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In this paper, we first coin a new graph theoretic prob-
lem called the diameter cycle problem with numerous 
applications. A longest cycle in a graph G = (V, E) is 
referred to as a diameter cycle of G iff the distance in G 
of every vertex on the cycle to the rest of the on-cycle 
vertices is maximal. We then present two algorithms 
for finding a diameter cycle of a biconnected graph. 
The first algorithm is an abstract intuitive algorithm 
that utilizes a brute-force mechanism for expanding an 
initial cycle by repeatedly replacing paths on the cycle 
with longer paths. The second algorithm is a concrete 
algorithm that uses fundamental cycles in the expan-
sion process and has the time and space complexity 
of O(n6

 ) and O(n2
 ), respectively. To the best of our 

knowledge, this problem was neither defined nor ad-
dressed in the literature. The diameter cycle problem 
distinguishes itself from other cycle finding problems 
by identifying cycles that are maximally long while 
maximizing the distances between vertices in the cy-
cle. Existing cycle finding algorithms such as funda-
mental and longest cycle algorithms do not discover 
cycles where the distances between vertices are max-
imized while also maximizing the length of the cycle.
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1. Introduction

Let G = (V, E) be an undirected bi-connected 
graph with vertex set V and edge set E. Cycle 
C of G = (V, E) is referred to as a candidate 
diameter cycle of G iff there does not exist a 
cycle C' in G such that for two vertices i and j 
that are on both C and C', there exist two paths 
P(i, j) and P'(i, j) disjoint except their endpoints 

i and j in G from vertex i to vertex j where C' is 
obtained by replacing path P(i, j) on C by path 
P'(i, j) satisfying 
(i) |P(i, j)| < |P'(i, j)| and 
(ii) for every vertex v on C \ P(i, j), and ver-

tex z on P(i, j) and w on P'(i, j) such that 
z is a vertex that minimizes d(v, z), w is a 
vertex that minimizes d(v, w), and d(v, z) ≤ 
d(v, w) holds. (See Figure 1 illustrating the 
definition.)

Figure 1. Graph showing path replacement.
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Informally, the longest cycle in G on which the 
distance in G of every vertex on the cycle to 
the rest of the on-cycle vertices is maximal is 
referred to as a diameter cycle of G.
Consider Figure 2 where a graph is shown with 
a number of non-candidate diameter cycles and 
candidate diameter cycles. Observe that cycles 
1, 3, 4, 1 and 1, 4, 5, 2, 1 are not candidate di-
ameter cycles since they can be expanded sat-
isfying both properties (i) and (ii). Notice that 
cycle 1, 3, 4, 1 can be expanded using cycle 
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Graph drawing is a crucial stage in the pro-
cess of optimizing network or network over-
lay design via good graph representation that 
facilitates a better understanding of the system 
network [6]. There are multiple approaches to 
enhance graph layout such as tree layout, hier-
archical layout, bus layout and circular layout. 
In a circular layout (CL), the graph is represent-
ed by its set of cycles and the edges connecting 
them. CL is best suited for graphs representing 
interconnected ring and/or star network topol-
ogies and has been applied to LAN diagrams, 
organization charts and web hyperlink neigh-
bourhood representation. Circular graph layout 
of a graph, which is easier to understand and to 
analyze, can be constructed using candidate di-
ameter cycles of the graph [6]. Using candidate 
diameter cycles in a graph, a desirable circular 
layout of the graph can be discovered. For a giv-
en graph G, the circular layout consists of can-
didate diameter cycles CD1, CD2, CD3, ... where 
CDi is a candidate diameter cycle of G \ {CD1, 
CD2, ..., CDi -1}, where \ denotes the removal of 
set of graphs/cycles {CD1, CD2, ..., CDi -1} from 
graph G. This results in a layout with a moder-
ate number of cycles. Graph algorithms for lay-
out normalization and enhancement continue to 
receive significant attention [7, 8].
Path based network protection is an efficient 
technique for network survival in the presence 
of edge failures where pre-assigned capacity is 
used for network restoration [9]. Network res-
toration is a process in which data is rerouted 
towards the destination in the event of edge 
failures. Many protection schemes including 
the ring-based protection [10] adopted this con-
cept. In ring-based network protection, a cyclic 
path is used for network protection where the 
data is transmitted in the same direction (e.g., 
clockwise) from source to destination through 
the cycle that contains them in the network, and 
simultaneously a copy of that data is transmitted 
in the opposite direction of the cycle between 
the source and destination [11]. Ring based pro-
tection paths provide fast route switching how-
ever they are inefficient in capacity usage [12]. 
One approach to solve this problem is to use 
the p-cycles (preconfigured protection cycle) in 
which the spare capacity is organized in cycles 
where the vertices on each cycle assemble and 
share a protection path for any on-cycle edge/
link in addition to the straddling edges [12].

based on the use of fundamental cycles to find 
the diameter cycle of a given graph. In Section 
5, we present the proof of correctness and show 
that diameter cycles possess a number of use-
ful properties. Finally in Section 6, we provide 
some concluding remarks on work present and 
its applications.

2. Applications

There is a wide range of sensor network appli-
cations that require certain knowledge of the 
global geometry and topology of a network 
which can be discovered using the diameter cy-
cle of a network. For instance, the identifica-
tion of the network boundary can be facilitated 
through the discovery of the diameter cycle that 
represents the perimeter of the target area. The 
boundaries of the sensor field capture the global 
geometric shape of the network which identifies 
the densely monitored underlying space. The 
discovery of the global geometry and the topol-
ogy of the sensor field is of great importance 
in the design of basic networking operations 
such as point to point routing, data gathering 
mechanism and sensor coverage verification. 
The identification of boundaries [4], i.e., the 
outer edges/perimeter of the network, and holes 
[5], i.e., regions without enough active verti-
ces in a network, are useful in improving the 
overall performance of a network by adapting 
appropriate routing techniques. Detecting holes 
allows locally selecting an appropriate routing 
path. Hole detection also plays an important 
role in geographic multicasting where a mes-
sage is delivered from a single source to a set of 
destination vertices in a geographic region and 
path migration by maintaining virtual connec-
tions among a set of moving objects.
The number of (inner boundaries) holes in a 
network and their sizes is the most important 
performance metric used to measure the quali-
ty of service a network can provide. This holds 
especially in dynamic settings, where sensor 
nodes can run out of power, fail or move form-
ing holes and changing the sizes and the topol-
ogies of the inner and outer boundaries. Hence, 
holes and boundaries need to be dynamical-
ly detected in sensor networks. Diameter and 
candidate diameter cycles can be used to detect 
holes and boundaries in sensor networks.

1, 4, 5, 2, 1 and vice versa satisfying both the 
properties. Also notice that the resulting cycle 
1, 3, 4, 5, 2, 1 of both the expansions is a can-
didate diameter cycle. In addition, there exists 
another diameter cycle 1, 3, 4, 5, 6, 1 that can be 
obtained through other expansions.
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Figure 2. Initial cycle C0, path P(1, 4) and its 
corresponding expansion path P'(1, 4) and diameter 

cycle CD.

A diameter cycle of a graph resembles the pe-
rimeter of the graph in the sense that it enclos-
es all the vertices and edges of the graph (or a 
subgraph). A diameter cycle represents differ-
ent notions depending on what the graph rep-
resents. For instance, if the graph is used to rep-
resent a road network of a city, then this cycle 
is the outer-city ring road which is considered 
the least polluted and the one desired for heavy 
vehicles and trucks.
Many principal characteristics of a communica-
tion network are related to the global geometric 
shape and the topology of the network which 
can be discovered using the diameter cycle of 
the network. These characteristics identify the 
connectivity structure of a network which in 
turn facilitates improvement of network effi-
ciency, optimizes network facilities placement, 
provides protection for path failures, detects 
boundaries, optimizes graph layout, assesses 
the vulnerability of a network, optimizes rout-
ing and scheduling (especially critical path 
planning), and minimizes the complexity of 
routing. For example, finding two vertex-dis-
joint paths between any two vertices in G is 
simplified through the use of a diameter cycle 

in G. Section 2 provides details on the applica-
tions of diameter cycles.
Various cycle detection algorithms have been 
proposed in the literature. For instance, [1] pres-
ents a diffusing computation-based cycle knot 
detection algorithm for general graphs. A knot is 
a directed graph in which every vertex is reach-
able from every other vertex via a directed path. 
It detects whether a given vertex is in a cycle or 
knot. To do so, the initiator launches a diffusion 
computation to detect whether a given vertex 
is in a cycle or a knot. An algorithm for detect-
ing holes and antiholes in general undirected 
graphs is discussed in [1], where the existence 
of a cycle is checked by a special depth first 
search traversal that proceeds along a chord-
less path on four vertices of the input graph. 
Similarly, [2] introduces an adaptive approach 
(the Adaptive Bellman-Ford algorithm) to neg-
ative cycle detection in dynamically changing 
graphs. This technique explicitly addresses the 
common, practical scenario in which negative 
cycle detection is periodically performed after 
intervals in which a small number of changes 
are made to the graph. However, to the best of 
our knowledge, no algorithm for constructing a 
diameter cycle is available in the literature.
In this paper, we first introduce an entirely new 
problem of finding diameter cycles in graphs 
which has numerous applications. Then, we 
propose an abstract algorithm to find a candi-
date diameter cycle, and a concrete algorithm to 
find a diameter cycle in a bi-connected graph. 
The first algorithm utilizes a brute-force ap-
proach based on the expansion of paths on an 
initial arbitrary cycle of G to find a candidate 
cycle of G, while the second algorithm employs 
a novel approach to combine fundamental cy-
cles of a given graph to find a diameter cycle in 
polynomial time. The second algorithm consists 
of three distinct phases. The first phase of the 
algorithm, as given in [3], finds all fundamental 
cycles in the graph. The second phase of the al-
gorithm, as given in [3], marks each vertex with 
each fundamental cycle(s) it is part of. The third 
phase of the algorithm finds a diameter cycle 
in the graph by combining fundamental cycles. 
The paper is organized as follows: In Section 2, 
applications of diameter cycles are presented. 
In Section 3, the brute-force algorithm is pre-
sented. In Section 4, we propose an algorithm 
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Figure 2. Initial cycle C0, path P(1, 4) and its 
corresponding expansion path P'(1, 4) and diameter 
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our knowledge, no algorithm for constructing a 
diameter cycle is available in the literature.
In this paper, we first introduce an entirely new 
problem of finding diameter cycles in graphs 
which has numerous applications. Then, we 
propose an abstract algorithm to find a candi-
date diameter cycle, and a concrete algorithm to 
find a diameter cycle in a bi-connected graph. 
The first algorithm utilizes a brute-force ap-
proach based on the expansion of paths on an 
initial arbitrary cycle of G to find a candidate 
cycle of G, while the second algorithm employs 
a novel approach to combine fundamental cy-
cles of a given graph to find a diameter cycle in 
polynomial time. The second algorithm consists 
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in the graph by combining fundamental cycles. 
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reduces the amount of information to be kept in 
routing tables.

