
17CIT. Journal of Computing and Information Technology, Vol. 27, No. 4, December 2019, 17–30
doi: 10.20532/cit.2019.1004801

Li Yan, Zheqing Zhang and Dan Yang
Nanjing University of Aeronautics and Astronautics, Nanjing, China

Temporal RDF(S) Data Storage and
Query with HBase

Resource Description Framework (RDF) is a metada-
ta model recommended by World Wide Web Consor-
tium (W3C) for describing the Web resources. With the
arrival of the era of big data, very large amounts of
RDF data are continuously being created and need to
be stored for management. The traditional centralized
RDF storage models cannot meet the need of large-
scale RDF data storage. Meanwhile, the importance of
temporal information management and processing has
been acknowledged by academia and industry. In this
paper, we propose a storage model to store temporal
RDF data based on HBase. The proposed storage mod-
el applies the built-in time mechanism of HBase. Our
experiments on LUBM dataset with temporal informa-
tion added show that our storage model can store large
temporal RDF data and obtain good query efficiency.

ACM CCS (2012) Classification: Information sys-
tems → World Wide Web → Web data description
languages → Semantic web description languages →
Resource Description Framework (RDF)
Information systems → World Wide Web → Web
data description languages → Markup languages →
Extensible Markup Language (XML)
Information systems → Data management systems
→ Database design and models → Data model exten-
sions → Temporal data

Keywords: temporal RDF, HBase, storage, query

1. Introduction

In recent years, Resource Description Frame-
work (RDF), providing a complete grammar
system and contributing to computer’s automat-
ic processing, has been widely used in various
fields for its simplicity, extensibility, openness
and ease of exchange [25]. This has resulted
in the rapid growth of RDF data and the issue
of efficient and scalable management of large-

scale RDF data. RDF data management typi-
cally involves their storage and queries. Among
them, RDF data storage provides the infrastruc-
ture for RDF data management [26].
To deal with massive RDF data, much work has
been devoted to parallel computing techniques
and distributed systems for improving the abil-
ity to manage RDF data. Efforts on distribut-
ed storage of RDF data mainly concentrate on
two aspects [26]. The first aspect focuses on
developing distributed RDF storage systems
specifically with traditional distributed comput-
ing architectures, such as RDFPeers [2], 4store
[3], Bigdata [4], and YARS [5]. These systems
always have high reliability and expandability,
but their data structures are complex, which may
cause high communication overhead, and the
security is difficult to control. The second aspect
focuses on storing RDF data with NoSQL (Not
Only SQL) databases, which have flexible data
models and excellent performance in reading/
writing for massive data. NoSQL databases can
be divided into four basic categories: key-value
stores, document databases, column-oriented
databases and graph databases [6, 7, 8, 9]. The
storage model proposed in this paper is based
on Apache HBase [10], which is a column-ori-
ented distributed database built on Apache Ha-
doop and is an open-source implementation of
Bigtable [11]. Nowadays, many efforts are ded-
icated to efficient storage and query of massive
RDF data based on HBase [12-19].
The real world is dynamic. Time is an essen-
tial dimension in describing data change and is
hereby an important part of many applications
[28, 29]. To represent and deal with temporal

18 19L. Yan, Z. Zhang and D. Yang Temporal RDF(S) Data Storage and Query with HBase

Ci is a set of classes; Pi is a set of properties;
Ri is the set of all resources, which is actually
the universe of RDF, containing a distinguished
subset Li called literal values; Ext: Pi → Ri × Ri
is used to express the relationship between re-
sources; CExt: Ci → 2Ri maps each class c ∈Ci
to a subset of Ri (i.e. Ci = CExt(rdfs: Class),
which means that each element of Ci is an ex-
tension of rdfs: Class).
T is a set of times. M: I → 2T is a timestamp
function that maps an interpretation to a time-
stamp (a set of times).
The temporal RDF model is defined with only
one time-dimension, which can be further ex-
tended to multi-dimension. The temporal RDF
model used in this paper has two time-dimen-
sions, which are valid time and transaction
time, respectively. Here, the time points are en-
coded as intervals. A time point set {1, 2, 3},
for example, is encoded as [1, 3] and a single
time point {1} can be described as [1, 1]. Then,
a temporal RDF triple is represented as follows:

(Subject, Predicate, Object): t, t = [V][T]
Valid(t) = [V], Transaction(t) = [T].

Here, (Subject, Predicate, Object) is a standard
RDF triple and t is a temporal label composed
by [V] and [T], which is applied at the lev-
el of a triple. [V] is the valid time of a triple,
which refers to the time when the data is true
in the modeled reality. [T] records the transac-
tion time when the triple is edited. In addition,
Valid: 1 → [V] and Transaction: t → [T] are
defined to get valid time and transaction time
from time label t, respectively.
A temporal RDF query language named
T-SPARQL is proposed in [23]. T-SPARQL ex-
tends temporally the standard query language
SPARQL, which is characterized by graph pat-
terns. BGP is the basic query mode of graph
patterns, consisting of a set of triple patterns.
All triple patterns in a BGP must be exactly
matched when a query is executed. Generally
speaking, there are eight modes in triple pat-
terns: (S, P, O), (?S, P, O), (S, ?P, O), (S, P, ?O),
(?S, ?P, O), (?S, P, ?O), (S, ?P, ?O), (?S, ?P, ?O).
The triple pattern with temporal information
contains a temporal variable and the corre-
sponding temporal constraint is represented by
time binary relationships in FILTER keyword.
Figure 1 depicts an example of T-SPARQL.

and bitmap indices are compacted to perform
expensive query processing operations. Triples
are separately stored in HBase tables according
to the subject's class in [21], where a table P is
created in order to store all <subject, object>
with the same predicate. All data is divided by
classes so that each HBase table is relatively
small. This can lead to a better performance of
table query and traversal.
Note that the proposals for RDF data storage
mentioned above do not consider temporal in-
formation, neither in RDF data model nor in
HBase. Actually, the classical RDF data model
and HBase do not explicitly support temporal
information modeling. The timestamp mecha-
nism in HBase can be applied to record multiple
values, but its implicit temporal interval repre-
sentation can cause wrong or misleading results
during temporal query processing. In [22], the
characteristics of column-oriented NoSQL da-
tabases are clearly clarified and two alternative
table representations are introduced to explicitly
address temporal data management and process-
ing. In the context of RDF data model, a tem-
poral RDF data model is proposed for temporal
information modeling in [1, 32]. Being different
from the classical RDF data model, the temporal
RDF data model contains temporal information
and cannot be directly stored in the classical
HBase database by using the existing solutions
of RDF data storage in HBase. Although there
are a few efforts in temporal RDF data manage-
ment (e.g., construction [27], query [32] and
index [33]), to the best of our knowledge, the
present paper is the first effort in storing tempo-
ral RDF data with a HBase database.

3. Temporal RDF

RDF is a metadata model for building an in-
frastructure of machine-readable semantics for
data on the Web. The RDF specification in-
cludes a built-in vocabulary with a normative
semantics (RDFS), which deals with inheri-
tance of classes and properties. Temporal RDF
based on the point-based temporal domain is
proposed in [1].
Definition 1 (Temporal RDF model). A sim-
ple temporal interpretation of RDF is a tuple
(I, T, M), in which I = {I1, …, In} is a set of sim-
ple interpretations. In Ii = (Ci, Pi, Ri, Ext, CExt),

data, in last two decades various temporal da-
tabase models have been proposed and some
temporal database management systems have
been developed [30]. More importantly, time
information has been introduced into RDF and
the temporal RDF model has been proposed [1,
32]. In the context of the temporal RDF mod-
el, few issues such as construction [27], que-
ry [32] and index [33] have been investigated.
We argue that massive RDF data are stored in
NoSQL databases and essentially RDF data are
temporally relevant. In order to efficiently man-
age massive temporal RDF data, it is crucial to
store temporal RDF data in NoSQL databases.
Unfortunately, the models and approaches pro-
posed for storing classical (non-temporal) RDF
data in NoSQL databases cannot be directly ap-
plied to storing temporal RDF data due to addi-
tional temporal information in RDF data. This
is why very different approaches are proposed
for dealing with temporal RDF data in [27, 32,
33] instead of directly applying the correspond-
ing approaches for classical RDF data. To the
best of our knowledge, there is not any report on
temporal RDF storage although more attention
has been paid to classical RDF data storage in
databases. The present paper tries to fill this gap.
In this paper, we propose to apply HBase to stor-
ing temporal RDF data. We analyze the charac-
teristics of the HBase database and particularly
identify possible problems of the built-in time
mechanism in the HBase database. On this ba-
sis, we propose a storage model for temporal
RDF, which considers the learning experience
of seniors and supports temporal RDF query.
We verify our approach with experiments on
the LUBM dataset.
The rest of this paper is organized as follows:
Section 2 presents a brief overview of related
work. The temporal RDF is presented in Sec-
tion 3. Section 4 proposes the storage model and
query strategy of temporal RDF data based on
the HBase database. The experimental evalua-
tions are presented in Section 5. Section 6 con-
cludes the paper and sketches our future work.

2. Related Work

The prototype of HBase is Bigtable. Apache
HBase provides Bigtable-like capabilities on top
of Hadoop, which uses HDFS as file storage sys-
tem and supports MapReduce, an open source

computing architecture. In addition, HBase
adopts a data structure called HTable, which is
similar to traditional relational table. For this rea-
son, the current RDF storage models in HBase
almost refer to RDF’s storage structure in rela-
tional databases. However, HBase is different
from relational databases after all. At this point,
considering the characteristics of HBase and the
corresponding query methods that usually take
advantage of MapReduce, some efforts are car-
ried out for proposing new storage models.
In [13], six index tables are introduced to store
RDF data, which are S_PO, P_SO, O_SP,
PS_O, SO_P, and PO_S, respectively. Here (S,
P, O) means a triplet of the form subject, predi-
cate and object. The six index tables are reduced
to three index tables in [14], which are very
efficient for simple queries because all combi-
nations of RDF triple patterns are covered. In
addition to the storage schema, a MapReduce
strategy is proposed for SPARQL BGP (Ba-
sic Graph Pattern) processing, which applies a
greedy method to select join key and eliminat-
ed multiple triple patterns. In [15], queries are
processed by connecting HBase to Jena, a well-
known SPARQL query processor. Jena-HBase
is created in [16]. Apart from this, they propose
various triple storage schemas and evaluate
those schemas in terms of query processing time
based on Jena-HBase. H2RDF, a query system
for RDF based on HBase and MapReduce, is
developed in [17], which uses SP_O, PO_S, and
OS_P index tables to reduce data redundancy. In
view of queries, H2RDF firstly parses SPARQL
queries through Jena, and then uses MapReduce
or Centralized query according to the join com-
plexity to ensure the query performance.
A vertical partition like model is designed in
[19], which creates two tables (Pso, Pos) for
each predicate and occupies less space. To deal
with complex query, they propose a path index
to reduce the numbers of join operation. In [20],
a hybrid storage schema is adopted, which is a
combination of simple triple and vertical par-
tition storage models. As a result, triples are
compressed by sequential encoding keys and
storage space is managed efficiently.
In [18], provenance datasets are serialized as
RDF graphs which are stored in HBase [18].
Here, an RDF graph identifier is used as the
unique row id, a complete RDF graph is stored
as one aggregate value in data column family,

