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Query with HBase

Resource Description Framework (RDF) is a metada-
ta model recommended by World Wide Web Consor-
tium (W3C) for describing the Web resources. With the 
arrival of the era of big data, very large amounts of 
RDF data are continuously being created and need to 
be stored for management. The traditional centralized 
RDF storage models cannot meet the need of large-
scale RDF data storage. Meanwhile, the importance of 
temporal information management and processing has 
been acknowledged by academia and industry. In this 
paper, we propose a storage model to store temporal 
RDF data based on HBase. The proposed storage mod-
el applies the built-in time mechanism of HBase. Our 
experiments on LUBM dataset with temporal informa-
tion added show that our storage model can store large 
temporal RDF data and obtain good query efficiency.
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1. Introduction

In recent years, Resource Description Frame-
work (RDF), providing a complete grammar 
system and contributing to computer’s automat-
ic processing, has been widely used in various 
fields for its simplicity, extensibility, openness 
and ease of exchange [25]. This has resulted 
in the rapid growth of RDF data and the issue 
of efficient and scalable management of large-

scale RDF data. RDF data management typi-
cally involves their storage and queries. Among 
them, RDF data storage provides the infrastruc-
ture for RDF data management [26].
To deal with massive RDF data, much work has 
been devoted to parallel computing techniques 
and distributed systems for improving the abil-
ity to manage RDF data. Efforts on distribut-
ed storage of RDF data mainly concentrate on 
two aspects [26]. The first aspect focuses on 
developing distributed RDF storage systems 
specifically with traditional distributed comput-
ing architectures, such as RDFPeers [2], 4store 
[3], Bigdata [4], and YARS [5]. These systems 
always have high reliability and expandability, 
but their data structures are complex, which may 
cause high communication overhead, and the 
security is difficult to control. The second aspect 
focuses on storing RDF data with NoSQL (Not 
Only SQL) databases, which have flexible data 
models and excellent performance in reading/
writing for massive data. NoSQL databases can 
be divided into four basic categories: key-value 
stores, document databases, column-oriented 
databases and graph databases [6, 7, 8, 9]. The 
storage model proposed in this paper is based 
on Apache HBase [10], which is a column-ori-
ented distributed database built on Apache Ha-
doop and is an open-source implementation of 
Bigtable [11]. Nowadays, many efforts are ded-
icated to efficient storage and query of massive 
RDF data based on HBase [12-19].
The real world is dynamic. Time is an essen-
tial dimension in describing data change and is 
hereby an important part of many applications 
[28, 29]. To represent and deal with temporal 
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Ci is a set of classes; Pi is a set of properties; 
Ri is the set of all resources, which is actually 
the universe of RDF, containing a distinguished 
subset Li called literal values; Ext: Pi → Ri × Ri 
is used to express the relationship between re-
sources; CExt: Ci → 2Ri maps each class c ∈Ci 
to a subset of Ri (i.e. Ci = CExt(rdfs: Class), 
which means that each element of Ci is an ex-
tension of rdfs: Class).
T is a set of times. M: I → 2T is a timestamp 
function that maps an interpretation to a time-
stamp (a set of times).
The temporal RDF model is defined with only 
one time-dimension, which can be further ex-
tended to multi-dimension. The temporal RDF 
model used in this paper has two time-dimen-
sions, which are valid time and transaction 
time, respectively. Here, the time points are en-
coded as intervals. A time point set {1, 2, 3}, 
for example, is encoded as [1, 3] and a single 
time point {1} can be described as [1, 1]. Then, 
a temporal RDF triple is represented as follows:

(Subject, Predicate, Object): t, t = [V][T]
Valid(t) = [V], Transaction(t) = [T].