Figure 5. Diameter cycle of a biconnected graph. A 
vertex disjoint route from vertex 1 to 6 is easily found 

through the cycle.

The problem of finding two vertex disjoint 
paths has a large number of applications in-
cluding increasing the security and reliability 
of communication in computer networks. Two 
disjoint paths between each pair of vertices 
could be built using diameter paths as follows. 
If both the vertices are on the cycle, obviously 
the cycle connects the vertices via two disjoint 
paths [20]. If one of the vertices x is on the cy-
cle while the other vertex y is not on a diameter 
cycle, a path containing y with its distinct end-
points on the cycle is constructed. Clearly this 
path and a diameter cycle form a cycle contain-
ing both x and y providing two vertex disjoint 
paths connecting x and y. If both the vertices x 
and y are not on the cycle, two distinct paths 
containing x and y with endpoints on the cycle 
or a single path containing both x and y can be 
constructed. Obviously, in each case, a cycle 
containing both x and y can be readily obtained 
leading to the construction of two disjoint paths 
between vertices x and y.

3. Candidate Diameter Cycle  
Algorithm

In order to describe the approach employed by 
the algorithm, we need to define the following 
terms. A graph G = (V, E) is connected iff a 
path exists between any two vertices in G [12]. 
A vertex in a connected graph is referred to as 
an articulation or cut vertex if its removal dis-
connects the graph, i.e, the graph is split into 
disjoint subgraphs [12]. A graph is bi-connect-

ed if it does not contain an articulation vertex 
[21]. A shortest path P of length D between two 
vertices in G is referred to as a diameter path. 
Diameter endpoints are the origin and the ter-
minal vertices on P.
The algorithm is based on constructing a cycle 
of G between two diameter endpoints and then 
expanding the initial cycle repeatedly until a 
point where the obtained cycle can no longer 
be expanded and each expansion step satisfies 
a number of properties. It is easy to see that a 
diameter path can be found by first finding the 
distance between every pair of vertices and then 
identifying two vertices of maximal distance 
between them.

1.      Select any cycle C0 containing two diameter 
endpoints of a diameter path of G

2.      i = 1
3.      while true do
4.          if there exist path P(x, y) on Ci -1 with origin 

x and terminal y and another path P'(x, y) 
disjoint from Ci -1, except for its origin x and 
terminal y such that |P'(x, y)| > |P(x, y)|, and for 
every vertex v on C \ P(x, y), and vertex z on 
P(x, y) and v on P'(x, y) such that z is a vertex 
that minimizes d(v, z), v is a vertex that mini-
mizes d(v, w), and d(v, z) ≤ d(v, w) hold. then

5.              Obtain cycle Ci by replacing its subpath 
P(x, y) by P'(x, y) in Ci -1

6.              Increment i
7.          else
8.              exit
9.          end
10.    end
11.    Identify the last cycle produced by the cycle  

expansion process as candidate diameter cycle CD

Figure 6. Candidate diameter cycle algorithm. 

Note that |P'(x, y)| and |P(x, y)| refer to the 
lengths of paths P'(x, y) and P(x, y), respective-
ly, and Ci -1 \ P(x, y) refers to a path obtained 
from Ci -1 by removing P(x, y).
The algorithm starts by finding an initial cycle 
containing both the endpoints of a diameter path 
of G by forming two distinct vertex-disjoint 
paths of total minimal length between the diam-
eter endpoints and combining them to form the 
initial cycle. Such a cycle can be constructed 
using an algorithm to find two vertex-disjoint 
paths between the diameter endpoints using the 

A diameter cycle provides a general protection 
path for the vertices on the cycle and other ver-
tices [13], [14] in the network that provides fast 
path switching; for every vertex x in the net-
work, x is either on a diameter cycle or x has a 
distance less than or equal to half the diameter 
of the graph to the diameter cycle as illustrated 
in Figure 3, where the diameter cycle is shown 
by a thick line and dashed arrows show the dis-
tances of nodes to the diameter paths. It is easy 
to see that the maximum distance of any ver-
tex in the graph shown in Figure 3 to the clos-
est vertex on the diameter path is D/2 which 
is facilitated by the properties of the diameter 
path where D is the diameter of graph G, i.e., 
D is the longest distance (number of edges on 
the shortest path) between two vertices in G. 
Therefore a diameter cycle provides an eligible 
path from any source vertex to any destination 
vertex in the graph. The selection of a diameter 
cycle as a protection path balances the distance 
from an arbitrary vertex to the closest vertex on 
the cycle and the length of the cycle reducing 
the average and maximum length of the protec-
tion path when a single protection cycle is used. 
When such an approach is adapted to maintain-
ing all paths between each pair of vertices, sizes 
of routing tables are also reduced.

Figure 3. Distance between the vertices in a network 
and a diameter cycle.

Moreover, diameter cycles provide a solution 
to FIPP Failure-Independent Path-Protection 
p-cycle design problem; FIPP p-cycle is a con-

cept that extends straddling edges protection as 
in typical p-cycles [15] to protect independent 
paths. Since graphs under consideration are 
bi-connected, each vertex that is not part of a 
diameter cycle is connected to two distinct ver-
tices on a diameter cycle via two distinct paths 
allowing a diameter cycle to be used as a FIPP 
p-cycle. In addition, when a diameter cycle of 
G is used as a FIPP p-cycle in G, the number 
of independent paths protected by the cycle is 
increased. Figure 4 illustrates the concept of 
independent paths protected using a cycle. Pro-
tection paths and cycles are commonly used in 
optical networks to enhance performance and 
reliability [16, 17, 18, 19].

Figure 4. (a) Cycle in G protecting 1 independent path, 
(b) Diameter cycle of G protecting 4 independent paths.

(a)                                           (b)

In computer networks, communication between 
any two arbitrary endpoints requires the estab-
lishment of a routing path between them. In the 
presence of a diameter path, the establishment 
of such routing paths reduces to the discov-
ery of a path from each vertex (not already on 
a diameter cycle) to a vertex on the cycle and 
identification of the next vertex on the cycle. In 
particular, each  vertex not on the cycle main-
tains information about its neighbour which is 
the next vertex on the shortest path to the cycle. 
In addition, each vertex on the cycle maintains 
in its routing table the following items: next 
vertex on the cycle to form a directed cycle, 
neighbours not on the cycle through which a set 
of vertices not on the cycle can be reached, and 
the set of vertices accessible through the neigh-
bours. Moreover, finding routes between each 
pair of vertices on a cycle reduces to selecting 
one of the two alternative paths available on the 
cycle for each pair. See Figure 5 where p1 and 
p2 are the two vertex disjoint paths from source 
to destination. It is easy to see that this scheme 
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reduces the amount of information to be kept in 
routing tables.
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11.    Identify the last cycle produced by the cycle  

expansion process as candidate diameter cycle CD

Figure 6. Candidate diameter cycle algorithm. 

Note that |P'(x, y)| and |P(x, y)| refer to the 
lengths of paths P'(x, y) and P(x, y), respective-
ly, and Ci -1 \ P(x, y) refers to a path obtained 
from Ci -1 by removing P(x, y).
The algorithm starts by finding an initial cycle 
containing both the endpoints of a diameter path 
of G by forming two distinct vertex-disjoint 
paths of total minimal length between the diam-
eter endpoints and combining them to form the 
initial cycle. Such a cycle can be constructed 
using an algorithm to find two vertex-disjoint 
paths between the diameter endpoints using the 

A diameter cycle provides a general protection 
path for the vertices on the cycle and other ver-
tices [13], [14] in the network that provides fast 
path switching; for every vertex x in the net-
work, x is either on a diameter cycle or x has a 
distance less than or equal to half the diameter 
of the graph to the diameter cycle as illustrated 
in Figure 3, where the diameter cycle is shown 
by a thick line and dashed arrows show the dis-
tances of nodes to the diameter paths. It is easy 
to see that the maximum distance of any ver-
tex in the graph shown in Figure 3 to the clos-
est vertex on the diameter path is D/2 which 
is facilitated by the properties of the diameter 
path where D is the diameter of graph G, i.e., 
D is the longest distance (number of edges on 
the shortest path) between two vertices in G. 
Therefore a diameter cycle provides an eligible 
path from any source vertex to any destination 
vertex in the graph. The selection of a diameter 
cycle as a protection path balances the distance 
from an arbitrary vertex to the closest vertex on 
the cycle and the length of the cycle reducing 
the average and maximum length of the protec-
tion path when a single protection cycle is used. 
When such an approach is adapted to maintain-
ing all paths between each pair of vertices, sizes 
of routing tables are also reduced.

Figure 3. Distance between the vertices in a network 
and a diameter cycle.

Moreover, diameter cycles provide a solution 
to FIPP Failure-Independent Path-Protection 
p-cycle design problem; FIPP p-cycle is a con-

cept that extends straddling edges protection as 
in typical p-cycles [15] to protect independent 
paths. Since graphs under consideration are 
bi-connected, each vertex that is not part of a 
diameter cycle is connected to two distinct ver-
tices on a diameter cycle via two distinct paths 
allowing a diameter cycle to be used as a FIPP 
p-cycle. In addition, when a diameter cycle of 
G is used as a FIPP p-cycle in G, the number 
of independent paths protected by the cycle is 
increased. Figure 4 illustrates the concept of 
independent paths protected using a cycle. Pro-
tection paths and cycles are commonly used in 
optical networks to enhance performance and 
reliability [16, 17, 18, 19].

Figure 4. (a) Cycle in G protecting 1 independent path, 
(b) Diameter cycle of G protecting 4 independent paths.

(a)                                           (b)

In computer networks, communication between 
any two arbitrary endpoints requires the estab-
lishment of a routing path between them. In the 
presence of a diameter path, the establishment 
of such routing paths reduces to the discov-
ery of a path from each vertex (not already on 
a diameter cycle) to a vertex on the cycle and 
identification of the next vertex on the cycle. In 
particular, each  vertex not on the cycle main-
tains information about its neighbour which is 
the next vertex on the shortest path to the cycle. 
In addition, each vertex on the cycle maintains 
in its routing table the following items: next 
vertex on the cycle to form a directed cycle, 
neighbours not on the cycle through which a set 
of vertices not on the cycle can be reached, and 
the set of vertices accessible through the neigh-
bours. Moreover, finding routes between each 
pair of vertices on a cycle reduces to selecting 
one of the two alternative paths available on the 
cycle for each pair. See Figure 5 where p1 and 
p2 are the two vertex disjoint paths from source 
to destination. It is easy to see that this scheme 
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rectness of the algorithm follows from the fact 
that if a cycle is not a candidate diameter cycle, 
the proposed cycle expansion process expands 
the cycle. In the next section, we present a more 
efficient algorithm to find diameter cycles.