18 19L. Yan, Z. Zhang and D. Yang Temporal RDF(S) Data Storage and Query with HBase

Ci is a set of classes; Pi is a set of properties;
Ri is the set of all resources, which is actually
the universe of RDF, containing a distinguished
subset Li called literal values; Ext: Pi → Ri × Ri
is used to express the relationship between re-
sources; CExt: Ci → 2Ri maps each class c ∈Ci
to a subset of Ri (i.e. Ci = CExt(rdfs: Class),
which means that each element of Ci is an ex-
tension of rdfs: Class).
T is a set of times. M: I → 2T is a timestamp
function that maps an interpretation to a time-
stamp (a set of times).
The temporal RDF model is defined with only
one time-dimension, which can be further ex-
tended to multi-dimension. The temporal RDF
model used in this paper has two time-dimen-
sions, which are valid time and transaction
time, respectively. Here, the time points are en-
coded as intervals. A time point set {1, 2, 3},
for example, is encoded as [1, 3] and a single
time point {1} can be described as [1, 1]. Then,
a temporal RDF triple is represented as follows:

(Subject, Predicate, Object): t, t = [V][T]
Valid(t) = [V], Transaction(t) = [T].

Here, (Subject, Predicate, Object) is a standard
RDF triple and t is a temporal label composed
by [V] and [T], which is applied at the lev-
el of a triple. [V] is the valid time of a triple,
which refers to the time when the data is true
in the modeled reality. [T] records the transac-
tion time when the triple is edited. In addition,
Valid: 1 → [V] and Transaction: t → [T] are
defined to get valid time and transaction time
from time label t, respectively.
A temporal RDF query language named
T-SPARQL is proposed in [23]. T-SPARQL ex-
tends temporally the standard query language
SPARQL, which is characterized by graph pat-
terns. BGP is the basic query mode of graph
patterns, consisting of a set of triple patterns.
All triple patterns in a BGP must be exactly
matched when a query is executed. Generally
speaking, there are eight modes in triple pat-
terns: (S, P, O), (?S, P, O), (S, ?P, O), (S, P, ?O),
(?S, ?P, O), (?S, P, ?O), (S, ?P, ?O), (?S, ?P, ?O).
The triple pattern with temporal information
contains a temporal variable and the corre-
sponding temporal constraint is represented by
time binary relationships in FILTER keyword.
Figure 1 depicts an example of T-SPARQL.

and bitmap indices are compacted to perform
expensive query processing operations. Triples
are separately stored in HBase tables according
to the subject's class in [21], where a table P is
created in order to store all <subject, object>
with the same predicate. All data is divided by
classes so that each HBase table is relatively
small. This can lead to a better performance of
table query and traversal.
Note that the proposals for RDF data storage
mentioned above do not consider temporal in-
formation, neither in RDF data model nor in
HBase. Actually, the classical RDF data model
and HBase do not explicitly support temporal
information modeling. The timestamp mecha-
nism in HBase can be applied to record multiple
values, but its implicit temporal interval repre-
sentation can cause wrong or misleading results
during temporal query processing. In [22], the
characteristics of column-oriented NoSQL da-
tabases are clearly clarified and two alternative
table representations are introduced to explicitly
address temporal data management and process-
ing. In the context of RDF data model, a tem-
poral RDF data model is proposed for temporal
information modeling in [1, 32]. Being different
from the classical RDF data model, the temporal
RDF data model contains temporal information
and cannot be directly stored in the classical
HBase database by using the existing solutions
of RDF data storage in HBase. Although there
are a few efforts in temporal RDF data manage-
ment (e.g., construction [27], query [32] and
index [33]), to the best of our knowledge, the
present paper is the first effort in storing tempo-
ral RDF data with a HBase database.

3. Temporal RDF

RDF is a metadata model for building an in-
frastructure of machine-readable semantics for
data on the Web. The RDF specification in-
cludes a built-in vocabulary with a normative
semantics (RDFS), which deals with inheri-
tance of classes and properties. Temporal RDF
based on the point-based temporal domain is
proposed in [1].
Definition 1 (Temporal RDF model). A sim-
ple temporal interpretation of RDF is a tuple
(I, T, M), in which I = {I1, …, In} is a set of sim-
ple interpretations. In Ii = (Ci, Pi, Ri, Ext, CExt),

data, in last two decades various temporal da-
tabase models have been proposed and some
temporal database management systems have
been developed [30]. More importantly, time
information has been introduced into RDF and
the temporal RDF model has been proposed [1,
32]. In the context of the temporal RDF mod-
el, few issues such as construction [27], que-
ry [32] and index [33] have been investigated.
We argue that massive RDF data are stored in
NoSQL databases and essentially RDF data are
temporally relevant. In order to efficiently man-
age massive temporal RDF data, it is crucial to
store temporal RDF data in NoSQL databases.
Unfortunately, the models and approaches pro-
posed for storing classical (non-temporal) RDF
data in NoSQL databases cannot be directly ap-
plied to storing temporal RDF data due to addi-
tional temporal information in RDF data. This
is why very different approaches are proposed
for dealing with temporal RDF data in [27, 32,
33] instead of directly applying the correspond-
ing approaches for classical RDF data. To the
best of our knowledge, there is not any report on
temporal RDF storage although more attention
has been paid to classical RDF data storage in
databases. The present paper tries to fill this gap.
In this paper, we propose to apply HBase to stor-
ing temporal RDF data. We analyze the charac-
teristics of the HBase database and particularly
identify possible problems of the built-in time
mechanism in the HBase database. On this ba-
sis, we propose a storage model for temporal
RDF, which considers the learning experience
of seniors and supports temporal RDF query.
We verify our approach with experiments on
the LUBM dataset.
The rest of this paper is organized as follows:
Section 2 presents a brief overview of related
work. The temporal RDF is presented in Sec-
tion 3. Section 4 proposes the storage model and
query strategy of temporal RDF data based on
the HBase database. The experimental evalua-
tions are presented in Section 5. Section 6 con-
cludes the paper and sketches our future work.

2. Related Work

The prototype of HBase is Bigtable. Apache
HBase provides Bigtable-like capabilities on top
of Hadoop, which uses HDFS as file storage sys-
tem and supports MapReduce, an open source

computing architecture. In addition, HBase
adopts a data structure called HTable, which is
similar to traditional relational table. For this rea-
son, the current RDF storage models in HBase
almost refer to RDF’s storage structure in rela-
tional databases. However, HBase is different
from relational databases after all. At this point,
considering the characteristics of HBase and the
corresponding query methods that usually take
advantage of MapReduce, some efforts are car-
ried out for proposing new storage models.
In [13], six index tables are introduced to store
RDF data, which are S_PO, P_SO, O_SP,
PS_O, SO_P, and PO_S, respectively. Here (S,
P, O) means a triplet of the form subject, predi-
cate and object. The six index tables are reduced
to three index tables in [14], which are very
efficient for simple queries because all combi-
nations of RDF triple patterns are covered. In
addition to the storage schema, a MapReduce
strategy is proposed for SPARQL BGP (Ba-
sic Graph Pattern) processing, which applies a
greedy method to select join key and eliminat-
ed multiple triple patterns. In [15], queries are
processed by connecting HBase to Jena, a well-
known SPARQL query processor. Jena-HBase
is created in [16]. Apart from this, they propose
various triple storage schemas and evaluate
those schemas in terms of query processing time
based on Jena-HBase. H2RDF, a query system
for RDF based on HBase and MapReduce, is
developed in [17], which uses SP_O, PO_S, and
OS_P index tables to reduce data redundancy. In
view of queries, H2RDF firstly parses SPARQL
queries through Jena, and then uses MapReduce
or Centralized query according to the join com-
plexity to ensure the query performance.
A vertical partition like model is designed in
[19], which creates two tables (Pso, Pos) for
each predicate and occupies less space. To deal
with complex query, they propose a path index
to reduce the numbers of join operation. In [20],
a hybrid storage schema is adopted, which is a
combination of simple triple and vertical par-
tition storage models. As a result, triples are
compressed by sequential encoding keys and
storage space is managed efficiently.
In [18], provenance datasets are serialized as
RDF graphs which are stored in HBase [18].
Here, an RDF graph identifier is used as the
unique row id, a complete RDF graph is stored
as one aggregate value in data column family,

20 21L. Yan, Z. Zhang and D. Yang Temporal RDF(S) Data Storage and Query with HBase

4.1.3. Implicit Time Interval Expression

Generally, we encode time points as an interval.
A time interval has a start time and an end time.
The attached timestamp in HBase can repre-
sent the start time explicitly. But the end time
is determined by TTL or the timestamp of the
next version implicitly. This can cause a wrong
or misleading result during the temporal query
processing.
First, suppose that a TTL is set. Then a cell value
may have two time-intervals and this can result
in a confusion for users. Let us look at an ex-
ample of an e-book table shown in Table 1. This
table contains two column families: CF1 and
CF2. Here CF1 has a column named Supplier
and there is no TTL that is explicitly set (the
default value is ∞). CF2 has a column named
Price and the TTL value is 10. It is also shown
there is a kind of book b1 in the table, in which
the price of b1 at time1 is 34.6. According to
the TTL value, the time interval of price 34.6 is
[1, 11]. Later, the price of b1 is changed to 48.5
at time 3. Then the price 34.6 has another time
interval [1, 2]. At this point, which one should
be chosen will be decided by users. However,
there is an ambiguity if two users chose differ-
ent time intervals and compare their data.
Second, users can update the data via Put and
Delete commands with a specified timestamp
arbitrarily. It means that the implicit time inter-
vals of data have high uncertainty. Let us look
at Table 1 again. One user acquires the sup-
pliers of b1 at time 6 and gets s1[1,2], s2[3,4]
and s3[5, ∞]. Suppose that the version s2 is de-
leted at time 7. Then the time interval of s1 is
changed from [1, 2] to [1, 4] and this causes
inconsistent query results. Hence, users are re-
quired to check all data operations before using
time information. This is time consuming and
laborious.

Table 1. An example of e-book.

