
Algorithms for Finding Diameter
Cycles of Biconnected Graphs

225CIT. Journal of Computing and Information Technology, Vol. 28, No. 4, December 2020, 225–240
doi: 10.20532/cit.2020.1005136

Mehmet Hakan Karaata
Department of Computer Engineering, Kuwait University, Kuwait

In this paper, we first coin a new graph theoretic prob-
lem called the diameter cycle problem with numerous
applications. A longest cycle in a graph G = (V, E) is
referred to as a diameter cycle of G iff the distance in G
of every vertex on the cycle to the rest of the on-cycle
vertices is maximal. We then present two algorithms
for finding a diameter cycle of a biconnected graph.
The first algorithm is an abstract intuitive algorithm
that utilizes a brute-force mechanism for expanding an
initial cycle by repeatedly replacing paths on the cycle
with longer paths. The second algorithm is a concrete
algorithm that uses fundamental cycles in the expan-
sion process and has the time and space complexity
of O(n6

) and O(n2
), respectively. To the best of our

knowledge, this problem was neither defined nor ad-
dressed in the literature. The diameter cycle problem
distinguishes itself from other cycle finding problems
by identifying cycles that are maximally long while
maximizing the distances between vertices in the cy-
cle. Existing cycle finding algorithms such as funda-
mental and longest cycle algorithms do not discover
cycles where the distances between vertices are max-
imized while also maximizing the length of the cycle.

ACM CCS (2012) Classification: Theory of computa-
tion → Graph algorithms analysis

Keywords: biconnected graphs, diameter cycle, funda-
mental cycles, graph algorithms

1. Introduction

Let G = (V, E) be an undirected bi-connected
graph with vertex set V and edge set E. Cycle
C of G = (V, E) is referred to as a candidate
diameter cycle of G iff there does not exist a
cycle C' in G such that for two vertices i and j
that are on both C and C', there exist two paths
P(i, j) and P'(i, j) disjoint except their endpoints

i and j in G from vertex i to vertex j where C' is
obtained by replacing path P(i, j) on C by path
P'(i, j) satisfying
(i) |P(i, j)| < |P'(i, j)| and
(ii) for every vertex v on C \ P(i, j), and ver-

tex z on P(i, j) and w on P'(i, j) such that
z is a vertex that minimizes d(v, z), w is a
vertex that minimizes d(v, w), and d(v, z) ≤
d(v, w) holds. (See Figure 1 illustrating the
definition.)

Figure 1. Graph showing path replacement.

P'(i,j)v

i

j

w

P(i,j)
z

C

Informally, the longest cycle in G on which the
distance in G of every vertex on the cycle to
the rest of the on-cycle vertices is maximal is
referred to as a diameter cycle of G.
Consider Figure 2 where a graph is shown with
a number of non-candidate diameter cycles and
candidate diameter cycles. Observe that cycles
1, 3, 4, 1 and 1, 4, 5, 2, 1 are not candidate di-
ameter cycles since they can be expanded sat-
isfying both properties (i) and (ii). Notice that
cycle 1, 3, 4, 1 can be expanded using cycle

226 227M. H. Karaata Algorithms for Finding Diameter Cycles of Biconnected Graphs

Graph drawing is a crucial stage in the pro-
cess of optimizing network or network over-
lay design via good graph representation that
facilitates a better understanding of the system
network [6]. There are multiple approaches to
enhance graph layout such as tree layout, hier-
archical layout, bus layout and circular layout.
In a circular layout (CL), the graph is represent-
ed by its set of cycles and the edges connecting
them. CL is best suited for graphs representing
interconnected ring and/or star network topol-
ogies and has been applied to LAN diagrams,
organization charts and web hyperlink neigh-
bourhood representation. Circular graph layout
of a graph, which is easier to understand and to
analyze, can be constructed using candidate di-
ameter cycles of the graph [6]. Using candidate
diameter cycles in a graph, a desirable circular
layout of the graph can be discovered. For a giv-
en graph G, the circular layout consists of can-
didate diameter cycles CD1, CD2, CD3, ... where
CDi is a candidate diameter cycle of G \ {CD1,
CD2, ..., CDi -1}, where \ denotes the removal of
set of graphs/cycles {CD1, CD2, ..., CDi -1} from
graph G. This results in a layout with a moder-
ate number of cycles. Graph algorithms for lay-
out normalization and enhancement continue to
receive significant attention [7, 8].
Path based network protection is an efficient
technique for network survival in the presence
of edge failures where pre-assigned capacity is
used for network restoration [9]. Network res-
toration is a process in which data is rerouted
towards the destination in the event of edge
failures. Many protection schemes including
the ring-based protection [10] adopted this con-
cept. In ring-based network protection, a cyclic
path is used for network protection where the
data is transmitted in the same direction (e.g.,
clockwise) from source to destination through
the cycle that contains them in the network, and
simultaneously a copy of that data is transmitted
in the opposite direction of the cycle between
the source and destination [11]. Ring based pro-
tection paths provide fast route switching how-
ever they are inefficient in capacity usage [12].
One approach to solve this problem is to use
the p-cycles (preconfigured protection cycle) in
which the spare capacity is organized in cycles
where the vertices on each cycle assemble and
share a protection path for any on-cycle edge/
link in addition to the straddling edges [12].

based on the use of fundamental cycles to find
the diameter cycle of a given graph. In Section
5, we present the proof of correctness and show
that diameter cycles possess a number of use-
ful properties. Finally in Section 6, we provide
some concluding remarks on work present and
its applications.

2. Applications

There is a wide range of sensor network appli-
cations that require certain knowledge of the
global geometry and topology of a network
which can be discovered using the diameter cy-
cle of a network. For instance, the identifica-
tion of the network boundary can be facilitated
through the discovery of the diameter cycle that
represents the perimeter of the target area. The
boundaries of the sensor field capture the global
geometric shape of the network which identifies
the densely monitored underlying space. The
discovery of the global geometry and the topol-
ogy of the sensor field is of great importance
in the design of basic networking operations
such as point to point routing, data gathering
mechanism and sensor coverage verification.
The identification of boundaries [4], i.e., the
outer edges/perimeter of the network, and holes
[5], i.e., regions without enough active verti-
ces in a network, are useful in improving the
overall performance of a network by adapting
appropriate routing techniques. Detecting holes
allows locally selecting an appropriate routing
path. Hole detection also plays an important
role in geographic multicasting where a mes-
sage is delivered from a single source to a set of
destination vertices in a geographic region and
path migration by maintaining virtual connec-
tions among a set of moving objects.
The number of (inner boundaries) holes in a
network and their sizes is the most important
performance metric used to measure the quali-
ty of service a network can provide. This holds
especially in dynamic settings, where sensor
nodes can run out of power, fail or move form-
ing holes and changing the sizes and the topol-
ogies of the inner and outer boundaries. Hence,
holes and boundaries need to be dynamical-
ly detected in sensor networks. Diameter and
candidate diameter cycles can be used to detect
holes and boundaries in sensor networks.

1, 4, 5, 2, 1 and vice versa satisfying both the
properties. Also notice that the resulting cycle
1, 3, 4, 5, 2, 1 of both the expansions is a can-
didate diameter cycle. In addition, there exists
another diameter cycle 1, 3, 4, 5, 6, 1 that can be
obtained through other expansions.

P'(1,4)

2

6

5
4

1

3

0

C
D

0
P (1,4)

C

0

Figure 2. Initial cycle C0, path P(1, 4) and its
corresponding expansion path P'(1, 4) and diameter

cycle CD.

A diameter cycle of a graph resembles the pe-
rimeter of the graph in the sense that it enclos-
es all the vertices and edges of the graph (or a
subgraph). A diameter cycle represents differ-
ent notions depending on what the graph rep-
resents. For instance, if the graph is used to rep-
resent a road network of a city, then this cycle
is the outer-city ring road which is considered
the least polluted and the one desired for heavy
vehicles and trucks.
Many principal characteristics of a communica-
tion network are related to the global geometric
shape and the topology of the network which
can be discovered using the diameter cycle of
the network. These characteristics identify the
connectivity structure of a network which in
turn facilitates improvement of network effi-
ciency, optimizes network facilities placement,
provides protection for path failures, detects
boundaries, optimizes graph layout, assesses
the vulnerability of a network, optimizes rout-
ing and scheduling (especially critical path
planning), and minimizes the complexity of
routing. For example, finding two vertex-dis-
joint paths between any two vertices in G is
simplified through the use of a diameter cycle

in G. Section 2 provides details on the applica-
tions of diameter cycles.
Various cycle detection algorithms have been
proposed in the literature. For instance, [1] pres-
ents a diffusing computation-based cycle knot
detection algorithm for general graphs. A knot is
a directed graph in which every vertex is reach-
able from every other vertex via a directed path.
It detects whether a given vertex is in a cycle or
knot. To do so, the initiator launches a diffusion
computation to detect whether a given vertex
is in a cycle or a knot. An algorithm for detect-
ing holes and antiholes in general undirected
graphs is discussed in [1], where the existence
of a cycle is checked by a special depth first
search traversal that proceeds along a chord-
less path on four vertices of the input graph.
Similarly, [2] introduces an adaptive approach
(the Adaptive Bellman-Ford algorithm) to neg-
ative cycle detection in dynamically changing
graphs. This technique explicitly addresses the
common, practical scenario in which negative
cycle detection is periodically performed after
intervals in which a small number of changes
are made to the graph. However, to the best of
our knowledge, no algorithm for constructing a
diameter cycle is available in the literature.
In this paper, we first introduce an entirely new
problem of finding diameter cycles in graphs
which has numerous applications. Then, we
propose an abstract algorithm to find a candi-
date diameter cycle, and a concrete algorithm to
find a diameter cycle in a bi-connected graph.
The first algorithm utilizes a brute-force ap-
proach based on the expansion of paths on an
initial arbitrary cycle of G to find a candidate
cycle of G, while the second algorithm employs
a novel approach to combine fundamental cy-
cles of a given graph to find a diameter cycle in
polynomial time. The second algorithm consists
of three distinct phases. The first phase of the
algorithm, as given in [3], finds all fundamental
cycles in the graph. The second phase of the al-
gorithm, as given in [3], marks each vertex with
each fundamental cycle(s) it is part of. The third
phase of the algorithm finds a diameter cycle
in the graph by combining fundamental cycles.
The paper is organized as follows: In Section 2,
applications of diameter cycles are presented.
In Section 3, the brute-force algorithm is pre-
sented. In Section 4, we propose an algorithm

226 227M. H. Karaata Algorithms for Finding Diameter Cycles of Biconnected Graphs

Graph drawing is a crucial stage in the pro-
cess of optimizing network or network over-
lay design via good graph representation that
facilitates a better understanding of the system
network [6]. There are multiple approaches to
enhance graph layout such as tree layout, hier-
archical layout, bus layout and circular layout.
In a circular layout (CL), the graph is represent-
ed by its set of cycles and the edges connecting
them. CL is best suited for graphs representing
interconnected ring and/or star network topol-
ogies and has been applied to LAN diagrams,
organization charts and web hyperlink neigh-
bourhood representation. Circular graph layout
of a graph, which is easier to understand and to
analyze, can be constructed using candidate di-
ameter cycles of the graph [6]. Using candidate
diameter cycles in a graph, a desirable circular
layout of the graph can be discovered. For a giv-
en graph G, the circular layout consists of can-
didate diameter cycles CD1, CD2, CD3, ... where
CDi is a candidate diameter cycle of G \ {CD1,
CD2, ..., CDi -1}, where \ denotes the removal of
set of graphs/cycles {CD1, CD2, ..., CDi -1} from
graph G. This results in a layout with a moder-
ate number of cycles. Graph algorithms for lay-
out normalization and enhancement continue to
receive significant attention [7, 8].
Path based network protection is an efficient
technique for network survival in the presence
of edge failures where pre-assigned capacity is
used for network restoration [9]. Network res-
toration is a process in which data is rerouted
towards the destination in the event of edge
failures. Many protection schemes including
the ring-based protection [10] adopted this con-
cept. In ring-based network protection, a cyclic
path is used for network protection where the
data is transmitted in the same direction (e.g.,
clockwise) from source to destination through
the cycle that contains them in the network, and
simultaneously a copy of that data is transmitted
in the opposite direction of the cycle between
the source and destination [11]. Ring based pro-
tection paths provide fast route switching how-
ever they are inefficient in capacity usage [12].
One approach to solve this problem is to use
the p-cycles (preconfigured protection cycle) in
which the spare capacity is organized in cycles
where the vertices on each cycle assemble and
share a protection path for any on-cycle edge/
link in addition to the straddling edges [12].

based on the use of fundamental cycles to find
the diameter cycle of a given graph. In Section
5, we present the proof of correctness and show
that diameter cycles possess a number of use-
ful properties. Finally in Section 6, we provide
some concluding remarks on work present and
its applications.

