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Gene Expression and Protein-Protein 
Interaction Network Data

Early cancer diagnosis and prognosis prediction are 
necessary for cancer patients. Effective identification 
of cancer-related genes and biomarkers and survival 
prediction for cancer patients would facilitate person-
alized treatment of cancer patients. This study aimed 
to investigate a method for integrating data regarding 
gene expression and protein-protein interaction net-
works to identify cancer-related prognostic genes via 
random walk with restart algorithm and survival anal-
ysis. Known cancer-related genes in protein-protein 
interaction networks were considered seed genes, and 
the random walk algorithm was used to identify can-
didate cancer-related genes. Thereafter, using the uni-
variant Cox regression model, gene expression data 
were screened to identify survival-related genes. Fur-
thermore, candidate genes and survival-related genes 
were screened to identify cancer-related prognostic 
genes. Finally, the effectiveness of the method was 
verified through gene function analysis and survival 
prediction. The results indicate that the cancer-related 
genes can be considered prognostic cancer biomarkers 
and provide a basis for cancer diagnosis.
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1. Introduction

Cancer is associated with various factors but 
is essentially caused by gene mutations [1, 
2]. Therefore, identification of cancer-related 
genes and biomarkers would potentially reveal 
the causes and therapeutic targets of cancer and 
help predict the prognosis of cancer patients, 
thus enabling personalized and precise ther-
apies for cancer patients. Rather than a single 
genetic abnormality, cancer is caused by the 
interaction of genes with regulatory factors in 
complex biological networks [3]. These factors 
affect gene expression, thus influencing cancer 
pathogenesis and progression.
Systems biology, which emerged in the 1990s, 
has provided novel insights into complex dis-
eases such as cancer [4, 5]. The study focus 
has shifted from single genes or pathways to 
multiple gene modules and interrelationships 
within pathways. Through integrated analy-
ses of multi-level, heterogeneous data, factors 
influencing tumorigenesis can be fully con-
sidered. Accordingly, systems biology is not 
only a novel strategy for basic research but it  
also provides a direction to current studies on 
cancer. Systems bioinformatics was recently 
proposed, which linked systems biology and 
classical bioinformatics [6]. Systems bioinfor-
matics harnesses methods involved in network 
science to integrate and extract information 
across different data sources. Networks provide 
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a robust scaffold wherein different biological 
data can be integrated [7]. Using quantitative 
descriptions of various biological networks, 
such as protein-protein interaction networks 
(PPIN), gene regulatory networks, or metabol-
ic interaction networks, numerous biological 
computing problems, e.g., the identification of 
relevant genes of a particular disease [8, 9], net-
work-based biomarker discovery [10, 11], and 
network-based drug-discovery [12, 13] can be 
solved using network-based methods.
Human gene regulation is complex and occurs 
through various regulatory factors. During tu-
morigenesis and cancer progression, mutations 
in key genes destabilize biological networks, 
leading to an imbalance in biological systems, 
driving the entire system towards tumorigene-
sis [14, 15]. With the accumulation of key vari-
ants, the oncogenic state is further aggravated. 
However, among all mutations, few genes drive 
tumorigenesis. Hence, numerous studies have 
attempted to integrate biological data to effec-
tively identify cancer-related genes.
High-throughput sequencing technologies have 
yielded extensive biological data for different 
biological systems [16]. These data are collec-
tively referred to as multi-omics data and in-
clude gene expression, DNA copy number vari-
ation, DNA methylation, miRNA, and lncRNA 
data. Various omics methods have provided 
insights into disease pathogenesis and patho-
physiology from various perspectives [17, 18]. 
Although the use of single-omics data to iden-
tify cancer-related genes has yielded numer-
ous valuable results, a single data source does 
not provide complete information regarding a 
gene, and the results are significantly affected 
by noise. Therefore, numerous studies have 
investigated methods to integrate multi-omics 
data to effectively identify cancer-related genes 
and biomarkers [19, 20].
Currently, multi-omics data are widely used to 
identify molecular biomarkers, with albeit low 
reproducibility [21]. To integrate multi-omics 
data, it is often difficult to identify the associ-
ations among multi-omics data. Furthermore, 
integration of multi-omics data is time-consum-
ing and increases the computational complex-
ity. We propose a novel approach to identify 
cancer-related genes using only PPIN and gene 
expression data. 