Book CF1:Supplier
TTL = ∞

CF2:Price
TTL = 10

b1

1: s1 1: 34.6

3: s2 3: 49.0

5: s3 5: 43.5

4.2. Storage Model

RDF Schema defines the vocabularies that are
used by RDF to describe data, including classes,
properties, inheritance relationships between
classes (rdfs:subClassOf), inheritance relation-
ships between properties (rdfs:subPropertyOf),
domain and range of a property (rdfs:domain,
rdfs:range). Note that these classes are the sub-
class of rdfs:Class. RDF data are the instances
of RDFS, which actually record application in-
formation. We design a storage model to orga-
nize temporal RDF Schema and RDF instances
in different tables. We first create two tables,
TClass and TProperty, to store the temporal
RDF Schema. We present the definitions of
these two tables as follows:
Definition 2 (TClass table). TClass = (Ct,
PC: pc1t, ..., PC: pcmt, SC: sc1t, ..., SC: scnt,
Ins: i1t, ..., ikt), in which

1. t = [V][T];
2. Ct is temporal class;
3. PC = {pc1t, ..., pcmt} is a set of temporal

parent classes of C. The function ParClass:
Ct → PC can be used to get PC based on
the known Ct;

4. SC = {sc1t, ..., scnt} is a set of temporal
subclasses of Ct. Function SubClass: Ct
→ SC can be used to get subclasses, and
SubClass(pcit) ⊃ SubClass(Ct);

5. Ins = {i1t, ..., ikt} is the set of temporal in-
stances of Ct.

TClass is a table that records the temporal
classes in the temporal RDF Schema and the
related instances in the temporal RDF data-
set. The structure of TClass is shown in Fig-
ure 2. In this figure, the row key of this table
is (Class, t). Each row contains three column
families: PC, SC and Ins. PC stores the direct
parent classes of the class in row key, where
one class occupies one column, SC stores all
subclasses, and Ins records all instances of the
class in the temporal RDF data. The cell val-
ues are set to ''1'' for the columns. Note that
the timestamp (valid time, transaction time) in
all column qualifiers must be contained in the
time interval of the row key. It means that all
records related to a class exist on the premise
of the existence of that class.

4. RDF Storage Model

4.1. Characteristics of HBase

HBase organizes data in tables with a name of
HTable, which supports row-level transactions.
A row is uniquely identified by a rowkey. The
data in the table is sorted in ascending order by
the rowkey. It means that rows with the same
prefix are stored in adjacent positions. Intra-row
data are grouped by column families that need
to be defined in advance. Although each row
has the same column families (called column
qualifier), the columns in a column family can
be different. The cell value in every column can
have several versions sorted by the correspond-
ing timestamps in a descending order. Gener-
ally, the timestamp is attached by the system
when a data is inserted into HBase. Users can
indicate the time-to-live (TTL) property to de-
note how long the data can exist in the database
system. In a physical storage, data are stored in
key-value pairs with the following format.

[Rowkey, Column Family, Column Qualifier,
Timestamp] → Cell value

This storage structure provides physical sup-
port for flexible data modeling and can store
sparse data without wasting space.
Note that, although the multi-version mecha-
nism provided by HBase can meet some basic
requirements of temporal data modeling, there
are still many defects in the maintenance of
temporal data.

4.1.1. Fixed Time Granularity

As we know, time has different calculation units
(e.g., year, month, day, hour, minute, second,
and millisecond). In real-world applications,
the time granularity of data is set according to a
specific scenario. For example, weather can be
recorded by days or hours; stock price can be
updated in seconds; running time of a program
can be accurate to milliseconds. Obviously,
different application scenarios need to use dif-
ferent time granularity. The time mechanism in
HBase, however, only uses seconds as a fixed
time granularity. Users cannot choose a prop-
er time granularity according to the given sce-
nario. Although the time granularity in seconds
may be applicable in many application scenar-
ios, other time representations in applications
are not supported by HBase.

4.1.2. Single Time Dimension and Immutable
TTL

In many temporal data models, temporal infor-
mation is generally multi-dimensional. The tem-
poral RDF data model in this paper contains two
time-dimensions. The built-in time mechanism
supported by HBase is one-dimensional and
cannot represent multi-dimensional time. In ad-
dition, users can use TTL to control data lifetime.
But when the TTL is set, it is applied to entire
column family. In real applications, it is needed
to control the life cycle of data at different levels,
without being limited to a column family.

Figure 1. An example of T-SPARQL.

20 21L. Yan, Z. Zhang and D. Yang Temporal RDF(S) Data Storage and Query with HBase

4.1.3. Implicit Time Interval Expression

Generally, we encode time points as an interval.
A time interval has a start time and an end time.
The attached timestamp in HBase can repre-
sent the start time explicitly. But the end time
is determined by TTL or the timestamp of the
next version implicitly. This can cause a wrong
or misleading result during the temporal query
processing.
First, suppose that a TTL is set. Then a cell value
may have two time-intervals and this can result
in a confusion for users. Let us look at an ex-
ample of an e-book table shown in Table 1. This
table contains two column families: CF1 and
CF2. Here CF1 has a column named Supplier
and there is no TTL that is explicitly set (the
default value is ∞). CF2 has a column named
Price and the TTL value is 10. It is also shown
there is a kind of book b1 in the table, in which
the price of b1 at time1 is 34.6. According to
the TTL value, the time interval of price 34.6 is
[1, 11]. Later, the price of b1 is changed to 48.5
at time 3. Then the price 34.6 has another time
interval [1, 2]. At this point, which one should
be chosen will be decided by users. However,
there is an ambiguity if two users chose differ-
ent time intervals and compare their data.
Second, users can update the data via Put and
Delete commands with a specified timestamp
arbitrarily. It means that the implicit time inter-
vals of data have high uncertainty. Let us look
at Table 1 again. One user acquires the sup-
pliers of b1 at time 6 and gets s1[1,2], s2[3,4]
and s3[5, ∞]. Suppose that the version s2 is de-
leted at time 7. Then the time interval of s1 is
changed from [1, 2] to [1, 4] and this causes
inconsistent query results. Hence, users are re-
quired to check all data operations before using
time information. This is time consuming and
laborious.

Table 1. An example of e-book.

Book CF1:Supplier
TTL = ∞

CF2:Price
TTL = 10

b1

1: s1 1: 34.6

3: s2 3: 49.0

5: s3 5: 43.5

4.2. Storage Model

RDF Schema defines the vocabularies that are
used by RDF to describe data, including classes,
properties, inheritance relationships between
classes (rdfs:subClassOf), inheritance relation-
ships between properties (rdfs:subPropertyOf),
domain and range of a property (rdfs:domain,
rdfs:range). Note that these classes are the sub-
class of rdfs:Class. RDF data are the instances
of RDFS, which actually record application in-
formation. We design a storage model to orga-
nize temporal RDF Schema and RDF instances
in different tables. We first create two tables,
TClass and TProperty, to store the temporal
RDF Schema. We present the definitions of
these two tables as follows:
Definition 2 (TClass table). TClass = (Ct,
PC: pc1t, ..., PC: pcmt, SC: sc1t, ..., SC: scnt,
Ins: i1t, ..., ikt), in which

1. t = [V][T];
2. Ct is temporal class;
3. PC = {pc1t, ..., pcmt} is a set of temporal

parent classes of C. The function ParClass:
Ct → PC can be used to get PC based on
the known Ct;

4. SC = {sc1t, ..., scnt} is a set of temporal
subclasses of Ct. Function SubClass: Ct
→ SC can be used to get subclasses, and
SubClass(pcit) ⊃ SubClass(Ct);

5. Ins = {i1t, ..., ikt} is the set of temporal in-
stances of Ct.

TClass is a table that records the temporal
classes in the temporal RDF Schema and the
related instances in the temporal RDF data-
set. The structure of TClass is shown in Fig-
ure 2. In this figure, the row key of this table
is (Class, t). Each row contains three column
families: PC, SC and Ins. PC stores the direct
parent classes of the class in row key, where
one class occupies one column, SC stores all
subclasses, and Ins records all instances of the
class in the temporal RDF data. The cell val-
ues are set to ''1'' for the columns. Note that
the timestamp (valid time, transaction time) in
all column qualifiers must be contained in the
time interval of the row key. It means that all
records related to a class exist on the premise
of the existence of that class.

4. RDF Storage Model

4.1. Characteristics of HBase

HBase organizes data in tables with a name of
HTable, which supports row-level transactions.
A row is uniquely identified by a rowkey. The
data in the table is sorted in ascending order by
the rowkey. It means that rows with the same
prefix are stored in adjacent positions. Intra-row
data are grouped by column families that need
to be defined in advance. Although each row
has the same column families (called column
qualifier), the columns in a column family can
be different. The cell value in every column can
have several versions sorted by the correspond-
ing timestamps in a descending order. Gener-
ally, the timestamp is attached by the system
when a data is inserted into HBase. Users can
indicate the time-to-live (TTL) property to de-
note how long the data can exist in the database
system. In a physical storage, data are stored in
key-value pairs with the following format.

[Rowkey, Column Family, Column Qualifier,
Timestamp] → Cell value

This storage structure provides physical sup-
port for flexible data modeling and can store
sparse data without wasting space.
Note that, although the multi-version mecha-
nism provided by HBase can meet some basic
requirements of temporal data modeling, there
are still many defects in the maintenance of
temporal data.

4.1.1. Fixed Time Granularity

As we know, time has different calculation units
(e.g., year, month, day, hour, minute, second,
and millisecond). In real-world applications,
the time granularity of data is set according to a
specific scenario. For example, weather can be
recorded by days or hours; stock price can be
updated in seconds; running time of a program
can be accurate to milliseconds. Obviously,
different application scenarios need to use dif-
ferent time granularity. The time mechanism in
HBase, however, only uses seconds as a fixed
time granularity. Users cannot choose a prop-
er time granularity according to the given sce-
nario. Although the time granularity in seconds
may be applicable in many application scenar-
ios, other time representations in applications
are not supported by HBase.

4.1.2. Single Time Dimension and Immutable
TTL

In many temporal data models, temporal infor-
mation is generally multi-dimensional. The tem-
poral RDF data model in this paper contains two
time-dimensions. The built-in time mechanism
supported by HBase is one-dimensional and
cannot represent multi-dimensional time. In ad-
dition, users can use TTL to control data lifetime.
But when the TTL is set, it is applied to entire
column family. In real applications, it is needed
to control the life cycle of data at different levels,
without being limited to a column family.

Figure 1. An example of T-SPARQL.

22 23L. Yan, Z. Zhang and D. Yang Temporal RDF(S) Data Storage and Query with HBase

1. t = [V][T];
2. OS is the object and subject of a temporal

triple;
3. PT = {p1t, ..., pnt} is the set composed by

corresponding predicates of the triples.

Definition 6 (PO_ST table). PO_ST = (PO,
ST: s1t, ..., ST: snt), in which
1. t = [V][T];
2. PO is the predicate and object of a tempo-

ral triple;
3. ST = {s1t, ..., snt} is the set composed by

corresponding subjects of the triples.