2. Applications

There is a wide range of sensor network appli-
cations that require certain knowledge of the
global geometry and topology of a network
which can be discovered using the diameter cy-
cle of a network. For instance, the identifica-
tion of the network boundary can be facilitated
through the discovery of the diameter cycle that
represents the perimeter of the target area. The
boundaries of the sensor field capture the global
geometric shape of the network which identifies
the densely monitored underlying space. The
discovery of the global geometry and the topol-
ogy of the sensor field is of great importance
in the design of basic networking operations
such as point to point routing, data gathering
mechanism and sensor coverage verification.
The identification of boundaries [4], i.e., the
outer edges/perimeter of the network, and holes
[5], i.e., regions without enough active verti-
ces in a network, are useful in improving the
overall performance of a network by adapting
appropriate routing techniques. Detecting holes
allows locally selecting an appropriate routing
path. Hole detection also plays an important
role in geographic multicasting where a mes-
sage is delivered from a single source to a set of
destination vertices in a geographic region and
path migration by maintaining virtual connec-
tions among a set of moving objects.
The number of (inner boundaries) holes in a
network and their sizes is the most important
performance metric used to measure the quali-
ty of service a network can provide. This holds
especially in dynamic settings, where sensor
nodes can run out of power, fail or move form-
ing holes and changing the sizes and the topol-
ogies of the inner and outer boundaries. Hence,
holes and boundaries need to be dynamical-
ly detected in sensor networks. Diameter and
candidate diameter cycles can be used to detect
holes and boundaries in sensor networks.

1, 4, 5, 2, 1 and vice versa satisfying both the
properties. Also notice that the resulting cycle
1, 3, 4, 5, 2, 1 of both the expansions is a can-
didate diameter cycle. In addition, there exists
another diameter cycle 1, 3, 4, 5, 6, 1 that can be
obtained through other expansions.

P'(1,4)

2

6

5
4

1

3

0

C
D

0
P (1,4)

C

0

Figure 2. Initial cycle C0, path P(1, 4) and its
corresponding expansion path P'(1, 4) and diameter

cycle CD.

A diameter cycle of a graph resembles the pe-
rimeter of the graph in the sense that it enclos-
es all the vertices and edges of the graph (or a
subgraph). A diameter cycle represents differ-
ent notions depending on what the graph rep-
resents. For instance, if the graph is used to rep-
resent a road network of a city, then this cycle
is the outer-city ring road which is considered
the least polluted and the one desired for heavy
vehicles and trucks.
Many principal characteristics of a communica-
tion network are related to the global geometric
shape and the topology of the network which
can be discovered using the diameter cycle of
the network. These characteristics identify the
connectivity structure of a network which in
turn facilitates improvement of network effi-
ciency, optimizes network facilities placement,
provides protection for path failures, detects
boundaries, optimizes graph layout, assesses
the vulnerability of a network, optimizes rout-
ing and scheduling (especially critical path
planning), and minimizes the complexity of
routing. For example, finding two vertex-dis-
joint paths between any two vertices in G is
simplified through the use of a diameter cycle

in G. Section 2 provides details on the applica-
tions of diameter cycles.
Various cycle detection algorithms have been
proposed in the literature. For instance, [1] pres-
ents a diffusing computation-based cycle knot
detection algorithm for general graphs. A knot is
a directed graph in which every vertex is reach-
able from every other vertex via a directed path.
It detects whether a given vertex is in a cycle or
knot. To do so, the initiator launches a diffusion
computation to detect whether a given vertex
is in a cycle or a knot. An algorithm for detect-
ing holes and antiholes in general undirected
graphs is discussed in [1], where the existence
of a cycle is checked by a special depth first
search traversal that proceeds along a chord-
less path on four vertices of the input graph.
Similarly, [2] introduces an adaptive approach
(the Adaptive Bellman-Ford algorithm) to neg-
ative cycle detection in dynamically changing
graphs. This technique explicitly addresses the
common, practical scenario in which negative
cycle detection is periodically performed after
intervals in which a small number of changes
are made to the graph. However, to the best of
our knowledge, no algorithm for constructing a
diameter cycle is available in the literature.
In this paper, we first introduce an entirely new
problem of finding diameter cycles in graphs
which has numerous applications. Then, we
propose an abstract algorithm to find a candi-
date diameter cycle, and a concrete algorithm to
find a diameter cycle in a bi-connected graph.
The first algorithm utilizes a brute-force ap-
proach based on the expansion of paths on an
initial arbitrary cycle of G to find a candidate
cycle of G, while the second algorithm employs
a novel approach to combine fundamental cy-
cles of a given graph to find a diameter cycle in
polynomial time. The second algorithm consists
of three distinct phases. The first phase of the
algorithm, as given in [3], finds all fundamental
cycles in the graph. The second phase of the al-
gorithm, as given in [3], marks each vertex with
each fundamental cycle(s) it is part of. The third
phase of the algorithm finds a diameter cycle
in the graph by combining fundamental cycles.
The paper is organized as follows: In Section 2,
applications of diameter cycles are presented.
In Section 3, the brute-force algorithm is pre-
sented. In Section 4, we propose an algorithm

228 229M. H. Karaata Algorithms for Finding Diameter Cycles of Biconnected Graphs

reduces the amount of information to be kept in
routing tables.

Figure 5. Diameter cycle of a biconnected graph. A
vertex disjoint route from vertex 1 to 6 is easily found

through the cycle.

The problem of finding two vertex disjoint
paths has a large number of applications in-
cluding increasing the security and reliability
of communication in computer networks. Two
disjoint paths between each pair of vertices
could be built using diameter paths as follows.
If both the vertices are on the cycle, obviously
the cycle connects the vertices via two disjoint
paths [20]. If one of the vertices x is on the cy-
cle while the other vertex y is not on a diameter
cycle, a path containing y with its distinct end-
points on the cycle is constructed. Clearly this
path and a diameter cycle form a cycle contain-
ing both x and y providing two vertex disjoint
paths connecting x and y. If both the vertices x
and y are not on the cycle, two distinct paths
containing x and y with endpoints on the cycle
or a single path containing both x and y can be
constructed. Obviously, in each case, a cycle
containing both x and y can be readily obtained
leading to the construction of two disjoint paths
between vertices x and y.

3. Candidate Diameter Cycle
Algorithm

In order to describe the approach employed by
the algorithm, we need to define the following
terms. A graph G = (V, E) is connected iff a
path exists between any two vertices in G [12].
A vertex in a connected graph is referred to as
an articulation or cut vertex if its removal dis-
connects the graph, i.e, the graph is split into
disjoint subgraphs [12]. A graph is bi-connect-

ed if it does not contain an articulation vertex
[21]. A shortest path P of length D between two
vertices in G is referred to as a diameter path.
Diameter endpoints are the origin and the ter-
minal vertices on P.
The algorithm is based on constructing a cycle
of G between two diameter endpoints and then
expanding the initial cycle repeatedly until a
point where the obtained cycle can no longer
be expanded and each expansion step satisfies
a number of properties. It is easy to see that a
diameter path can be found by first finding the
distance between every pair of vertices and then
identifying two vertices of maximal distance
between them.

1. Select any cycle C0 containing two diameter
endpoints of a diameter path of G

2. i = 1
3. while true do
4. if there exist path P(x, y) on Ci -1 with origin

x and terminal y and another path P'(x, y)
disjoint from Ci -1, except for its origin x and
terminal y such that |P'(x, y)| > |P(x, y)|, and for
every vertex v on C \ P(x, y), and vertex z on
P(x, y) and v on P'(x, y) such that z is a vertex
that minimizes d(v, z), v is a vertex that mini-
mizes d(v, w), and d(v, z) ≤ d(v, w) hold. then

5. Obtain cycle Ci by replacing its subpath
P(x, y) by P'(x, y) in Ci -1

6. Increment i
7. else
8. exit
9. end
10. end
11. Identify the last cycle produced by the cycle

expansion process as candidate diameter cycle CD

Figure 6. Candidate diameter cycle algorithm.

Note that |P'(x, y)| and |P(x, y)| refer to the
lengths of paths P'(x, y) and P(x, y), respective-
ly, and Ci -1 \ P(x, y) refers to a path obtained
from Ci -1 by removing P(x, y).
The algorithm starts by finding an initial cycle
containing both the endpoints of a diameter path
of G by forming two distinct vertex-disjoint
paths of total minimal length between the diam-
eter endpoints and combining them to form the
initial cycle. Such a cycle can be constructed
using an algorithm to find two vertex-disjoint
paths between the diameter endpoints using the

A diameter cycle provides a general protection
path for the vertices on the cycle and other ver-
tices [13], [14] in the network that provides fast
path switching; for every vertex x in the net-
work, x is either on a diameter cycle or x has a
distance less than or equal to half the diameter
of the graph to the diameter cycle as illustrated
in Figure 3, where the diameter cycle is shown
by a thick line and dashed arrows show the dis-
tances of nodes to the diameter paths. It is easy
to see that the maximum distance of any ver-
tex in the graph shown in Figure 3 to the clos-
est vertex on the diameter path is D/2 which
is facilitated by the properties of the diameter
path where D is the diameter of graph G, i.e.,
D is the longest distance (number of edges on
the shortest path) between two vertices in G.
Therefore a diameter cycle provides an eligible
path from any source vertex to any destination
vertex in the graph. The selection of a diameter
cycle as a protection path balances the distance
from an arbitrary vertex to the closest vertex on
the cycle and the length of the cycle reducing
the average and maximum length of the protec-
tion path when a single protection cycle is used.
When such an approach is adapted to maintain-
ing all paths between each pair of vertices, sizes
of routing tables are also reduced.

Figure 3. Distance between the vertices in a network
and a diameter cycle.

Moreover, diameter cycles provide a solution
to FIPP Failure-Independent Path-Protection
p-cycle design problem; FIPP p-cycle is a con-

cept that extends straddling edges protection as
in typical p-cycles [15] to protect independent
paths. Since graphs under consideration are
bi-connected, each vertex that is not part of a
diameter cycle is connected to two distinct ver-
tices on a diameter cycle via two distinct paths
allowing a diameter cycle to be used as a FIPP
p-cycle. In addition, when a diameter cycle of
G is used as a FIPP p-cycle in G, the number
of independent paths protected by the cycle is
increased. Figure 4 illustrates the concept of
independent paths protected using a cycle. Pro-
tection paths and cycles are commonly used in
optical networks to enhance performance and
reliability [16, 17, 18, 19].

Figure 4. (a) Cycle in G protecting 1 independent path,
(b) Diameter cycle of G protecting 4 independent paths.

(a) (b)

In computer networks, communication between
any two arbitrary endpoints requires the estab-
lishment of a routing path between them. In the
presence of a diameter path, the establishment
of such routing paths reduces to the discov-
ery of a path from each vertex (not already on
a diameter cycle) to a vertex on the cycle and
identification of the next vertex on the cycle. In
particular, each vertex not on the cycle main-
tains information about its neighbour which is
the next vertex on the shortest path to the cycle.
In addition, each vertex on the cycle maintains
in its routing table the following items: next
vertex on the cycle to form a directed cycle,
neighbours not on the cycle through which a set
of vertices not on the cycle can be reached, and
the set of vertices accessible through the neigh-
bours. Moreover, finding routes between each
pair of vertices on a cycle reduces to selecting
one of the two alternative paths available on the
cycle for each pair. See Figure 5 where p1 and
p2 are the two vertex disjoint paths from source
to destination. It is easy to see that this scheme

228 229M. H. Karaata Algorithms for Finding Diameter Cycles of Biconnected Graphs

reduces the amount of information to be kept in
routing tables.

Figure 5. Diameter cycle of a biconnected graph. A
vertex disjoint route from vertex 1 to 6 is easily found

through the cycle.

The problem of finding two vertex disjoint
paths has a large number of applications in-
cluding increasing the security and reliability
of communication in computer networks. Two
disjoint paths between each pair of vertices
could be built using diameter paths as follows.
If both the vertices are on the cycle, obviously
the cycle connects the vertices via two disjoint
paths [20]. If one of the vertices x is on the cy-
cle while the other vertex y is not on a diameter
cycle, a path containing y with its distinct end-
points on the cycle is constructed. Clearly this
path and a diameter cycle form a cycle contain-
ing both x and y providing two vertex disjoint
paths connecting x and y. If both the vertices x
and y are not on the cycle, two distinct paths
containing x and y with endpoints on the cycle
or a single path containing both x and y can be
constructed. Obviously, in each case, a cycle
containing both x and y can be readily obtained
leading to the construction of two disjoint paths
between vertices x and y.

3. Candidate Diameter Cycle
Algorithm

In order to describe the approach employed by
the algorithm, we need to define the following
terms. A graph G = (V, E) is connected iff a
path exists between any two vertices in G [12].
A vertex in a connected graph is referred to as
an articulation or cut vertex if its removal dis-
connects the graph, i.e, the graph is split into
disjoint subgraphs [12]. A graph is bi-connect-

ed if it does not contain an articulation vertex
[21]. A shortest path P of length D between two
vertices in G is referred to as a diameter path.
Diameter endpoints are the origin and the ter-
minal vertices on P.
The algorithm is based on constructing a cycle
of G between two diameter endpoints and then
expanding the initial cycle repeatedly until a
point where the obtained cycle can no longer
be expanded and each expansion step satisfies
a number of properties. It is easy to see that a
diameter path can be found by first finding the
distance between every pair of vertices and then
identifying two vertices of maximal distance
between them.

1. Select any cycle C0 containing two diameter
endpoints of a diameter path of G

2. i = 1
3. while true do
4. if there exist path P(x, y) on Ci -1 with origin

x and terminal y and another path P'(x, y)
disjoint from Ci -1, except for its origin x and
terminal y such that |P'(x, y)| > |P(x, y)|, and for
every vertex v on C \ P(x, y), and vertex z on
P(x, y) and v on P'(x, y) such that z is a vertex
that minimizes d(v, z), v is a vertex that mini-
mizes d(v, w), and d(v, z) ≤ d(v, w) hold. then

5. Obtain cycle Ci by replacing its subpath
P(x, y) by P'(x, y) in Ci -1

6. Increment i
7. else
8. exit
9. end
10. end
11. Identify the last cycle produced by the cycle

expansion process as candidate diameter cycle CD

Figure 6. Candidate diameter cycle algorithm.