This study aimed to identify novel cancer-relat-
ed genes with prognostic role through random 
walk with restart algorithm (RWR) and sur-
vival analysis methods. Cancer-related genes 
were first considered seed genes in the PPIN 
and the RWR algorithm was used to identify 
candidate cancer-related genes. Thereafter, us-
ing the univariant Cox regression model, gene 
expression data were screened to identify sur-
vival-related genes. Cancer-related prognostic 
genes were screened on the basis of candidate 
genes and survival-related genes. This method 
was applied for lung squamous cell carcinoma 
(LUSC). The method was validated through 
gene function analysis and survival prediction.

2. Methods to Identify Cancer-Related 
Genes Based on Network Models

Networks are currently one of the most wide-
ly used mathematical models for analyzing bi-
ological data [22]. Networks are a simple and 
efficient abstraction of biological systems. In a 
biological network, a node represents a biomol-
ecule, such as a gene, protein, or metabolite, 
and an edge between nodes represents physical 
or functional interactions, including transcrip-
tional binding, protein interaction relationship, 
genetic interaction, or biochemical reaction. 
Most network-based methods generate a repre-
sentational model of a series of biological net-
works by integrating different types of data, and 
then different network-based analysis methods 
can be used to identify cancer-related genes 
[23,24]. Network-based identification of can-
cer-related genes is primarily based on direct 
network neighbors, network structure-based 
methods, and machine learning-based methods.
Methods based on direct network neighbors are 
used to determine whether two genes are direct-
ly associated in a biological network. The meth-
od assumes that if two genes are associated in 
a network, they are functionally related. Thus, 
network neighbors of known pathogenic genes 
can be screened to identify candidate patho-
genic genes for related diseases [25]. Howev-
er, such a simple approach is highly inaccurate 
because it would yield false genes associated 
with diseases via irrelevant edges; furthermore, 
genes not directly interacting with known dis-
ease-related genes would be missed.
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most of them perform clustering on the basis 
of the associations among the nodes of the bi-
ological networks. Bader et al. [34] proposed 
an MCODE algorithm on the basis of k-core to 
identify the most widely used network module, 
which is often used as the underlying method 
for other methods. Nepusz et al. [35] proposed 
the ClusterONE method, which can mine pro-
tein complexes in protein-protein interaction 
networks. Because the classification-based 
method relies on a large amount of tagged data, 
its application is limited. Using the tradition-
al clustering algorithm, sub-network modules 
are identified as cancer-related gene modules. 
However, traditional methods for mining can-
cer-related genes are primarily focused on the 
operation of the network itself, and less consid-
eration is given to real regulatory relationships 
among biomolecules.
Biological network analysis has revealed that 
genes causing similar or identical diseases po-
tentially interact directly or indirectly in the 
network [36]. Often in studies on disease-relat-
ed genes, a group of genes is usually associated 
with a disease, and we wish to infer new genes 
that may be associated with that disease. The 
shortest path method and direct network neigh-
bors do not provide global information regard-
ing of the network structure and cannot detect 
complex relationships among network nodes; 
hence, the random walk method is widely ap-
plicable to predict disease-related genes.

3. Methods

Because genes encode proteins, a PPIN is con-
sidered a genetic relationship network [37, 38]. 
For a weighted PPIN, the weight on the edge 
represents the confidence or intensity of an in-
teraction between two genes. A PPIN G = (V, E, 
W), where V is the set of nodes and each node 
represents a protein molecule. E is the set of in-
teractions between the nodes in V. If u V and 
v V, then euv E. W represents the weight set 
of edges. If there is an edge between u and v, 
then wuv W.
The flowchart of the method used to identify 
cancer-related genes with prognostic role is 
shown in Figure 1.