4. Diameter Cycle Algorithm

In this section, we first informally describe the 
proposed Diameter Cycle (DC) algorithm and 
introduce the notation used for the description 
of the algorithm. We then formally present the 
algorithm. Unlike the first algorithm, the DC al-
gorithm is a concrete algorithm, hence, all im-
plementation details are given.

4.1. Basis of the Algorithm

The algorithm consists of three phases. The 
first phase of the algorithm is given in [3] and is 
responsible for traversing a bi-connected graph 
G and identifying all the fundamental cycles in 
G. If T is a spanning tree of G and e is a non-
tree edge (i.e., an edge that is not included in 
T), then the fundamental cycle defined by e is 
the simple cycle consisting of e and the path in 
T that connects the endpoints of e. The second 
phase of the algorithm is executed after the first 
phase terminates and is responsible for marking 
every vertex in the graph with the unique id of 
the fundamental cycle it is part of. For the first 
two phases, we adapt the algorithm given in [3] 
to identify and mark the fundamental cycles of a 
graph. Note that although the algorithm given in 
[3] is distributed, it is straightforward to devise 
its sequential counterpart. Vertices that are part 
of two or more fundamental cycles are marked 
with multiple ids using the non-tree edge id's 
corresponding to the fundamental cycles in 
which they are included. Using these markings, 
we identify intersection paths between neigh-
bouring fundamental cycles in the final phase 
of the algorithm. An intersection path refers to a 
path in G that two cycles share. Two fundamen-
tal cycles are referred to as neighbouring if they 
share an intersection path. We use this neigh-
bourhood knowledge to combine fundamental 
(and other) cycles to obtain longer cycles.
The identification of fundamental cycles, the 
manner they are marked, and how the marking 
are used to identify neighbouring cycles are il-

lustrated with the help of the example in Fig-
ure 7. In the figure, a graph with a BFS tree 
rooted at Vertex 11 is shown where each tree 
edge is shown by solid lines and each non-tree 
edge is shown by dashed lines. The figure also 
illustrates the basis of the algorithm in [3]. The 
graph contains four non-tree edges, namely 
{1, 2}, {4, 5}, {6, 7}, and {7, 8}. Observe that 
fundamental cycles FC({1, 2}) = {1, 2, 10}, 
FC({4, 5}) = {3, 4, 5, 6, 10}, FC({6, 7}) = {6, 
7, 9, 10} and FC({7, 8}) = {7, 8, 9, 10, 11} exist 
in the graph. Notice that FC({1, 2}) does not 
have a neighbouring FC, whereas, FC({4, 5}) 
and FC({6, 7}), and FC({7, 8}) are neighbour-
ing. In the algorithm given in [3], each nodal 
process maintains a variable b called b-set of 
node i and denoted by bi containing a set of tu-
ples. Informally, starting from the nodes at the 
largest depth of each biconnected component B, 
the b-set of each node i in B collects the set of 
descendants of i contained in the biconnected 
component containing i in a bottom-up fashion. 
Eventually, the b-set of the ancestor of each bi-
connected component B contains the set of its 
descendants in the biconnected component. If 
i is a node in biconnected component B such 
that each node in B \{i} is a descendant of i, 
then node i is referred to as the ancestor of bi-
connected component B. The fundamental data 
structure b-set of the algorithm is not a simple 
set, and therefore requires further explanation. 
We now describe b-sets in more detail. Each tu-
ple in b(i) is of the form 〈x, y〉, where x = {p, q} 
denotes a non-tree edge incident on a descen-
dant of i joining nodes p and q, and y denotes a 
set of descendants of i. It is easy to see that for 
any process i ∈V, the first element of each tuple 
〈x, y〉 ∈b(i) is the non-tree edge id denoting that 
process i is contained in the fundamental cycle 
formed by the non-tree edge. For instance, both 
b(6) and b(10) include both non-tree edge ids 
{4, 5} and {6, 7} as the first element in their 
tuples denoting that path 6, 7 is an intersection 
path of cycles formed by non-tree edges {4, 5} 
and {6, 7}. Similarly, b(7), b(9) and b(10) in-
clude both non-tree edges' ids {6, 7} and {7, 
8} as the first element in their tuples indicating 
that path 7, 9, 10 is an intersection path of cy-
cles formed by non-tree edges {6, 7} and {7, 
8}. Observe that in this manner intersection 
paths are marked by the non-tree edges ids.

algorithm in [22]. The reason for starting with 
such an initial cycle is because such a cycle 
can be shown to comply with the restrictions 
of a candidate diameter cycle. The process of 
cycle expansion continues by replacing a path 
on the initial cycle with one that is longer and 
satisfying the cycle expansion condition; this 
process is repeated on the resulting cycle un-
til no further  expansion is possible. The cycle 
expansion condition ensures that no vertex v on 
the cycle is replaced by another vertex v that is 
closer to an arbitrary vertex y on the cycle than 
v in G in a cycle expansion step. In this process, 
the length of the cycle is increased by replacing 
paths of the cycle with other paths in G that are 
longer in size. The cycle that can no longer be 
expanded is identified as a candidate diameter 
cycle CD by the cycle expansion process.
We now formally describe the cycle expansion 
process. Let vertices i and j be two diameter 
endpoints of a diameter path in G. Let Pf and 
Ps be two vertex-disjoint paths of minimal total 
length connecting diameter endpoints i and j, 
and C0, referred to as initial cycle, be the cycle 
formed by two vertex-disjoint paths Pf and Ps 
which can be found using the algorithm pro-
posed in [23]. Also let C0, C1, C2, ..., Ck be a 
sequence of cycles in G such that each cycle Ci 
for 0 < i ≤ k, is obtained through the expansion 
of cycle Ci -1. Path P(x, y) for 0 < i < k, refers 
to a path on Ci -1 with origin x and terminal y. 
Expansion path P'(x, y) of path P(x, y) refers to 
a path on Ci in G for 0 < i ≤ k where P'(x, y) is 
disjoint from P(x, y) except for its origin x and 
terminal y such that path P'(x, y) is longer than 
path P(x, y). Each expansion of cycle Ci -1 to 
Ci is carried out by replacing a subpath P(x, y) 
with a longer path P'(x, y) such that P(x, y) and 
P'(x, y) satisfy the following cycle expansion 
conditions:

 ● |P'(x, y)| > |P(x, y)|
 ● for every vertex v on C \ P(i, j), and vertex 

x on P(i, j) and v on P'(i, j) such that z is a 
vertex that minimizes d(v, z), v is a vertex 
that minimizes d(v, w), and d(v, z) ≤ d(v, w) 
holds; that is, for two vertices v, y on Ci -1 
at distance D in G, vertex v is not replaced 
by another vertex v on Ci  at distance less 
than D to y in G by a cycle expansion step, 
where cycle in Ci  is the cycle obtained 
from Ci -1 in a single cycle expansion step. 

After expanding an initial cycle to the point 
where no more cycle expansions satisfying the 
cycle expansion rules are possible, the resulting 
cycle is identified as a candidate diameter cycle 
CD . The algorithm implementing the aforemen-
tioned approach is given in Figure 6.
The following example demonstrates the way 
a candidate diameter cycle is found by the al-
gorithm: given the graph in Figure 2, the algo-
rithm starts by computing the shortest distances 
between every pair of vertices and the diameter 
of the graph. The diameter of the graph in Fig-
ure 2 equals 2, thus vertices 1 and 5 are diame-
ter endpoints; edges (1, 2), (2, 5), (5, 4), (4, 1) 
form an initial cycle C0, and by performing a 
cycle expansion process we obtain the follow-
ing candidate diameter cycle: (1, 3), (3, 4), (4, 
5), (5, 2), (2, 1). In the next step, the initial cy-
cle is expanded by identifying P(1, 4) and P'(1, 
4) satisfying the cycle expansion rule and by 
replacing P(1, 4) by P'(1, 4) in C0 to obtain cy-
cle C1 made up of edges (1, 3), (3, 4), (4, 5), (5, 
2), (2, 1). Then the cycle expansion process is 
applied to C1 which is not possible in this case; 
thus the cycle C1 is identified as candidate di-
ameter cycle CD. The diameter cycle of a graph 
given in Figure 2 is not unique. Observe that 
edges (1, 4), (4, 5), (5, 6), (6, 1) form another 
initial cycle leading to the construction of an-
other candidate diameter cycle (1, 3), (3, 4), (4, 
5), (5, 6), (6, 1) of the graph. Notice that both 
cycles contain the same number of edges and 
are candidate diameter cycles of G. 
The proposed algorithm finds a candidate di-
ameter cycle of G. The same algorithm can be 
used to find other candidate cycles by execut-
ing the algorithm for initial cycles formed using 
different diameter paths than the ones used in 
earlier executions. Upon finding all candidate 
cycles, the longest candidate diameter cycle can 
be identified as a diameter cycle of G.
The proposed algorithm is referred to as a 
brute-force algorithm since it does not include 
an efficient mechanism to select the expansion 
path and the selection that results in the mini-
mum number of path expansion steps to find a 
candidate diameter cycle. In addition, an effi-
cient mechanism to select initial cycles that do 
not result in candidate diameter cycles found in 
its earlier iterations to find candidate diameter 
cycles is not included in the algorithm. The cor-
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rectness of the algorithm follows from the fact 
that if a cycle is not a candidate diameter cycle, 
the proposed cycle expansion process expands 
the cycle. In the next section, we present a more 
efficient algorithm to find diameter cycles.

4. Diameter Cycle Algorithm

In this section, we first informally describe the 
proposed Diameter Cycle (DC) algorithm and 
introduce the notation used for the description 
of the algorithm. We then formally present the 
algorithm. Unlike the first algorithm, the DC al-
gorithm is a concrete algorithm, hence, all im-
plementation details are given.