The structures of SP_OT, OS_PT and PO_ST
are shown in Figure 4. They contain only one
column family. Row keys of these tables are
composed of two elements in a triple and the
other element acts as a column in the table with
the temporal information of the triple. In tem-
poral RDF queries, the variable constraints be-
tween triples are still the body of query blocks
and the temporal constraints are the second-
ary data filtering. Therefore, the time stored
in columns can be processed by the filters of
HBase. Furthermore, triple redundancy in the
tables can effectively deal with different triple
patterns, which will be explained in the next
section. Note that PO_ST and OS_PT do not
maintain the triples with a predicate of rdf:type
because the class instances can be obtained di-
rectly from the table TClass.

Now we apply the examples to illustrate our
storage method with the above table struc-
tures. The temporal RDF Schema in Fig-
ure 5 contains 4 classes and 2 properties.
Among them, Student[3, now][3, UC] is a
subclass of Person[1, now][1, UC] and Grad-
uateStudent[4, now][4, UC] is a subclass of
class Student. The domain of property de-
greeFrom[2, now][2, UC] is Person and its range is
University. masterDegreeFrom[4, now][4, UC]
is a sub-property of degreeFrom.

Figure 2. The structure of TClass.

Definition 3 (TProperty table). TProperty =
(Pt, Domain: d1t, ..., Domain: dkt, Range: r1t,
..., Range: rlt, PP: pp1t, ..., PP: ppmt, SP: sp1t,
..., SP: spnt), in which

1. t = [V][T];
2. Pt is the temporal property;
3. Domain = {d11, ..., dkt} is the domain of

Pt, that is composed of d1t, ..., dkt;
4. Range = {r1t, ..., rlt} is the range of Pt, that

is composed of r1t, ..., rlt;
5. PP = {pp1t, ..., ppmt} is a set of temporal

parent properties of Pt. The function Par-
Prop: Pt → PP can be used to obtain PP;

6. SP = {sp1t, ..., spnt} is a set of temporal
sub-properties of Pt. SubProp: Pt → SP
is the function mapping Pt to SP, and
SubProp(ppit) ⊃ SubProp(Pt).

TProperty stores properties information with
inheritance relationships in temporal RDF
Schema. The structure of this table is shown
in Figure 3, which contains four column fam-
ilies named Domain, Range, PP and SP. The
row key of the table is (Property, t), and its
domain and range are recorded in Domain and
Range, respectively. PP is the column family
that stores the direct parent property, while the
column family SP stores all the child proper-
ties with temporal information. Being the same
as TClass, all information is stored as column
qualifiers with values that are set to be ''1'', and
the time interval is included in the lifetime and
validity period of the property to ensure the
data accuracy.

Figure 3. The structure of TProperty.

The structures of TClass and TProperty contain
only a few column families and are easy to be
understood. Even though each row has different
columns, there is not any waste of space in the
key-value storage mode. In addition, the data
in these tables are stored in groups by column
families. This can reduce the IO cost of que-
rying RDFS. Moreover, users can obtain some
hierarchy or inference information and this can
avoid multiple queries. The time intervals of
RDFS are recorded in row keys and columns.
This can solve the above-mentioned problems
of built-in time in HBase and guarantee time
constraints between RDFS hierarchies.
In addition to TClass and TProperty to store
temporal RDF Schema, we further create three
tables SP_OT, OS_PT and PO_ST to store tem-
poral RDF triples. Being different from the ta-
bles for temporal RDFS, none of the row keys
of the three tables for temporal RDF triples
contain any time information. We present the
definitions of these three tables as follows.
Definition 4 (SP_OT table). SP_OT = (SP,
OT: o1t, ..., OT: ont), in which

1. t = [V][T];
2. SP is the subject and predicate of a tempo-

ral triple;
3. OT = {o1t, ..., ont} is the set composed by

corresponding objects of the triples.
Definition 5 (OS_PT table). OS_PT = (OS,
PT: p1t, ..., PT: pnt), in which Figure 5. An example of temporal RDFS.

Figure 4. The structures of SP_OT, OS_PT, PO_ST.

22 23L. Yan, Z. Zhang and D. Yang Temporal RDF(S) Data Storage and Query with HBase

1. t = [V][T];
2. OS is the object and subject of a temporal

triple;
3. PT = {p1t, ..., pnt} is the set composed by

corresponding predicates of the triples.

Definition 6 (PO_ST table). PO_ST = (PO,
ST: s1t, ..., ST: snt), in which
1. t = [V][T];
2. PO is the predicate and object of a tempo-

ral triple;
3. ST = {s1t, ..., snt} is the set composed by

corresponding subjects of the triples.

The structures of SP_OT, OS_PT and PO_ST
are shown in Figure 4. They contain only one
column family. Row keys of these tables are
composed of two elements in a triple and the
other element acts as a column in the table with
the temporal information of the triple. In tem-
poral RDF queries, the variable constraints be-
tween triples are still the body of query blocks
and the temporal constraints are the second-
ary data filtering. Therefore, the time stored
in columns can be processed by the filters of
HBase. Furthermore, triple redundancy in the
tables can effectively deal with different triple
patterns, which will be explained in the next
section. Note that PO_ST and OS_PT do not
maintain the triples with a predicate of rdf:type
because the class instances can be obtained di-
rectly from the table TClass.

Now we apply the examples to illustrate our
storage method with the above table struc-
tures. The temporal RDF Schema in Fig-
ure 5 contains 4 classes and 2 properties.
Among them, Student[3, now][3, UC] is a
subclass of Person[1, now][1, UC] and Grad-
uateStudent[4, now][4, UC] is a subclass of
class Student. The domain of property de-
greeFrom[2, now][2, UC] is Person and its range is
University. masterDegreeFrom[4, now][4, UC]
is a sub-property of degreeFrom.

Figure 2. The structure of TClass.

Definition 3 (TProperty table). TProperty =
(Pt, Domain: d1t, ..., Domain: dkt, Range: r1t,
..., Range: rlt, PP: pp1t, ..., PP: ppmt, SP: sp1t,
..., SP: spnt), in which

1. t = [V][T];
2. Pt is the temporal property;
3. Domain = {d11, ..., dkt} is the domain of

Pt, that is composed of d1t, ..., dkt;
4. Range = {r1t, ..., rlt} is the range of Pt, that

is composed of r1t, ..., rlt;
5. PP = {pp1t, ..., ppmt} is a set of temporal

parent properties of Pt. The function Par-
Prop: Pt → PP can be used to obtain PP;

6. SP = {sp1t, ..., spnt} is a set of temporal
sub-properties of Pt. SubProp: Pt → SP
is the function mapping Pt to SP, and
SubProp(ppit) ⊃ SubProp(Pt).

TProperty stores properties information with
inheritance relationships in temporal RDF
Schema. The structure of this table is shown
in Figure 3, which contains four column fam-
ilies named Domain, Range, PP and SP. The
row key of the table is (Property, t), and its
domain and range are recorded in Domain and
Range, respectively. PP is the column family
that stores the direct parent property, while the
column family SP stores all the child proper-
ties with temporal information. Being the same
as TClass, all information is stored as column
qualifiers with values that are set to be ''1'', and
the time interval is included in the lifetime and
validity period of the property to ensure the
data accuracy.

Figure 3. The structure of TProperty.

The structures of TClass and TProperty contain
only a few column families and are easy to be
understood. Even though each row has different
columns, there is not any waste of space in the
key-value storage mode. In addition, the data
in these tables are stored in groups by column
families. This can reduce the IO cost of que-
rying RDFS. Moreover, users can obtain some
hierarchy or inference information and this can
avoid multiple queries. The time intervals of
RDFS are recorded in row keys and columns.
This can solve the above-mentioned problems
of built-in time in HBase and guarantee time
constraints between RDFS hierarchies.
In addition to TClass and TProperty to store
temporal RDF Schema, we further create three
tables SP_OT, OS_PT and PO_ST to store tem-
poral RDF triples. Being different from the ta-
bles for temporal RDFS, none of the row keys
of the three tables for temporal RDF triples
contain any time information. We present the
definitions of these three tables as follows.
Definition 4 (SP_OT table). SP_OT = (SP,
OT: o1t, ..., OT: ont), in which

1. t = [V][T];
2. SP is the subject and predicate of a tempo-

ral triple;
3. OT = {o1t, ..., ont} is the set composed by

corresponding objects of the triples.
Definition 5 (OS_PT table). OS_PT = (OS,
PT: p1t, ..., PT: pnt), in which Figure 5. An example of temporal RDFS.

Figure 4. The structures of SP_OT, OS_PT, PO_ST.

24 25L. Yan, Z. Zhang and D. Yang Temporal RDF(S) Data Storage and Query with HBase

Table 4. An example of SP_OT table.

RowKey Column Family
"OT:"

student1,
rdf: type

ub: Student,
[5, 12][5, UC]: "1"

student1,
ub: takeCourse

course1,
[6, 7][6, UC]: "1"

student1,
ub: memberOf

deparment0,
[5, 6][5, 7]: "1"

deparment1,
[5, 8][5, UC]: ''1''

student1,
ub: masterDegreeFrom

university3,
[12, now][12, UC]: ''1''

course1,
rdf: type

ub: Course,
[3,12][3,UC]: ''1''

department0,
rdf: type

ub: Department,
[2, now][2, UC]: ''1''

department1,
rdf: type

ub: Department,
[4, 9][4, UC]: ''1''

Table 5. An example of OS_PT table.

RowKey Column Family
"PT:"

course1, student1 ub: takeCourse,
[6, 7][6, UC]: "1"

deparment0, student1 ub: memberOf,
[5, 6][5, 7]: "1"

deparment1, student1 ub: memberOf,
[5, 8][7, UC]: "1"

university3, student1 ub: masterDegreeFrom,
[12,now][12, UC]: "1"

Table 6. An example of PO_ST table.

RowKey Column Family
"ST:"

ub: takeCourse,
course1

student1,
[6, 7][6, UC]: "1"

ub: memberOf,
deparment0

student1,
[5, 6][5, 7]: "1"

ub: memberOf,
deparment1

student1,
[5, 8][7, UC]: "1"

ub: masterDegreeFrom,
university3

student1,
[12, now][12, UC]: "1"

4.3. Query Strategy

In Subsection 4.2 it is shown that, for temporal
RDF storage, the storage model introduced in

this paper can be divided into two parts. TClass
and TProperty are used to record RDF Schema,
which covers the domain information involved,
including inheritance information and relevant
class instances. SP_OT, OS_PT and PO_ST are
designed for RDF data, which can satisfy all tri-
ple patterns in query block, and simple queries
can be hereby responded quickly.
A comparison of diverse temporal triple pat-
terns is summarized in Table 7. It is shown that,
if any two elements in the triple are known,
the triple pattern can generate a row key based
on the known binding values and then select
an appropriate table from SP_OT, OS_PT and
PO_ST, to perform the Get operation provided
by HBase.

Table 7. Diverse triple patterns.