The network structure-based approach consid-
ers the topology of the entire network, not only 
direct network neighbors. This method primar-
ily includes the shortest path method and the 
random walk method. The shortest path method 
investigates the functional similarity between 
a disease-related gene and candidate genes in 
the network. This method has been successfully 
applied to predict pathogenic genes associat-
ed with Alzheimer's disease [26]. The shortest 
path method is a local network structure meth-
od, while the random walk method complete-
ly considers global information regarding the 
entire network to determine the similarity be-
tween a candidate gene and a known pathogen-
ic gene, and ranks genes on the basis of sim-
ilarity. Sebastian et al. [27] first proposed the 
random walk algorithm to predict disease-re-
lated genes and reported that the performance 
of this method is better than that of the direct 
network neighbors, the shortest path, and diffu-
sion kernel methods. Zhu et al. [28] considered 
known human papillomavirus (HPV) genes 
from HPVbase as seed genes, used the random 
walk with restart algorithm to identify candidate 
genes in the PPIN, and then filtered candidate 
genes using permutation and association tests 
to identify HPV-related genes. Li et al. [29] 
used known epigenetic factors as seed nodes to 
identify potential epigenetic factors using the 
random walk algorithm in the PPIN. Vanunu et 
al. [30] first proposed the random walk method 
to predict disease-related gene modules. Luo et 
al. [31] integrated PPIN, gene-disease associ-
ations, and disease-similarity network data to 
construct heterogeneous networks and identi-
fied candidate disease genes using the double 
random walk algorithm.
Machine learning-based methods primarily 
include classification and clustering methods. 
The classification method falls under the su-
pervised learning method. A classifier is trained 
through different characteristics of the known 
oncogenes and non-oncogenes in biological 
networks and is used to predict candidate gene 
function. Xu et al. [32] predicted oncogenes 
on the basis of the topological characteristics 
of the PPIN. Ying Cui et al. [33] analyzed the 
topological properties of weighted PPIN and 
used random forest classifiers to predict dis-
ease-related genes. Clustering methods fall 
under the unsupervised learning method, and 
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Figure 1. Flowchart for identifying cancer-related genes 
with prognostic role.

3.1. Identification of Cancer-Related 
Genes Using the RWR Algorithm

The concept underlying the random walk algo-
rithm is to begin with specific pathogenic genes 
and random walk particles spread along the in-
terlinks in the PPIN. After the steady state, the 
candidate disease genes are ranked in accor-
dance with the gene score. The random walk 
model has been previously discussed [39]. The 
RWR algorithm used herein includes parameter 
r to adjust for the probability of random parti-
cles remaining at the original node based on the 
basic random walk algorithm.
The Pagerank algorithm was the first to adopt 
the restart idea [40]:

                 
 1 1t t lp r WP r n

   
                

(1)

Where W represents the adjacency matrix nor-
malized by the network column. r is the prob-
ability of restart. l is an all-1 column vector of 
length n (n is the number of nodes). Pt is the 
probability vector at which the starting nodes 
jump to all nodes in the network at time step t.
RWR is an improved Pagerank algorithm [41]:

                   1 01t tp r WP rP                   
(2)

Where the initial value P0 is an n × 1 probabili-
ty vector and seed nodes of the known function 

in the vector are set to equal probability val-
ues, with the sum of probabilities being equal 
to 1, and the remaining nodes were set to 0. The 
difference between the Pagerank algorithm and 
RWR algorithm is the setting of the initial vec-
tor. In the Pagerank algorithm, the values of the 
initial vectors were set to 1, indicating that the 
calculation can be initiated from any node with 
uniform probability. In contrast, the RWR algo-
rithm can only be initiated from specified seed 
nodes.
First, the transition probability matrix W is ob-
tained in accordance with the structure of the 
PPIN. Second, we constructed an initial vec-
tor P0 based on prior knowledge of the specif-
ic cancer. The known cancer gene nodes in P0 
were set to be equal probability values, with the 
sum of the probabilities equal to 1 and initial 
values of other nodes were set to 0. The iter-
ative operation was performed in accordance 
with Equation 2 until convergence. The opera-
tion is generally considered to have converged 
when the difference between the vector Pt

 
+1 and 

vector Pt was less than 106. Parameter r was 
set to 0.8. Finally, the probabilities of candidate 
tumorigenic genes were assessed on the basis 
of the calculated Pt value. For convenience, the 
ranked top-N genes identified via the random 
walk algorithm were called RWR genes.

3.2. Identification of Survival-Related 
Genes

Herein, gene expression data were used to 
screen for survival-related genes. Potential ab-
normalities include missing data values. For 
each gene, missing values were first examined, 
retaining only genes with expression values 
greater than 0 in more than 80 % of samples and 
greater than 1 in more than 10 % of samples. 
The mean value was then used to complement 
the missing value.
For gene expression data, the following pro-
cessing was performed: x′ = log2 (x + 1), where 
x represents the value of gene expression data. 
The data were then normalized to the range 
[0, 1] using min-max normalization. In order 
to better process the data, a 4-digit significant 
number was reserved for standardized data.
Using a univariate Cox proportional hazards 
regression model (CPH), genes in the gene ex-
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pression dataset were screened to identify sur-
vival-related genes. If the p-value of a gene's 
likelihood ratio test was less than 0.05, the gene 
was considered to be associated with survival.