Note that |P'(x, y)| and |P(x, y)| refer to the
lengths of paths P'(x, y) and P(x, y), respective-
ly, and Ci -1 \ P(x, y) refers to a path obtained
from Ci -1 by removing P(x, y).
The algorithm starts by finding an initial cycle
containing both the endpoints of a diameter path
of G by forming two distinct vertex-disjoint
paths of total minimal length between the diam-
eter endpoints and combining them to form the
initial cycle. Such a cycle can be constructed
using an algorithm to find two vertex-disjoint
paths between the diameter endpoints using the

A diameter cycle provides a general protection
path for the vertices on the cycle and other ver-
tices [13], [14] in the network that provides fast
path switching; for every vertex x in the net-
work, x is either on a diameter cycle or x has a
distance less than or equal to half the diameter
of the graph to the diameter cycle as illustrated
in Figure 3, where the diameter cycle is shown
by a thick line and dashed arrows show the dis-
tances of nodes to the diameter paths. It is easy
to see that the maximum distance of any ver-
tex in the graph shown in Figure 3 to the clos-
est vertex on the diameter path is D/2 which
is facilitated by the properties of the diameter
path where D is the diameter of graph G, i.e.,
D is the longest distance (number of edges on
the shortest path) between two vertices in G.
Therefore a diameter cycle provides an eligible
path from any source vertex to any destination
vertex in the graph. The selection of a diameter
cycle as a protection path balances the distance
from an arbitrary vertex to the closest vertex on
the cycle and the length of the cycle reducing
the average and maximum length of the protec-
tion path when a single protection cycle is used.
When such an approach is adapted to maintain-
ing all paths between each pair of vertices, sizes
of routing tables are also reduced.

Figure 3. Distance between the vertices in a network
and a diameter cycle.

Moreover, diameter cycles provide a solution
to FIPP Failure-Independent Path-Protection
p-cycle design problem; FIPP p-cycle is a con-

cept that extends straddling edges protection as
in typical p-cycles [15] to protect independent
paths. Since graphs under consideration are
bi-connected, each vertex that is not part of a
diameter cycle is connected to two distinct ver-
tices on a diameter cycle via two distinct paths
allowing a diameter cycle to be used as a FIPP
p-cycle. In addition, when a diameter cycle of
G is used as a FIPP p-cycle in G, the number
of independent paths protected by the cycle is
increased. Figure 4 illustrates the concept of
independent paths protected using a cycle. Pro-
tection paths and cycles are commonly used in
optical networks to enhance performance and
reliability [16, 17, 18, 19].

Figure 4. (a) Cycle in G protecting 1 independent path,
(b) Diameter cycle of G protecting 4 independent paths.

(a) (b)

In computer networks, communication between
any two arbitrary endpoints requires the estab-
lishment of a routing path between them. In the
presence of a diameter path, the establishment
of such routing paths reduces to the discov-
ery of a path from each vertex (not already on
a diameter cycle) to a vertex on the cycle and
identification of the next vertex on the cycle. In
particular, each vertex not on the cycle main-
tains information about its neighbour which is
the next vertex on the shortest path to the cycle.
In addition, each vertex on the cycle maintains
in its routing table the following items: next
vertex on the cycle to form a directed cycle,
neighbours not on the cycle through which a set
of vertices not on the cycle can be reached, and
the set of vertices accessible through the neigh-
bours. Moreover, finding routes between each
pair of vertices on a cycle reduces to selecting
one of the two alternative paths available on the
cycle for each pair. See Figure 5 where p1 and
p2 are the two vertex disjoint paths from source
to destination. It is easy to see that this scheme

230 231M. H. Karaata Algorithms for Finding Diameter Cycles of Biconnected Graphs

rectness of the algorithm follows from the fact
that if a cycle is not a candidate diameter cycle,
the proposed cycle expansion process expands
the cycle. In the next section, we present a more
efficient algorithm to find diameter cycles.

4. Diameter Cycle Algorithm

In this section, we first informally describe the
proposed Diameter Cycle (DC) algorithm and
introduce the notation used for the description
of the algorithm. We then formally present the
algorithm. Unlike the first algorithm, the DC al-
gorithm is a concrete algorithm, hence, all im-
plementation details are given.

4.1. Basis of the Algorithm

The algorithm consists of three phases. The
first phase of the algorithm is given in [3] and is
responsible for traversing a bi-connected graph
G and identifying all the fundamental cycles in
G. If T is a spanning tree of G and e is a non-
tree edge (i.e., an edge that is not included in
T), then the fundamental cycle defined by e is
the simple cycle consisting of e and the path in
T that connects the endpoints of e. The second
phase of the algorithm is executed after the first
phase terminates and is responsible for marking
every vertex in the graph with the unique id of
the fundamental cycle it is part of. For the first
two phases, we adapt the algorithm given in [3]
to identify and mark the fundamental cycles of a
graph. Note that although the algorithm given in
[3] is distributed, it is straightforward to devise
its sequential counterpart. Vertices that are part
of two or more fundamental cycles are marked
with multiple ids using the non-tree edge id's
corresponding to the fundamental cycles in
which they are included. Using these markings,
we identify intersection paths between neigh-
bouring fundamental cycles in the final phase
of the algorithm. An intersection path refers to a
path in G that two cycles share. Two fundamen-
tal cycles are referred to as neighbouring if they
share an intersection path. We use this neigh-
bourhood knowledge to combine fundamental
(and other) cycles to obtain longer cycles.
The identification of fundamental cycles, the
manner they are marked, and how the marking
are used to identify neighbouring cycles are il-

lustrated with the help of the example in Fig-
ure 7. In the figure, a graph with a BFS tree
rooted at Vertex 11 is shown where each tree
edge is shown by solid lines and each non-tree
edge is shown by dashed lines. The figure also
illustrates the basis of the algorithm in [3]. The
graph contains four non-tree edges, namely
{1, 2}, {4, 5}, {6, 7}, and {7, 8}. Observe that
fundamental cycles FC({1, 2}) = {1, 2, 10},
FC({4, 5}) = {3, 4, 5, 6, 10}, FC({6, 7}) = {6,
7, 9, 10} and FC({7, 8}) = {7, 8, 9, 10, 11} exist
in the graph. Notice that FC({1, 2}) does not
have a neighbouring FC, whereas, FC({4, 5})
and FC({6, 7}), and FC({7, 8}) are neighbour-
ing. In the algorithm given in [3], each nodal
process maintains a variable b called b-set of
node i and denoted by bi containing a set of tu-
ples. Informally, starting from the nodes at the
largest depth of each biconnected component B,
the b-set of each node i in B collects the set of
descendants of i contained in the biconnected
component containing i in a bottom-up fashion.
Eventually, the b-set of the ancestor of each bi-
connected component B contains the set of its
descendants in the biconnected component. If
i is a node in biconnected component B such
that each node in B \{i} is a descendant of i,
then node i is referred to as the ancestor of bi-
connected component B. The fundamental data
structure b-set of the algorithm is not a simple
set, and therefore requires further explanation.
We now describe b-sets in more detail. Each tu-
ple in b(i) is of the form 〈x, y〉, where x = {p, q}
denotes a non-tree edge incident on a descen-
dant of i joining nodes p and q, and y denotes a
set of descendants of i. It is easy to see that for
any process i ∈V, the first element of each tuple
〈x, y〉 ∈b(i) is the non-tree edge id denoting that
process i is contained in the fundamental cycle
formed by the non-tree edge. For instance, both
b(6) and b(10) include both non-tree edge ids
{4, 5} and {6, 7} as the first element in their
tuples denoting that path 6, 7 is an intersection
path of cycles formed by non-tree edges {4, 5}
and {6, 7}. Similarly, b(7), b(9) and b(10) in-
clude both non-tree edges' ids {6, 7} and {7,
8} as the first element in their tuples indicating
that path 7, 9, 10 is an intersection path of cy-
cles formed by non-tree edges {6, 7} and {7,
8}. Observe that in this manner intersection
paths are marked by the non-tree edges ids.

algorithm in [22]. The reason for starting with
such an initial cycle is because such a cycle
can be shown to comply with the restrictions
of a candidate diameter cycle. The process of
cycle expansion continues by replacing a path
on the initial cycle with one that is longer and
satisfying the cycle expansion condition; this
process is repeated on the resulting cycle un-
til no further expansion is possible. The cycle
expansion condition ensures that no vertex v on
the cycle is replaced by another vertex v that is
closer to an arbitrary vertex y on the cycle than
v in G in a cycle expansion step. In this process,
the length of the cycle is increased by replacing
paths of the cycle with other paths in G that are
longer in size. The cycle that can no longer be
expanded is identified as a candidate diameter
cycle CD by the cycle expansion process.
We now formally describe the cycle expansion
process. Let vertices i and j be two diameter
endpoints of a diameter path in G. Let Pf and
Ps be two vertex-disjoint paths of minimal total
length connecting diameter endpoints i and j,
and C0, referred to as initial cycle, be the cycle
formed by two vertex-disjoint paths Pf and Ps
which can be found using the algorithm pro-
posed in [23]. Also let C0, C1, C2, ..., Ck be a
sequence of cycles in G such that each cycle Ci
for 0 < i ≤ k, is obtained through the expansion
of cycle Ci -1. Path P(x, y) for 0 < i < k, refers
to a path on Ci -1 with origin x and terminal y.
Expansion path P'(x, y) of path P(x, y) refers to
a path on Ci in G for 0 < i ≤ k where P'(x, y) is
disjoint from P(x, y) except for its origin x and
terminal y such that path P'(x, y) is longer than
path P(x, y). Each expansion of cycle Ci -1 to
Ci is carried out by replacing a subpath P(x, y)
with a longer path P'(x, y) such that P(x, y) and
P'(x, y) satisfy the following cycle expansion
conditions:

 ● |P'(x, y)| > |P(x, y)|
 ● for every vertex v on C \ P(i, j), and vertex

x on P(i, j) and v on P'(i, j) such that z is a
vertex that minimizes d(v, z), v is a vertex
that minimizes d(v, w), and d(v, z) ≤ d(v, w)
holds; that is, for two vertices v, y on Ci -1
at distance D in G, vertex v is not replaced
by another vertex v on Ci at distance less
than D to y in G by a cycle expansion step,
where cycle in Ci is the cycle obtained
from Ci -1 in a single cycle expansion step.

After expanding an initial cycle to the point
where no more cycle expansions satisfying the
cycle expansion rules are possible, the resulting
cycle is identified as a candidate diameter cycle
CD . The algorithm implementing the aforemen-
tioned approach is given in Figure 6.
The following example demonstrates the way
a candidate diameter cycle is found by the al-
gorithm: given the graph in Figure 2, the algo-
rithm starts by computing the shortest distances
between every pair of vertices and the diameter
of the graph. The diameter of the graph in Fig-
ure 2 equals 2, thus vertices 1 and 5 are diame-
ter endpoints; edges (1, 2), (2, 5), (5, 4), (4, 1)
form an initial cycle C0, and by performing a
cycle expansion process we obtain the follow-
ing candidate diameter cycle: (1, 3), (3, 4), (4,
5), (5, 2), (2, 1). In the next step, the initial cy-
cle is expanded by identifying P(1, 4) and P'(1,
4) satisfying the cycle expansion rule and by
replacing P(1, 4) by P'(1, 4) in C0 to obtain cy-
cle C1 made up of edges (1, 3), (3, 4), (4, 5), (5,
2), (2, 1). Then the cycle expansion process is
applied to C1 which is not possible in this case;
thus the cycle C1 is identified as candidate di-
ameter cycle CD. The diameter cycle of a graph
given in Figure 2 is not unique. Observe that
edges (1, 4), (4, 5), (5, 6), (6, 1) form another
initial cycle leading to the construction of an-
other candidate diameter cycle (1, 3), (3, 4), (4,
5), (5, 6), (6, 1) of the graph. Notice that both
cycles contain the same number of edges and
are candidate diameter cycles of G.
The proposed algorithm finds a candidate di-
ameter cycle of G. The same algorithm can be
used to find other candidate cycles by execut-
ing the algorithm for initial cycles formed using
different diameter paths than the ones used in
earlier executions. Upon finding all candidate
cycles, the longest candidate diameter cycle can
be identified as a diameter cycle of G.
The proposed algorithm is referred to as a
brute-force algorithm since it does not include
an efficient mechanism to select the expansion
path and the selection that results in the mini-
mum number of path expansion steps to find a
candidate diameter cycle. In addition, an effi-
cient mechanism to select initial cycles that do
not result in candidate diameter cycles found in
its earlier iterations to find candidate diameter
cycles is not included in the algorithm. The cor-

230 231M. H. Karaata Algorithms for Finding Diameter Cycles of Biconnected Graphs

rectness of the algorithm follows from the fact
that if a cycle is not a candidate diameter cycle,
the proposed cycle expansion process expands
the cycle. In the next section, we present a more
efficient algorithm to find diameter cycles.

4. Diameter Cycle Algorithm

In this section, we first informally describe the
proposed Diameter Cycle (DC) algorithm and
introduce the notation used for the description
of the algorithm. We then formally present the
algorithm. Unlike the first algorithm, the DC al-
gorithm is a concrete algorithm, hence, all im-
plementation details are given.