Here, (Subject, Predicate, Object) is a standard 
RDF triple and t is a temporal label composed 
by [V] and [T], which is applied at the lev-
el of a triple. [V] is the valid time of a triple, 
which refers to the time when the data is true 
in the modeled reality. [T] records the transac-
tion time when the triple is edited. In addition, 
Valid: 1 → [V] and Transaction: t → [T] are 
defined to get valid time and transaction time 
from time label t, respectively.
A temporal RDF query language named 
T-SPARQL is proposed in [23]. T-SPARQL ex-
tends temporally the standard query language 
SPARQL, which is characterized by graph pat-
terns. BGP is the basic query mode of graph 
patterns, consisting of a set of triple patterns. 
All triple patterns in a BGP must be exactly 
matched when a query is executed. Generally 
speaking, there are eight modes in triple pat-
terns: (S, P, O), (?S, P, O), (S, ?P, O), (S, P, ?O), 
(?S, ?P, O), (?S, P, ?O), (S, ?P, ?O), (?S, ?P, ?O). 
The triple pattern with temporal information 
contains a temporal variable and the corre-
sponding temporal constraint is represented by 
time binary relationships in FILTER keyword. 
Figure 1 depicts an example of T-SPARQL.

and bitmap indices are compacted to perform 
expensive query processing operations. Triples 
are separately stored in HBase tables according 
to the subject's class in [21], where a table P is 
created in order to store all <subject, object> 
with the same predicate. All data is divided by 
classes so that each HBase table is relatively 
small. This can lead to a better performance of 
table query and traversal.
Note that the proposals for RDF data storage 
mentioned above do not consider temporal in-
formation, neither in RDF data model nor in 
HBase. Actually, the classical RDF data model 
and HBase do not explicitly support temporal 
information modeling. The timestamp mecha-
nism in HBase can be applied to record multiple 
values, but its implicit temporal interval repre-
sentation can cause wrong or misleading results 
during temporal query processing. In [22], the 
characteristics of column-oriented NoSQL da-
tabases are clearly clarified and two alternative 
table representations are introduced to explicitly 
address temporal data management and process-
ing. In the context of RDF data model, a tem-
poral RDF data model is proposed for temporal 
information modeling in [1, 32]. Being different 
from the classical RDF data model, the temporal 
RDF data model contains temporal information 
and cannot be directly stored in the classical 
HBase database by using the existing solutions 
of RDF data storage in HBase. Although there 
are a few efforts in temporal RDF data manage-
ment (e.g., construction [27], query [32] and 
index [33]), to the best of our knowledge, the 
present paper is the first effort in storing tempo-
ral RDF data with a HBase database.

3. Temporal RDF

RDF is a metadata model for building an in-
frastructure of machine-readable semantics for 
data on the Web. The RDF specification in-
cludes a built-in vocabulary with a normative 
semantics (RDFS), which deals with inheri-
tance of classes and properties. Temporal RDF 
based on the point-based temporal domain is 
proposed in [1].
Definition 1 (Temporal RDF model). A sim-
ple temporal interpretation of RDF is a tuple 
(I, T, M), in which I = {I1, …, In} is a set of sim-
ple interpretations. In Ii = (Ci, Pi, Ri, Ext, CExt), 

data, in last two decades various temporal da-
tabase models have been proposed and some 
temporal database management systems have 
been developed [30]. More importantly, time 
information has been introduced into RDF and 
the temporal RDF model has been proposed [1, 
32]. In the context of the temporal RDF mod-
el, few issues such as construction [27], que-
ry [32] and index [33] have been investigated. 
We argue that massive RDF data are stored in 
NoSQL databases and essentially RDF data are 
temporally relevant. In order to efficiently man-
age massive temporal RDF data, it is crucial to 
store temporal RDF data in NoSQL databases. 
Unfortunately, the models and approaches pro-
posed for storing classical (non-temporal) RDF 
data in NoSQL databases cannot be directly ap-
plied to storing temporal RDF data due to addi-
tional temporal information in RDF data. This 
is why very different approaches are proposed 
for dealing with temporal RDF data in [27, 32, 
33] instead of directly applying the correspond-
ing approaches for classical RDF data. To the 
best of our knowledge, there is not any report on 
temporal RDF storage although more attention 
has been paid to classical RDF data storage in 
databases. The present paper tries to fill this gap.
In this paper, we propose to apply HBase to stor-
ing temporal RDF data. We analyze the charac-
teristics of the HBase database and particularly 
identify possible problems of the built-in time 
mechanism in the HBase database. On this ba-
sis, we propose a storage model for temporal 
RDF, which considers the learning experience 
of seniors and supports temporal RDF query. 
We verify our approach with experiments on 
the LUBM dataset.
The rest of this paper is organized as follows: 
Section 2 presents a brief overview of related 
work. The temporal RDF is presented in Sec-
tion 3. Section 4 proposes the storage model and 
query strategy of temporal RDF data based on 
the HBase database. The experimental evalua-
tions are presented in Section 5. Section 6 con-
cludes the paper and sketches our future work.