3.3. Screening for Cancer-Related 
Prognostic Genes

The intersection of RWR genes of preceding 
ranked top-N and survival-related genes was 
considered to detect cancer-related prognostic 
genes. To determine whether the genes are can-
cer-related, gene function and pathway analysis 
were performed. Through survival prediction 
analysis, we confirmed whether the identified 
genes can distinguish high- and low-risk groups 
and whether they are of high prognostic signif-
icance.
For this study, the CPH and the Kaplan-Mei-
er survival analysis were implemented using 
R package survival analysis. All data pre-pro-
cessing and performance measurements were 
implemented using Python and Scikit-learn 
0.19.2. Hierarchical clustered heatmaps were 
implemented using R package pheatmap.

4. Materials and Experimental Results

4.1. Materials

Lung cancer is the most common cause of can-
cer-related mortality worldwide, of which lung 
squamous cell carcinoma (LUSC) and lung 
adenocarcinoma (LUAD) are the most com-
mon subtypes. Herein, we used LUSC data to 
evaluate the identification method of cancer-re-
lated prognostic genes. The PPIN data used 
herein were obtained from HIPPIE [42]. For 
each PPI, HIPPIE specifies a value indicating 
the credibility and strength of the interaction. 
We selected interactive data with an interaction 
value greater than 0.4, representing moderate 
confidence or intensity. To simplify the calcu-
lation, we selected nodes with Ensembl IDs of 
less than 10,000. The resulting PPIN included 
6519 nodes and 120,506 edges. Gene expres-
sion data were obtained from Firebrowse (http://
firebrowse.org/?cohort=LUSC&download_dia-
log=true), including 552 LUSC samples, among 

which 501 were tumor samples and 51 were 
normal samples.
Herbst et al. [43] reviewed the recent advance-
ments in lung cancer and its treatment and dis-
cussed the most common genetic alterations in 
LUSC and LUAD. We selected all 28 known 
LUSC genes (EGFR, ERBB2, ERBB3, FGFR1, 
FGFR2, FGFR3, PTEN, PIK3CA, KRAS, 
NRAS, RASA, HRAS, NF1, STK11, AKT1, 
AKT2, AKT3, BRAF, TSC1, TSC2, MAP2K1, 
CDKN2A, KEAP1, CUL3, MTOR, NFE2L2, 
TP53, and RB1) and mapped them onto the 
PPIN, wherein proteins were represented by 
Ensembl IDs. These 28 Ensembl IDs were con-
sidered the seed nodes to identify novel LUSC 
cancer-related genes by using the RWR algo-
rithm.

4.2. Analysis of Experimental Results

We selected the top 200 RWR genes and all 
survival-related genes, and their intersection 
included 19 genes. We considered the 19 can-
cer-related prognostic genes.

4.2.1. Cancer-Related Genes

The 19 cancer-related prognostic genes were 
as follows: CALM2, RGL2, HSPA1A, HSPA4, 
JUN, ARAF, PLCG1, SRC, ZNF189, HSPD1, 
CDKN1A, PPP2CA, HSPG2, IRS1, RABG-
GTB, BCL2L1, AXIN1, UBE2E1, and GRIN2D. 
Among these, ARAF, CDKN1A, and PLCG1 
are associated with LUSC. The ID, description, 
and chromosomal information regarding each 
key gene (including the chromosome num-
ber of the gene and the start site information 
of the chromosome to which the gene belongs) 
are shown in Table 1. We searched GeneCards 
(https://www.genecards.org) for the function of 
each gene and found that the genes were associ-
ated with cancer or complex diseases.

4.2.2 Analysis of Gene Function and 
Pathways

The DAVID (The Database for Annota-
tion, Visualization and Integrated Discovery, 
https://david.ncifcrf.gov) database provides 
a complete set of functional annotation tools 
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available to assess the biological implications 
of the list of genes. To further confirm the role 
of these 19 key genes, we used the DAVID tool 
to perform Gene Ontology and KEGG pathway 
analysis. The specific names of the key func-
tions and path ID are shown in Table 2. The 
function ID of the gene ontology is prefixed with 
GO, and the path ID of KEGG is prefixed with 
hsa. As shown in Table 2, these functions and 
pathways significantly influence cancer patho-
genesis and progression. For example, the dys-
regulation of GO: 0010634, GO: 0010941, GO: 
0043392, and GO: 0033160 would aggravate 
the division and proliferation of cells, with ex-
tremely important effects. Hsa05205 represents 
cancer proteoglycans. Hsa05200 represents the 
cancer pathway. Hsa05219 represents bladder 
cancer. Hsa05210 represents colorectal can-
cer. Hsa05203 represents viral carcinogenesis. 
Therefore, the functions and pathways regulat-
ed by these 19 genes are closely associated with 
the evolution of LUSC.