Triple Pattern Tables
(S, P, ?O) : t SP_OT
(S,?P, ?O) : t SP_OT
(S, ?P, O) : t OS_PT
(?S, P, O) : t PO_ST
(?S, ?P, O) : t OS_PT
(?S, P, ?O) : t PO_ST
(?S, ?P, ?O) : t SP_OT | OS_PT

(?S, rdf:type, C) : t TClass

Note that the triple pattern with rdf:type as a
known predicate is an exception, which should
be queried from the TClass table. The case of
only one known element is handled by the Scan
operation. The table data in the HBase are ar-
ranged in alphabetical order and the rows with
the same prefix in the row key are adjacent.
Therefore, matching a triple pattern can be
completed quickly by using the known data to
set the start and end row keys of Scan.

There are some RDF queries that always con-
tain the triple pattern with a wide hierarchy.
Such queries cannot be processed by the Get
or Scan operation. Let us look at an example
in Figure 7. This query example contains two
non-temporal triple patterns to get the Student
members of Department0. The first triple can
acquire the student instances and the second
triple can get the subjects satisfying this triple.
However, if the triples are executed directly, the
returned result will not match the query seman-

Then, the TClass and TProperty tables are
shown in Table 2 and Table 3, respectively.
Figure 6 is an example of a temporal RDF
graph, which depicts the information of
student1[5, 12][5, UC] at university3. The stu-
dent takes course1 during [6, 7] and is enrolled
in two departments during [5, 8]. The graph
contains 8 temporal triples. Among them, 4

temporal triples describe the relationships be-
tween instances and classes and the other 4
temporal triples describe the relationships be-
tween instances. The former is stored in the
SP_OT table, the latter are stored in the tables
SP_OT, OS_PT and PO_ST. These four tables
are shown in Table 4, Table 5 and Table 6, re-
spectively.

Table 3. An example of TProperty table.

RowKey Column Family
"Domain:"

Column Family
"Range:"

Column Family
"PP:"

Column Family
"SP:"

degreeFrom,
[2, now][2, UC]

Person,
[2, now][2, UC]: "1"

University,
[2, now][2, UC]: "1"

masterDegreeFrom,
[4, now][4, UC]: "1"

masterDegreeFrom,
[4, now][4, UC]

Person,
[4, now][4, UC]: "1"

University,
[4, now][4, UC]: "1"

University,
[4, now][4, UC]: "1"

Table 2. An example of TClass table.

RowKey Column Family
"PC:"

Column Family
"SC:"

Column Family
"Ins:"

Person,
[1, now][1, UC]

Student,
[3, now][3, UC]: "1"

student1, student2,
teacher1,teacher2

GraduateStudent,
[4, now][4, UC]: "1" graduateStudent1

Student,
[3, now][3, UC]

Person,
[3, now][3, UC]: "1"

GraduateStudent,
[4, now][4, UC]: "1" student1, student2

GraduateStudent,
[4, now][4, UC]

Student,
[4, now][4, UC]: "1" graduateStudent1

University,
[3, now][3, UC] university3

Figure 6. An example of temporal RDF.

24 25L. Yan, Z. Zhang and D. Yang Temporal RDF(S) Data Storage and Query with HBase

Table 4. An example of SP_OT table.

RowKey Column Family
"OT:"

student1,
rdf: type

ub: Student,
[5, 12][5, UC]: "1"

student1,
ub: takeCourse

course1,
[6, 7][6, UC]: "1"

student1,
ub: memberOf

deparment0,
[5, 6][5, 7]: "1"

deparment1,
[5, 8][5, UC]: ''1''

student1,
ub: masterDegreeFrom

university3,
[12, now][12, UC]: ''1''

course1,
rdf: type

ub: Course,
[3,12][3,UC]: ''1''

department0,
rdf: type

ub: Department,
[2, now][2, UC]: ''1''

department1,
rdf: type

ub: Department,
[4, 9][4, UC]: ''1''

Table 5. An example of OS_PT table.

RowKey Column Family
"PT:"

course1, student1 ub: takeCourse,
[6, 7][6, UC]: "1"

deparment0, student1 ub: memberOf,
[5, 6][5, 7]: "1"

deparment1, student1 ub: memberOf,
[5, 8][7, UC]: "1"

university3, student1 ub: masterDegreeFrom,
[12,now][12, UC]: "1"

Table 6. An example of PO_ST table.

RowKey Column Family
"ST:"

ub: takeCourse,
course1

student1,
[6, 7][6, UC]: "1"

ub: memberOf,
deparment0

student1,
[5, 6][5, 7]: "1"

ub: memberOf,
deparment1

student1,
[5, 8][7, UC]: "1"

ub: masterDegreeFrom,
university3

student1,
[12, now][12, UC]: "1"

4.3. Query Strategy

In Subsection 4.2 it is shown that, for temporal
RDF storage, the storage model introduced in

this paper can be divided into two parts. TClass
and TProperty are used to record RDF Schema,
which covers the domain information involved,
including inheritance information and relevant
class instances. SP_OT, OS_PT and PO_ST are
designed for RDF data, which can satisfy all tri-
ple patterns in query block, and simple queries
can be hereby responded quickly.
A comparison of diverse temporal triple pat-
terns is summarized in Table 7. It is shown that,
if any two elements in the triple are known,
the triple pattern can generate a row key based
on the known binding values and then select
an appropriate table from SP_OT, OS_PT and
PO_ST, to perform the Get operation provided
by HBase.

Table 7. Diverse triple patterns.

Triple Pattern Tables
(S, P, ?O) : t SP_OT
(S,?P, ?O) : t SP_OT
(S, ?P, O) : t OS_PT
(?S, P, O) : t PO_ST
(?S, ?P, O) : t OS_PT
(?S, P, ?O) : t PO_ST
(?S, ?P, ?O) : t SP_OT | OS_PT

(?S, rdf:type, C) : t TClass

Note that the triple pattern with rdf:type as a
known predicate is an exception, which should
be queried from the TClass table. The case of
only one known element is handled by the Scan
operation. The table data in the HBase are ar-
ranged in alphabetical order and the rows with
the same prefix in the row key are adjacent.
Therefore, matching a triple pattern can be
completed quickly by using the known data to
set the start and end row keys of Scan.

There are some RDF queries that always con-
tain the triple pattern with a wide hierarchy.
Such queries cannot be processed by the Get
or Scan operation. Let us look at an example
in Figure 7. This query example contains two
non-temporal triple patterns to get the Student
members of Department0. The first triple can
acquire the student instances and the second
triple can get the subjects satisfying this triple.
However, if the triples are executed directly, the
returned result will not match the query seman-

Then, the TClass and TProperty tables are
shown in Table 2 and Table 3, respectively.
Figure 6 is an example of a temporal RDF
graph, which depicts the information of
student1[5, 12][5, UC] at university3. The stu-
dent takes course1 during [6, 7] and is enrolled
in two departments during [5, 8]. The graph
contains 8 temporal triples. Among them, 4

temporal triples describe the relationships be-
tween instances and classes and the other 4
temporal triples describe the relationships be-
tween instances. The former is stored in the
SP_OT table, the latter are stored in the tables
SP_OT, OS_PT and PO_ST. These four tables
are shown in Table 4, Table 5 and Table 6, re-
spectively.

Table 3. An example of TProperty table.

RowKey Column Family
"Domain:"

Column Family
"Range:"

Column Family
"PP:"

Column Family
"SP:"

degreeFrom,
[2, now][2, UC]

Person,
[2, now][2, UC]: "1"

University,
[2, now][2, UC]: "1"

masterDegreeFrom,
[4, now][4, UC]: "1"

masterDegreeFrom,
[4, now][4, UC]

Person,
[4, now][4, UC]: "1"

University,
[4, now][4, UC]: "1"

University,
[4, now][4, UC]: "1"

Table 2. An example of TClass table.

RowKey Column Family
"PC:"

Column Family
"SC:"

Column Family
"Ins:"

Person,
[1, now][1, UC]

Student,
[3, now][3, UC]: "1"

student1, student2,
teacher1,teacher2

GraduateStudent,
[4, now][4, UC]: "1" graduateStudent1

Student,
[3, now][3, UC]

Person,
[3, now][3, UC]: "1"

GraduateStudent,
[4, now][4, UC]: "1" student1, student2

GraduateStudent,
[4, now][4, UC]

Student,
[4, now][4, UC]: "1" graduateStudent1

University,
[3, now][3, UC] university3

Figure 6. An example of temporal RDF.

26 27L. Yan, Z. Zhang and D. Yang Temporal RDF(S) Data Storage and Query with HBase

Query 2:
SELECT ?X, ?Y, ?Z
WHERE{

?X rdf:type ub:GraduateStudent .
?Y rdf:type ub:University .
?Z rdf:type ub:Department .
?X ub:memberOf ?Z | t1.
?Z ub:subOrganizationOf ?Y | ?t2.
?X ub:undergraduateDegreeFrom
?Y | ?t3.

FILTER (Valid(?t) overlaps Valid(?t2) &&
Valid(?t3) during [2016-04-30, now])}

Query 3:
SELECT ?X
WHERE {

?X rdf:type ub:Publication .
?X ub:publicationAuthor http://
www.Department0.University0.
edu/AssistantProfessor0 | ?t.
FILTER (Tansaction(?t) during
[2013-01-31, 2015-01-31])}

Query 4:
SELECT ?X, ?Y1, ?Y2, ?Y3
WHERE {

?X rdf:type ub:Professor .
?X ub:worksFor http://www.De-
partment0.University0.edu | ?t1.
?X ub:name ?Y1 .
?X ub:emailAddress ?Y2 | ?t2 .
?X ub:telephone ?Y3
FILTER (Valid(?t) during Valid(?t2)
&& Tansaction(?t1) overlaps
[2013-01-31, 2015-01-31])}

Query 5:
SELECT ?X
WHERE {

?X rdf:type ub:Person .
?X ub:memberOf http://www.De-
partment0.University0.edu |?t.
FILTER (Valid(?t) starts [2017-05-
20, 2017-05-20])}

Query 6:
SELECT ?X
WHERE {

?X rdf:type ub:Student | ?t
FILTER (Tansaction(?t) equals
[2016-09-08, 2018-04-30])}

Query 7:
SELECT ?X, ?Y
WHERE {

?X rdf:type ub:Student .
?Y rdf:type ub:Course .
?X ub:takesCourse ?Y | ?t1.

http://www.Department0.Uni-
versity0.edu/AssociateProfes-
sor0 ub:teacherOf, ?Y | ?t2

FILTER (Valid(?t1) overlaps
Valid(?t2) && Tansaction(?t1) ends
[2018-03-10, 2018-07-25])}

Table 9 presents the number of different oper-
ations included in these queries. Note that Get
and Scan are not time-consuming operations.
A join operation means the running of a Ma-
pReduce program, which greatly affects the
response time of queries. Figure 8 presents re-
sponse times of the seven queries over D1 and
D2. Furthermore, the increment ratios of re-
sponse time for the seven queries are calculated
by (D2-D1)/D1 and shown in Figure 9.