4.1. Basis of the Algorithm

The algorithm consists of three phases. The 
first phase of the algorithm is given in [3] and is 
responsible for traversing a bi-connected graph 
G and identifying all the fundamental cycles in 
G. If T is a spanning tree of G and e is a non-
tree edge (i.e., an edge that is not included in 
T), then the fundamental cycle defined by e is 
the simple cycle consisting of e and the path in 
T that connects the endpoints of e. The second 
phase of the algorithm is executed after the first 
phase terminates and is responsible for marking 
every vertex in the graph with the unique id of 
the fundamental cycle it is part of. For the first 
two phases, we adapt the algorithm given in [3] 
to identify and mark the fundamental cycles of a 
graph. Note that although the algorithm given in 
[3] is distributed, it is straightforward to devise 
its sequential counterpart. Vertices that are part 
of two or more fundamental cycles are marked 
with multiple ids using the non-tree edge id's 
corresponding to the fundamental cycles in 
which they are included. Using these markings, 
we identify intersection paths between neigh-
bouring fundamental cycles in the final phase 
of the algorithm. An intersection path refers to a 
path in G that two cycles share. Two fundamen-
tal cycles are referred to as neighbouring if they 
share an intersection path. We use this neigh-
bourhood knowledge to combine fundamental 
(and other) cycles to obtain longer cycles.
The identification of fundamental cycles, the 
manner they are marked, and how the marking 
are used to identify neighbouring cycles are il-

lustrated with the help of the example in Fig-
ure 7. In the figure, a graph with a BFS tree 
rooted at Vertex 11 is shown where each tree 
edge is shown by solid lines and each non-tree 
edge is shown by dashed lines. The figure also 
illustrates the basis of the algorithm in [3]. The 
graph contains four non-tree edges, namely 
{1, 2}, {4, 5}, {6, 7}, and {7, 8}. Observe that 
fundamental cycles FC({1, 2}) = {1, 2, 10}, 
FC({4, 5}) = {3, 4, 5, 6, 10}, FC({6, 7}) = {6, 
7, 9, 10} and FC({7, 8}) = {7, 8, 9, 10, 11} exist 
in the graph. Notice that FC({1, 2}) does not 
have a neighbouring FC, whereas, FC({4, 5}) 
and FC({6, 7}), and FC({7, 8}) are neighbour-
ing. In the algorithm given in [3], each nodal 
process maintains a variable b called b-set of 
node i and denoted by bi containing a set of tu-
ples. Informally, starting from the nodes at the 
largest depth of each biconnected component B, 
the b-set of each node i in B collects the set of 
descendants of i contained in the biconnected 
component containing i in a bottom-up fashion. 
Eventually, the b-set of the ancestor of each bi-
connected component B contains the set of its 
descendants in the biconnected component. If 
i is a node in biconnected component B such 
that each node in B \{i} is a descendant of i, 
then node i is referred to as the ancestor of bi-
connected component B. The fundamental data 
structure b-set of the algorithm is not a simple 
set, and therefore requires further explanation. 
We now describe b-sets in more detail. Each tu-
ple in b(i) is of the form 〈x, y〉, where x = {p, q} 
denotes a non-tree edge incident on a descen-
dant of i joining nodes p and q, and y denotes a 
set of descendants of i. It is easy to see that for 
any process i ∈V, the first element of each tuple 
〈x, y〉 ∈b(i) is the non-tree edge id denoting that 
process i is contained in the fundamental cycle 
formed by the non-tree edge. For instance, both 
b(6) and b(10) include both non-tree edge ids 
{4, 5} and {6, 7} as the first element in their 
tuples denoting that path 6, 7 is an intersection 
path of cycles formed by non-tree edges {4, 5} 
and {6, 7}. Similarly, b(7), b(9) and b(10) in-
clude both non-tree edges' ids {6, 7} and {7, 
8} as the first element in their tuples indicating 
that path 7, 9, 10 is an intersection path of cy-
cles formed by non-tree edges {6, 7} and {7, 
8}. Observe that in this manner intersection 
paths are marked by the non-tree edges ids.

algorithm in [22]. The reason for starting with 
such an initial cycle is because such a cycle 
can be shown to comply with the restrictions 
of a candidate diameter cycle. The process of 
cycle expansion continues by replacing a path 
on the initial cycle with one that is longer and 
satisfying the cycle expansion condition; this 
process is repeated on the resulting cycle un-
til no further  expansion is possible. The cycle 
expansion condition ensures that no vertex v on 
the cycle is replaced by another vertex v that is 
closer to an arbitrary vertex y on the cycle than 
v in G in a cycle expansion step. In this process, 
the length of the cycle is increased by replacing 
paths of the cycle with other paths in G that are 
longer in size. The cycle that can no longer be 
expanded is identified as a candidate diameter 
cycle CD by the cycle expansion process.
We now formally describe the cycle expansion 
process. Let vertices i and j be two diameter 
endpoints of a diameter path in G. Let Pf and 
Ps be two vertex-disjoint paths of minimal total 
length connecting diameter endpoints i and j, 
and C0, referred to as initial cycle, be the cycle 
formed by two vertex-disjoint paths Pf and Ps 
which can be found using the algorithm pro-
posed in [23]. Also let C0, C1, C2, ..., Ck be a 
sequence of cycles in G such that each cycle Ci 
for 0 < i ≤ k, is obtained through the expansion 
of cycle Ci -1. Path P(x, y) for 0 < i < k, refers 
to a path on Ci -1 with origin x and terminal y. 
Expansion path P'(x, y) of path P(x, y) refers to 
a path on Ci in G for 0 < i ≤ k where P'(x, y) is 
disjoint from P(x, y) except for its origin x and 
terminal y such that path P'(x, y) is longer than 
path P(x, y). Each expansion of cycle Ci -1 to 
Ci is carried out by replacing a subpath P(x, y) 
with a longer path P'(x, y) such that P(x, y) and 
P'(x, y) satisfy the following cycle expansion 
conditions:

 ● |P'(x, y)| > |P(x, y)|
 ● for every vertex v on C \ P(i, j), and vertex 

x on P(i, j) and v on P'(i, j) such that z is a 
vertex that minimizes d(v, z), v is a vertex 
that minimizes d(v, w), and d(v, z) ≤ d(v, w) 
holds; that is, for two vertices v, y on Ci -1 
at distance D in G, vertex v is not replaced 
by another vertex v on Ci  at distance less 
than D to y in G by a cycle expansion step, 
where cycle in Ci  is the cycle obtained 
from Ci -1 in a single cycle expansion step. 

After expanding an initial cycle to the point 
where no more cycle expansions satisfying the 
cycle expansion rules are possible, the resulting 
cycle is identified as a candidate diameter cycle 
CD . The algorithm implementing the aforemen-
tioned approach is given in Figure 6.
The following example demonstrates the way 
a candidate diameter cycle is found by the al-
gorithm: given the graph in Figure 2, the algo-
rithm starts by computing the shortest distances 
between every pair of vertices and the diameter 
of the graph. The diameter of the graph in Fig-
ure 2 equals 2, thus vertices 1 and 5 are diame-
ter endpoints; edges (1, 2), (2, 5), (5, 4), (4, 1) 
form an initial cycle C0, and by performing a 
cycle expansion process we obtain the follow-
ing candidate diameter cycle: (1, 3), (3, 4), (4, 
5), (5, 2), (2, 1). In the next step, the initial cy-
cle is expanded by identifying P(1, 4) and P'(1, 
4) satisfying the cycle expansion rule and by 
replacing P(1, 4) by P'(1, 4) in C0 to obtain cy-
cle C1 made up of edges (1, 3), (3, 4), (4, 5), (5, 
2), (2, 1). Then the cycle expansion process is 
applied to C1 which is not possible in this case; 
thus the cycle C1 is identified as candidate di-
ameter cycle CD. The diameter cycle of a graph 
given in Figure 2 is not unique. Observe that 
edges (1, 4), (4, 5), (5, 6), (6, 1) form another 
initial cycle leading to the construction of an-
other candidate diameter cycle (1, 3), (3, 4), (4, 
5), (5, 6), (6, 1) of the graph. Notice that both 
cycles contain the same number of edges and 
are candidate diameter cycles of G. 
The proposed algorithm finds a candidate di-
ameter cycle of G. The same algorithm can be 
used to find other candidate cycles by execut-
ing the algorithm for initial cycles formed using 
different diameter paths than the ones used in 
earlier executions. Upon finding all candidate 
cycles, the longest candidate diameter cycle can 
be identified as a diameter cycle of G.
The proposed algorithm is referred to as a 
brute-force algorithm since it does not include 
an efficient mechanism to select the expansion 
path and the selection that results in the mini-
mum number of path expansion steps to find a 
candidate diameter cycle. In addition, an effi-
cient mechanism to select initial cycles that do 
not result in candidate diameter cycles found in 
its earlier iterations to find candidate diameter 
cycles is not included in the algorithm. The cor-
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cles and the set of non-expanded cycles, if it 
exists. If removing the intersecting path does 
not result in a longer cycle, the neighbouring 
cycle is included in the set of non-expandable 
cycles for later consideration, provided that it 
is not already present in the set of expandable 
cycles. The set of expandable cycles contains 
cycles that could not be expanded at the time 
it is considered for expansion by removing its 
intersection path with the candidate cycle. Note 
that a neighbouring cycle that cannot be com-
bined with the candidate diameter cycle in the 
current expansion can be used in a later expan-

sion step. Afterwards, another neighbouring cy-
cle of the candidate cycle is considered using 
the same steps starting from the second step as 
described above. The algorithm proceeds in this 
manner until the candidate cycle cannot be ex-
panded with any of its neighbouring cycles. If 
the current candidate cycle cannot be expanded 
further, it is added to the set of expandable cy-
cles. Before terminating, the algorithm repeats 
the expansion process for all the remaining cy-
cles in the non-expanded set. This would result 
in one or more cycles remaining in the set of 
expandable cycles which cannot be combined 

Upon termination of the second phase, the third 
(final) phase of the algorithm is entered in which 
a diameter cycle in the graph is identified. In 
this phase, a cycle referred to as the candidate 
cycle is considered for expansion and expanded 
in each step of the process. The proposed al-
gorithm first chooses the longest fundamental 
cycle as the candidate cycle. Second, it marks 
the sequence of vertices that forms the candi-
date cycle by traversing it. While vertices are 
being marked, its neighbouring cycles and the 
intersection paths of the candidate cycle with 
neighbouring cycles are also identified. The al-
gorithm also determines the number of intersec-
tion paths between the candidate cycle and each 
of the neighbouring cycles. An intersection path 
of two cycles refers to a maximal path that is 
common to both the cycles. Once the traversal 
of the candidate cycle is complete, the proposed 
algorithm chooses one of its neighbouring cy-
cles, if any, in order to perform the expansion. 
This latter refers to the process where two 
neighbouring cycles are combined by removing 
their intersection paths, iff this results in a lon-
ger cycle satisfying the properties (i) and (ii) in 

a cycle expansion step. Combining two neigh-
bouring cycles could potentially result in one 
or more disconnected paths/cycles as shown in 
Figure 9 where cycle c2 is disconnected from 
the rest of the vertices when cycles c0 and c1 
are combined. As a result of being disconnected 
from the current candidate cycle, these paths/
cycles will not be considered for expansion of 
the current candidate cycle. Furthermore, they 
might also not be considered to become part of 
a candidate diameter cycle formed when build-
ing a different candidate cycle which is formed 
when the algorithm chooses a new initial cycle 
to expand. Therefore, each cycle which is dis-
connected in an expansion step is added to the 
set of non-expandable cycles so that it is consid-
ered in later expansion steps. The set of non-ex-
pandable cycles contains the set of cycles that 
cannot be used for expansion currently and are 
to be considered later for expansion. If such a 
neighbouring cycle is found and is combined 
with the candidate cycle, the combined cycle is 
identified as the new candidate cycle and it is 
marked. Subsequently, the neighbouring cycle 
is removed from the set of neighbouring cy-
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b(4)={{{4,5}, {}}} b(5)={{{4,5}, {}}} b(7)={{{7,8}, {}}, {{6,7},{}}

b(8)={{{7,8}, {}}}

b(1)={{{1,2}, {}}}

b(2)={{{1,2}, {}}}

b(3)={{{4,5}, {}}}

b(6)={{{4,5}, {}}, {{6,7}, {}}}

b(9)={{{7,8}, {}}, {{6,7}, {}}}

b(10)={{{1,2}, {}}, {{4,5}, {3,6}}, {{7,8},{9}}, {{6,7},{9}}} b(11)={{{7,8},{6,9,3,4,5}}}

Figure 7. State of a system after termination.