4.1. Basis of the Algorithm

The algorithm consists of three phases. The
first phase of the algorithm is given in [3] and is
responsible for traversing a bi-connected graph
G and identifying all the fundamental cycles in
G. If T is a spanning tree of G and e is a non-
tree edge (i.e., an edge that is not included in
T), then the fundamental cycle defined by e is
the simple cycle consisting of e and the path in
T that connects the endpoints of e. The second
phase of the algorithm is executed after the first
phase terminates and is responsible for marking
every vertex in the graph with the unique id of
the fundamental cycle it is part of. For the first
two phases, we adapt the algorithm given in [3]
to identify and mark the fundamental cycles of a
graph. Note that although the algorithm given in
[3] is distributed, it is straightforward to devise
its sequential counterpart. Vertices that are part
of two or more fundamental cycles are marked
with multiple ids using the non-tree edge id's
corresponding to the fundamental cycles in
which they are included. Using these markings,
we identify intersection paths between neigh-
bouring fundamental cycles in the final phase
of the algorithm. An intersection path refers to a
path in G that two cycles share. Two fundamen-
tal cycles are referred to as neighbouring if they
share an intersection path. We use this neigh-
bourhood knowledge to combine fundamental
(and other) cycles to obtain longer cycles.
The identification of fundamental cycles, the
manner they are marked, and how the marking
are used to identify neighbouring cycles are il-

lustrated with the help of the example in Fig-
ure 7. In the figure, a graph with a BFS tree
rooted at Vertex 11 is shown where each tree
edge is shown by solid lines and each non-tree
edge is shown by dashed lines. The figure also
illustrates the basis of the algorithm in [3]. The
graph contains four non-tree edges, namely
{1, 2}, {4, 5}, {6, 7}, and {7, 8}. Observe that
fundamental cycles FC({1, 2}) = {1, 2, 10},
FC({4, 5}) = {3, 4, 5, 6, 10}, FC({6, 7}) = {6,
7, 9, 10} and FC({7, 8}) = {7, 8, 9, 10, 11} exist
in the graph. Notice that FC({1, 2}) does not
have a neighbouring FC, whereas, FC({4, 5})
and FC({6, 7}), and FC({7, 8}) are neighbour-
ing. In the algorithm given in [3], each nodal
process maintains a variable b called b-set of
node i and denoted by bi containing a set of tu-
ples. Informally, starting from the nodes at the
largest depth of each biconnected component B,
the b-set of each node i in B collects the set of
descendants of i contained in the biconnected
component containing i in a bottom-up fashion.
Eventually, the b-set of the ancestor of each bi-
connected component B contains the set of its
descendants in the biconnected component. If
i is a node in biconnected component B such
that each node in B \{i} is a descendant of i,
then node i is referred to as the ancestor of bi-
connected component B. The fundamental data
structure b-set of the algorithm is not a simple
set, and therefore requires further explanation.
We now describe b-sets in more detail. Each tu-
ple in b(i) is of the form 〈x, y〉, where x = {p, q}
denotes a non-tree edge incident on a descen-
dant of i joining nodes p and q, and y denotes a
set of descendants of i. It is easy to see that for
any process i ∈V, the first element of each tuple
〈x, y〉 ∈b(i) is the non-tree edge id denoting that
process i is contained in the fundamental cycle
formed by the non-tree edge. For instance, both
b(6) and b(10) include both non-tree edge ids
{4, 5} and {6, 7} as the first element in their
tuples denoting that path 6, 7 is an intersection
path of cycles formed by non-tree edges {4, 5}
and {6, 7}. Similarly, b(7), b(9) and b(10) in-
clude both non-tree edges' ids {6, 7} and {7,
8} as the first element in their tuples indicating
that path 7, 9, 10 is an intersection path of cy-
cles formed by non-tree edges {6, 7} and {7,
8}. Observe that in this manner intersection
paths are marked by the non-tree edges ids.

algorithm in [22]. The reason for starting with
such an initial cycle is because such a cycle
can be shown to comply with the restrictions
of a candidate diameter cycle. The process of
cycle expansion continues by replacing a path
on the initial cycle with one that is longer and
satisfying the cycle expansion condition; this
process is repeated on the resulting cycle un-
til no further expansion is possible. The cycle
expansion condition ensures that no vertex v on
the cycle is replaced by another vertex v that is
closer to an arbitrary vertex y on the cycle than
v in G in a cycle expansion step. In this process,
the length of the cycle is increased by replacing
paths of the cycle with other paths in G that are
longer in size. The cycle that can no longer be
expanded is identified as a candidate diameter
cycle CD by the cycle expansion process.
We now formally describe the cycle expansion
process. Let vertices i and j be two diameter
endpoints of a diameter path in G. Let Pf and
Ps be two vertex-disjoint paths of minimal total
length connecting diameter endpoints i and j,
and C0, referred to as initial cycle, be the cycle
formed by two vertex-disjoint paths Pf and Ps
which can be found using the algorithm pro-
posed in [23]. Also let C0, C1, C2, ..., Ck be a
sequence of cycles in G such that each cycle Ci
for 0 < i ≤ k, is obtained through the expansion
of cycle Ci -1. Path P(x, y) for 0 < i < k, refers
to a path on Ci -1 with origin x and terminal y.
Expansion path P'(x, y) of path P(x, y) refers to
a path on Ci in G for 0 < i ≤ k where P'(x, y) is
disjoint from P(x, y) except for its origin x and
terminal y such that path P'(x, y) is longer than
path P(x, y). Each expansion of cycle Ci -1 to
Ci is carried out by replacing a subpath P(x, y)
with a longer path P'(x, y) such that P(x, y) and
P'(x, y) satisfy the following cycle expansion
conditions:

 ● |P'(x, y)| > |P(x, y)|
 ● for every vertex v on C \ P(i, j), and vertex

x on P(i, j) and v on P'(i, j) such that z is a
vertex that minimizes d(v, z), v is a vertex
that minimizes d(v, w), and d(v, z) ≤ d(v, w)
holds; that is, for two vertices v, y on Ci -1
at distance D in G, vertex v is not replaced
by another vertex v on Ci at distance less
than D to y in G by a cycle expansion step,
where cycle in Ci is the cycle obtained
from Ci -1 in a single cycle expansion step.

After expanding an initial cycle to the point
where no more cycle expansions satisfying the
cycle expansion rules are possible, the resulting
cycle is identified as a candidate diameter cycle
CD . The algorithm implementing the aforemen-
tioned approach is given in Figure 6.
The following example demonstrates the way
a candidate diameter cycle is found by the al-
gorithm: given the graph in Figure 2, the algo-
rithm starts by computing the shortest distances
between every pair of vertices and the diameter
of the graph. The diameter of the graph in Fig-
ure 2 equals 2, thus vertices 1 and 5 are diame-
ter endpoints; edges (1, 2), (2, 5), (5, 4), (4, 1)
form an initial cycle C0, and by performing a
cycle expansion process we obtain the follow-
ing candidate diameter cycle: (1, 3), (3, 4), (4,
5), (5, 2), (2, 1). In the next step, the initial cy-
cle is expanded by identifying P(1, 4) and P'(1,
4) satisfying the cycle expansion rule and by
replacing P(1, 4) by P'(1, 4) in C0 to obtain cy-
cle C1 made up of edges (1, 3), (3, 4), (4, 5), (5,
2), (2, 1). Then the cycle expansion process is
applied to C1 which is not possible in this case;
thus the cycle C1 is identified as candidate di-
ameter cycle CD. The diameter cycle of a graph
given in Figure 2 is not unique. Observe that
edges (1, 4), (4, 5), (5, 6), (6, 1) form another
initial cycle leading to the construction of an-
other candidate diameter cycle (1, 3), (3, 4), (4,
5), (5, 6), (6, 1) of the graph. Notice that both
cycles contain the same number of edges and
are candidate diameter cycles of G.
The proposed algorithm finds a candidate di-
ameter cycle of G. The same algorithm can be
used to find other candidate cycles by execut-
ing the algorithm for initial cycles formed using
different diameter paths than the ones used in
earlier executions. Upon finding all candidate
cycles, the longest candidate diameter cycle can
be identified as a diameter cycle of G.
The proposed algorithm is referred to as a
brute-force algorithm since it does not include
an efficient mechanism to select the expansion
path and the selection that results in the mini-
mum number of path expansion steps to find a
candidate diameter cycle. In addition, an effi-
cient mechanism to select initial cycles that do
not result in candidate diameter cycles found in
its earlier iterations to find candidate diameter
cycles is not included in the algorithm. The cor-

232 233M. H. Karaata Algorithms for Finding Diameter Cycles of Biconnected Graphs

cles and the set of non-expanded cycles, if it
exists. If removing the intersecting path does
not result in a longer cycle, the neighbouring
cycle is included in the set of non-expandable
cycles for later consideration, provided that it
is not already present in the set of expandable
cycles. The set of expandable cycles contains
cycles that could not be expanded at the time
it is considered for expansion by removing its
intersection path with the candidate cycle. Note
that a neighbouring cycle that cannot be com-
bined with the candidate diameter cycle in the
current expansion can be used in a later expan-

sion step. Afterwards, another neighbouring cy-
cle of the candidate cycle is considered using
the same steps starting from the second step as
described above. The algorithm proceeds in this
manner until the candidate cycle cannot be ex-
panded with any of its neighbouring cycles. If
the current candidate cycle cannot be expanded
further, it is added to the set of expandable cy-
cles. Before terminating, the algorithm repeats
the expansion process for all the remaining cy-
cles in the non-expanded set. This would result
in one or more cycles remaining in the set of
expandable cycles which cannot be combined

Upon termination of the second phase, the third
(final) phase of the algorithm is entered in which
a diameter cycle in the graph is identified. In
this phase, a cycle referred to as the candidate
cycle is considered for expansion and expanded
in each step of the process. The proposed al-
gorithm first chooses the longest fundamental
cycle as the candidate cycle. Second, it marks
the sequence of vertices that forms the candi-
date cycle by traversing it. While vertices are
being marked, its neighbouring cycles and the
intersection paths of the candidate cycle with
neighbouring cycles are also identified. The al-
gorithm also determines the number of intersec-
tion paths between the candidate cycle and each
of the neighbouring cycles. An intersection path
of two cycles refers to a maximal path that is
common to both the cycles. Once the traversal
of the candidate cycle is complete, the proposed
algorithm chooses one of its neighbouring cy-
cles, if any, in order to perform the expansion.
This latter refers to the process where two
neighbouring cycles are combined by removing
their intersection paths, iff this results in a lon-
ger cycle satisfying the properties (i) and (ii) in

a cycle expansion step. Combining two neigh-
bouring cycles could potentially result in one
or more disconnected paths/cycles as shown in
Figure 9 where cycle c2 is disconnected from
the rest of the vertices when cycles c0 and c1
are combined. As a result of being disconnected
from the current candidate cycle, these paths/
cycles will not be considered for expansion of
the current candidate cycle. Furthermore, they
might also not be considered to become part of
a candidate diameter cycle formed when build-
ing a different candidate cycle which is formed
when the algorithm chooses a new initial cycle
to expand. Therefore, each cycle which is dis-
connected in an expansion step is added to the
set of non-expandable cycles so that it is consid-
ered in later expansion steps. The set of non-ex-
pandable cycles contains the set of cycles that
cannot be used for expansion currently and are
to be considered later for expansion. If such a
neighbouring cycle is found and is combined
with the candidate cycle, the combined cycle is
identified as the new candidate cycle and it is
marked. Subsequently, the neighbouring cycle
is removed from the set of neighbouring cy-

11

8754

1 2 963

10

b(4)={{{4,5}, {}}} b(5)={{{4,5}, {}}} b(7)={{{7,8}, {}}, {{6,7},{}}

b(8)={{{7,8}, {}}}

b(1)={{{1,2}, {}}}

b(2)={{{1,2}, {}}}

b(3)={{{4,5}, {}}}

b(6)={{{4,5}, {}}, {{6,7}, {}}}

b(9)={{{7,8}, {}}, {{6,7}, {}}}

b(10)={{{1,2}, {}}, {{4,5}, {3,6}}, {{7,8},{9}}, {{6,7},{9}}} b(11)={{{7,8},{6,9,3,4,5}}}

Figure 7. State of a system after termination.

1. set of all not yet considered fundamental cycles ac = fc
2. set of expandable cycles ex = ∅
3. set of non-expandable cycles ne = ∅
4. choose the longest fundamental cycle in fc and include in ne and remove from ac
5. while ne ≠ ∅ ∧ ac ≠ ∅ do
6. if ne ≠ ∅ then
7. select a cycle cc from ne and remove it from ne
8. else
9. select a cycle cc from ac and remove it from ne
10. end
11. traverse cc and identify its set of neighbouring cycles ncs
12. while ncs ≠ ∅ do
13. select a neighbouring cycle nc from ncs and remove it from ncs
14. if (removing the intersection path between nc and cc results in a longer cycle and no two vertices on

either cycle get closer together after combining) then
15. if nc ≠ ex then
16. remove nc from ex}
17. end
18. combine cycles nc and cc, and make it the new candidate cycle cc
19. traverse cc and update the neighbouring cycle set ncs
20. add any neighbouring cycle that becomes disconnected as a result of the expansion to ne
21. else
22. if nc ∉ ex then
23. remove nc from ac
24. add nc to ne
25. end
26. end
27. end
28. add cc to ex
29. end
30. select the longest cycle in ex as DC

Figure 8. The DC Algorithm using Fundamental Cycles.