Table 9. Operations in temporal queries.

Query

Q
ue

ry
1

Q
ue

ry
2

Q
ue

ry
3

Q
ue

ry
4

Q
ue

ry
5

Q
ue

ry
6

Q
ue

ry
7

Get 2 4 2 3 3 1 2

Scan 0 3 0 3 0 0 1

Joins 1 3 1 1 1 0 2

First, it is shown in Figure 8 that, for a given
query, its response time over D1 is less than that
over D2 because D2 is larger than D1. So, gen-
erally speaking, a given query will take more
time as the size of the dataset increases. But
we can observe from Figure 9 that the query
time increases only by a factor of 3 while the
amount of RDF data is increased by 10 times.
This demonstrates the advantages of the storage
model based on HBase.
Second, it is shown in Figure 8 that different
queries may have very different response times.
In particular, Query 2 has the longest response
times over both D1 and D2 and Query 6 has the
shortest response times over both D1 and D2,
compared to other queries over D1 and D2. The
main reason why the response times of Query
2 are significantly higher than other queries is
that Query 2 contains three join operations. The
main reason why the response times of Query 6
are significantly less than other queries is that
Query 6 contains only one triple pattern, not in-
volving the MapReduce calculations. Then this

tics because ub:Student and ub:memberOf have
implicit subclasses and sub-properties. There-
fore, a preprocessing is required before execut-
ing such queries. We need to search the TClass
or TProperty table to get the corresponding
instances or sub-properties, and then use these
sub-properties to extend the triple patterns.

It is required that all triple patterns must meet
the temporal constraints given in FILTER key-
word. Temporal constraints mean some time
interval relationships with one or two time
variables. In order to reduce the amount of data
transmission and the number of queries, a FIL-
TER parsing is divided into two parts. One part
is composed of time interval relationships with
a single variable, which is added to the relevant
triple patterns. Another part is handled in the
triple pattern joins. In this paper, we adopt the
greedy multiple join strategy proposed in [13]
and use MapReduce to perform join operations.
The detailed steps for a query are as follows:

1. decomposing the query block into
non-temporal triple patterns and temporal
constraints;

2. extracting RDFS domain objects from
non-temporal triple patterns;

3. retrieving subclasses or sub-properties
from the TClass or TProperty table for
domain instances and predicates, and then
extending the relevant triple patterns;

4. adding temporal constraints with a single
variable to the triple patterns;

5. determining the join strategy with the
greedy algorithm and selecting a join
method for the temporal constraints with
two variables;

6. executing temporal triple patterns with
the filters provided by HBase and making
joins with the MapReduce programs.

5. Experiments

Our experimental sets include one master serv-
er and two slave nodes each. All machines have
the same configuration: Intel Core i5-2450M
2.5GHZ and Ubuntu 64-bit. The master server
has a 4GB main memory and each slave node
has a 2GB main memory. We use RDF data
provided by LUBM, including the univ-bench,
Uba generator and a set of test queries. The
univ-bench is the benchmark which defines
the university domain ontology. The Uba is an
OWL text generator which requires some spe-
cific parameters to generate file sets of different
size. All instance files can be parsed into triples
by Jena. Note that the RDF data from LUBM
do not contain temporal information. For the
purpose of our experiments, we add temporal
information by a random time generator. Then
we have two temporal RDF datasets D1 and D2
shown in Table 8, which are imported into the
HBase by BulkLoad.

Table 8. Temporal RDF datasets.

DataSets Universities Temporal RDF Triples
D1 5 874899
D2 15 13739264

In order to verify the validity of our storage
model, we refer to the LUBM test queries and
create the following 7 test queries with temporal
constraints, which are executed on D1 and D2.

Query 1:
SELECT ?X
WHERE {

?X rdf:type ub:GraduateStudent .
?X ub:takesCourse
http://www.Department0.Universi-
ty0.edu/GraduateCourse0 | ?t.
FILTER (Tansaction (?t) before
[2014-06-30, 2014-06-30])}

Figure 7. An example of wide hierarchy query.

26 27L. Yan, Z. Zhang and D. Yang Temporal RDF(S) Data Storage and Query with HBase

Query 2:
SELECT ?X, ?Y, ?Z
WHERE{

?X rdf:type ub:GraduateStudent .
?Y rdf:type ub:University .
?Z rdf:type ub:Department .
?X ub:memberOf ?Z | t1.
?Z ub:subOrganizationOf ?Y | ?t2.
?X ub:undergraduateDegreeFrom
?Y | ?t3.

FILTER (Valid(?t) overlaps Valid(?t2) &&
Valid(?t3) during [2016-04-30, now])}

Query 3:
SELECT ?X
WHERE {

?X rdf:type ub:Publication .
?X ub:publicationAuthor http://
www.Department0.University0.
edu/AssistantProfessor0 | ?t.
FILTER (Tansaction(?t) during
[2013-01-31, 2015-01-31])}

Query 4:
SELECT ?X, ?Y1, ?Y2, ?Y3
WHERE {

?X rdf:type ub:Professor .
?X ub:worksFor http://www.De-
partment0.University0.edu | ?t1.
?X ub:name ?Y1 .
?X ub:emailAddress ?Y2 | ?t2 .
?X ub:telephone ?Y3
FILTER (Valid(?t) during Valid(?t2)
&& Tansaction(?t1) overlaps
[2013-01-31, 2015-01-31])}

Query 5:
SELECT ?X
WHERE {

?X rdf:type ub:Person .
?X ub:memberOf http://www.De-
partment0.University0.edu |?t.
FILTER (Valid(?t) starts [2017-05-
20, 2017-05-20])}

Query 6:
SELECT ?X
WHERE {

?X rdf:type ub:Student | ?t
FILTER (Tansaction(?t) equals
[2016-09-08, 2018-04-30])}

Query 7:
SELECT ?X, ?Y
WHERE {

?X rdf:type ub:Student .
?Y rdf:type ub:Course .
?X ub:takesCourse ?Y | ?t1.

http://www.Department0.Uni-
versity0.edu/AssociateProfes-
sor0 ub:teacherOf, ?Y | ?t2

FILTER (Valid(?t1) overlaps
Valid(?t2) && Tansaction(?t1) ends
[2018-03-10, 2018-07-25])}

Table 9 presents the number of different oper-
ations included in these queries. Note that Get
and Scan are not time-consuming operations.
A join operation means the running of a Ma-
pReduce program, which greatly affects the
response time of queries. Figure 8 presents re-
sponse times of the seven queries over D1 and
D2. Furthermore, the increment ratios of re-
sponse time for the seven queries are calculated
by (D2-D1)/D1 and shown in Figure 9.

Table 9. Operations in temporal queries.

Query

Q
ue

ry
1

Q
ue

ry
2

Q
ue

ry
3

Q
ue

ry
4

Q
ue

ry
5

Q
ue

ry
6

Q
ue

ry
7

Get 2 4 2 3 3 1 2

Scan 0 3 0 3 0 0 1

Joins 1 3 1 1 1 0 2

First, it is shown in Figure 8 that, for a given
query, its response time over D1 is less than that
over D2 because D2 is larger than D1. So, gen-
erally speaking, a given query will take more
time as the size of the dataset increases. But
we can observe from Figure 9 that the query
time increases only by a factor of 3 while the
amount of RDF data is increased by 10 times.
This demonstrates the advantages of the storage
model based on HBase.
Second, it is shown in Figure 8 that different
queries may have very different response times.
In particular, Query 2 has the longest response
times over both D1 and D2 and Query 6 has the
shortest response times over both D1 and D2,
compared to other queries over D1 and D2. The
main reason why the response times of Query
2 are significantly higher than other queries is
that Query 2 contains three join operations. The
main reason why the response times of Query 6
are significantly less than other queries is that
Query 6 contains only one triple pattern, not in-
volving the MapReduce calculations. Then this

tics because ub:Student and ub:memberOf have
implicit subclasses and sub-properties. There-
fore, a preprocessing is required before execut-
ing such queries. We need to search the TClass
or TProperty table to get the corresponding
instances or sub-properties, and then use these
sub-properties to extend the triple patterns.

It is required that all triple patterns must meet
the temporal constraints given in FILTER key-
word. Temporal constraints mean some time
interval relationships with one or two time
variables. In order to reduce the amount of data
transmission and the number of queries, a FIL-
TER parsing is divided into two parts. One part
is composed of time interval relationships with
a single variable, which is added to the relevant
triple patterns. Another part is handled in the
triple pattern joins. In this paper, we adopt the
greedy multiple join strategy proposed in [13]
and use MapReduce to perform join operations.
The detailed steps for a query are as follows:

1. decomposing the query block into
non-temporal triple patterns and temporal
constraints;

2. extracting RDFS domain objects from
non-temporal triple patterns;

3. retrieving subclasses or sub-properties
from the TClass or TProperty table for
domain instances and predicates, and then
extending the relevant triple patterns;

4. adding temporal constraints with a single
variable to the triple patterns;

5. determining the join strategy with the
greedy algorithm and selecting a join
method for the temporal constraints with
two variables;

6. executing temporal triple patterns with
the filters provided by HBase and making
joins with the MapReduce programs.

5. Experiments

Our experimental sets include one master serv-
er and two slave nodes each. All machines have
the same configuration: Intel Core i5-2450M
2.5GHZ and Ubuntu 64-bit. The master server
has a 4GB main memory and each slave node
has a 2GB main memory. We use RDF data
provided by LUBM, including the univ-bench,
Uba generator and a set of test queries. The
univ-bench is the benchmark which defines
the university domain ontology. The Uba is an
OWL text generator which requires some spe-
cific parameters to generate file sets of different
size. All instance files can be parsed into triples
by Jena. Note that the RDF data from LUBM
do not contain temporal information. For the
purpose of our experiments, we add temporal
information by a random time generator. Then
we have two temporal RDF datasets D1 and D2
shown in Table 8, which are imported into the
HBase by BulkLoad.

Table 8. Temporal RDF datasets.

DataSets Universities Temporal RDF Triples
D1 5 874899
D2 15 13739264

In order to verify the validity of our storage
model, we refer to the LUBM test queries and
create the following 7 test queries with temporal
constraints, which are executed on D1 and D2.

Query 1:
SELECT ?X
WHERE {

?X rdf:type ub:GraduateStudent .
?X ub:takesCourse
http://www.Department0.Universi-
ty0.edu/GraduateCourse0 | ?t.
FILTER (Tansaction (?t) before
[2014-06-30, 2014-06-30])}

Figure 7. An example of wide hierarchy query.