4.2.3. Differences Between Normal Samples 
and Tumor Samples

To verify the effect of these genes on develop-
ment of LUSC, gene expression data were used 
to distinguish between normal samples and tu-
mor samples. The performance of the proposed 
method was measured on the basis of the clas-
sification performance in accordance with the 
gene expression data of these 19 key genes. The 
number of classes of the omics data, such as 
gene expression data, DNA methylation data, is 
usually unbalanced, and the number of tumor 
samples (positive) is often greater than that of 
normal samples (negative). First, we accounted 
for the 19 key genes from the dataset and deter-
mined four performance measures, i.e., the ac-
curacy, precision, recall, and F1 score with five 
classifiers, i.e., support vector machine (SVM), 
logistic regression, naïve bayes, decision tree, 
and random forest. Furthermore, we performed 
hierarchical clustering for the expression data 

Table 1.  Key gene descriptions and chromosomal information.

Gene name Gene ID Description Chromosomal information
CALM2 805 Calmodulin 2 hs2 (47160082, 47176936)

RGL2 5863 Ral Guanine Nucleotide Dissociation Stimulator Like 2 hs6 (33291654, 33299388)

HSPA1A 3303 Heat Shock Protein Family A (Hsp70) Member 1A hs6 (31815543, 31817942)

HSPA4 3308 Heat Shock Protein Family A (Hsp70) Member 4 hs5 (133052013, 133106449)

JUN 3725 Jun Proto-Oncogene, AP-1 Transcription Factor Subunit hs1 (58780791, 58784047)

ARAF 369 A-Raf Proto-Oncogene, Serine/Threonine Kinase hsX (47561100, 47571921)

PLCG1 5335 Phospholipase C Gamma 1 hs20 (41137519, 41177626)

SRC 6714 SRC Proto-Oncogene, Non-Receptor Tyrosine Kinase hs20 (37344685, 37405432)

ZNF189 7743 Zinc Finger Protein 189 hs9 (101398830, 101410660)

HSPD1 3329 Heat Shock Protein Family D (Hsp60) Member 1 hs2 (197486584, 197500274)

CDKN1A 1026 Cyclin Dependent Kinase Inhibitor 1A hs6 (36676250, 36687339)

PPP2CA 5515 Protein Phosphatase 2 Catalytic Subunit Alpha hs5 (134194332, 134226073)

HSPG2 3339 Heparan Sulfate Proteoglycan 2 hs1 (21822244, 21937310)

IRS1 3667 Insulin Receptor Substrate 1 hs2 (226731317, 226798790)

RABGGTB 5876 Rab Geranylgeranyltransferase Subunit Beta hs1 (75786194, 75795090)

BCL2L1 598 BCL2 Like 1 hs20 (31664452, 31723963)

AXIN1 8312 Axin 1 hs16 (287440, 355226)

UBE2E1 7324 Ubiquitin Conjugating Enzyme E2 E1 hs3 (23805955, 23891640)

GRIN2D 2906 Glutamate Ionotropic Receptor NMDA Type Subunit 2D hs19 (48394875, 48444937)
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for the 19 key genes, and used heatmaps to ob-
tain the results of the classification. 
A 10-fold cross-validation test was conducted 
for performance evaluation. We selected the 19 
key genes from the gene expression gene data-
set for the test. For classification problems, we 
used stratified sampling to ensure that the pro-
portion of tumor samples and normal samples 
in the training set and test set was the same as 
in the original data set. We used five classifi-

ers to determine four performance measures. 
From the measurement of accuracy, precision, 
recall, and F1 score in Table 3, it is shown that 
these five classifiers could produce a compara-
ble performance for sample type prediction. So 
these 19 genes can distinguish between tumor 
samples and normal samples.
We performed hierarchical clustering for the 
gene expression data for the 19 key genes. Eu-
clidean distance was used as distance metric. 

Table 2.  Function ID and function name.

Function ID Function term
GO:0043547 positive regulation of GTPase activity

GO:0010634 positive regulation of epithelial cell migration

GO:0071902 positive regulation of protein serine/threonine kinase activity

hsa05205 Proteoglycans in cancer

GO:0043066 negative regulation of apoptotic process

hsa05200 Pathways in cancer

hsa05219 Bladder cancer

hsa05210 Colorectal cancer

GO:0043524 negative regulation of neuron apoptotic process

GO:0010907 positive regulation of glucose metabolic process

GO:0050821 protein stabilization

hsa05120 Epithelial cell signaling in Helicobacter pylori infection

GO:0010941 regulation of cell death

GO:0046628 positive regulation of insulin receptor signaling pathway

GO:2000811 negative regulation of anoikis

GO:0031954 positive regulation of protein autophosphorylation

GO:0043392 negative regulation of DNA binding

GO:0043065 positive regulation of apoptotic process

hsa05203 Viral carcinogenesis

GO:0033138 positive regulation of peptidyl-serine phosphorylation

Table 3.  The comparison of performance measures between five classifiers.

