, such as the JM model [17], 
Musa model [90], GO model, LV model [143], 
Schneidewind model [87], universal exponen-
tial model [88], generalized exponential model 
[92], Shooman model [90], Yamada S model 
[91], Duane model [93] and other classic mod-
els, as well as the Rome model [85], Keene's 
development process model [86], which are all 
mainly used to predict failures. In addition to 
the classic model, there are models based on 
the architecture [118] which can be divided into 

path model, state model, component operation 
profile model and others.
In addition, according to different modeling 
methods, reliability models can be divided into 
analytical models and heuristic models. Ac-
cording to whether the internal structure of soft-
ware is clear, evaluation models can be divided 
into white box models, black box models, etc.

3.2.2. Research Trends in Current Decade

In the last section, we present research work on 
software reliability evaluation and summarize 
the research direction over the past ten years. 
In 2010, Zeng et al. [78] proposed a software 
reliability model selection method based on his-
torical software project experience. Ullah et al. 
[80] [81] proposed a method to select the model 
that best predicts Open Source Software (OSS) 
residual defects. Vladimir et al. [107] pro-
posed a reliability comparison method, but this 
method lacks more formal verification. Their 
work focuses on how to better choose the eval-
uation model. In addition, Huang et al. [108] 
are committed to studying the "change point" 
problem in software reliability assessment, and 
propose to incorporate multiple change points 
into software reliability modeling. Domenico 
et al. [115] studied optimization models. They 
proposed a new reliability evaluation and im-
provement (RELAI) testing technology, which 
can improve reliability through adaptive testing 
schemes.
As shown in Figure 3, we have summarized the 
software reliability evaluation research during 
the last ten years into 6 directions, including: 
model selection, solve the "change point" prob-
lem, imperfect debugging scheme, model opti-
mization, novel models, and field application.

4. Intelligent Software Reliability  
Testing

With the advancement of intelligent software 
technology, the reliability of intelligent soft-
ware has become a hot topic in this field. How-
ever, there are significant differences in the 
models and testing methods between intelligent 
software and traditional software. The methods 

Figure 3. Research on software reliability evaluation technology over the past ten years.
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of testing and evaluation of traditional software 
cannot be applied to intelligent software direct-
ly. Zhang et al. [120] proposed the framework 
of machine learning testing and summarized 
the testing content, processes, attributes, meth-
ods, coverage criteria, applications, and testing 
scenarios. However, they did not make a sum-
mary from the perspective of SRT. The current 
reliability research of intelligent software main-
ly focuses on the testing methods and coverage 
criteria. In this chapter, an overview of intel-
ligent software and relevant reliability testing 
technologies will be discussed from the per-
spective of testing methods, frameworks, and 
testing coverage criteria.

4.1. Intelligent Software Testing Methods
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almost impossible to generate test cases manu-
ally. There are two problems to be solved:

 ● the Oracle problem [12] [13]: It is difficult 
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der a given test case. This is a particularly 
common case with intelligent software, es-
pecially for unsupervised learning;

 ● the problem of reliable test sets [12] [13]: 
Since there is no possibility to make an ex-
haustive list of possible test cases, it is dif-
ficult to effectively select a subset of test 
cases that can verify procedural correct-

ness. Intelligent software does not have 
the same explicit logical coverage criteria 
as traditional software, and the functions 
model in Deep Neural Networks (DNNs) 
are non-linear, so it would be more diffi-
cult to verify the adequacy and reliability 
of the test set. Also, finding inputs in the 
DNN that lead to high model coverage is 
hard.

As a result, traditional software testing meth-
ods are not necessarily applicable to intelligent 
software. In order to solve the above problems, 
more testing methods for intelligent software 
are proposed, such as Metamorphic Testing 
[121], cross-referencing as Oracles Testing 
[120], Concolic Testing [11], etc.

4.1.1. Metamorphic Testing 

The method of metamorphic testing (MT) was 
proposed for the first time in 1998, T. Y. Chen 
[121] used the method to generate test cases. 
Relevant researchers were pleasantly surprised 
to find that MT can effectively relieve oracle 
problems, and it could also contribute to pro-
viding an effective and reliable test set. The MT 
timeline is shown in Figure 4. 
2018 and 2019 studies showed that MT is ef-
fective in testing of intelligent software and 
especially in real scenarios, such as automatic 
driving systems.
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4.1.2. Cross-Referencing as Test Oracles

Cross-referencing is a test oracle technique in 
intelligent software testing, which includes dif-
ferential testing and N version programming. 
Differential testing is a traditional software 
testing technique that detects errors by observ-
ing whether similar applications may produce 
different outputs for the same input [146] [122]. 
Differential testing is one of the main testing 
methods for detecting compiler errors [123], 
and it is closely related to N version program-
ming which aims to generate multiple func-
tionally equivalent programs based on a single 
specification, thus resulting in a higher degree 
of fault tolerance and robustness for combina-
tions of different versions [124].
Both DeepXplore [8] and DLFuzz [130] adopt 
differential testing as a test benchmark to find 
valid test inputs. I.e., test inputs that lead to dif-
ferent behavior between algorithms or models 
are preferred during the test generation.