2. Related Work

The prototype of HBase is Bigtable. Apache 
HBase provides Bigtable-like capabilities on top 
of Hadoop, which uses HDFS as file storage sys-
tem and supports MapReduce, an open source 

computing architecture. In addition, HBase 
adopts a data structure called HTable, which is 
similar to traditional relational table. For this rea-
son, the current RDF storage models in HBase 
almost refer to RDF’s storage structure in rela-
tional databases. However, HBase is different 
from relational databases after all. At this point, 
considering the characteristics of HBase and the 
corresponding query methods that usually take 
advantage of MapReduce, some efforts are car-
ried out for proposing new storage models.
In [13], six index tables are introduced to store 
RDF data, which are S_PO, P_SO, O_SP, 
PS_O, SO_P, and PO_S, respectively. Here (S, 
P, O) means a triplet of the form subject, predi-
cate and object. The six index tables are reduced 
to three index tables in [14], which are very 
efficient for simple queries because all combi-
nations of RDF triple patterns are covered. In 
addition to the storage schema, a MapReduce 
strategy is proposed for SPARQL BGP (Ba-
sic Graph Pattern) processing, which applies a 
greedy method to select join key and eliminat-
ed multiple triple patterns. In [15], queries are 
processed by connecting HBase to Jena, a well-
known SPARQL query processor. Jena-HBase 
is created in [16]. Apart from this, they propose 
various triple storage schemas and evaluate 
those schemas in terms of query processing time 
based on Jena-HBase. H2RDF, a query system 
for RDF based on HBase and MapReduce, is 
developed in [17], which uses SP_O, PO_S, and 
OS_P index tables to reduce data redundancy. In 
view of queries, H2RDF firstly parses SPARQL 
queries through Jena, and then uses MapReduce 
or Centralized query according to the join com-
plexity to ensure the query performance.
A vertical partition like model is designed in 
[19], which creates two tables (Pso, Pos) for 
each predicate and occupies less space. To deal 
with complex query, they propose a path index 
to reduce the numbers of join operation. In [20], 
a hybrid storage schema is adopted, which is a 
combination of simple triple and vertical par-
tition storage models. As a result, triples are 
compressed by sequential encoding keys and 
storage space is managed efficiently.
In [18], provenance datasets are serialized as 
RDF graphs which are stored in HBase [18]. 
Here, an RDF graph identifier is used as the 
unique row id, a complete RDF graph is stored 
as one aggregate value in data column family, 
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4.1.3. Implicit Time Interval Expression

Generally, we encode time points as an interval. 
A time interval has a start time and an end time. 
The attached timestamp in HBase can repre-
sent the start time explicitly. But the end time 
is determined by TTL or the timestamp of the 
next version implicitly. This can cause a wrong 
or misleading result during the temporal query 
processing. 
First, suppose that a TTL is set. Then a cell value 
may have two time-intervals and this can result 
in a confusion for users. Let us look at an ex-
ample of an e-book table shown in Table 1. This 
table contains two column families: CF1 and 
CF2. Here CF1 has a column named Supplier 
and there is no TTL that is explicitly set (the 
default value is ∞). CF2 has a column named 
Price and the TTL value is 10. It is also shown 
there is a kind of book b1 in the table, in which 
the price of b1 at time1 is 34.6. According to 
the TTL value, the time interval of price 34.6 is 
[1, 11]. Later, the price of b1 is changed to 48.5 
at time 3. Then the price 34.6 has another time 
interval [1, 2]. At this point, which one should 
be chosen will be decided by users. However, 
there is an ambiguity if two users chose differ-
ent time intervals and compare their data.
Second, users can update the data via Put and 
Delete commands with a specified timestamp 
arbitrarily. It means that the implicit time inter-
vals of data have high uncertainty. Let us look 
at Table 1 again. One user acquires the sup-
pliers of b1 at time 6 and gets s1[1,2], s2[3,4] 
and s3[5, ∞]. Suppose that the version s2 is de-
leted at time 7. Then the time interval of s1 is 
changed from [1, 2] to [1, 4] and this causes 
inconsistent query results. Hence, users are re-
quired to check all data operations before using 
time information. This is time consuming and 
laborious.

Table 1. An example of e-book.