232 233M. H. Karaata Algorithms for Finding Diameter Cycles of Biconnected Graphs

cles and the set of non-expanded cycles, if it
exists. If removing the intersecting path does
not result in a longer cycle, the neighbouring
cycle is included in the set of non-expandable
cycles for later consideration, provided that it
is not already present in the set of expandable
cycles. The set of expandable cycles contains
cycles that could not be expanded at the time
it is considered for expansion by removing its
intersection path with the candidate cycle. Note
that a neighbouring cycle that cannot be com-
bined with the candidate diameter cycle in the
current expansion can be used in a later expan-

sion step. Afterwards, another neighbouring cy-
cle of the candidate cycle is considered using
the same steps starting from the second step as
described above. The algorithm proceeds in this
manner until the candidate cycle cannot be ex-
panded with any of its neighbouring cycles. If
the current candidate cycle cannot be expanded
further, it is added to the set of expandable cy-
cles. Before terminating, the algorithm repeats
the expansion process for all the remaining cy-
cles in the non-expanded set. This would result
in one or more cycles remaining in the set of
expandable cycles which cannot be combined

Upon termination of the second phase, the third
(final) phase of the algorithm is entered in which
a diameter cycle in the graph is identified. In
this phase, a cycle referred to as the candidate
cycle is considered for expansion and expanded
in each step of the process. The proposed al-
gorithm first chooses the longest fundamental
cycle as the candidate cycle. Second, it marks
the sequence of vertices that forms the candi-
date cycle by traversing it. While vertices are
being marked, its neighbouring cycles and the
intersection paths of the candidate cycle with
neighbouring cycles are also identified. The al-
gorithm also determines the number of intersec-
tion paths between the candidate cycle and each
of the neighbouring cycles. An intersection path
of two cycles refers to a maximal path that is
common to both the cycles. Once the traversal
of the candidate cycle is complete, the proposed
algorithm chooses one of its neighbouring cy-
cles, if any, in order to perform the expansion.
This latter refers to the process where two
neighbouring cycles are combined by removing
their intersection paths, iff this results in a lon-
ger cycle satisfying the properties (i) and (ii) in

a cycle expansion step. Combining two neigh-
bouring cycles could potentially result in one
or more disconnected paths/cycles as shown in
Figure 9 where cycle c2 is disconnected from
the rest of the vertices when cycles c0 and c1
are combined. As a result of being disconnected
from the current candidate cycle, these paths/
cycles will not be considered for expansion of
the current candidate cycle. Furthermore, they
might also not be considered to become part of
a candidate diameter cycle formed when build-
ing a different candidate cycle which is formed
when the algorithm chooses a new initial cycle
to expand. Therefore, each cycle which is dis-
connected in an expansion step is added to the
set of non-expandable cycles so that it is consid-
ered in later expansion steps. The set of non-ex-
pandable cycles contains the set of cycles that
cannot be used for expansion currently and are
to be considered later for expansion. If such a
neighbouring cycle is found and is combined
with the candidate cycle, the combined cycle is
identified as the new candidate cycle and it is
marked. Subsequently, the neighbouring cycle
is removed from the set of neighbouring cy-

11

8754

1 2 963

10

b(4)={{{4,5}, {}}} b(5)={{{4,5}, {}}} b(7)={{{7,8}, {}}, {{6,7},{}}

b(8)={{{7,8}, {}}}

b(1)={{{1,2}, {}}}

b(2)={{{1,2}, {}}}

b(3)={{{4,5}, {}}}

b(6)={{{4,5}, {}}, {{6,7}, {}}}

b(9)={{{7,8}, {}}, {{6,7}, {}}}

b(10)={{{1,2}, {}}, {{4,5}, {3,6}}, {{7,8},{9}}, {{6,7},{9}}} b(11)={{{7,8},{6,9,3,4,5}}}

Figure 7. State of a system after termination.

1. set of all not yet considered fundamental cycles ac = fc
2. set of expandable cycles ex = ∅
3. set of non-expandable cycles ne = ∅
4. choose the longest fundamental cycle in fc and include in ne and remove from ac
5. while ne ≠ ∅ ∧ ac ≠ ∅ do
6. if ne ≠ ∅ then
7. select a cycle cc from ne and remove it from ne
8. else
9. select a cycle cc from ac and remove it from ne
10. end
11. traverse cc and identify its set of neighbouring cycles ncs
12. while ncs ≠ ∅ do
13. select a neighbouring cycle nc from ncs and remove it from ncs
14. if (removing the intersection path between nc and cc results in a longer cycle and no two vertices on

either cycle get closer together after combining) then
15. if nc ≠ ex then
16. remove nc from ex}
17. end
18. combine cycles nc and cc, and make it the new candidate cycle cc
19. traverse cc and update the neighbouring cycle set ncs
20. add any neighbouring cycle that becomes disconnected as a result of the expansion to ne
21. else
22. if nc ∉ ex then
23. remove nc from ac
24. add nc to ne
25. end
26. end
27. end
28. add cc to ex
29. end
30. select the longest cycle in ex as DC

Figure 8. The DC Algorithm using Fundamental Cycles.

234 235M. H. Karaata Algorithms for Finding Diameter Cycles of Biconnected Graphs

two, in the third phase of the algorithm, the lon-
gest fundemental cycle, given by max(fc), is
designated as the candidate cycle cc. The se-
quence of vertices forming the candidate cycle
is marked. A variable, called ce, is maintained
for each vertex i. c(i) contains the non-tree edge
identifying the cycle, and the vertex id of the
next vertex on the cycle.
We now describe the computation of variable
ce of vertices on cc to mark cc. Variable ce of a
vertex denotes the sequence of vertices in a cy-
cle, where ce(i) ∈ {t0, t1, ...} = ∅ initially holds,
i is a vertex on the cycle, and tj, 0 < j, is of the
form {c, v} where c is a cycle id and v is the
vertex id i is pointing to. Starting from one of
the vertices on cc, the algorithm traverses all
the vertices on cc to identify its neighbouring
cycles and stores the set of neighbouring cycles
in variable ncs. Vertices that contain multiple
cycles in their s-sets are vertices that are shared
between two or more fundamental cycles. In
the traversal, the next vertex is identified as a
vertex containing the id of cc in its s-set. Before
moving to the identified neighbour, the variable
ce of the current vertex is assigned the id of the
identified neighbour so that the variable ce of
each vertex points to the next vertex on the cy-
cle. Then, the same is repeated for the neigh-
bouring vertex, and so on. In this manner, cc
is marked where ce variables of vertices on cc
form a cycle. While the cycle is marked, the al-
gorithm also identifies the neighbouring cycles
of cc and stores them in variable ncs.
After all the vertices on the candidate cycle are
traversed in this manner, a neighbouring cycle
is chosen from ncs and is assigned to the vari-
able nc. The candidate cycle cc and cycle nc are
examined. If removing the intersecting path and
combining the two cycles results in a longer cy-
cle, and no vertex v on the cycle is replaced by
another vertex v that is closer to an arbitrary
node y on the cycle than v in G in a cycle ex-
pansion step, then the candidate cycle and cycle
nc are combined and this new cycle is designat-
ed as the new candidate cycle. In addition, any
neighbouring cycle of the candidate cycle that
is disconnected is added to the non-expanded
set ne. Then, it is traversed again to update ce
values and the neighbouring cycle set ncs. Note
that if nc was present in the set of expandable
cycles ex, nc is removed from ex before the cy-
cles are combined. This is done since cycle nc is

with any other cycle. The diameter cycle is
identified as the longest one in the set of ex-
pandable cycles.

C1C0 C2

Figure 9. Forming a disconnected cycle by combining
two cycles.

The last phase of the above approach, which
consists of the algorithmic steps after the fun-
damental cycles are found, is summarized using
the pseudocode given in Figure 8.

4.2. Algorithm Description

Now we describe the algorithm and provide im-
plementation details.
The first phase of the algorithm identifies all
the fundamental cycles in the bi-connected
graph and stores them in a variable called fc.
The variable fc is of the form fc{a, b} = {id0,
id1, id2, ..., idn}, where {a, b} refers to the non-
tree edge of a fundamental cycle, and idi, 0 ≤ i ≤
n, refers to the vertex (id) contained in the fun-
damental cycle formed by non-tree edge {a, b}.
Note that the non-tree edge of the fundamen-
tal cycle is used as the unique id for the cycle.
Hence, the fc variable associated with each cy-
cle stores the set of vertices that are part of the
cycle. The second phase of the algorithm marks
each vertex in the graph with the fundamental
cycle(s) it is part of. For each vertex i, this is
done by assigning the unique id of the cycle(s)
containing vertex i to the s-set of each vertex i.
For each vertex i, s-set s(i) stores cycle ids in
the form s(i) = {{a, b}, {c, d}, ...}, where {a,
b}, {c, d}, ... are non-tree edges associated with
fundamental cycles containing vertex i. This al-
lows the identification of intersections between
two cycles by examining the s-sets of vertices
in the cycles.
After computing the fundamental cycle set fc
and the s-set of each vertex in phases one and

used in the expansion process to obtain a longer
cycle. The set ex is maintained by our algorithm
to keep track of the candidate cycles such that a
candidate cycle ζ is added to set ex if ζ currently
cannot be combined with any of its neighboring
cycles. However, cycles in set ex could poten-
tially be combined with other cycles after the
other cycles are expanded and become longer
in later stages.
During the expansion process, a candidate cy-
cle may not be expanded with any of its neigh-
bours and the cycles to consider in ne may have
been exhausted though there are fundamental
cycles that have not been considered for expan-
sion. To ensure that all fundamental cycles are
considered, the set of all fundamental cycles is
kept in variable ac and any fundamental cycle
not considered before is selected from ac when
the candidate cycle cannot be expanded and set
ne is empty.
Subsequently, the next neighbouring cycle in
ncs is considered. If removing the intersecting
path does not result in a longer cycle, then the
algorithm adds nc to ne for further consider-

ation later, provided nc is not present in ex. If
nc is already present in ex, there is no need to
consider it later as it has already been consid-
ered for expansion. This process continues until
we have no more neighbouring cycles to look at
and the candidate cycle is eventually added to
ex. The algorithm repeats the process for the re-
maining cycles in ne and then in ac. Once they
have all been considered, the longest remaining
cycle in ex is marked as the DC.
We need the following notation to facilitate the
description of the algorithm.
Tuple 〈c, vnext〉 denotes a tuple where the first
element is cycle c and second element is vertex
vnext. Tuple 〈x, -〉 denotes a tuple that has cycle
(id) x as its first element and the second element
does not matter (i.e., it is irrelevant). For a tuple
whose first element is a cycle id and the second
element is an integer, tuple 〈x, a++〉 denotes a
tuple whose first element is x while the second
element is a plus one. Using the above descrip-
tions, the rest of the similar notation can readily
be understood. The algorithm described above
is given in Figure 10.

Parameters
N(i) ∈ {1, 2, ..., n - 1}: denotes the set of neighbours of vertex i, where n represents the set of vertices in the

network
fc: denotes the set of all fundamental cycles in G (computed in earlier phases)
s(i) ⊂ E: denotes the non-tree edge(s) assigned to each vertex i, revealing which
 fundamental cycle(s) it is part of (computed in earlier phases)

Variables
ncs ∈ {p0, p1, ...} denotes a set of neighbouring cycles {p0, p1, ...} where pj, 0 < j, is of the form idfc where
 idfc is a cycle id
ne ⊂ E: denotes the set of non-expandable cycles that are yet to be considered
ex ⊂ E: denotes the set of expandable cycles
ce(i) ∈ {t0, t1, ...}: denotes the sequence of vertices in a cycle, where ce(i) ∈ {t0, t1, ...} = ∅ initially holds,
 so that i is a vertex on the cycle, and tj, 0 < j, is of the form {c, v} where c is a cycle id and
 v is the vertex id i is pointing to
ac: set of all fundamental cycles
nc: temporary set of all neighbouring cycles x

Functions
lenInt(c1, c2): takes two cycle id's as parameters and returns the length of their intersection paths
lenNInt(c1, c2): takes two cycle id's as parameters and returns the length of cycle c1 after
 subtracting the length of the intersection path between the two cycles.
max(s): returns the longest cycle among set of cycles in s

Figure 10. Algorithm to find Diameter Cycles in an Arbitrary Biconnected Graph.