1.      set of all not yet considered fundamental cycles ac = fc
2.      set of expandable cycles ex = ∅
3.      set of non-expandable cycles ne = ∅
4.      choose the longest fundamental cycle in fc and include in ne and remove from ac
5.      while ne ≠ ∅ ∧ ac ≠ ∅ do
6.          if ne ≠ ∅ then
7.              select a cycle cc from ne and remove it from ne
8.          else
9.              select a cycle cc from ac and remove it from ne
10.        end
11.        traverse cc and identify its set of neighbouring cycles ncs
12.        while ncs ≠ ∅ do
13.            select a neighbouring cycle nc from ncs and remove it from ncs
14.            if (removing the intersection path between nc and cc results in a longer cycle and no two vertices on 

either cycle get closer together after combining) then
15.                if nc ≠ ex then
16.                    remove nc from ex}
17.                end
18.                combine cycles nc and cc, and make it the new candidate cycle cc
19.                traverse cc and update the neighbouring cycle set ncs
20.                add any neighbouring cycle that becomes disconnected as a result of the expansion to ne
21.            else
22.                if nc ∉ ex then
23.                    remove nc from ac
24.                    add nc to ne
25.                end
26.            end
27.        end
28.        add cc to ex
29.    end
30.    select the longest cycle in ex as DC

Figure 8. The DC Algorithm using Fundamental Cycles. 
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cles and the set of non-expanded cycles, if it 
exists. If removing the intersecting path does 
not result in a longer cycle, the neighbouring 
cycle is included in the set of non-expandable 
cycles for later consideration, provided that it 
is not already present in the set of expandable 
cycles. The set of expandable cycles contains 
cycles that could not be expanded at the time 
it is considered for expansion by removing its 
intersection path with the candidate cycle. Note 
that a neighbouring cycle that cannot be com-
bined with the candidate diameter cycle in the 
current expansion can be used in a later expan-

sion step. Afterwards, another neighbouring cy-
cle of the candidate cycle is considered using 
the same steps starting from the second step as 
described above. The algorithm proceeds in this 
manner until the candidate cycle cannot be ex-
panded with any of its neighbouring cycles. If 
the current candidate cycle cannot be expanded 
further, it is added to the set of expandable cy-
cles. Before terminating, the algorithm repeats 
the expansion process for all the remaining cy-
cles in the non-expanded set. This would result 
in one or more cycles remaining in the set of 
expandable cycles which cannot be combined 

Upon termination of the second phase, the third 
(final) phase of the algorithm is entered in which 
a diameter cycle in the graph is identified. In 
this phase, a cycle referred to as the candidate 
cycle is considered for expansion and expanded 
in each step of the process. The proposed al-
gorithm first chooses the longest fundamental 
cycle as the candidate cycle. Second, it marks 
the sequence of vertices that forms the candi-
date cycle by traversing it. While vertices are 
being marked, its neighbouring cycles and the 
intersection paths of the candidate cycle with 
neighbouring cycles are also identified. The al-
gorithm also determines the number of intersec-
tion paths between the candidate cycle and each 
of the neighbouring cycles. An intersection path 
of two cycles refers to a maximal path that is 
common to both the cycles. Once the traversal 
of the candidate cycle is complete, the proposed 
algorithm chooses one of its neighbouring cy-
cles, if any, in order to perform the expansion. 
This latter refers to the process where two 
neighbouring cycles are combined by removing 
their intersection paths, iff this results in a lon-
ger cycle satisfying the properties (i) and (ii) in 

a cycle expansion step. Combining two neigh-
bouring cycles could potentially result in one 
or more disconnected paths/cycles as shown in 
Figure 9 where cycle c2 is disconnected from 
the rest of the vertices when cycles c0 and c1 
are combined. As a result of being disconnected 
from the current candidate cycle, these paths/
cycles will not be considered for expansion of 
the current candidate cycle. Furthermore, they 
might also not be considered to become part of 
a candidate diameter cycle formed when build-
ing a different candidate cycle which is formed 
when the algorithm chooses a new initial cycle 
to expand. Therefore, each cycle which is dis-
connected in an expansion step is added to the 
set of non-expandable cycles so that it is consid-
ered in later expansion steps. The set of non-ex-
pandable cycles contains the set of cycles that 
cannot be used for expansion currently and are 
to be considered later for expansion. If such a 
neighbouring cycle is found and is combined 
with the candidate cycle, the combined cycle is 
identified as the new candidate cycle and it is 
marked. Subsequently, the neighbouring cycle 
is removed from the set of neighbouring cy-
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Figure 7. State of a system after termination.

1.      set of all not yet considered fundamental cycles ac = fc
2.      set of expandable cycles ex = ∅
3.      set of non-expandable cycles ne = ∅
4.      choose the longest fundamental cycle in fc and include in ne and remove from ac
5.      while ne ≠ ∅ ∧ ac ≠ ∅ do
6.          if ne ≠ ∅ then
7.              select a cycle cc from ne and remove it from ne
8.          else
9.              select a cycle cc from ac and remove it from ne
10.        end
11.        traverse cc and identify its set of neighbouring cycles ncs
12.        while ncs ≠ ∅ do
13.            select a neighbouring cycle nc from ncs and remove it from ncs
14.            if (removing the intersection path between nc and cc results in a longer cycle and no two vertices on 

either cycle get closer together after combining) then
15.                if nc ≠ ex then
16.                    remove nc from ex}
17.                end
18.                combine cycles nc and cc, and make it the new candidate cycle cc
19.                traverse cc and update the neighbouring cycle set ncs
20.                add any neighbouring cycle that becomes disconnected as a result of the expansion to ne
21.            else
22.                if nc ∉ ex then
23.                    remove nc from ac
24.                    add nc to ne
25.                end
26.            end
27.        end
28.        add cc to ex
29.    end
30.    select the longest cycle in ex as DC

Figure 8. The DC Algorithm using Fundamental Cycles. 
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two, in the third phase of the algorithm, the lon-
gest fundemental cycle, given by max(fc), is 
designated as the candidate cycle cc. The se-
quence of vertices forming the candidate cycle 
is marked. A variable, called ce, is maintained 
for each vertex i. c(i) contains the non-tree edge 
identifying the cycle, and the vertex id of the 
next vertex on the cycle.
We now describe the computation of variable 
ce of vertices on cc to mark cc. Variable ce of a 
vertex denotes the sequence of vertices in a cy-
cle, where ce(i) ∈ {t0, t1, ...} = ∅ initially holds, 
i is a vertex on the cycle, and tj, 0 < j, is of the 
form {c, v} where c is a cycle id and v is the 
vertex id i is pointing to. Starting from one of 
the vertices on cc, the algorithm traverses all 
the vertices on cc to identify its neighbouring 
cycles and stores the set of neighbouring cycles 
in variable ncs. Vertices that contain multiple 
cycles in their s-sets are vertices that are shared 
between two or more fundamental cycles. In 
the traversal, the next vertex is identified as a 
vertex containing the id of cc in its s-set. Before 
moving to the identified neighbour, the variable 
ce of the current vertex is assigned the id of the 
identified neighbour so that the variable ce of 
each vertex points to the next vertex on the cy-
cle. Then, the same is repeated for the neigh-
bouring vertex, and so on. In this manner, cc 
is marked where ce variables of vertices on cc 
form a cycle. While the cycle is marked, the al-
gorithm also identifies the neighbouring cycles 
of cc and stores them in variable ncs.
After all the vertices on the candidate cycle are 
traversed in this manner, a neighbouring cycle 
is chosen from ncs and is assigned to the vari-
able nc. The candidate cycle cc and cycle nc are 
examined. If removing the intersecting path and 
combining the two cycles results in a longer cy-
cle, and no vertex v on the cycle is replaced by 
another vertex v that is closer to an arbitrary 
node y on the cycle than v in G in a cycle ex-
pansion step, then the candidate cycle and cycle 
nc are combined and this new cycle is designat-
ed as the new candidate cycle. In addition, any 
neighbouring cycle of the candidate cycle that 
is disconnected is added to the non-expanded 
set ne. Then, it is traversed again to update ce 
values and the neighbouring cycle set ncs. Note 
that if nc was present in the set of expandable 
cycles ex, nc is removed from ex before the cy-
cles are combined. This is done since cycle nc is 

with any other cycle. The diameter cycle is 
identified as the longest one in the set of ex-
pandable cycles.

C1C0 C2

Figure 9. Forming a disconnected cycle by combining 
two cycles.

The last phase of the above approach, which 
consists of the algorithmic steps after the fun-
damental cycles are found, is summarized using 
the pseudocode given in Figure 8.