28 29L. Yan, Z. Zhang and D. Yang Temporal RDF(S) Data Storage and Query with HBase

query can be executed directly via Java APIs
provided by HBase. The situation occurring in
Query 2 or Query 6 will further be aggravat-
ed while the query is issued over very differ-
ently sized datasets. This is why, for Query 2
and Query 6, their response times over D1 are
significantly less than their response times over
D2.
Now let us look at other queries. It is shown in
Figure 8 that, for Query 1, Query 3 and Query
5, their response times over D1 and D2 are rel-
atively stable because of their high selectivity.
Among these three queries, Query 1 does not
contain a hierarchical reasoning of classes, but
its implicit hierarchical information can be di-
rectly obtained from TClass and TProperty. So,
Query 1 does not cause an excessive time con-
sumption.

Query 4 is similar to Query 1 in terms of the
query structure, but it involves a hierarchical
reasoning and the triple with sub-properties of
ub:worksFor must be extended. At this point,
for Query 4 over D2, more data are involved
in join operations and its response time (72.612
sec.) is a little longer than the response time of
Q1 over D2 (62.823 sec.) (i.e., 15.58% longer).
As for Query 7, it is actually an extension of
Query 6 and has a higher data selectivity. How-
ever, Query 7 needs more MapReduce calcula-
tions for join operations. So, the response time
of Query 7 is much longer than the response
time of Query 6.

In addition, temporal constraints with a single
variable are executed in the Get or Scan oper-
ation by the filters in advance. This can reduce
the IO cost. As for the multivariable temporal
constraints, they are handled during the join
processing and there are no redundant join op-
erations. This is one of the reasons why most
response times of the queries do not increase
when data volumes increase.

Figure 9. Response increment ratio.

6. Conclusion

To store temporal RDF data, in this paper we
investigate the structural characteristics of
HBase and present the problems in its built-in
time mechanism. On this basis, we propose an
HBase storage model with 5 tables for tempo-
ral RDF data storage, which can preserve data
semantics of temporal RDF and solve temporal
representation in the built-in time mechanism.
Based on the storage model, we put forward the

query strategy. We classify temporal constraints
according to the number of variables in the bi-
nary relationship. Constraints with a single vari-
able are executed by filters provided by HBase,
and this can reduce the amount of data involved
in join operations and reduce the IO cost. Other
constraints are dealt with during the join oper-
ations and this does not increase the number of
join operations. All triple patterns are covered
by the SP_OT, OS_PT and PO_ST tables. With
the proposed query approach, the queries with
wide hierarchies can be executed effectively for
TClass and TProperty tables. Furthermore, we
used a cluster with three nodes and the LUBM
test queries to verify the validity of our storage
and query strategy on two datasets.
Note that there is no benchmark of temporal
RDF. So, we do not test our approach with very
large datasets, say TB datasets. In the near fu-
ture, we will enlarge our datasets and increase
the cluster nodes to optimize our storage model.
In addition, the response time of queries based
on the MapReduce framework is not quick
enough. In the next phase, we will improve
the processing algorithm of join operation and
adjust the configuration parameters of Ma-
pReduce to obtain better query performance.

Acknowledgment

The work was supported by the Basic Research
Program of Jiangsu Province (BK20191274)
and in part by the National Natural Science
Foundation of China (61772269 and 61370075).

References

[1] C. Gutierrez et al., ''Introducing Time into RDF'',
IEEE Transactions on Knowledge & Data Engi-
neering, vol. 19, pp. 207‒218, 2007.
http://dx.doi.org/10.1109/TKDE.2007.34

[2] M. Cai and M. Frank, ''RDFPeers: A Scalable Dis-
tributed RDF Repository Based on a Structured
Peer-to-Peer Network'', in Proc. of the International
Conference on World Wide Web, 2004, pp. 650‒657.
http://dx.doi.org/10.1145/988672.988760

[3] S. Harris et al., ''4store: The Design and Implemen-
tation of a Clustered RDF Store'', in Proc. of the In-
ternational Conference on Scalable Semantic Web
Knowledge Base Systems, 2009, pp. 94‒109.

[4] SYSTAP. Bigdata RDF database.
http://www.Systap.com

[5] A. Harth et al., ''YARS2: A Federated Reposito-
ry for Querying Graph Structured Data from the
Web'', in Proc. of the International Semantic Web
Conference, 2007, pp. 211‒224.
http://dx.doi.org/10.1007/978-3-540-76298-0_16

[6] V. Gudivada et al., ''NoSQL Systems for Big Data
Management'', in Proc. of the IEEE World Con-
gress on Services, 2014, pp. 190‒197.
http://dx.doi.org/10.1109/SERVICES.2014.42

[7] J. Pokorný, ''New Database Architectures: Steps
Towards Big Data Processing'', in Proc. of the
IADIS European Conference on Data Mining,
2013, pp. 3‒10.

[8] A. Ribeiro et al., ''Data Modeling and Data An-
alytics: A Survey from a Big Data Perspective'',
Journal of Software Engineering & Applications,
2015, vol. 8, no. 12, pp. 617‒634.
http://dx.doi.org/10.4236/jsea.2015.812058

[9] H. Hu et al., ''Toward Scalable Systems for Big
Data Analytics: A Technology Tutorial'', IEEE
Access, vol. 2, no. 1, pp. 652‒687, 2017.
http://dx.doi.org/10.1109/ACCESS.2014.2332453

[10] Apache HBase.
https://hbase.apache.org/

[11] F. Chang et al., ''Bigtable: A Distributed Storage
System for Structured Data'', ACM Transactions on
Computer Systems, vol. 26, no. 2, pp. 1‒26, 2008.
http://dx.doi.org/10.1145/1365815.1365816

[12] H. Choi et al., ''SPIDER: A System for Scalable,
Parallel/Distributed Evaluation of Large-Scale
RDF Data'', in Proc. of the ACM Conference on
Information and Knowledge Management, pp.
2087‒2088.
http://dx.doi.org/10.1145/1645953.1646315

[13] D. J. Kim et al., ''Scalable RDF Store Based on
HBase and MapReduce'', in Proc. of the Interna-
tional Conference on Advanced Computer Theory
and Engineering, 2010, pp. 633‒636.

[14] D. J. Kim, ''Research and Design of RDF Storage
System based on HBase'', Hangzhou: Zhejiang
University, 2011 (In Chinese).

[15] Jena.
https://jena.apache.org/

[16] V. Khadilkar et al., ''Jena-HBase: A Distributed,
Scalable and Efficient RDF Triple Store'', in Proc.
of the ISWC 2012 Posters & Demonstrations
Track, 2012.

[17] N. Papailiou et al., ''H2RDF: Adaptive Query
Processing on RDF Data in the Cloud'', in Proc.
of the 2012 International Conference on World
Wide Web, 2012, pp. 397‒400.
http://dx.doi.org/10.1145/2187980.2188058 Figure 8. Response times.

http://dx.doi.org/10.1109/TKDE.2007.34
http://dx.doi.org/10.1145/988672.988760
http://www.Systap.com
http://dx.doi.org/10.1007/978-3-540-76298-0_16
http://dx.doi.org/10.1109/SERVICES.2014.42
http://dx.doi.org/10.4236/jsea.2015.812058
http://dx.doi.org/10.1109/ACCESS.2014.2332453
https://hbase.apache.org/
http://dx.doi.org/10.1145/1365815.1365816
http://dx.doi.org/10.1145/1645953.1646315
https://jena.apache.org/
http://dx.doi.org/10.1145/2187980.2188058

28 29L. Yan, Z. Zhang and D. Yang Temporal RDF(S) Data Storage and Query with HBase

query can be executed directly via Java APIs
provided by HBase. The situation occurring in
Query 2 or Query 6 will further be aggravat-
ed while the query is issued over very differ-
ently sized datasets. This is why, for Query 2
and Query 6, their response times over D1 are
significantly less than their response times over
D2.
Now let us look at other queries. It is shown in
Figure 8 that, for Query 1, Query 3 and Query
5, their response times over D1 and D2 are rel-
atively stable because of their high selectivity.
Among these three queries, Query 1 does not
contain a hierarchical reasoning of classes, but
its implicit hierarchical information can be di-
rectly obtained from TClass and TProperty. So,
Query 1 does not cause an excessive time con-
sumption.

Query 4 is similar to Query 1 in terms of the
query structure, but it involves a hierarchical
reasoning and the triple with sub-properties of
ub:worksFor must be extended. At this point,
for Query 4 over D2, more data are involved
in join operations and its response time (72.612
sec.) is a little longer than the response time of
Q1 over D2 (62.823 sec.) (i.e., 15.58% longer).
As for Query 7, it is actually an extension of
Query 6 and has a higher data selectivity. How-
ever, Query 7 needs more MapReduce calcula-
tions for join operations. So, the response time
of Query 7 is much longer than the response
time of Query 6.

In addition, temporal constraints with a single
variable are executed in the Get or Scan oper-
ation by the filters in advance. This can reduce
the IO cost. As for the multivariable temporal
constraints, they are handled during the join
processing and there are no redundant join op-
erations. This is one of the reasons why most
response times of the queries do not increase
when data volumes increase.

Figure 9. Response increment ratio.

6. Conclusion

To store temporal RDF data, in this paper we
investigate the structural characteristics of
HBase and present the problems in its built-in
time mechanism. On this basis, we propose an
HBase storage model with 5 tables for tempo-
ral RDF data storage, which can preserve data
semantics of temporal RDF and solve temporal
representation in the built-in time mechanism.
Based on the storage model, we put forward the

query strategy. We classify temporal constraints
according to the number of variables in the bi-
nary relationship. Constraints with a single vari-
able are executed by filters provided by HBase,
and this can reduce the amount of data involved
in join operations and reduce the IO cost. Other
constraints are dealt with during the join oper-
ations and this does not increase the number of
join operations. All triple patterns are covered
by the SP_OT, OS_PT and PO_ST tables. With
the proposed query approach, the queries with
wide hierarchies can be executed effectively for
TClass and TProperty tables. Furthermore, we
used a cluster with three nodes and the LUBM
test queries to verify the validity of our storage
and query strategy on two datasets.
Note that there is no benchmark of temporal
RDF. So, we do not test our approach with very
large datasets, say TB datasets. In the near fu-
ture, we will enlarge our datasets and increase
the cluster nodes to optimize our storage model.
In addition, the response time of queries based
on the MapReduce framework is not quick
enough. In the next phase, we will improve
the processing algorithm of join operation and
adjust the configuration parameters of Ma-
pReduce to obtain better query performance.

Acknowledgment

The work was supported by the Basic Research
Program of Jiangsu Province (BK20191274)
and in part by the National Natural Science
Foundation of China (61772269 and 61370075).