Book CF1:Supplier  
TTL = ∞

CF2:Price  
TTL = 10

b1

1: s1 1: 34.6

3: s2 3: 49.0

5: s3 5: 43.5

4.2. Storage Model

RDF Schema defines the vocabularies that are 
used by RDF to describe data, including classes, 
properties, inheritance relationships between 
classes (rdfs:subClassOf), inheritance relation-
ships between properties (rdfs:subPropertyOf), 
domain and range of a property (rdfs:domain, 
rdfs:range). Note that these classes are the sub-
class of rdfs:Class. RDF data are the instances 
of RDFS, which actually record application in-
formation. We design a storage model to orga-
nize temporal RDF Schema and RDF instances 
in different tables. We first create two tables, 
TClass and TProperty, to store the temporal 
RDF Schema. We present the definitions of 
these two tables as follows:
Definition 2 (TClass table). TClass = (Ct, 
PC: pc1t, ..., PC: pcmt, SC: sc1t, ..., SC: scnt, 
Ins: i1t, ..., ikt), in which

1. t = [V][T];
2. Ct is temporal class;
3. PC = {pc1t, ..., pcmt} is a set of temporal 

parent classes of C. The function ParClass: 
Ct → PC can be used to get PC based on 
the known Ct;

4. SC = {sc1t, ..., scnt} is a set of temporal 
subclasses of Ct. Function SubClass: Ct 
→ SC can be used to get subclasses, and 
SubClass(pcit) ⊃ SubClass(Ct);

5. Ins = {i1t, ..., ikt} is the set of temporal in-
stances of Ct.

TClass is a table that records the temporal 
classes in the temporal RDF Schema and the 
related instances in the temporal RDF data-
set. The structure of TClass is shown in Fig-
ure 2. In this figure, the row key of this table 
is (Class, t). Each row contains three column 
families: PC, SC and Ins. PC stores the direct 
parent classes of the class in row key, where 
one class occupies one column, SC stores all 
subclasses, and Ins records all instances of the 
class in the temporal RDF data. The cell val-
ues are set to ''1'' for the columns. Note that 
the timestamp (valid time, transaction time) in 
all column qualifiers must be contained in the 
time interval of the row key. It means that all 
records related to a class exist on the premise 
of the existence of that class.

4. RDF Storage Model

4.1. Characteristics of HBase

HBase organizes data in tables with a name of 
HTable, which supports row-level transactions. 
A row is uniquely identified by a rowkey. The 
data in the table is sorted in ascending order by 
the rowkey. It means that rows with the same 
prefix are stored in adjacent positions. Intra-row 
data are grouped by column families that need 
to be defined in advance. Although each row 
has the same column families (called column 
qualifier), the columns in a column family can 
be different. The cell value in every column can 
have several versions sorted by the correspond-
ing timestamps in a descending order. Gener-
ally, the timestamp is attached by the system 
when a data is inserted into HBase. Users can 
indicate the time-to-live (TTL) property to de-
note how long the data can exist in the database 
system. In a physical storage, data are stored in 
key-value pairs with the following format.

[Rowkey, Column Family, Column Qualifier, 
Timestamp] → Cell value

This storage structure provides physical sup-
port for flexible data modeling and can store 
sparse data without wasting space.
Note that, although the multi-version mecha-
nism provided by HBase can meet some basic 
requirements of temporal data modeling, there 
are still many defects in the maintenance of 
temporal data.

4.1.1. Fixed Time Granularity

As we know, time has different calculation units 
(e.g., year, month, day, hour, minute, second, 
and millisecond). In real-world applications, 
the time granularity of data is set according to a 
specific scenario. For example, weather can be 
recorded by days or hours; stock price can be 
updated in seconds; running time of a program 
can be accurate to milliseconds. Obviously, 
different application scenarios need to use dif-
ferent time granularity. The time mechanism in 
HBase, however, only uses seconds as a fixed 
time granularity. Users cannot choose a prop-
er time granularity according to the given sce-
nario. Although the time granularity in seconds 
may be applicable in many application scenar-
ios, other time representations in applications 
are not supported by HBase.