4.2. Algorithm Description 

Now we describe the algorithm and provide im-
plementation details.
The first phase of the algorithm identifies all 
the fundamental cycles in the bi-connected 
graph and stores them in a variable called fc. 
The variable fc is of the form fc{a, b} = {id0, 
id1, id2, ..., idn}, where {a, b} refers to the non-
tree edge of a fundamental cycle, and idi, 0 ≤ i ≤ 
n, refers to the vertex (id) contained in the fun-
damental cycle formed by non-tree edge {a, b}. 
Note that the non-tree edge of the fundamen-
tal cycle is used as the unique id for the cycle. 
Hence, the fc variable associated with each cy-
cle stores the set of vertices that are part of the 
cycle. The second phase of the algorithm marks 
each vertex in the graph with the fundamental 
cycle(s) it is part of. For each vertex i, this is 
done by assigning the unique id of the cycle(s) 
containing vertex i to the s-set of each vertex i. 
For each vertex i, s-set s(i) stores cycle ids in 
the form s(i) = {{a, b}, {c, d}, ...}, where {a, 
b}, {c, d}, ... are non-tree edges associated with 
fundamental cycles containing vertex i. This al-
lows the identification of intersections between 
two cycles by examining the s-sets of vertices 
in the cycles.
After computing the fundamental cycle set fc 
and the s-set of each vertex in phases one and 

used in the expansion process to obtain a longer 
cycle. The set ex is maintained by our algorithm 
to keep track of the candidate cycles such that a 
candidate cycle ζ is added to set ex if ζ currently 
cannot be combined with any of its neighboring 
cycles. However, cycles in set ex could poten-
tially be combined with other cycles after the 
other cycles are expanded and become longer 
in later stages. 
During the expansion process, a candidate cy-
cle may not be expanded with any of its neigh-
bours and the cycles to consider in ne may have 
been exhausted though there are fundamental 
cycles that have not been considered for expan-
sion. To ensure that all fundamental cycles are 
considered, the set of all fundamental cycles is 
kept in variable ac and any fundamental cycle 
not considered before is selected from ac when 
the candidate cycle cannot be expanded and set 
ne is empty.
Subsequently, the next neighbouring cycle in 
ncs is considered. If removing the intersecting 
path does not result in a longer cycle, then the 
algorithm adds nc to ne for further consider-

ation later, provided nc is not present in ex. If 
nc is already present in ex, there is no need to 
consider it later as it has already been consid-
ered for expansion. This process continues until 
we have no more neighbouring cycles to look at 
and the candidate cycle is eventually added to 
ex. The algorithm repeats the process for the re-
maining cycles in ne and then in ac. Once they 
have all been considered, the longest remaining 
cycle in ex is marked as the DC. 
We need the following notation to facilitate the 
description of the algorithm.
Tuple 〈c, vnext〉 denotes a tuple where the first 
element is cycle c and second element is vertex 
vnext. Tuple 〈x, -〉 denotes a tuple that has cycle 
(id) x as its first element and the second element 
does not matter (i.e., it is irrelevant). For a tuple 
whose first element is a cycle id and the second 
element is an integer, tuple 〈x, a++〉 denotes a 
tuple whose first element is x while the second 
element is a plus one. Using the above descrip-
tions, the rest of the similar notation can readily 
be understood. The algorithm described above 
is given in Figure 10.

Parameters
N(i) ∈ {1, 2, ..., n - 1}:  denotes the set of neighbours of vertex i, where n represents the set of vertices in the  

network
fc:                                    denotes the set of all fundamental cycles in G (computed in earlier phases)
s(i) ⊂ E:                           denotes the non-tree edge(s) assigned to each vertex i, revealing which  
                                        fundamental cycle(s) it is part of (computed in earlier phases)

Variables
ncs ∈ {p0, p1, ...}            denotes a set of neighbouring cycles {p0, p1, ...} where pj, 0 < j, is of the form idfc where  
                                        idfc is a cycle id
ne ⊂ E:                            denotes the set of non-expandable cycles that are yet to be considered
ex ⊂ E:                            denotes the set of expandable cycles
ce(i) ∈ {t0, t1, ...}:          denotes the sequence of vertices in a cycle, where ce(i) ∈ {t0, t1, ...} = ∅ initially holds,  
                                        so that i is a vertex on the cycle, and tj, 0 < j, is of the form {c, v} where c is a cycle id and 
                                        v is the vertex id i is pointing to
ac:                                   set of all fundamental cycles
nc:                                   temporary set of all neighbouring cycles x

Functions
lenInt(c1, c2):                  takes two cycle id's as parameters and returns the length of their intersection paths
lenNInt(c1, c2):               takes two cycle id's as parameters and returns the length of cycle c1 after  
                                        subtracting the length of the intersection path between the two cycles.
max(s):                            returns the longest cycle among set of cycles in s

Figure 10. Algorithm to find Diameter Cycles in an Arbitrary Biconnected Graph. 
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two, in the third phase of the algorithm, the lon-
gest fundemental cycle, given by max(fc), is 
designated as the candidate cycle cc. The se-
quence of vertices forming the candidate cycle 
is marked. A variable, called ce, is maintained 
for each vertex i. c(i) contains the non-tree edge 
identifying the cycle, and the vertex id of the 
next vertex on the cycle.
We now describe the computation of variable 
ce of vertices on cc to mark cc. Variable ce of a 
vertex denotes the sequence of vertices in a cy-
cle, where ce(i) ∈ {t0, t1, ...} = ∅ initially holds, 
i is a vertex on the cycle, and tj, 0 < j, is of the 
form {c, v} where c is a cycle id and v is the 
vertex id i is pointing to. Starting from one of 
the vertices on cc, the algorithm traverses all 
the vertices on cc to identify its neighbouring 
cycles and stores the set of neighbouring cycles 
in variable ncs. Vertices that contain multiple 
cycles in their s-sets are vertices that are shared 
between two or more fundamental cycles. In 
the traversal, the next vertex is identified as a 
vertex containing the id of cc in its s-set. Before 
moving to the identified neighbour, the variable 
ce of the current vertex is assigned the id of the 
identified neighbour so that the variable ce of 
each vertex points to the next vertex on the cy-
cle. Then, the same is repeated for the neigh-
bouring vertex, and so on. In this manner, cc 
is marked where ce variables of vertices on cc 
form a cycle. While the cycle is marked, the al-
gorithm also identifies the neighbouring cycles 
of cc and stores them in variable ncs.
After all the vertices on the candidate cycle are 
traversed in this manner, a neighbouring cycle 
is chosen from ncs and is assigned to the vari-
able nc. The candidate cycle cc and cycle nc are 
examined. If removing the intersecting path and 
combining the two cycles results in a longer cy-
cle, and no vertex v on the cycle is replaced by 
another vertex v that is closer to an arbitrary 
node y on the cycle than v in G in a cycle ex-
pansion step, then the candidate cycle and cycle 
nc are combined and this new cycle is designat-
ed as the new candidate cycle. In addition, any 
neighbouring cycle of the candidate cycle that 
is disconnected is added to the non-expanded 
set ne. Then, it is traversed again to update ce 
values and the neighbouring cycle set ncs. Note 
that if nc was present in the set of expandable 
cycles ex, nc is removed from ex before the cy-
cles are combined. This is done since cycle nc is 

with any other cycle. The diameter cycle is 
identified as the longest one in the set of ex-
pandable cycles.

C1C0 C2

Figure 9. Forming a disconnected cycle by combining 
two cycles.

The last phase of the above approach, which 
consists of the algorithmic steps after the fun-
damental cycles are found, is summarized using 
the pseudocode given in Figure 8.

4.2. Algorithm Description 

Now we describe the algorithm and provide im-
plementation details.
The first phase of the algorithm identifies all 
the fundamental cycles in the bi-connected 
graph and stores them in a variable called fc. 
The variable fc is of the form fc{a, b} = {id0, 
id1, id2, ..., idn}, where {a, b} refers to the non-
tree edge of a fundamental cycle, and idi, 0 ≤ i ≤ 
n, refers to the vertex (id) contained in the fun-
damental cycle formed by non-tree edge {a, b}. 
Note that the non-tree edge of the fundamen-
tal cycle is used as the unique id for the cycle. 
Hence, the fc variable associated with each cy-
cle stores the set of vertices that are part of the 
cycle. The second phase of the algorithm marks 
each vertex in the graph with the fundamental 
cycle(s) it is part of. For each vertex i, this is 
done by assigning the unique id of the cycle(s) 
containing vertex i to the s-set of each vertex i. 
For each vertex i, s-set s(i) stores cycle ids in 
the form s(i) = {{a, b}, {c, d}, ...}, where {a, 
b}, {c, d}, ... are non-tree edges associated with 
fundamental cycles containing vertex i. This al-
lows the identification of intersections between 
two cycles by examining the s-sets of vertices 
in the cycles.
After computing the fundamental cycle set fc 
and the s-set of each vertex in phases one and 

used in the expansion process to obtain a longer 
cycle. The set ex is maintained by our algorithm 
to keep track of the candidate cycles such that a 
candidate cycle ζ is added to set ex if ζ currently 
cannot be combined with any of its neighboring 
cycles. However, cycles in set ex could poten-
tially be combined with other cycles after the 
other cycles are expanded and become longer 
in later stages. 
During the expansion process, a candidate cy-
cle may not be expanded with any of its neigh-
bours and the cycles to consider in ne may have 
been exhausted though there are fundamental 
cycles that have not been considered for expan-
sion. To ensure that all fundamental cycles are 
considered, the set of all fundamental cycles is 
kept in variable ac and any fundamental cycle 
not considered before is selected from ac when 
the candidate cycle cannot be expanded and set 
ne is empty.
Subsequently, the next neighbouring cycle in 
ncs is considered. If removing the intersecting 
path does not result in a longer cycle, then the 
algorithm adds nc to ne for further consider-

ation later, provided nc is not present in ex. If 
nc is already present in ex, there is no need to 
consider it later as it has already been consid-
ered for expansion. This process continues until 
we have no more neighbouring cycles to look at 
and the candidate cycle is eventually added to 
ex. The algorithm repeats the process for the re-
maining cycles in ne and then in ac. Once they 
have all been considered, the longest remaining 
cycle in ex is marked as the DC. 
We need the following notation to facilitate the 
description of the algorithm.
Tuple 〈c, vnext〉 denotes a tuple where the first 
element is cycle c and second element is vertex 
vnext. Tuple 〈x, -〉 denotes a tuple that has cycle 
(id) x as its first element and the second element 
does not matter (i.e., it is irrelevant). For a tuple 
whose first element is a cycle id and the second 
element is an integer, tuple 〈x, a++〉 denotes a 
tuple whose first element is x while the second 
element is a plus one. Using the above descrip-
tions, the rest of the similar notation can readily 
be understood. The algorithm described above 
is given in Figure 10.