Metric SVM Logistic regression Naive Bayes Decision tree Random forest
Accuracy 0.975 0.976 0.908 0.958 0.975

Precision 0.976 0.980 0.908 0.980 0.979

Recall 0.996 0.994 1.000 0.974 0.994

F1 score 0.986 0.987 0.951 0.977 0.986
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The clustered heatmap is shown in Figure 2. 
According to Figure 2, it can be also found that 
these 19 key genes can distinguish obviously 
between tumor samples and normal samples.

Figure 2. Distinguishing between normal samples and 
tumor samples. Hierarchical clustering was performed 

for the gene expression data containing the 19 key 
genes. To the first row, the dark gray represents tumor 
samples and the light gray represents normal samples. 

Each row of other parts represents a gene, and each 
column represents a sample, indicating expression value 

of a gene under a specific sample. The color depth 
indicates the size of the gene expression value.

4.2.4. Survival Analysis

To determine the key role of potential cancer 
biomarkers in the development and progression 
of LUSC, we utilized SurvExpress biomarker 
validation tool for survival analysis [44]. The 
SurvExpress online tool contains two LUSC 
datasets from The Cancer Genome Atlas da-
tabase (TCGA). For comparison with the pro-
posed method, we only used the random walk 
algorithm to identify cancer-related genes. We 
selected the top 19 genes as key genes includ-
ing the following: HSP90AA1, HSP90AB1, 
APP, GRB2, GSK3B, YWHAZ, PKM, YWHAH, 
YWHAB, RAF1, SMAD2, RPS6KA1, CDH1, 
HSPA8, SUMO1, PIK3R1, ESR1, HSPA1A and 
HSPA1B. We performed survival analysis using 
the two datasets for these two groups of genes. 
The LUSC dataset one comprises 175 LUSC 
samples including 88 low-risk group samples 

and 87 high-risk group samples. We performed 
survival analysis using the Cox proportional 
hazards model. The Kaplan-Meier curves of the 
results are shown in Figures 3‒4.

Figure 3. Survival analysis for cancer-related genes 
with prognostic role. The x-axis represents time (unit: 

day), and the y-axis represents the global survival ratio. 
The dark gray line represents the high-risk group, and 

the light gray represents the low-risk group. In the 
upper right corner, the number on the left represents 

the number of people in each group. The number with 
the '+' sign in the middle represents the number of lost 

visitors, and the number on the right represents the 
Concordance Index (c-index).

Figure 4. Survival analysis for top-19 RWR genes. 
The x-axis represents time (unit: day), and the y-axis 

represents the global survival ratio. The dark gray line 
represents the high-risk group, and the light gray line 

represents the low-risk group.

On comparing the two curves, the differenc-
es gradually increased with time, and the two 
groups of genes significantly differed between 
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the two groups of patients (p  0.05) with re-
spect to patient survival. The classification ef-
fect shown in Figure 3 ( p = 0.0001991) is better 
than that shown in Figure 4 ( p = 0.001612), in-
dicating that our proposed method could better 
identify prognostic cancer-related genes than 
the random walk algorithm alone.
The experiment results showed that the genes 
identified by the proposed method were dif-
ferentially expressed in the high- and low-risk 
groups. In the present study, we analyzed the 
expression levels of key genes in the tumor sam-
ples. The t-test was used for each gene between 
the high- and low-risk groups. Figures 5‒6 
show the differences in the expression levels of 
key genes identified using the two methods in 
the dataset. If the p-value of the t-test of a gene 
was less than 0.05, the gene was considered as 
differentially expressed gene. In Figure 5, the 
p-value of 16 genes is less than 0.05, but in Fig-
ure 6, only the p-value of 9 genes is less than 
0.05. So, the genes identified using the current-
ly proposed method displayed marked differ-
ences in their expression levels in the high- and 
low-risk groups.
The LUSC dataset two comprises 205 LUSC 
samples including 103 low-risk group sam-
ples and 102 high-risk group samples. We per-
formed survival analysis using the Cox propor-
tional hazards model. The Kaplan-Meier curves 
of the results are shown in Figures 7‒8.