4.1.2. Single Time Dimension and Immutable 
TTL

In many temporal data models, temporal infor-
mation is generally multi-dimensional. The tem-
poral RDF data model in this paper contains two 
time-dimensions. The built-in time mechanism 
supported by HBase is one-dimensional and 
cannot represent multi-dimensional time. In ad-
dition, users can use TTL to control data lifetime. 
But when the TTL is set, it is applied to entire 
column family. In real applications, it is needed 
to control the life cycle of data at different levels, 
without being limited to a column family.

Figure 1. An example of T-SPARQL.



20 21L. Yan, Z. Zhang and D. Yang Temporal RDF(S) Data Storage and Query with HBase

4.1.3. Implicit Time Interval Expression

Generally, we encode time points as an interval. 
A time interval has a start time and an end time. 
The attached timestamp in HBase can repre-
sent the start time explicitly. But the end time 
is determined by TTL or the timestamp of the 
next version implicitly. This can cause a wrong 
or misleading result during the temporal query 
processing. 
First, suppose that a TTL is set. Then a cell value 
may have two time-intervals and this can result 
in a confusion for users. Let us look at an ex-
ample of an e-book table shown in Table 1. This 
table contains two column families: CF1 and 
CF2. Here CF1 has a column named Supplier 
and there is no TTL that is explicitly set (the 
default value is ∞). CF2 has a column named 
Price and the TTL value is 10. It is also shown 
there is a kind of book b1 in the table, in which 
the price of b1 at time1 is 34.6. According to 
the TTL value, the time interval of price 34.6 is 
[1, 11]. Later, the price of b1 is changed to 48.5 
at time 3. Then the price 34.6 has another time 
interval [1, 2]. At this point, which one should 
be chosen will be decided by users. However, 
there is an ambiguity if two users chose differ-
ent time intervals and compare their data.
Second, users can update the data via Put and 
Delete commands with a specified timestamp 
arbitrarily. It means that the implicit time inter-
vals of data have high uncertainty. Let us look 
at Table 1 again. One user acquires the sup-
pliers of b1 at time 6 and gets s1[1,2], s2[3,4] 
and s3[5, ∞]. Suppose that the version s2 is de-
leted at time 7. Then the time interval of s1 is 
changed from [1, 2] to [1, 4] and this causes 
inconsistent query results. Hence, users are re-
quired to check all data operations before using 
time information. This is time consuming and 
laborious.

Table 1. An example of e-book.

Book CF1:Supplier  
TTL = ∞

CF2:Price  
TTL = 10

b1

1: s1 1: 34.6

3: s2 3: 49.0

5: s3 5: 43.5

4.2. Storage Model

RDF Schema defines the vocabularies that are 
used by RDF to describe data, including classes, 
properties, inheritance relationships between 
classes (rdfs:subClassOf), inheritance relation-
ships between properties (rdfs:subPropertyOf), 
domain and range of a property (rdfs:domain, 
rdfs:range). Note that these classes are the sub-
class of rdfs:Class. RDF data are the instances 
of RDFS, which actually record application in-
formation. We design a storage model to orga-
nize temporal RDF Schema and RDF instances 
in different tables. We first create two tables, 
TClass and TProperty, to store the temporal 
RDF Schema. We present the definitions of 
these two tables as follows:
Definition 2 (TClass table). TClass = (Ct, 
PC: pc1t, ..., PC: pcmt, SC: sc1t, ..., SC: scnt, 
Ins: i1t, ..., ikt), in which

1. t = [V][T];
2. Ct is temporal class;
3. PC = {pc1t, ..., pcmt} is a set of temporal 

parent classes of C. The function ParClass: 
Ct → PC can be used to get PC based on 
the known Ct;

4. SC = {sc1t, ..., scnt} is a set of temporal 
subclasses of Ct. Function SubClass: Ct 
→ SC can be used to get subclasses, and 
SubClass(pcit) ⊃ SubClass(Ct);

5. Ins = {i1t, ..., ikt} is the set of temporal in-
stances of Ct.

TClass is a table that records the temporal 
classes in the temporal RDF Schema and the 
related instances in the temporal RDF data-
set. The structure of TClass is shown in Fig-
ure 2. In this figure, the row key of this table 
is (Class, t). Each row contains three column 
families: PC, SC and Ins. PC stores the direct 
parent classes of the class in row key, where 
one class occupies one column, SC stores all 
subclasses, and Ins records all instances of the 
class in the temporal RDF data. The cell val-
ues are set to ''1'' for the columns. Note that 
the timestamp (valid time, transaction time) in 
all column qualifiers must be contained in the 
time interval of the row key. It means that all 
records related to a class exist on the premise 
of the existence of that class.