Parameters
N(i) ∈ {1, 2, ..., n - 1}:  denotes the set of neighbours of vertex i, where n represents the set of vertices in the  

network
fc:                                    denotes the set of all fundamental cycles in G (computed in earlier phases)
s(i) ⊂ E:                           denotes the non-tree edge(s) assigned to each vertex i, revealing which  
                                        fundamental cycle(s) it is part of (computed in earlier phases)

Variables
ncs ∈ {p0, p1, ...}            denotes a set of neighbouring cycles {p0, p1, ...} where pj, 0 < j, is of the form idfc where  
                                        idfc is a cycle id
ne ⊂ E:                            denotes the set of non-expandable cycles that are yet to be considered
ex ⊂ E:                            denotes the set of expandable cycles
ce(i) ∈ {t0, t1, ...}:          denotes the sequence of vertices in a cycle, where ce(i) ∈ {t0, t1, ...} = ∅ initially holds,  
                                        so that i is a vertex on the cycle, and tj, 0 < j, is of the form {c, v} where c is a cycle id and 
                                        v is the vertex id i is pointing to
ac:                                   set of all fundamental cycles
nc:                                   temporary set of all neighbouring cycles x

Functions
lenInt(c1, c2):                  takes two cycle id's as parameters and returns the length of their intersection paths
lenNInt(c1, c2):               takes two cycle id's as parameters and returns the length of cycle c1 after  
                                        subtracting the length of the intersection path between the two cycles.
max(s):                            returns the longest cycle among set of cycles in s

Figure 10. Algorithm to find Diameter Cycles in an Arbitrary Biconnected Graph. 
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5. Proof of Correctness

In this section, we provide a correctness proof 
for the proposed diameter cycle algorithm. 
Lemma 1. The cycle expansion process even-
tually considers every fundamental cycle in the 
graph.
Proof. The algorithm maintains a set of funda-
mental cycles contained in the graph. The algo-
rithm starts by picking the largest fundamental 
cycle from this set, upon which the expansion 
process is applied. Then, the algorithm consid-
ers the neighbours of the selected fundamental 
cycle for expansion. Subsequently, the neigh-
bours of the neighbouring cycle are considered 
that are used for expansion, and so on. If a fun-
damental cycle is not reached in the expansion 
process, it remains in set ac and is eventually 
considered (when the current cannot be ex-
panded further). Since each fundamental cy-
cle is a neighbour of another in a biconnected 
graph, and the number of fundamental cycles 
in a particular graph G is finite, the algorithm 
eventually visits and considers every funda-
mental cycle either as a neighbour of a cycle 
under consideration or as a cycle not considered 
in set ac. Hence the proof follows. □
Consider the graph given in Figure 11, where 
cycles C0, C1, subcycle S0 of C0, subcycle S1 of 
C1 are clearly shown. The figure also shows di-
ameter cycle D using dashed lines. The follow-
ing lemma shows that if there exists cycles C0 
and C1 with subcycles S0 and S1, respectively 
such that S0 and S1 are part of a diameter cycle 
of the graph, cycles C0 and C1 are eventually 
combined to include S0 and S1 in D.
Lemma 2. Let C0 be a candidate cycle and C1 be 
another cycle in graph G such that both cycles 

contain segments that are part of diameter cy-
cle D. When the proposed expansion process is 
applied to C0, cycles C0 and C1 are eventually 
combined and the segments are included as part 
of D.
Proof. Consider the diameter cycle D where 
segments of C0 and C1 are part of diameter cy-
cle D. Since G is a biconnected graph and seg-
ments of C0 and C1 are part of diameter cycle 
D, either C0 and C1 are neighbouring cycles or 
there exists a set of one or more fundamental 
cycles connecting C0 and C1. 
Case 1: Cycles C0 and C1 are neighbours. In 

this case, clearly cycles C0 and C1 are 
combined and the segments of C0 and 
C1 are included in the candidate cycle.

Case 2: Cycles C0 and C1 are not neighbours. 
It is easy to show by contradiction 
that there exists a sequence of cycles 
Γ0 = C0, Γ1, ..., Γk = C1 in G such that 
there exists two consecutive cycles Γi 
and Γi + 1, 0 ≤ i < k, that can be com-
bined leading to a sequence of cycles 
of length k - 1. Since the proposed al-
gorithm eventually selects the cycles 
that can be combined in the expansion 
process by Lemma 1, it can be shown 
inductively that cycles C0 and C1 are 
eventually combined.

In addition, it is easy to show by contradiction 
that upon its inclusion in the candidate cycles, 
since no segment/path of longer length con-
necting its endpoints can be found (due to the 
segment being in diameter cycle D), the seg-
ments of C0 and C1 in D remain as part of the 
candidate cycle during the expansion process. 
Hence the proof follows. □Figure 10 (cont.) 

mark(c) ≡                       v := x | x ∈ c;
                                        do (∃vnext ∈N(v){{c, vnext} ∉ce(v)) ∧ c ∈s(vnext)})
                                             if {∃x ∈ce(v) {{x, -} ∉ncs}} → ncs := ncs 

∩
 {x, 0};

                                             if {∃x ∉ce(v) {{{x, a} ∈ncs} ∧ {x ∈ce(vnext)}} → ncs := ncs \ {x, a} 
∩

 {x, a++};
                                             ce(v) = ce(v) 

∩
 {c, vnext}; ce(vnext) = ce(vnext) 

∩
 {c, v};

                                        od

combine(cc, nc) ≡          i = 0;
                                        do (∃v ∈V ({nc, -} ∈ce(v)))
                                             v = x | {nc, -} ∈ ce(x);
                                             if ({cc, -} ∈ce(v) ∧ {nc, -} ∈ce(v)) ∨ ({cc, -} ∉ce(v) ∧{nc, -} ∈ce(v)))
                                                  if (∃vnext ∈ N(v) {nc, vnext} ∈ce(v))
                                                     ce(v) := ce(v) \ {nc, vnext} 

∩
 {cc, vnext};

                                                     ce(vnext) := ce(vnext) 
∩

 {cc, v};
                                             else if (i = 0)
                                                  first := v; i := 1; 
                                        od

Actions
nc = ∅;
ex = ∅;     
ne = ne 

∩
 max( fc)};

ac = fc \ max( fc);
do (ne ≠ ∅ ∧ ac ≠ ∅)
     if ne ≠ ∅
          cc := { {x} | x ∈ne};
     else
          cc := {x} | x ∈ac};
     ne := ne \ cc;
     mark(cc);
     do (ncs ≠ ∅)
          nc = x | {x, 0} ∈ncs
          lenint = lenInt(cc, nc);
          if (lenint < LenNInt(nc, cc) ∧ lenint < LenNInt(cc, nc) ∧ ¬∃(a ∈cc ∧ b ∈cc ∩ nc) (d(a, b) < d(a, c)))
              if nc ∈ex
                  ex = ex \ nc
                  combine(cc, nc);
                  mark(cc);
              else
                  if (nc ∉ex)
                      ac := ac \ nc
                      ne = ne 

∩
 nc

     od
     ex = ex 

∩
 cc;

od
output → max(ex)

S0 C0 C1 S1

D

Figure 11. Diameter cycle D for Proof of Correctness.
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5. Proof of Correctness

In this section, we provide a correctness proof 
for the proposed diameter cycle algorithm. 
Lemma 1. The cycle expansion process even-
tually considers every fundamental cycle in the 
graph.
Proof. The algorithm maintains a set of funda-
mental cycles contained in the graph. The algo-
rithm starts by picking the largest fundamental 
cycle from this set, upon which the expansion 
process is applied. Then, the algorithm consid-
ers the neighbours of the selected fundamental 
cycle for expansion. Subsequently, the neigh-
bours of the neighbouring cycle are considered 
that are used for expansion, and so on. If a fun-
damental cycle is not reached in the expansion 
process, it remains in set ac and is eventually 
considered (when the current cannot be ex-
panded further). Since each fundamental cy-
cle is a neighbour of another in a biconnected 
graph, and the number of fundamental cycles 
in a particular graph G is finite, the algorithm 
eventually visits and considers every funda-
mental cycle either as a neighbour of a cycle 
under consideration or as a cycle not considered 
in set ac. Hence the proof follows. □
Consider the graph given in Figure 11, where 
cycles C0, C1, subcycle S0 of C0, subcycle S1 of 
C1 are clearly shown. The figure also shows di-
ameter cycle D using dashed lines. The follow-
ing lemma shows that if there exists cycles C0 
and C1 with subcycles S0 and S1, respectively 
such that S0 and S1 are part of a diameter cycle 
of the graph, cycles C0 and C1 are eventually 
combined to include S0 and S1 in D.
Lemma 2. Let C0 be a candidate cycle and C1 be 
another cycle in graph G such that both cycles 

contain segments that are part of diameter cy-
cle D. When the proposed expansion process is 
applied to C0, cycles C0 and C1 are eventually 
combined and the segments are included as part 
of D.
Proof. Consider the diameter cycle D where 
segments of C0 and C1 are part of diameter cy-
cle D. Since G is a biconnected graph and seg-
ments of C0 and C1 are part of diameter cycle 
D, either C0 and C1 are neighbouring cycles or 
there exists a set of one or more fundamental 
cycles connecting C0 and C1. 
Case 1: Cycles C0 and C1 are neighbours. In 

this case, clearly cycles C0 and C1 are 
combined and the segments of C0 and 
C1 are included in the candidate cycle.

Case 2: Cycles C0 and C1 are not neighbours. 
It is easy to show by contradiction 
that there exists a sequence of cycles 
Γ0 = C0, Γ1, ..., Γk = C1 in G such that 
there exists two consecutive cycles Γi 
and Γi + 1, 0 ≤ i < k, that can be com-
bined leading to a sequence of cycles 
of length k - 1. Since the proposed al-
gorithm eventually selects the cycles 
that can be combined in the expansion 
process by Lemma 1, it can be shown 
inductively that cycles C0 and C1 are 
eventually combined.

In addition, it is easy to show by contradiction 
that upon its inclusion in the candidate cycles, 
since no segment/path of longer length con-
necting its endpoints can be found (due to the 
segment being in diameter cycle D), the seg-
ments of C0 and C1 in D remain as part of the 
candidate cycle during the expansion process. 
Hence the proof follows. □Figure 10 (cont.) 

mark(c) ≡                       v := x | x ∈ c;
                                        do (∃vnext ∈N(v){{c, vnext} ∉ce(v)) ∧ c ∈s(vnext)})
                                             if {∃x ∈ce(v) {{x, -} ∉ncs}} → ncs := ncs 

∩
 {x, 0};

                                             if {∃x ∉ce(v) {{{x, a} ∈ncs} ∧ {x ∈ce(vnext)}} → ncs := ncs \ {x, a} 
∩

 {x, a++};
                                             ce(v) = ce(v) 

∩
 {c, vnext}; ce(vnext) = ce(vnext) 

∩
 {c, v};

                                        od

combine(cc, nc) ≡          i = 0;
                                        do (∃v ∈V ({nc, -} ∈ce(v)))
                                             v = x | {nc, -} ∈ ce(x);
                                             if ({cc, -} ∈ce(v) ∧ {nc, -} ∈ce(v)) ∨ ({cc, -} ∉ce(v) ∧{nc, -} ∈ce(v)))
                                                  if (∃vnext ∈ N(v) {nc, vnext} ∈ce(v))
                                                     ce(v) := ce(v) \ {nc, vnext} 

∩
 {cc, vnext};

                                                     ce(vnext) := ce(vnext) 
∩

 {cc, v};
                                             else if (i = 0)
                                                  first := v; i := 1; 
                                        od