4.1.3. Concolic Testing

Concolic testing is a modern symbolic execu-
tion testing technique, which is an effective 
way to automatically generate test cases. Sun 
et al. [131] developed the first kind of concolic 
testing approach for DNN in 2018, where rea-
sonable quantitative linear arithmetic (QLAR) 
was adopted to express test requirements, and 

test cases could be generated progressively for 
a given set of test requirements, to improve 
coverage by the shift between concrete execu-
tion and symbolic analysis. In 2019, they fur-
ther introduced a DNN testing and debugging 
tool called DeepConcolic, which could detect 
errors with sufficient rigor to be suitable for 
testing DNN in security-related applications 
[132]. DeepConcolic was the first kind of tool 
to implement concolic testing techniques for 
DNN and to provide users with a test tool to 
investigate specific parts of DNN functionality.

4.2. Intelligent Software Testing Criteria

In order to evaluate the adequacy of intelligent 
software testing, scholars have also proposed 
a number of test coverage criteria when study-
ing intelligent software testing. Currently, there 
are mainly three types of test coverage criteria: 
structure-based test criteria, semantic test crite-
ria, and combination-based test criteria.
Structure-based test criteria. Such as neuron 
coverage [8], k multi-segment neuron coverage 
[133], boundary neuron coverage [133], Top-k 
neuron coverage [133], MC/DC criteria [135]. 
This type of test criteria mainly focuses on the 
internal structure of the neural network and con-
siders the factors related to neuron coverage.
Semantic-based test criteria. DeepImportance 
[148] uses semantics of the neuron's influence 
on the Deep Learning (DL) system as the test 

sufficiency criterion. This type of method not 
only considers the internal structure of the neu-
ral network, but it also considers semantics of 
the neuron's influence on the DL system.
Combination-based testing criteria. DeepCT 
[147] proposes t-way combined sparse cov-
erage, t-way combined dense coverage, and 
(p, t)-integrity coverage. This type of method 
mainly draws on the idea of combined testing 
and considers the adequacy of neural network 
testing from another perspective.
Based on the above, in 2019, Zhang et al. [134] 
carried out further research on the test criteria, 
conducting a large-scale investigation of the 
essential diversity of neural networks, and de-
fined five indicators to quantify the diversity of 
neuronal activities.

5. Reliability Testing of Traditional 
Software vs. Intelligent Software

Based on the previous analysis, it becomes ob-
vious that traditional software and intelligent 

software are very different in terms of consti-
tutive logic, test methods and test criteria. The 
summary of comparison between traditional 
and intelligent software, is shown in Figure 5.

6. Challenges and Opportunities

SRT covers a wide range of fields. Intelligent 
software technologies have brought great op-
portunities and challenges to traditional soft-
ware reliability. The traditional SRT becomes 
more intelligent, and reliability requirements 
for intelligent software becomes more urgent. 
Specifically, SRT techniques are facing the fol-
lowing challenges.
Challenges in test case generation. According 
to Utting et al. [95], although model-based test-
ing and use of case techniques have made great 
progress in theoretical research, they are slow in 
industry application and the cost of application 
is not economic, which is caused by modeling 
activities and the ability of  testers. The scale 
of traditional software continues to expand and 
intelligent software is often made up of large 