4. RDF Storage Model

4.1. Characteristics of HBase

HBase organizes data in tables with a name of 
HTable, which supports row-level transactions. 
A row is uniquely identified by a rowkey. The 
data in the table is sorted in ascending order by 
the rowkey. It means that rows with the same 
prefix are stored in adjacent positions. Intra-row 
data are grouped by column families that need 
to be defined in advance. Although each row 
has the same column families (called column 
qualifier), the columns in a column family can 
be different. The cell value in every column can 
have several versions sorted by the correspond-
ing timestamps in a descending order. Gener-
ally, the timestamp is attached by the system 
when a data is inserted into HBase. Users can 
indicate the time-to-live (TTL) property to de-
note how long the data can exist in the database 
system. In a physical storage, data are stored in 
key-value pairs with the following format.

[Rowkey, Column Family, Column Qualifier, 
Timestamp] → Cell value

This storage structure provides physical sup-
port for flexible data modeling and can store 
sparse data without wasting space.
Note that, although the multi-version mecha-
nism provided by HBase can meet some basic 
requirements of temporal data modeling, there 
are still many defects in the maintenance of 
temporal data.

4.1.1. Fixed Time Granularity

As we know, time has different calculation units 
(e.g., year, month, day, hour, minute, second, 
and millisecond). In real-world applications, 
the time granularity of data is set according to a 
specific scenario. For example, weather can be 
recorded by days or hours; stock price can be 
updated in seconds; running time of a program 
can be accurate to milliseconds. Obviously, 
different application scenarios need to use dif-
ferent time granularity. The time mechanism in 
HBase, however, only uses seconds as a fixed 
time granularity. Users cannot choose a prop-
er time granularity according to the given sce-
nario. Although the time granularity in seconds 
may be applicable in many application scenar-
ios, other time representations in applications 
are not supported by HBase.

4.1.2. Single Time Dimension and Immutable 
TTL

In many temporal data models, temporal infor-
mation is generally multi-dimensional. The tem-
poral RDF data model in this paper contains two 
time-dimensions. The built-in time mechanism 
supported by HBase is one-dimensional and 
cannot represent multi-dimensional time. In ad-
dition, users can use TTL to control data lifetime. 
But when the TTL is set, it is applied to entire 
column family. In real applications, it is needed 
to control the life cycle of data at different levels, 
without being limited to a column family.

Figure 1. An example of T-SPARQL.
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1.  t = [V][T];
2.  OS is the object and subject of a temporal 

triple;
3.  PT = {p1t, ..., pnt} is the set composed by 

corresponding predicates of the triples.

Definition 6 (PO_ST table). PO_ST = (PO, 
ST: s1t, ..., ST: snt), in which
1.  t = [V][T];
2.  PO is the predicate and object of a tempo-

ral triple;
3.  ST = {s1t, ..., snt} is the set composed by 

corresponding subjects of the triples.

The structures of SP_OT, OS_PT and PO_ST 
are shown in Figure 4. They contain only one 
column family. Row keys of these tables are 
composed of two elements in a triple and the 
other element acts as a column in the table with 
the temporal information of the triple. In tem-
poral RDF queries, the variable constraints be-
tween triples are still the body of query blocks 
and the temporal constraints are the second-
ary data filtering. Therefore, the time stored 
in columns can be processed by the filters of 
HBase. Furthermore, triple redundancy in the 
tables can effectively deal with different triple 
patterns, which will be explained in the next 
section. Note that PO_ST and OS_PT do not 
maintain the triples with a predicate of rdf:type 
because the class instances can be obtained di-
rectly from the table TClass.

Now we apply the examples to illustrate our 
storage method with the above table struc-
tures. The temporal RDF Schema in Fig-
ure 5 contains 4 classes and 2 properties. 
Among them, Student[3, now][3, UC] is a 
subclass of Person[1, now][1, UC] and Grad-
uateStudent[4, now][4, UC] is a subclass of 
class Student. The domain of property de-
greeFrom[2, now][2, UC] is Person and its range is 
University. masterDegreeFrom[4, now][4, UC] 
is a sub-property of degreeFrom.

Figure 2. The structure of TClass.