Actions
nc = ∅;
ex = ∅;     
ne = ne 

∩
 max( fc)};

ac = fc \ max( fc);
do (ne ≠ ∅ ∧ ac ≠ ∅)
     if ne ≠ ∅
          cc := { {x} | x ∈ne};
     else
          cc := {x} | x ∈ac};
     ne := ne \ cc;
     mark(cc);
     do (ncs ≠ ∅)
          nc = x | {x, 0} ∈ncs
          lenint = lenInt(cc, nc);
          if (lenint < LenNInt(nc, cc) ∧ lenint < LenNInt(cc, nc) ∧ ¬∃(a ∈cc ∧ b ∈cc ∩ nc) (d(a, b) < d(a, c)))
              if nc ∈ex
                  ex = ex \ nc
                  combine(cc, nc);
                  mark(cc);
              else
                  if (nc ∉ex)
                      ac := ac \ nc
                      ne = ne 

∩
 nc

     od
     ex = ex 

∩
 cc;

od
output → max(ex)

S0 C0 C1 S1

D

Figure 11. Diameter cycle D for Proof of Correctness.
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Lemma 3. If two neighbouring cycles C1 and 
C2 are expanded by removing the common path 
P between them, P will not be included in the 
diameter cycle found or in any other cycle ob-
tained in intermediate expansion steps.
Proof. Recall that in each step of the expansion 
process, an intersection path of two cycles is re-
placed by a longer path. Let C0 be a cycle which 
expanded using cycle C1 by removing the inter-
section of the two cycles. Let path P with end-
points of i and j be the intersection of two initial 
cycles to obtain the resulting cycle. Also, let P' 
and P'' be the remainder of cycle C0 and C1, 
after the removal of path P from cycle C0 and 
C1, respectively. Observe that if P is included 
again in the candidate cycle, one of P', P'', or 
a longer path that replaced one of them needs 
to be excluded. This contradicts the definition 
of a candidate diameter cycle and the expan-
sion process, as no two vertices on the graph 
should get closer upon an expansion step. This 
is a contradiction. Hence, the proof follows. □
Lemma 4. The state-space and time complexity 
of the algorithm are O(n2) and O(n6) respec-
tively.
Proof. We require each vertex in the graph to 
store its set of neighbours variable N() and the 
cycles it is part of variable ce. For n vertices, 
each of these stored values have a state-space 
of O(n) and hence, the algorithm requires state-
space of O(n2) in total for these variables. In 
addition, it is easy to observe that each of the 
variables fc, ncs, ne, ex, and ac contribute to the 
state-space complexity by O(n2).
Consider Figure 8 and the algorithm given in 
Figure 10. The first loop in the algorithm has 
a time complexity of O(n2) as it depends on 
the number of non-expandable cycles (marked 
using edges), which is O(n2) in the worst case. 
Traversing and marking a cycle takes O(n) 
steps inside the outer loop. The inner loop de-
pends on the size of the neighbouring cycle set 
ncs which also has an upper bound of O(n2). In-
side the inner loop, we have two steps that con-
tribute to the time complexity. First, combining 
two cycles would depend on the length of the 
cycles, which has time complexity of O(n). 
Second, traversing and marking the new can-
didate cycle takes O(n) steps. Hence, the time 
complexity of the algorithm is O(n6). Hence the 
proof follows. □

Theorem 1. The proposed diameter cycle algo-
rithm finds a diameter cycle of a given graph G 
in O(n6) time with space complexity of O(n2).
Proof. By Lemma 1, we know the algorithm 
eventually considers every fundamental cycle 
in the graph.
By Lemmas 1 and 2, every fundamental cycle 
is to be considered in the expansion process, 
the segments of the fundamental cycles that are 
contained in a diameter cycle is included in a 
candidate cycle, and they remain as part of the 
candidate cycle. Therefore, each candidate cy-
cle is expanded until a point where it can no 
longer be expanded.
Also observe that after a candidate cycle is ex-
panded into a candidate diameter cycle, a cycle/
fundamental cycle in the non-expanded set or a 
fundamental cycle unconsidered, if any, is con-
sidered for expansion. If the newly considered 
candidate cycle is not combined with previous-
ly discovered candidate cycles, a new candidate 
cycle is formed, which leads to the discovery of 
a new candidate cycle. When a fundamental cy-
cle is considered, its segments in the diameter/
candidate cycle are added to the candidate cycle 
and they remain as part of the candidate cycle 
by Lemma 3. In this manner, all candidate di-
ameter cycles are found. The longest candidate 
cycle among them is identified as the diameter 
cycle of the graph.
The time and space complexites of the algo-
rithm follow from Lemma 4. Hence the proof 
follows. □

6. Conclusion

This paper first presents a brute-force abstract 
algorithm for finding a candidate diameter cy-
cle based on constructing a cycle of G between 
two diameter endpoints and a  cycle expansion 
process satisfying a number of rules. The pro-
cess of cycle expansion starts by replacing each 
sub-path in the initial cycle with one that con-
tains more edges and this process is repeated on 
the resulting cycle till no further expansion is 
possible. The cycle produced by the cycle ex-
pansion process that can no longer be expanded 
is identified as a candidate diameter cycle. The 
second algorithm employs a novel implemen-

tation using fundamental cycles in the expan-
sion process. 
Finding a diameter cycle in the graph is use-
ful in improving cycle layout representation of 
graphs where it minimizes link crossings and 
reduces the graph area. In addition, diameter 
cycle provides a ring-based graph protection 
for all the vertices in the graph. Detection of 
the global geometric shape of the network al-
lows the connectivity structure of a network to 
be discovered and improves network efficiency, 
optimizes certain parameters of the network, 
protects path failures and minimizes the com-
plexity in routing. Identification of diameter 
cycles is also useful in network design; which 
serves as a survival mechanism against vertex 
failures and provides failure independent path 
protection for the vertices on the cycle and 
other vertices. The identification of a diame-
ter cycle of a graph is useful in graph layout 
enhancement, failure independent path protec-
tion, ring-based graph protection and various 
path constructions.
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Lemma 3. If two neighbouring cycles C1 and 
C2 are expanded by removing the common path 
P between them, P will not be included in the 
diameter cycle found or in any other cycle ob-
tained in intermediate expansion steps.
Proof. Recall that in each step of the expansion 
process, an intersection path of two cycles is re-
placed by a longer path. Let C0 be a cycle which 
expanded using cycle C1 by removing the inter-
section of the two cycles. Let path P with end-
points of i and j be the intersection of two initial 
cycles to obtain the resulting cycle. Also, let P' 
and P'' be the remainder of cycle C0 and C1, 
after the removal of path P from cycle C0 and 
C1, respectively. Observe that if P is included 
again in the candidate cycle, one of P', P'', or 
a longer path that replaced one of them needs 
to be excluded. This contradicts the definition 
of a candidate diameter cycle and the expan-
sion process, as no two vertices on the graph 
should get closer upon an expansion step. This 
is a contradiction. Hence, the proof follows. □
Lemma 4. The state-space and time complexity 
of the algorithm are O(n2) and O(n6) respec-
tively.
Proof. We require each vertex in the graph to 
store its set of neighbours variable N() and the 
cycles it is part of variable ce. For n vertices, 
each of these stored values have a state-space 
of O(n) and hence, the algorithm requires state-
space of O(n2) in total for these variables. In 
addition, it is easy to observe that each of the 
variables fc, ncs, ne, ex, and ac contribute to the 
state-space complexity by O(n2).
Consider Figure 8 and the algorithm given in 
Figure 10. The first loop in the algorithm has 
a time complexity of O(n2) as it depends on 
the number of non-expandable cycles (marked 
using edges), which is O(n2) in the worst case. 
Traversing and marking a cycle takes O(n) 
steps inside the outer loop. The inner loop de-
pends on the size of the neighbouring cycle set 
ncs which also has an upper bound of O(n2). In-
side the inner loop, we have two steps that con-
tribute to the time complexity. First, combining 
two cycles would depend on the length of the 
cycles, which has time complexity of O(n). 
Second, traversing and marking the new can-
didate cycle takes O(n) steps. Hence, the time 
complexity of the algorithm is O(n6). Hence the 
proof follows. □

Theorem 1. The proposed diameter cycle algo-
rithm finds a diameter cycle of a given graph G 
in O(n6) time with space complexity of O(n2).
Proof. By Lemma 1, we know the algorithm 
eventually considers every fundamental cycle 
in the graph.
By Lemmas 1 and 2, every fundamental cycle 
is to be considered in the expansion process, 
the segments of the fundamental cycles that are 
contained in a diameter cycle is included in a 
candidate cycle, and they remain as part of the 
candidate cycle. Therefore, each candidate cy-
cle is expanded until a point where it can no 
longer be expanded.
Also observe that after a candidate cycle is ex-
panded into a candidate diameter cycle, a cycle/
fundamental cycle in the non-expanded set or a 
fundamental cycle unconsidered, if any, is con-
sidered for expansion. If the newly considered 
candidate cycle is not combined with previous-
ly discovered candidate cycles, a new candidate 
cycle is formed, which leads to the discovery of 
a new candidate cycle. When a fundamental cy-
cle is considered, its segments in the diameter/
candidate cycle are added to the candidate cycle 
and they remain as part of the candidate cycle 
by Lemma 3. In this manner, all candidate di-
ameter cycles are found. The longest candidate 
cycle among them is identified as the diameter 
cycle of the graph.
The time and space complexites of the algo-
rithm follow from Lemma 4. Hence the proof 
follows. □

6. Conclusion

This paper first presents a brute-force abstract 
algorithm for finding a candidate diameter cy-
cle based on constructing a cycle of G between 
two diameter endpoints and a  cycle expansion 
process satisfying a number of rules. The pro-
cess of cycle expansion starts by replacing each 
sub-path in the initial cycle with one that con-
tains more edges and this process is repeated on 
the resulting cycle till no further expansion is 
possible. The cycle produced by the cycle ex-
pansion process that can no longer be expanded 
is identified as a candidate diameter cycle. The 
second algorithm employs a novel implemen-

tation using fundamental cycles in the expan-
sion process. 
Finding a diameter cycle in the graph is use-
ful in improving cycle layout representation of 
graphs where it minimizes link crossings and 
reduces the graph area. In addition, diameter 
cycle provides a ring-based graph protection 
for all the vertices in the graph. Detection of 
the global geometric shape of the network al-
lows the connectivity structure of a network to 
be discovered and improves network efficiency, 
optimizes certain parameters of the network, 
protects path failures and minimizes the com-
plexity in routing. Identification of diameter 
cycles is also useful in network design; which 
serves as a survival mechanism against vertex 
failures and provides failure independent path 
protection for the vertices on the cycle and 
other vertices. The identification of a diame-
ter cycle of a graph is useful in graph layout 
enhancement, failure independent path protec-
tion, ring-based graph protection and various 
path constructions.
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