Figure 7. Survival analysis for cancer-related genes 
with prognosis role. The x-axis represents time (unit: 
month), and the y-axis represents the global survival 

ratio. The dark gray line represents the high-risk group, 
and the light gray line represents the low-risk group. In 
the upper right corner, the number on the left represents 
the number of people in each group. The number with 
the '+' sign in the middle represents the number of lost 

visitors, and the number on the right represents the 
Concordance Index (c-index).

The results also indicate that the genes ob-
tained by the two methods can significantly 
distinguish between the two groups of patients 
and were closely related to patient surviv-
al ( p  0.05). The classification effect shown 
in Figure 7 ( p = 6.465e-06) is better than that 
shown in Figure 8 ( p = 7.836e-06). So, it is also 
indicated that our proposed method can better 
identify prognostic cancer-related genes than 
the random walk algorithm alone.

Figure 5. Gene expression levels for cancer-related 
genes with prognostic role. The x-axis represents genes, 

and the y-axis represents the expression levels of key 
genes in the high- and low-risk groups. The p-value is a 
statistical test variable, and the p-value is less than 0.05 

for the significant difference.

Figure 6. Gene expression levels for top-19 RWR genes. 
The x-axis represents genes, and the y-axis represents 

the expression levels of key genes in the high- and 
low-risk groups. The p-value is a statistical test variable, 

and the p-value is less than 0.05 for the significant 
difference.
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Figure 8. Survival analysis for top-19 RWR genes. The 
x-axis represents time (unit: month), and the y-axis 

represents the global survival ratio. The dark gray line 
represents the high-risk group, and the light gray line 

represents the low-risk group.

The experiment results showed that the genes 
identified by the proposed method were dif-
ferentially expressed in the high- and low-
risk groups. The t-test was used for each 
gene between the high- and low-risk groups. 
Figures 9‒10 show the differences in the ex-
pression levels of key genes identified using 
the two methods in the dataset. In Figure 9, the 
p-value of 13 genes was less than 0.05, but in 
Figure 10, only the p-value of 8 genes was less 
than 0.05. So, it is indicated that our proposed 
method can identify more differentially ex-
pressed genes than the random walk algorithm 
alone. The key genes as potential cancer-related 
genes play crucial role in cell proliferation and 
differentiation.

Figure 9. Gene expression levels for cancer-related 
genes with prognostic role. The x-axis represents genes, 

and the y-axis represents the expression levels of key 
genes in the high- and low-risk groups. The p-value is a 
statistical test variable, and the p-value is less than 0.05 

for the significant difference.

Figure 10. Gene expression levels for top-19 RWR 
genes. The x-axis represents genes, and the y-axis 

represents the expression levels of key genes in the 
high- and low-risk groups. The p-value is a statistical 
test variable, and the p-value is less than 0.05 for the 

significant difference.

Compared with direct network neighbors and 
the shortest path method, the random walk 
method provided more precise results consider-
ing all possible edges among genes. The appli-
cation of random walk to gene ranking can thus 
identify the key genes strongly associated with 
known cancer genes. Using univariate survival 
analysis of gene expression data, cancer-related 
genes with prognostic roles could be screened. 
Hence, the genes identified via random walk 
and survival analysis had a more prognostic 
role than those identified using only the ran-
dom walk method. These genes cannot only 
remarkably distinguish between tumor samples 
and normal samples, but also between high- 
and low-risk groups, thus being applicable as 
a cancer biomarker with practical significance 
for the diagnosis, treatment, and prognosis of 
cancer.