234 235M. H. Karaata Algorithms for Finding Diameter Cycles of Biconnected Graphs

two, in the third phase of the algorithm, the lon-
gest fundemental cycle, given by max(fc), is
designated as the candidate cycle cc. The se-
quence of vertices forming the candidate cycle
is marked. A variable, called ce, is maintained
for each vertex i. c(i) contains the non-tree edge
identifying the cycle, and the vertex id of the
next vertex on the cycle.
We now describe the computation of variable
ce of vertices on cc to mark cc. Variable ce of a
vertex denotes the sequence of vertices in a cy-
cle, where ce(i) ∈ {t0, t1, ...} = ∅ initially holds,
i is a vertex on the cycle, and tj, 0 < j, is of the
form {c, v} where c is a cycle id and v is the
vertex id i is pointing to. Starting from one of
the vertices on cc, the algorithm traverses all
the vertices on cc to identify its neighbouring
cycles and stores the set of neighbouring cycles
in variable ncs. Vertices that contain multiple
cycles in their s-sets are vertices that are shared
between two or more fundamental cycles. In
the traversal, the next vertex is identified as a
vertex containing the id of cc in its s-set. Before
moving to the identified neighbour, the variable
ce of the current vertex is assigned the id of the
identified neighbour so that the variable ce of
each vertex points to the next vertex on the cy-
cle. Then, the same is repeated for the neigh-
bouring vertex, and so on. In this manner, cc
is marked where ce variables of vertices on cc
form a cycle. While the cycle is marked, the al-
gorithm also identifies the neighbouring cycles
of cc and stores them in variable ncs.
After all the vertices on the candidate cycle are
traversed in this manner, a neighbouring cycle
is chosen from ncs and is assigned to the vari-
able nc. The candidate cycle cc and cycle nc are
examined. If removing the intersecting path and
combining the two cycles results in a longer cy-
cle, and no vertex v on the cycle is replaced by
another vertex v that is closer to an arbitrary
node y on the cycle than v in G in a cycle ex-
pansion step, then the candidate cycle and cycle
nc are combined and this new cycle is designat-
ed as the new candidate cycle. In addition, any
neighbouring cycle of the candidate cycle that
is disconnected is added to the non-expanded
set ne. Then, it is traversed again to update ce
values and the neighbouring cycle set ncs. Note
that if nc was present in the set of expandable
cycles ex, nc is removed from ex before the cy-
cles are combined. This is done since cycle nc is

with any other cycle. The diameter cycle is
identified as the longest one in the set of ex-
pandable cycles.

C1C0 C2

Figure 9. Forming a disconnected cycle by combining
two cycles.

The last phase of the above approach, which
consists of the algorithmic steps after the fun-
damental cycles are found, is summarized using
the pseudocode given in Figure 8.

4.2. Algorithm Description

Now we describe the algorithm and provide im-
plementation details.
The first phase of the algorithm identifies all
the fundamental cycles in the bi-connected
graph and stores them in a variable called fc.
The variable fc is of the form fc{a, b} = {id0,
id1, id2, ..., idn}, where {a, b} refers to the non-
tree edge of a fundamental cycle, and idi, 0 ≤ i ≤
n, refers to the vertex (id) contained in the fun-
damental cycle formed by non-tree edge {a, b}.
Note that the non-tree edge of the fundamen-
tal cycle is used as the unique id for the cycle.
Hence, the fc variable associated with each cy-
cle stores the set of vertices that are part of the
cycle. The second phase of the algorithm marks
each vertex in the graph with the fundamental
cycle(s) it is part of. For each vertex i, this is
done by assigning the unique id of the cycle(s)
containing vertex i to the s-set of each vertex i.
For each vertex i, s-set s(i) stores cycle ids in
the form s(i) = {{a, b}, {c, d}, ...}, where {a,
b}, {c, d}, ... are non-tree edges associated with
fundamental cycles containing vertex i. This al-
lows the identification of intersections between
two cycles by examining the s-sets of vertices
in the cycles.
After computing the fundamental cycle set fc
and the s-set of each vertex in phases one and

used in the expansion process to obtain a longer
cycle. The set ex is maintained by our algorithm
to keep track of the candidate cycles such that a
candidate cycle ζ is added to set ex if ζ currently
cannot be combined with any of its neighboring
cycles. However, cycles in set ex could poten-
tially be combined with other cycles after the
other cycles are expanded and become longer
in later stages.
During the expansion process, a candidate cy-
cle may not be expanded with any of its neigh-
bours and the cycles to consider in ne may have
been exhausted though there are fundamental
cycles that have not been considered for expan-
sion. To ensure that all fundamental cycles are
considered, the set of all fundamental cycles is
kept in variable ac and any fundamental cycle
not considered before is selected from ac when
the candidate cycle cannot be expanded and set
ne is empty.
Subsequently, the next neighbouring cycle in
ncs is considered. If removing the intersecting
path does not result in a longer cycle, then the
algorithm adds nc to ne for further consider-

ation later, provided nc is not present in ex. If
nc is already present in ex, there is no need to
consider it later as it has already been consid-
ered for expansion. This process continues until
we have no more neighbouring cycles to look at
and the candidate cycle is eventually added to
ex. The algorithm repeats the process for the re-
maining cycles in ne and then in ac. Once they
have all been considered, the longest remaining
cycle in ex is marked as the DC.
We need the following notation to facilitate the
description of the algorithm.
Tuple 〈c, vnext〉 denotes a tuple where the first
element is cycle c and second element is vertex
vnext. Tuple 〈x, -〉 denotes a tuple that has cycle
(id) x as its first element and the second element
does not matter (i.e., it is irrelevant). For a tuple
whose first element is a cycle id and the second
element is an integer, tuple 〈x, a++〉 denotes a
tuple whose first element is x while the second
element is a plus one. Using the above descrip-
tions, the rest of the similar notation can readily
be understood. The algorithm described above
is given in Figure 10.

Parameters
N(i) ∈ {1, 2, ..., n - 1}: denotes the set of neighbours of vertex i, where n represents the set of vertices in the

network
fc: denotes the set of all fundamental cycles in G (computed in earlier phases)
s(i) ⊂ E: denotes the non-tree edge(s) assigned to each vertex i, revealing which
 fundamental cycle(s) it is part of (computed in earlier phases)

Variables
ncs ∈ {p0, p1, ...} denotes a set of neighbouring cycles {p0, p1, ...} where pj, 0 < j, is of the form idfc where
 idfc is a cycle id
ne ⊂ E: denotes the set of non-expandable cycles that are yet to be considered
ex ⊂ E: denotes the set of expandable cycles
ce(i) ∈ {t0, t1, ...}: denotes the sequence of vertices in a cycle, where ce(i) ∈ {t0, t1, ...} = ∅ initially holds,
 so that i is a vertex on the cycle, and tj, 0 < j, is of the form {c, v} where c is a cycle id and
 v is the vertex id i is pointing to
ac: set of all fundamental cycles
nc: temporary set of all neighbouring cycles x

Functions
lenInt(c1, c2): takes two cycle id's as parameters and returns the length of their intersection paths
lenNInt(c1, c2): takes two cycle id's as parameters and returns the length of cycle c1 after
 subtracting the length of the intersection path between the two cycles.
max(s): returns the longest cycle among set of cycles in s

Figure 10. Algorithm to find Diameter Cycles in an Arbitrary Biconnected Graph.

236 237M. H. Karaata Algorithms for Finding Diameter Cycles of Biconnected Graphs

5. Proof of Correctness

In this section, we provide a correctness proof
for the proposed diameter cycle algorithm.
Lemma 1. The cycle expansion process even-
tually considers every fundamental cycle in the
graph.
Proof. The algorithm maintains a set of funda-
mental cycles contained in the graph. The algo-
rithm starts by picking the largest fundamental
cycle from this set, upon which the expansion
process is applied. Then, the algorithm consid-
ers the neighbours of the selected fundamental
cycle for expansion. Subsequently, the neigh-
bours of the neighbouring cycle are considered
that are used for expansion, and so on. If a fun-
damental cycle is not reached in the expansion
process, it remains in set ac and is eventually
considered (when the current cannot be ex-
panded further). Since each fundamental cy-
cle is a neighbour of another in a biconnected
graph, and the number of fundamental cycles
in a particular graph G is finite, the algorithm
eventually visits and considers every funda-
mental cycle either as a neighbour of a cycle
under consideration or as a cycle not considered
in set ac. Hence the proof follows. □
Consider the graph given in Figure 11, where
cycles C0, C1, subcycle S0 of C0, subcycle S1 of
C1 are clearly shown. The figure also shows di-
ameter cycle D using dashed lines. The follow-
ing lemma shows that if there exists cycles C0
and C1 with subcycles S0 and S1, respectively
such that S0 and S1 are part of a diameter cycle
of the graph, cycles C0 and C1 are eventually
combined to include S0 and S1 in D.
Lemma 2. Let C0 be a candidate cycle and C1 be
another cycle in graph G such that both cycles

contain segments that are part of diameter cy-
cle D. When the proposed expansion process is
applied to C0, cycles C0 and C1 are eventually
combined and the segments are included as part
of D.
Proof. Consider the diameter cycle D where
segments of C0 and C1 are part of diameter cy-
cle D. Since G is a biconnected graph and seg-
ments of C0 and C1 are part of diameter cycle
D, either C0 and C1 are neighbouring cycles or
there exists a set of one or more fundamental
cycles connecting C0 and C1.
Case 1: Cycles C0 and C1 are neighbours. In

this case, clearly cycles C0 and C1 are
combined and the segments of C0 and
C1 are included in the candidate cycle.

Case 2: Cycles C0 and C1 are not neighbours.
It is easy to show by contradiction
that there exists a sequence of cycles
Γ0 = C0, Γ1, ..., Γk = C1 in G such that
there exists two consecutive cycles Γi
and Γi + 1, 0 ≤ i < k, that can be com-
bined leading to a sequence of cycles
of length k - 1. Since the proposed al-
gorithm eventually selects the cycles
that can be combined in the expansion
process by Lemma 1, it can be shown
inductively that cycles C0 and C1 are
eventually combined.

In addition, it is easy to show by contradiction
that upon its inclusion in the candidate cycles,
since no segment/path of longer length con-
necting its endpoints can be found (due to the
segment being in diameter cycle D), the seg-
ments of C0 and C1 in D remain as part of the
candidate cycle during the expansion process.
Hence the proof follows. □Figure 10 (cont.)

mark(c) ≡ v := x | x ∈ c;
 do (∃vnext ∈N(v){{c, vnext} ∉ce(v)) ∧ c ∈s(vnext)})
 if {∃x ∈ce(v) {{x, -} ∉ncs}} → ncs := ncs

∩
 {x, 0};

 if {∃x ∉ce(v) {{{x, a} ∈ncs} ∧ {x ∈ce(vnext)}} → ncs := ncs \ {x, a}
∩

 {x, a++};
 ce(v) = ce(v)

∩
 {c, vnext}; ce(vnext) = ce(vnext)

∩
 {c, v};

 od

combine(cc, nc) ≡ i = 0;
 do (∃v ∈V ({nc, -} ∈ce(v)))
 v = x | {nc, -} ∈ ce(x);
 if ({cc, -} ∈ce(v) ∧ {nc, -} ∈ce(v)) ∨ ({cc, -} ∉ce(v) ∧{nc, -} ∈ce(v)))
 if (∃vnext ∈ N(v) {nc, vnext} ∈ce(v))
 ce(v) := ce(v) \ {nc, vnext}

∩
 {cc, vnext};

 ce(vnext) := ce(vnext)
∩

 {cc, v};
 else if (i = 0)
 first := v; i := 1;
 od

Actions
nc = ∅;
ex = ∅;
ne = ne

∩
 max(fc)};

ac = fc \ max(fc);
do (ne ≠ ∅ ∧ ac ≠ ∅)
 if ne ≠ ∅
 cc := { {x} | x ∈ne};
 else
 cc := {x} | x ∈ac};
 ne := ne \ cc;
 mark(cc);
 do (ncs ≠ ∅)
 nc = x | {x, 0} ∈ncs
 lenint = lenInt(cc, nc);
 if (lenint < LenNInt(nc, cc) ∧ lenint < LenNInt(cc, nc) ∧ ¬∃(a ∈cc ∧ b ∈cc ∩ nc) (d(a, b) < d(a, c)))
 if nc ∈ex
 ex = ex \ nc
 combine(cc, nc);
 mark(cc);
 else
 if (nc ∉ex)
 ac := ac \ nc
 ne = ne

∩
 nc

 od
 ex = ex

∩
 cc;

od
output → max(ex)

S0 C0 C1 S1

D

Figure 11. Diameter cycle D for Proof of Correctness.

236 237M. H. Karaata Algorithms for Finding Diameter Cycles of Biconnected Graphs

5. Proof of Correctness

In this section, we provide a correctness proof
for the proposed diameter cycle algorithm.
Lemma 1. The cycle expansion process even-
tually considers every fundamental cycle in the
graph.
Proof. The algorithm maintains a set of funda-
mental cycles contained in the graph. The algo-
rithm starts by picking the largest fundamental
cycle from this set, upon which the expansion
process is applied. Then, the algorithm consid-
ers the neighbours of the selected fundamental
cycle for expansion. Subsequently, the neigh-
bours of the neighbouring cycle are considered
that are used for expansion, and so on. If a fun-
damental cycle is not reached in the expansion
process, it remains in set ac and is eventually
considered (when the current cannot be ex-
panded further). Since each fundamental cy-
cle is a neighbour of another in a biconnected
graph, and the number of fundamental cycles
in a particular graph G is finite, the algorithm
eventually visits and considers every funda-
mental cycle either as a neighbour of a cycle
under consideration or as a cycle not considered
in set ac. Hence the proof follows. □
Consider the graph given in Figure 11, where
cycles C0, C1, subcycle S0 of C0, subcycle S1 of
C1 are clearly shown. The figure also shows di-
ameter cycle D using dashed lines. The follow-
ing lemma shows that if there exists cycles C0
and C1 with subcycles S0 and S1, respectively
such that S0 and S1 are part of a diameter cycle
of the graph, cycles C0 and C1 are eventually
combined to include S0 and S1 in D.
Lemma 2. Let C0 be a candidate cycle and C1 be
another cycle in graph G such that both cycles

contain segments that are part of diameter cy-
cle D. When the proposed expansion process is
applied to C0, cycles C0 and C1 are eventually
combined and the segments are included as part
of D.
Proof. Consider the diameter cycle D where
segments of C0 and C1 are part of diameter cy-
cle D. Since G is a biconnected graph and seg-
ments of C0 and C1 are part of diameter cycle
D, either C0 and C1 are neighbouring cycles or
there exists a set of one or more fundamental
cycles connecting C0 and C1.
Case 1: Cycles C0 and C1 are neighbours. In

this case, clearly cycles C0 and C1 are
combined and the segments of C0 and
C1 are included in the candidate cycle.