Definition 3 (TProperty table). TProperty = 
(Pt, Domain: d1t, ..., Domain: dkt, Range: r1t, 
..., Range: rlt, PP: pp1t, ..., PP: ppmt, SP: sp1t, 
..., SP: spnt), in which

1.  t = [V][T];
2. Pt is the temporal property;
3.  Domain = {d11, ..., dkt} is the domain of 

Pt, that is composed of d1t, ..., dkt;
4.  Range = {r1t, ..., rlt} is the range of Pt, that 

is composed of r1t, ..., rlt;
5.  PP = {pp1t, ..., ppmt} is a set of temporal 

parent properties of Pt. The function Par-
Prop: Pt → PP can be used to obtain PP;

6. SP = {sp1t, ..., spnt} is a set of temporal 
sub-properties of Pt. SubProp: Pt → SP 
is the function mapping Pt to SP, and 
SubProp(ppit) ⊃ SubProp(Pt).

TProperty stores properties information with 
inheritance relationships in temporal RDF 
Schema. The structure of this table is shown 
in Figure 3, which contains four column fam-
ilies named Domain, Range, PP and SP. The 
row key of the table is (Property, t), and its 
domain and range are recorded in Domain and 
Range, respectively. PP is the column family 
that stores the direct parent property, while the 
column family SP stores all the child proper-
ties with temporal information. Being the same 
as TClass, all information is stored as column 
qualifiers with values that are set to be ''1'', and 
the time interval is included in the lifetime and 
validity period of the property to ensure the 
data accuracy.

Figure 3. The structure of TProperty.

The structures of TClass and TProperty contain  
only a few column families and are easy to be 
understood. Even though each row has different 
columns, there is not any waste of space in the 
key-value storage mode. In addition, the data 
in these tables are stored in groups by column 
families. This can reduce the IO cost of que-
rying RDFS. Moreover, users can obtain some 
hierarchy or inference information and this can 
avoid multiple queries. The time intervals of 
RDFS are recorded in row keys and columns. 
This can solve the above-mentioned problems 
of built-in time in HBase and guarantee time 
constraints between RDFS hierarchies.
In addition to TClass and TProperty to store 
temporal RDF Schema, we further create three 
tables SP_OT, OS_PT and PO_ST to store tem-
poral RDF triples. Being different from the ta-
bles for temporal RDFS, none of the row keys 
of the three tables for temporal RDF triples 
contain any time information. We present the 
definitions of these three tables as follows.
Definition 4 (SP_OT table). SP_OT = (SP, 
OT: o1t, ..., OT: ont), in which

1.  t = [V][T];
2.  SP is the subject and predicate of a tempo-

ral triple;
3.  OT = {o1t, ..., ont} is the set composed by 

corresponding objects of the triples.
Definition 5 (OS_PT table). OS_PT = (OS, 
PT: p1t, ..., PT: pnt), in which Figure 5. An example of temporal RDFS.

Figure 4. The structures of SP_OT, OS_PT, PO_ST.
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1.  t = [V][T];
2.  OS is the object and subject of a temporal 

triple;
3.  PT = {p1t, ..., pnt} is the set composed by 

corresponding predicates of the triples.

Definition 6 (PO_ST table). PO_ST = (PO, 
ST: s1t, ..., ST: snt), in which
1.  t = [V][T];
2.  PO is the predicate and object of a tempo-

ral triple;
3.  ST = {s1t, ..., snt} is the set composed by 

corresponding subjects of the triples.

The structures of SP_OT, OS_PT and PO_ST 
are shown in Figure 4. They contain only one 
column family. Row keys of these tables are 
composed of two elements in a triple and the 
other element acts as a column in the table with 
the temporal information of the triple. In tem-
poral RDF queries, the variable constraints be-
tween triples are still the body of query blocks 
and the temporal constraints are the second-
ary data filtering. Therefore, the time stored 
in columns can be processed by the filters of 
HBase. Furthermore, triple redundancy in the 
tables can effectively deal with different triple 
patterns, which will be explained in the next 
section. Note that PO_ST and OS_PT do not 
maintain the triples with a predicate of rdf:type 
because the class instances can be obtained di-
rectly from the table TClass.