5. Discussion

In this paper, a new identification method of 
cancer-related genes with prognosis role based 
on PPIN and gene expression data is proposed. 
The method was applied for LUSC and 19 key 
genes were identified. The roles of the genes 
were validated through gene function analysis 
and survival prediction. The results indicated 
that the cancer-related genes could be consid-
ered prognostic cancer biomarkers and provid-
ed the basis for cancer diagnosis and treatment.
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In addition to experimental verification, we 
confirmed their involvement in cancer patho-
genesis, according to recent literature. CALM2 
was an important gene affected by B-Myb 
knockdown in human cancers, including NS-
CLC [45]. Silencing of RGL2 inhibited cell 
population growth in anchorage dependent and 
independent conditions, and was important in 
human NSCLC [46]. Tracz-Gaszewska et al. 
[47] employed lung cancer cell lines that con-
stitutively overexpressed heat shock proteins 
and have shown that HSPA1A facilitated the 
binding of mutated p53 to the TAp73α protein. 
HSPA4 knockdown would be effective in thera-
pies in cancer with head and neck squamous cell 
carcinoma [48]. ShanJu et al. [49] constructed 
genetic and epigenetic networks (GENs) with 
LUAD and LUSC data, and identified essential 
biomarkers including JUN in each progression 
stage of LUAD and LUSC. Mutant ARAF was 
an oncogenic driver in LUAD and an indicator 
of sorafenib response [50]. PLCG1 might be 
involved in smoking-induced lung cancer by 
interacting with SRC, and might be responsible 
for the development of smoking-induced lung 
cancer [51]. The inhibition of apoptosis by fi-
bronectin was enhanced by SRC overexpression 
and reversed by SRC knockdown in lung can-
cer cells [52]. Paul et al. [53] used a set of mu-
tations from 22 cancers, and detected 151 puta-
tive cancer drivers including ZNF189. HSPD1, 
as a key marker of mitochondrial biogenesis, 
had the highest predictive value and was effec-
tive in predicting tumor progression in NSCLC 
patients [54]. Germline mutations in CDKN1A 
associated with idiopathic pulmonary fibrosis 
risk were detected in most lung cancer samples 
[55]. Tan et al. [56] analyzed microarray da-
tabases to screen the key genes related to NS-
CLC, and identified PPP2CA as differentially 
expressed genes in the down-regulated co-path-
ways. Ilhan-Mutlu et al. [57] studied the ex-
pression pattern of angiogenesis-related genes 
in brain metastases of lung cancer and melano-
ma, and identified HSPG2 more than 50-fold 
up-regulated in all diagnosis groups compared 
to control. Function mutation of IRS1 could 
be related to development of lung cancer, and 
played a role in the phenotype of lung cancer 
[58]. RABGGTB was overexpressed in the re-
fractory de novo diffuse large B-cell lymphoma 
(DLBCL), and was a potential target for drug 
intervention [59]. The BET (bromodomain 

and extraterminal) proteins that bind acetylat-
ed histones and recruit protein complexes reg-
ulated expression of BCL2L1 in oncogenesis 
[60]. Yang et al. [61] studied the mechanisms 
of X-ray irradiation in increasing Axin expres-
sion, and analyzed AXIN1 down-regulated in 
many cases of lung cancer. UBE2E1 was the 
top-ranked genes across the NSCLC pathologic 
stages by the MFSelector method [62]. Sun et 
al. [63] identified differentially expressed genes 
between LUAD tissues and nontumor tissues 
from RNA sequencing data, and distinguished 
GBIN2D related to LUAD.
Thus, all 19 genes are associated with the de-
velopment and progression of cancer, of which 
17 genes are related to lung cancer. The results 
illustrate to some extent the effectiveness of 
our method. Through the functions and path-
ways analysis of these 19 genes, we found that 
they were highly correlated with cancer. For 
example, the disorders of GO: 0043392, GO: 
0010634, hsa05203, hsa05205 can exacerbate 
the division and proliferation of cancer cells.
Using RWR algorithm and CPH model, we 
identified potential LUSC cancer-related genes. 
These 19 cancer-related genes together with the 
known 28 cancer genes can be considered bio-
markers of cancer prognosis. The number of 
biomarkers obtained in the study is very small, 
which provides great convenience for detection. 
The identified genes can be applied as cancer 
biomarkers with practical significance for the 
diagnosis, treatment, and prognosis of cancer.

6. Conclusion

Many complex diseases are caused by dysfunc-
tions in related regulatory networks, not only 
mutations in individual molecules. Mining for 
key cancer-related genes or modules from bio-
logical networks has recently gained increasing 
attention in studies on cancer. Identification of 
genes and modules would help design cancer 
treatments and enable an early cancer diagno-
sis. Herein, we propose a method for integrat-
ing gene expression and PPIN data to identify 
prognostic cancer-related genes through ran-
dom walk with restart algorithm and survival 
analysis. The effectiveness of the method was 
verified through gene function analysis and sur-
vival analysis.
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This study has some limitations regarding the 
use of the random walk algorithm to predict can-
cer-related genes. For example, only network 
topology was considered, while topology attri-
butes and the weight of the nodes in the PPIN 
were not. Therefore, screening of candidate 
genes in a PPIN tends to result in a higher er-
ror rate. Furthermore, in the iterative operation, 
the matrix multiplication operation is repeat-
ed, which requires a large memory space and a 
long operation time. In subsequent studies, we 
will optimize the random walk algorithm to ac-
count for weight information of the edges and 
improve the efficiency of the algorithm.
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