Case 2: Cycles C0 and C1 are not neighbours.
It is easy to show by contradiction
that there exists a sequence of cycles
Γ0 = C0, Γ1, ..., Γk = C1 in G such that
there exists two consecutive cycles Γi
and Γi + 1, 0 ≤ i < k, that can be com-
bined leading to a sequence of cycles
of length k - 1. Since the proposed al-
gorithm eventually selects the cycles
that can be combined in the expansion
process by Lemma 1, it can be shown
inductively that cycles C0 and C1 are
eventually combined.

In addition, it is easy to show by contradiction
that upon its inclusion in the candidate cycles,
since no segment/path of longer length con-
necting its endpoints can be found (due to the
segment being in diameter cycle D), the seg-
ments of C0 and C1 in D remain as part of the
candidate cycle during the expansion process.
Hence the proof follows. □Figure 10 (cont.)

mark(c) ≡ v := x | x ∈ c;
 do (∃vnext ∈N(v){{c, vnext} ∉ce(v)) ∧ c ∈s(vnext)})
 if {∃x ∈ce(v) {{x, -} ∉ncs}} → ncs := ncs

∩
 {x, 0};

 if {∃x ∉ce(v) {{{x, a} ∈ncs} ∧ {x ∈ce(vnext)}} → ncs := ncs \ {x, a}
∩

 {x, a++};
 ce(v) = ce(v)

∩
 {c, vnext}; ce(vnext) = ce(vnext)

∩
 {c, v};

 od

combine(cc, nc) ≡ i = 0;
 do (∃v ∈V ({nc, -} ∈ce(v)))
 v = x | {nc, -} ∈ ce(x);
 if ({cc, -} ∈ce(v) ∧ {nc, -} ∈ce(v)) ∨ ({cc, -} ∉ce(v) ∧{nc, -} ∈ce(v)))
 if (∃vnext ∈ N(v) {nc, vnext} ∈ce(v))
 ce(v) := ce(v) \ {nc, vnext}

∩
 {cc, vnext};

 ce(vnext) := ce(vnext)
∩

 {cc, v};
 else if (i = 0)
 first := v; i := 1;
 od

Actions
nc = ∅;
ex = ∅;
ne = ne

∩
 max(fc)};

ac = fc \ max(fc);
do (ne ≠ ∅ ∧ ac ≠ ∅)
 if ne ≠ ∅
 cc := { {x} | x ∈ne};
 else
 cc := {x} | x ∈ac};
 ne := ne \ cc;
 mark(cc);
 do (ncs ≠ ∅)
 nc = x | {x, 0} ∈ncs
 lenint = lenInt(cc, nc);
 if (lenint < LenNInt(nc, cc) ∧ lenint < LenNInt(cc, nc) ∧ ¬∃(a ∈cc ∧ b ∈cc ∩ nc) (d(a, b) < d(a, c)))
 if nc ∈ex
 ex = ex \ nc
 combine(cc, nc);
 mark(cc);
 else
 if (nc ∉ex)
 ac := ac \ nc
 ne = ne

∩
 nc

 od
 ex = ex

∩
 cc;

od
output → max(ex)

S0 C0 C1 S1

D

Figure 11. Diameter cycle D for Proof of Correctness.

238 239M. H. Karaata Algorithms for Finding Diameter Cycles of Biconnected Graphs

Lemma 3. If two neighbouring cycles C1 and
C2 are expanded by removing the common path
P between them, P will not be included in the
diameter cycle found or in any other cycle ob-
tained in intermediate expansion steps.
Proof. Recall that in each step of the expansion
process, an intersection path of two cycles is re-
placed by a longer path. Let C0 be a cycle which
expanded using cycle C1 by removing the inter-
section of the two cycles. Let path P with end-
points of i and j be the intersection of two initial
cycles to obtain the resulting cycle. Also, let P'
and P'' be the remainder of cycle C0 and C1,
after the removal of path P from cycle C0 and
C1, respectively. Observe that if P is included
again in the candidate cycle, one of P', P'', or
a longer path that replaced one of them needs
to be excluded. This contradicts the definition
of a candidate diameter cycle and the expan-
sion process, as no two vertices on the graph
should get closer upon an expansion step. This
is a contradiction. Hence, the proof follows. □
Lemma 4. The state-space and time complexity
of the algorithm are O(n2) and O(n6) respec-
tively.
Proof. We require each vertex in the graph to
store its set of neighbours variable N() and the
cycles it is part of variable ce. For n vertices,
each of these stored values have a state-space
of O(n) and hence, the algorithm requires state-
space of O(n2) in total for these variables. In
addition, it is easy to observe that each of the
variables fc, ncs, ne, ex, and ac contribute to the
state-space complexity by O(n2).
Consider Figure 8 and the algorithm given in
Figure 10. The first loop in the algorithm has
a time complexity of O(n2) as it depends on
the number of non-expandable cycles (marked
using edges), which is O(n2) in the worst case.
Traversing and marking a cycle takes O(n)
steps inside the outer loop. The inner loop de-
pends on the size of the neighbouring cycle set
ncs which also has an upper bound of O(n2). In-
side the inner loop, we have two steps that con-
tribute to the time complexity. First, combining
two cycles would depend on the length of the
cycles, which has time complexity of O(n).
Second, traversing and marking the new can-
didate cycle takes O(n) steps. Hence, the time
complexity of the algorithm is O(n6). Hence the
proof follows. □

Theorem 1. The proposed diameter cycle algo-
rithm finds a diameter cycle of a given graph G
in O(n6) time with space complexity of O(n2).
Proof. By Lemma 1, we know the algorithm
eventually considers every fundamental cycle
in the graph.
By Lemmas 1 and 2, every fundamental cycle
is to be considered in the expansion process,
the segments of the fundamental cycles that are
contained in a diameter cycle is included in a
candidate cycle, and they remain as part of the
candidate cycle. Therefore, each candidate cy-
cle is expanded until a point where it can no
longer be expanded.
Also observe that after a candidate cycle is ex-
panded into a candidate diameter cycle, a cycle/
fundamental cycle in the non-expanded set or a
fundamental cycle unconsidered, if any, is con-
sidered for expansion. If the newly considered
candidate cycle is not combined with previous-
ly discovered candidate cycles, a new candidate
cycle is formed, which leads to the discovery of
a new candidate cycle. When a fundamental cy-
cle is considered, its segments in the diameter/
candidate cycle are added to the candidate cycle
and they remain as part of the candidate cycle
by Lemma 3. In this manner, all candidate di-
ameter cycles are found. The longest candidate
cycle among them is identified as the diameter
cycle of the graph.
The time and space complexites of the algo-
rithm follow from Lemma 4. Hence the proof
follows. □

6. Conclusion

This paper first presents a brute-force abstract
algorithm for finding a candidate diameter cy-
cle based on constructing a cycle of G between
two diameter endpoints and a cycle expansion
process satisfying a number of rules. The pro-
cess of cycle expansion starts by replacing each
sub-path in the initial cycle with one that con-
tains more edges and this process is repeated on
the resulting cycle till no further expansion is
possible. The cycle produced by the cycle ex-
pansion process that can no longer be expanded
is identified as a candidate diameter cycle. The
second algorithm employs a novel implemen-

tation using fundamental cycles in the expan-
sion process.
Finding a diameter cycle in the graph is use-
ful in improving cycle layout representation of
graphs where it minimizes link crossings and
reduces the graph area. In addition, diameter
cycle provides a ring-based graph protection
for all the vertices in the graph. Detection of
the global geometric shape of the network al-
lows the connectivity structure of a network to
be discovered and improves network efficiency,
optimizes certain parameters of the network,
protects path failures and minimizes the com-
plexity in routing. Identification of diameter
cycles is also useful in network design; which
serves as a survival mechanism against vertex
failures and provides failure independent path
protection for the vertices on the cycle and
other vertices. The identification of a diame-
ter cycle of a graph is useful in graph layout
enhancement, failure independent path protec-
tion, ring-based graph protection and various
path constructions.

Acknowledgment

The author would like to thank the anonymous
reviewers for their helpful comments that great-
ly contributed to improving the quality of the
paper. This work is supported by the Kuwait
University Research Administration Grant EO
01/17.

References

[1] S. D. Nikolopoulos and L. Palios, ''Detecting
Holes and Antiholes in Graphs'', Algorithmica,
vol. 47, no. 2, pp. 119‒138, 2007.
http://dx.doi.org/10.1007/s00453-006-1225-y

[2] N. Chandrachoodan et al., ''Adaptive Negative
Cycle Detection in Dynamic Graphs'', in Proc. of
the 2001 IEEE International Symposium on Cir-
cuits and Systems, 2001, pp. 163‒166.
http://dx.doi.org/10.1109/ISCAS.2001.922010

[3] M. H. Karaata, ''A Stabilizing Algorithm for Nd-
ing Biconnected Components'', Journal of Paral-
lel and Distributed Computing, vol. 62, no. 5, pp.
982‒999, 2002.
http://dx.doi.org/10.1006/jpdc.2001.1833

[4] J. S. Deogun et al., ''An Algorithm for Boundary
Discovery in Wireless Sensor Networks'', High
Performance Computing‒HiPC 2005, Springer,
2005, pp. 343‒352.
http://dx.doi.org/10.1007/11602569_37

[5] I. Khan et al., ''An Overview of Holes in Wireless
Sensor Networks'', in Proc. of the 11th Annual
Postgraduate Symposium on the Convergence of
Telecommunications, Networking and Broadcast-
ing, 2010.

[6] J. M. Six and I. G. Tollis, ''Circular Drawings of
Biconnected Graphs'', In: Workshop on Algo-
rithm Engineering and Experimentation, Spring-
er, 1999, pp. 57‒73.
http://dx.doi.org/10.1007/3-540-48518-X_4

[7] M. Klammler et al., ''Aesthetic Discrimination
of Graph Layouts'', International Symposium
on Graph Drawing and Network Visualization,
Springer, 2018, pp. 169‒184.
http://dx.doi.org/10.1007/978-3-030-04414-5_12

[8] A. Arleo et al., ''A Distributed Multilevel
Force-Directed Algorithm'', IEEE Transactions
on Parallel and Distributed Systems, 2018.
http://dx.doi.org/10.1109/TPDS.2018.2869805

[9] W. He and A. K. Somani, ''Path-Based Protection
for Surviving Double-Link Failures in Mesh-Re-
storable Optical Networks'', in Proc. of the IEEE
Global Telecommunications Conference, 2003,
pp. 2558‒2563.
http://dx.doi.org/10.1109/GLOCOM.2003.1258699

[10] R. Asthana et al., ''p-Cycles: An Overview'', IEEE
communications surveys & tutorials, vol. 12, no.
1, pp. 97‒111, 2010.
http://dx.doi.org/10.1109/SURV.2010.020110.00066

[11] G. D. Morley and W. D. Grover, ''Current Ap-
proaches in the Design of Ring-Based Optical
Networks'', in Proc. of the IEEE Canadian Con-
ference on Electrical and Computer Engineering,
1999, pp. 220‒225.
http://dx.doi.org/10.1109/CCECE.1999.807199

[12] C. Mauz, ''p-Cycle Protection in Wavelength
Routed Networks'', in Proc. of the Seventh Work-
ing Conference on Optical Network Design and
Modelling (ONDM'03), 2003.