References

[1] C. Gutierrez et al., ''Introducing Time into RDF'',
IEEE Transactions on Knowledge & Data Engi-
neering, vol. 19, pp. 207‒218, 2007.
http://dx.doi.org/10.1109/TKDE.2007.34

[2] M. Cai and M. Frank, ''RDFPeers: A Scalable Dis-
tributed RDF Repository Based on a Structured
Peer-to-Peer Network'', in Proc. of the International
Conference on World Wide Web, 2004, pp. 650‒657.
http://dx.doi.org/10.1145/988672.988760

[3] S. Harris et al., ''4store: The Design and Implemen-
tation of a Clustered RDF Store'', in Proc. of the In-
ternational Conference on Scalable Semantic Web
Knowledge Base Systems, 2009, pp. 94‒109.

[4] SYSTAP. Bigdata RDF database.
http://www.Systap.com

[5] A. Harth et al., ''YARS2: A Federated Reposito-
ry for Querying Graph Structured Data from the
Web'', in Proc. of the International Semantic Web
Conference, 2007, pp. 211‒224.
http://dx.doi.org/10.1007/978-3-540-76298-0_16

[6] V. Gudivada et al., ''NoSQL Systems for Big Data
Management'', in Proc. of the IEEE World Con-
gress on Services, 2014, pp. 190‒197.
http://dx.doi.org/10.1109/SERVICES.2014.42

[7] J. Pokorný, ''New Database Architectures: Steps
Towards Big Data Processing'', in Proc. of the
IADIS European Conference on Data Mining,
2013, pp. 3‒10.

[8] A. Ribeiro et al., ''Data Modeling and Data An-
alytics: A Survey from a Big Data Perspective'',
Journal of Software Engineering & Applications,
2015, vol. 8, no. 12, pp. 617‒634.
http://dx.doi.org/10.4236/jsea.2015.812058

[9] H. Hu et al., ''Toward Scalable Systems for Big
Data Analytics: A Technology Tutorial'', IEEE
Access, vol. 2, no. 1, pp. 652‒687, 2017.
http://dx.doi.org/10.1109/ACCESS.2014.2332453

[10] Apache HBase.
https://hbase.apache.org/

[11] F. Chang et al., ''Bigtable: A Distributed Storage
System for Structured Data'', ACM Transactions on
Computer Systems, vol. 26, no. 2, pp. 1‒26, 2008.
http://dx.doi.org/10.1145/1365815.1365816

[12] H. Choi et al., ''SPIDER: A System for Scalable,
Parallel/Distributed Evaluation of Large-Scale
RDF Data'', in Proc. of the ACM Conference on
Information and Knowledge Management, pp.
2087‒2088.
http://dx.doi.org/10.1145/1645953.1646315

[13] D. J. Kim et al., ''Scalable RDF Store Based on
HBase and MapReduce'', in Proc. of the Interna-
tional Conference on Advanced Computer Theory
and Engineering, 2010, pp. 633‒636.

[14] D. J. Kim, ''Research and Design of RDF Storage
System based on HBase'', Hangzhou: Zhejiang
University, 2011 (In Chinese).

[15] Jena.
https://jena.apache.org/

[16] V. Khadilkar et al., ''Jena-HBase: A Distributed,
Scalable and Efficient RDF Triple Store'', in Proc.
of the ISWC 2012 Posters & Demonstrations
Track, 2012.

[17] N. Papailiou et al., ''H2RDF: Adaptive Query
Processing on RDF Data in the Cloud'', in Proc.
of the 2012 International Conference on World
Wide Web, 2012, pp. 397‒400.
http://dx.doi.org/10.1145/2187980.2188058 Figure 8. Response times.

http://dx.doi.org/10.1109/TKDE.2007.34
http://dx.doi.org/10.1145/988672.988760
http://www.Systap.com
http://dx.doi.org/10.1007/978-3-540-76298-0_16
http://dx.doi.org/10.1109/SERVICES.2014.42
http://dx.doi.org/10.4236/jsea.2015.812058
http://dx.doi.org/10.1109/ACCESS.2014.2332453
https://hbase.apache.org/
http://dx.doi.org/10.1145/1365815.1365816
http://dx.doi.org/10.1145/1645953.1646315
https://jena.apache.org/
http://dx.doi.org/10.1145/2187980.2188058

30 L. Yan, Z. Zhang and D. Yang

[18] A. Chebotko et al., ''Storing, Indexing and Query-
ing Large Provenance Data Sets as RDF Graphs
in Apache HBase'', in Proc. of the IEEE Ninth
World Congress on Services, 2013, pp. 1‒8.
http://dx.doi.org/10.1109/SERVICES.2013.32

[19] K. Li et al., ''A Distributed RDF Storage and Que-
ry Model Based on HBase'', in Proc. of the 2015
International Conference on Web-Age Informa-
tion Management, 2015, pp. 3‒15.
http://dx.doi.org/10.1007/978-3-319-23531-8_1

[20] J. H. Um et al., ''Distributed RDF Store for Effi-
cient Searching Billions of Triples Based on Ha-
doop'', Journal of Supercomputing, vol. 72 , no. 5,
pp. 1825‒1840, 2016.
http://dx.doi.org/10.1007/s11227-016-1670-6

[21] X. Luo and B. Wu, ''Predicate-Oriented Query of
RDF Data Based on a Distributed Storage Model'',
in Proc. of the 2017 IEEE International Conference
on Data Science in Cyberspace, 2017, pp. 37‒43.
http://dx.doi.org/10.1109/DSC.2016.43

[22] Y. Hu and S. Dessloch, ''Temporal Data Man-
agement and Processing with Column Oriented
NoSQL Databases'', Journal of Database Man-
agement, vol. 26, no. 3, pp. 41‒70, 2015.
http://dx.doi.org/10.4018/JDM.2015070103

[23] F. Grandi, ''T-SPARQL: A TSQL2-Like Temporal
Query Language for RDF'', in Proc. of the 2010
East-European Conference on Advances in Data-
bases and Information Systems, 2010, pp. 21‒30.

[24] A. Dignös et al., ''Temporal Alignment'', in Proc.
of the 2012 ACM SIGMOD International Confer-
ence on Management of Data, 2012, pp. 433‒444.
http://dx.doi.org/10.1145/2213836.2213886

[25] R. Z. Ma et al., ''SPARQL Queries on RDF with
Fuzzy Constraints and Preferences'', Journal of
Intelligent and Fuzzy Systems, vol. 30, no. 1, pp.
183‒195, 2016.
http://dx.doi.org/10.3233/IFS-151745

[26] Z. M. Ma et al., ''Storing Massive Resource De-
scription Framework (RDF) Data: A Survey'',
Knowledge Engineering Review, vol. 31, no. 4,
pp. 391‒413, 2016.
http://dx.doi.org/10.1017/S0269888916000217

[27] D. Yang and L. Yan, ''Transforming XML to
RDF(S) with Temporal Information'', Journal of
Computing and Information Technology, vol. 26
no. 2, pp. 115‒129, 2018.
http://dx.doi.org/10.20532/cit.2018.1004005

[28] R. Z. Ma et al., ''Coronal Mass Ejection Data
Clustering and Visualization of Decision Trees'',
The Astrophysical Journal Supplement Series,
vol. 236, no. 1, p. 4, 2018.
http://dx.doi.org/10.3847/1538-4365/aab76f

[29] R. Z. Ma et al., ''Solar Flare Prediction Using
Multivariate Time Series DecisionTrees'', in
Proc. of the 2017 IEEE International Conference

on Big Data, 2017, pp. 2569‒2578.
http://dx.doi.org/10.1109/BigData.2017.8258216

[30] K. Kulkarni and J. E. Michels, ''Temporal Fea-
tures in SQL: 2011'', SIGMOD Record, vol. 41,
no. 3, pp. 34‒43, 2012.
http://dx.doi.org/10.1145/2380776.2380786

[31] L. Yan et al., ''Indexing Temporal RDF Graph'',
Computing, vol. 101, no. 10, pp. 1457‒1488, 2019.
http://dx.doi.org/10.1007/s00607-019-00703-w

[32] J. Tappolet and A. Bernstein, ''Applied Temporal
RDF: Efficient Temporal Querying of RDF Data
with SPARQL'', in Proc. of the 6th European Se-
mantic Web Conference, 2009, pp. 308‒322.
http://dx.doi.org/10.1007/978-3-642-02121-3_25

[33] A. Pugliese et al., ''Scaling RDF with Time'', in
Proc. of the 2008 International Conference on
World Wide Web, 2008, pp. 605‒614.
http://dx.doi.org/10.1145/1367497.1367579

Received: May 2019
Revised: December 2019

Accepted: December 2019

Contact addresses:
Li Yan*

Nanjing University of Aeronautics and Astronautics
Nanjing

China
e-mail: yanli@nuaa.edu.cn

*Corresponding author

Zheqing Zhang
Nanjing University of Aeronautics and Astronautics

Nanjing
China

e-mail: zheqingzhang@163.com

Dan Yang
Nanjing University of Aeronautics and Astronautics

Nanjing
China

e-mail: nuaacst@163.com

Li Yan is a full professor in the College of Computer Science and
Technology at the Nanjing University of Aeronautics and Astronautics,
China. Her current research interests include big data knowledge en-
gineering, temporal data management, and computational intelligence.

Zheqing Zhang received his master degree from the Department of
Computer Science at the Guangdong University of Technology, China.
He is now a PhD candidate in the College of Computer Science and
Technology at the Nanjing University of Aeronautics and Astronautics,
China. His research interests include knowledge graph and RDF data
management.

Dan Yang received her master degree from the College of Computer
Science and Technology at the Nanjing University of Aeronautics and
Astronautics, China. Her research interests include RDF data manage-
ment and knowledge graph.

http://dx.doi.org/10.1109/SERVICES.2013.32
http://dx.doi.org/10.1007/978-3-319-23531-8_1
http://dx.doi.org/10.1007/s11227-016-1670-6
http://dx.doi.org/10.1109/DSC.2016.43
http://dx.doi.org/10.4018/JDM.2015070103
http://dx.doi.org/10.1145/2213836.2213886
http://dx.doi.org/10.3233/IFS-151745
http://dx.doi.org/10.1017/S0269888916000217
http://dx.doi.org/10.20532/cit.2018.1004005
http://dx.doi.org/10.3847/1538-4365/aab76f
http://dx.doi.org/10.1109/BigData.2017.8258216
http://dx.doi.org/10.1145/2380776.2380786
http://dx.doi.org/10.1007/s00607-019-00703-w
http://dx.doi.org/10.1007/978-3-642-02121-3_25
http://dx.doi.org/10.1145/1367497.1367579

 HistoryItem_V1
 Shuffle

 Group size: 1
 Shuffle type: Normal, or perfect bound
 Rule: 1 1

 1
 1
 1
 1
 1
 1
 1
 1
 0
 1
 1
 0
 0
 0
 0
 0
 0
 0
 0
 1
 1
 1
 1 1
 747
 281
 2
 2

 CurrentAVDoc

 Normal

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0
 Quite Imposing Plus 3
 1

 1

 HistoryList_V1
 qi2base