Figure 4. History of metamorphic testing. Figure 5. Comparison of traditional and intelligent software.
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behavioral spaces. These factors have brought 
huge challenges to generate effective test sets.
Challenges in testing evaluation criteria. 
While traditional SRT has resulted in many cri-
teria, the applicability of those criteria to intel-
ligent software is a question that needs to be ex-
plored. At present, there is no uniform system 
of definitions and criteria for reliability testing 
of intelligent software. Besides, although much 
work has been done exploring the ways  how 
to assess quality or adequacy of test data, there 
is still a lack of systematic evaluation of how 
different evaluation criteria relate to each other, 
or how they relate to the ability of tests to detect 
errors.
Challenges in evaluation model. As software 
becomes increasingly complex and large, eval-
uation models are difficult to construct. The 
construction of a broadly common set of eval-
uation models is also a challenge. Besides, cur-
rently there is no mature model for assessing 
the reliability of intelligent software, and there 
is an urgent demand for new evaluation meth-
ods.
Challenge in test oracle. Although DeepTest 
[9] can effectively mitigate the oracle problem 
by metamorphic testing, these metamorphic 
relationships are proposed mostly by humans 
and may contain false positives. Therefore, the 
automatic identification and construction a re-
liable oracle for SRT is still a huge challenge.
In addition to the above challenges, there are 
also many opportunities in the research of SRT, 
two of which are mentioned below.
Intelligent methodological study of tradition-
al software reliability techniques. The devel-
opment of intelligent software technology has 
brought more possibilities to ensure  reliability 
of traditional software. We can apply intelligent 
software technology to improve  automation 
and efficiency of testing and evaluation, as well 
as to reduce the cost of testing. Besides, the ma-
chine learning-based model can also be applied 
in software reliability evaluation.
Research on reliability evaluation methods 
for intelligent software. Intelligent software 
is usually based on DNN models. There are no 
mature methods and criteria for reliability eval-
uation. There is a series of mature theories and 
methods on reliability evaluation for traditional 

software, and applying them to reliability eval-
uation for intelligent software is also a direction 
worth studying.

7. Conclusion

In this paper, we introduced a software reliabil-
ity testing technology, including traditional and 
intelligent software reliability testing. Accord-
ing to previous work, we proposed a general 
framework for SRT. Secondly, we introduced a 
usage model, test methods and evaluation meth-
ods of traditional SRT. Moreover, we also sum-
marized the existing methods, frameworks and 
test coverage criteria of intelligent SRT. Finally, 
we compared  reliability testing technologies of 
intelligent software and traditional software, 
and analyzed  current challenges and opportu-
nities of SRT technology. Hopefully, our study 
can help interested researchers understand the 
current technologies of SRT, and provide guid-
ance for a more in-depth research.
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behavioral spaces. These factors have brought 
huge challenges to generate effective test sets.
Challenges in testing evaluation criteria. 
While traditional SRT has resulted in many cri-
teria, the applicability of those criteria to intel-
ligent software is a question that needs to be ex-
plored. At present, there is no uniform system 
of definitions and criteria for reliability testing 
of intelligent software. Besides, although much 
work has been done exploring the ways  how 
to assess quality or adequacy of test data, there 
is still a lack of systematic evaluation of how 
different evaluation criteria relate to each other, 
or how they relate to the ability of tests to detect 
errors.
Challenges in evaluation model. As software 
becomes increasingly complex and large, eval-
uation models are difficult to construct. The 
construction of a broadly common set of eval-
uation models is also a challenge. Besides, cur-
rently there is no mature model for assessing 
the reliability of intelligent software, and there 
is an urgent demand for new evaluation meth-
ods.
Challenge in test oracle. Although DeepTest 
[9] can effectively mitigate the oracle problem 
by metamorphic testing, these metamorphic 
relationships are proposed mostly by humans 
and may contain false positives. Therefore, the 
automatic identification and construction a re-
liable oracle for SRT is still a huge challenge.
In addition to the above challenges, there are 
also many opportunities in the research of SRT, 
two of which are mentioned below.
Intelligent methodological study of tradition-
al software reliability techniques. The devel-
opment of intelligent software technology has 
brought more possibilities to ensure  reliability 
of traditional software. We can apply intelligent 
software technology to improve  automation 
and efficiency of testing and evaluation, as well 
as to reduce the cost of testing. Besides, the ma-
chine learning-based model can also be applied 
in software reliability evaluation.
Research on reliability evaluation methods 
for intelligent software. Intelligent software 
is usually based on DNN models. There are no 
mature methods and criteria for reliability eval-
uation. There is a series of mature theories and 
methods on reliability evaluation for traditional 

software, and applying them to reliability eval-
uation for intelligent software is also a direction 
worth studying.

7. Conclusion

In this paper, we introduced a software reliabil-
ity testing technology, including traditional and 
intelligent software reliability testing. Accord-
ing to previous work, we proposed a general 
framework for SRT. Secondly, we introduced a 
usage model, test methods and evaluation meth-
ods of traditional SRT. Moreover, we also sum-
marized the existing methods, frameworks and 
test coverage criteria of intelligent SRT. Finally, 
we compared  reliability testing technologies of 
intelligent software and traditional software, 
and analyzed  current challenges and opportu-
nities of SRT technology. Hopefully, our study 
can help interested researchers understand the 
current technologies of SRT, and provide guid-
ance for a more in-depth research.
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