[13] G. Shen and W. Grover, ''Extending the p-Cycle
Concept to Path Segment Protection for Span and
Nnode Failure Recovery'', IEEE Journal on Se-
lected Areas in Communications, vol. 21, no. 8,
pp. 1306‒1319, 2003.
http://dx.doi.org/10.1109/JSAC.2003.816598

[14] B. [14] et al., ''Surviving Multiple Network Fail-
ures Using Shared Backup Path Protection'', in
Proc. of the Eighth IEEE Symposium on Comput-
ers and Communications, 2003, pp. 1333‒1340.
http://dx.doi.org/10.1109/ISCC.2003.1214298

[15] A. Kodian and W. Grover, ''Failure-Independent
Path-Protecting p-Cycles: Ecient and Simple Ful-

http://dx.doi.org/10.1007/s00453-006-1225-y
http://dx.doi.org/10.1109/ISCAS.2001.922010
http://dx.doi.org/10.1006/jpdc.2001.1833
http://dx.doi.org/10.1007/11602569_37
http://dx.doi.org/10.1007/3-540-48518-X_4
http://dx.doi.org/10.1007/978-3-030-04414-5_12
http://dx.doi.org/10.1109/TPDS.2018.2869805
http://dx.doi.org/10.1109/GLOCOM.2003.1258699
http://dx.doi.org/10.1109/SURV.2010.020110.00066
http://dx.doi.org/10.1109/CCECE.1999.807199
http://dx.doi.org/10.1109/JSAC.2003.816598
http://dx.doi.org/10.1109/ISCC.2003.1214298

238 239M. H. Karaata Algorithms for Finding Diameter Cycles of Biconnected Graphs

Lemma 3. If two neighbouring cycles C1 and
C2 are expanded by removing the common path
P between them, P will not be included in the
diameter cycle found or in any other cycle ob-
tained in intermediate expansion steps.
Proof. Recall that in each step of the expansion
process, an intersection path of two cycles is re-
placed by a longer path. Let C0 be a cycle which
expanded using cycle C1 by removing the inter-
section of the two cycles. Let path P with end-
points of i and j be the intersection of two initial
cycles to obtain the resulting cycle. Also, let P'
and P'' be the remainder of cycle C0 and C1,
after the removal of path P from cycle C0 and
C1, respectively. Observe that if P is included
again in the candidate cycle, one of P', P'', or
a longer path that replaced one of them needs
to be excluded. This contradicts the definition
of a candidate diameter cycle and the expan-
sion process, as no two vertices on the graph
should get closer upon an expansion step. This
is a contradiction. Hence, the proof follows. □
Lemma 4. The state-space and time complexity
of the algorithm are O(n2) and O(n6) respec-
tively.
Proof. We require each vertex in the graph to
store its set of neighbours variable N() and the
cycles it is part of variable ce. For n vertices,
each of these stored values have a state-space
of O(n) and hence, the algorithm requires state-
space of O(n2) in total for these variables. In
addition, it is easy to observe that each of the
variables fc, ncs, ne, ex, and ac contribute to the
state-space complexity by O(n2).
Consider Figure 8 and the algorithm given in
Figure 10. The first loop in the algorithm has
a time complexity of O(n2) as it depends on
the number of non-expandable cycles (marked
using edges), which is O(n2) in the worst case.
Traversing and marking a cycle takes O(n)
steps inside the outer loop. The inner loop de-
pends on the size of the neighbouring cycle set
ncs which also has an upper bound of O(n2). In-
side the inner loop, we have two steps that con-
tribute to the time complexity. First, combining
two cycles would depend on the length of the
cycles, which has time complexity of O(n).
Second, traversing and marking the new can-
didate cycle takes O(n) steps. Hence, the time
complexity of the algorithm is O(n6). Hence the
proof follows. □

Theorem 1. The proposed diameter cycle algo-
rithm finds a diameter cycle of a given graph G
in O(n6) time with space complexity of O(n2).
Proof. By Lemma 1, we know the algorithm
eventually considers every fundamental cycle
in the graph.
By Lemmas 1 and 2, every fundamental cycle
is to be considered in the expansion process,
the segments of the fundamental cycles that are
contained in a diameter cycle is included in a
candidate cycle, and they remain as part of the
candidate cycle. Therefore, each candidate cy-
cle is expanded until a point where it can no
longer be expanded.
Also observe that after a candidate cycle is ex-
panded into a candidate diameter cycle, a cycle/
fundamental cycle in the non-expanded set or a
fundamental cycle unconsidered, if any, is con-
sidered for expansion. If the newly considered
candidate cycle is not combined with previous-
ly discovered candidate cycles, a new candidate
cycle is formed, which leads to the discovery of
a new candidate cycle. When a fundamental cy-
cle is considered, its segments in the diameter/
candidate cycle are added to the candidate cycle
and they remain as part of the candidate cycle
by Lemma 3. In this manner, all candidate di-
ameter cycles are found. The longest candidate
cycle among them is identified as the diameter
cycle of the graph.
The time and space complexites of the algo-
rithm follow from Lemma 4. Hence the proof
follows. □

6. Conclusion

This paper first presents a brute-force abstract
algorithm for finding a candidate diameter cy-
cle based on constructing a cycle of G between
two diameter endpoints and a cycle expansion
process satisfying a number of rules. The pro-
cess of cycle expansion starts by replacing each
sub-path in the initial cycle with one that con-
tains more edges and this process is repeated on
the resulting cycle till no further expansion is
possible. The cycle produced by the cycle ex-
pansion process that can no longer be expanded
is identified as a candidate diameter cycle. The
second algorithm employs a novel implemen-

tation using fundamental cycles in the expan-
sion process.
Finding a diameter cycle in the graph is use-
ful in improving cycle layout representation of
graphs where it minimizes link crossings and
reduces the graph area. In addition, diameter
cycle provides a ring-based graph protection
for all the vertices in the graph. Detection of
the global geometric shape of the network al-
lows the connectivity structure of a network to
be discovered and improves network efficiency,
optimizes certain parameters of the network,
protects path failures and minimizes the com-
plexity in routing. Identification of diameter
cycles is also useful in network design; which
serves as a survival mechanism against vertex
failures and provides failure independent path
protection for the vertices on the cycle and
other vertices. The identification of a diame-
ter cycle of a graph is useful in graph layout
enhancement, failure independent path protec-
tion, ring-based graph protection and various
path constructions.

Acknowledgment

The author would like to thank the anonymous
reviewers for their helpful comments that great-
ly contributed to improving the quality of the
paper. This work is supported by the Kuwait
University Research Administration Grant EO
01/17.

References

[1] S. D. Nikolopoulos and L. Palios, ''Detecting
Holes and Antiholes in Graphs'', Algorithmica,
vol. 47, no. 2, pp. 119‒138, 2007.
http://dx.doi.org/10.1007/s00453-006-1225-y

[2] N. Chandrachoodan et al., ''Adaptive Negative
Cycle Detection in Dynamic Graphs'', in Proc. of
the 2001 IEEE International Symposium on Cir-
cuits and Systems, 2001, pp. 163‒166.
http://dx.doi.org/10.1109/ISCAS.2001.922010

[3] M. H. Karaata, ''A Stabilizing Algorithm for Nd-
ing Biconnected Components'', Journal of Paral-
lel and Distributed Computing, vol. 62, no. 5, pp.
982‒999, 2002.
http://dx.doi.org/10.1006/jpdc.2001.1833

[4] J. S. Deogun et al., ''An Algorithm for Boundary
Discovery in Wireless Sensor Networks'', High
Performance Computing‒HiPC 2005, Springer,
2005, pp. 343‒352.
http://dx.doi.org/10.1007/11602569_37

[5] I. Khan et al., ''An Overview of Holes in Wireless
Sensor Networks'', in Proc. of the 11th Annual
Postgraduate Symposium on the Convergence of
Telecommunications, Networking and Broadcast-
ing, 2010.

[6] J. M. Six and I. G. Tollis, ''Circular Drawings of
Biconnected Graphs'', In: Workshop on Algo-
rithm Engineering and Experimentation, Spring-
er, 1999, pp. 57‒73.
http://dx.doi.org/10.1007/3-540-48518-X_4

[7] M. Klammler et al., ''Aesthetic Discrimination
of Graph Layouts'', International Symposium
on Graph Drawing and Network Visualization,
Springer, 2018, pp. 169‒184.
http://dx.doi.org/10.1007/978-3-030-04414-5_12

[8] A. Arleo et al., ''A Distributed Multilevel
Force-Directed Algorithm'', IEEE Transactions
on Parallel and Distributed Systems, 2018.
http://dx.doi.org/10.1109/TPDS.2018.2869805

[9] W. He and A. K. Somani, ''Path-Based Protection
for Surviving Double-Link Failures in Mesh-Re-
storable Optical Networks'', in Proc. of the IEEE
Global Telecommunications Conference, 2003,
pp. 2558‒2563.
http://dx.doi.org/10.1109/GLOCOM.2003.1258699

[10] R. Asthana et al., ''p-Cycles: An Overview'', IEEE
communications surveys & tutorials, vol. 12, no.
1, pp. 97‒111, 2010.
http://dx.doi.org/10.1109/SURV.2010.020110.00066

[11] G. D. Morley and W. D. Grover, ''Current Ap-
proaches in the Design of Ring-Based Optical
Networks'', in Proc. of the IEEE Canadian Con-
ference on Electrical and Computer Engineering,
1999, pp. 220‒225.
http://dx.doi.org/10.1109/CCECE.1999.807199

[12] C. Mauz, ''p-Cycle Protection in Wavelength
Routed Networks'', in Proc. of the Seventh Work-
ing Conference on Optical Network Design and
Modelling (ONDM'03), 2003.

[13] G. Shen and W. Grover, ''Extending the p-Cycle
Concept to Path Segment Protection for Span and
Nnode Failure Recovery'', IEEE Journal on Se-
lected Areas in Communications, vol. 21, no. 8,
pp. 1306‒1319, 2003.
http://dx.doi.org/10.1109/JSAC.2003.816598

[14] B. [14] et al., ''Surviving Multiple Network Fail-
ures Using Shared Backup Path Protection'', in
Proc. of the Eighth IEEE Symposium on Comput-
ers and Communications, 2003, pp. 1333‒1340.
http://dx.doi.org/10.1109/ISCC.2003.1214298

[15] A. Kodian and W. Grover, ''Failure-Independent
Path-Protecting p-Cycles: Ecient and Simple Ful-

http://dx.doi.org/10.1007/s00453-006-1225-y
http://dx.doi.org/10.1109/ISCAS.2001.922010
http://dx.doi.org/10.1006/jpdc.2001.1833
http://dx.doi.org/10.1007/11602569_37
http://dx.doi.org/10.1007/3-540-48518-X_4
http://dx.doi.org/10.1007/978-3-030-04414-5_12
http://dx.doi.org/10.1109/TPDS.2018.2869805
http://dx.doi.org/10.1109/GLOCOM.2003.1258699
http://dx.doi.org/10.1109/SURV.2010.020110.00066
http://dx.doi.org/10.1109/CCECE.1999.807199
http://dx.doi.org/10.1109/JSAC.2003.816598
http://dx.doi.org/10.1109/ISCC.2003.1214298

240 M. H. Karaata

ly Preconnected Optical-Path Protection'', Jour-
nal of Lightwave Technology, vol. 23, no. 10, pp.
3241‒3259, 2005.
http://dx.doi.org/10.1109/JLT.2005.855697

[16] X. Chen et al., ''Optimizing FIPP-p-Cycle Protec-
tion Design to Realize Availability-Aware Elastic
Optical Networks'', IEEE Communications Let-
ters, vol. 22, no. 1, pp. 65‒68, 2018.
http://dx.doi.org/10.1109/LCOMM.2017.2763621

[17] H. Dao et al., ''An Ecient Network-Side Path Pro-
tection Scheme in OFDM-Based Elastic Optical
Networks'', International Journal of Communica-
tion Systems, vol. 31, no. 1, 2018.
http://dx.doi.org/10.1002/dac.3410

[18] P. D. Choudhury et al., ''A Brief Review of Pro-
tection Based Routing and Spectrum Assignment
in Elastic Optical Networks and a Novel p-Cycle
Based Protection Approach for Multicast Trac
Demands'', Optical Switching and Networking,
2018.
http://dx.doi.org/10.1016/j.osn.2018.12.001

[19] H. M. Singh and R. S. Yadav, ''Ecient Algorithm
for Removal of Loopbacks in p-Cycle-Based Sur-
vivable WDM Networks'', IET Communications,
vol. 12, no. 18, pp. 2366‒2373, 2018.
http://dx.doi.org/10.1049/iet-com.2018.5391

[20] R. Merris, ''Graph Theory'', Wiley Series in Dis-
crete Mathematics and Optimization, Wiley.
http://dx.doi.org/10.1002/9781118033043

[21] E. W. Weisstein, ''Connected Graph'', Accessed
Aug. 29, 2021, MathWorld ‒ A Wolfram Web Re-
source. [Online]. Available:
https://mathworld.wolfram.com/ConnectedGraph.html

[22] R. Hadid et al., ''A Stabilizing Algorithm for
Finding Two Node-Disjoint Paths in Arbitrary
Networks'', International Journal of Foundations
of Computer Science, vol. 28, no. 4, pp. 411‒435
2017.
http://dx.doi.org/10.1142/S0129054117500253

[23] J. Suurballe, ''Disjoint Paths in a Network'', Net-
works, vol. 4, no. 2, pp. 125‒145, 1974.
http://dx.doi.org/10.1002/net.3230040204

Received: December 2020
Revised: July 2021

Accepted: July 2021

Contact addresses:
Mehmet Hakan Karaata

Department of Computer Engineering
Kuwait University

Kuwait
e-mail: mehmet.karaata@ku.edu.kw

Mehmet Hakan Karaata received his PhD degree in Computer Sci-
ence in 1995 from the University of Iowa. He joined Bilkent University,
Ankara, Turkey as an Assistant Professor in 1995. He is currently work-
ing as a Professor in the Department of Computer Engineering, Kuwait
University. His research interests include mobile computing, distributed
computing, fault tolerant and autonomus computing.

http://dx.doi.org/10.1109/JLT.2005.855697
http://dx.doi.org/10.1109/LCOMM.2017.2763621
http://dx.doi.org/10.1002/dac.3410
http://dx.doi.org/10.1016/j.osn.2018.12.001
http://dx.doi.org/10.1049/iet-com.2018.5391
http://dx.doi.org/10.1002/9781118033043
https://mathworld.wolfram.com/ConnectedGraph.html
http://dx.doi.org/10.1142/S0129054117500253
http://dx.doi.org/10.1002/net.3230040204

 HistoryItem_V1
 Shuffle

 Group size: 1
 Shuffle type: Normal, or perfect bound
 Rule: 1 1

 1
 1
 1
 1
 1
 1
 1
 1
 0
 1
 1
 0
 0
 0
 0
 0
 0
 0
 0
 1
 1
 1
 1 1
 747
 281
 2
 2

 CurrentAVDoc

 Normal

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0
 Quite Imposing Plus 3
 1

 1

 HistoryList_V1
 qi2base