Now we apply the examples to illustrate our 
storage method with the above table struc-
tures. The temporal RDF Schema in Fig-
ure 5 contains 4 classes and 2 properties. 
Among them, Student[3, now][3, UC] is a 
subclass of Person[1, now][1, UC] and Grad-
uateStudent[4, now][4, UC] is a subclass of 
class Student. The domain of property de-
greeFrom[2, now][2, UC] is Person and its range is 
University. masterDegreeFrom[4, now][4, UC] 
is a sub-property of degreeFrom.

Figure 2. The structure of TClass.

Definition 3 (TProperty table). TProperty = 
(Pt, Domain: d1t, ..., Domain: dkt, Range: r1t, 
..., Range: rlt, PP: pp1t, ..., PP: ppmt, SP: sp1t, 
..., SP: spnt), in which

1.  t = [V][T];
2. Pt is the temporal property;
3.  Domain = {d11, ..., dkt} is the domain of 

Pt, that is composed of d1t, ..., dkt;
4.  Range = {r1t, ..., rlt} is the range of Pt, that 

is composed of r1t, ..., rlt;
5.  PP = {pp1t, ..., ppmt} is a set of temporal 

parent properties of Pt. The function Par-
Prop: Pt → PP can be used to obtain PP;

6. SP = {sp1t, ..., spnt} is a set of temporal 
sub-properties of Pt. SubProp: Pt → SP 
is the function mapping Pt to SP, and 
SubProp(ppit) ⊃ SubProp(Pt).

TProperty stores properties information with 
inheritance relationships in temporal RDF 
Schema. The structure of this table is shown 
in Figure 3, which contains four column fam-
ilies named Domain, Range, PP and SP. The 
row key of the table is (Property, t), and its 
domain and range are recorded in Domain and 
Range, respectively. PP is the column family 
that stores the direct parent property, while the 
column family SP stores all the child proper-
ties with temporal information. Being the same 
as TClass, all information is stored as column 
qualifiers with values that are set to be ''1'', and 
the time interval is included in the lifetime and 
validity period of the property to ensure the 
data accuracy.

Figure 3. The structure of TProperty.

The structures of TClass and TProperty contain  
only a few column families and are easy to be 
understood. Even though each row has different 
columns, there is not any waste of space in the 
key-value storage mode. In addition, the data 
in these tables are stored in groups by column 
families. This can reduce the IO cost of que-
rying RDFS. Moreover, users can obtain some 
hierarchy or inference information and this can 
avoid multiple queries. The time intervals of 
RDFS are recorded in row keys and columns. 
This can solve the above-mentioned problems 
of built-in time in HBase and guarantee time 
constraints between RDFS hierarchies.
In addition to TClass and TProperty to store 
temporal RDF Schema, we further create three 
tables SP_OT, OS_PT and PO_ST to store tem-
poral RDF triples. Being different from the ta-
bles for temporal RDFS, none of the row keys 
of the three tables for temporal RDF triples 
contain any time information. We present the 
definitions of these three tables as follows.
Definition 4 (SP_OT table). SP_OT = (SP, 
OT: o1t, ..., OT: ont), in which

1.  t = [V][T];
2.  SP is the subject and predicate of a tempo-

ral triple;
3.  OT = {o1t, ..., ont} is the set composed by 

corresponding objects of the triples.
Definition 5 (OS_PT table). OS_PT = (OS, 
PT: p1t, ..., PT: pnt), in which Figure 5. An example of temporal RDFS.

Figure 4. The structures of SP_OT, OS_PT, PO_ST.
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Table 4. An example of SP_OT table.

RowKey Column Family  
"OT:"

student1,  
rdf: type

ub: Student, 
[5, 12][5, UC]: "1"

student1,  
ub: takeCourse

course1,  
[6, 7][6, UC]: "1"

student1,  
ub: memberOf

deparment0,  
[5, 6][5, 7]: "1"

deparment1,  
[5, 8][5, UC]: ''1''

student1,  
ub: masterDegreeFrom

university3, 
[12, now][12, UC]: ''1''

course1,  
rdf: type

ub: Course,  
[3,12][3,UC]: ''1''

department0,  
rdf: type

ub: Department,  
[2, now][2, UC]: ''1''

department1,  
rdf: type

ub: Department,  
[4, 9][4, UC]: ''1''

Table 5. An example of OS_PT table.

RowKey Column Family 
"PT:"

course1, student1 ub: takeCourse,  
[6, 7][6, UC]: "1"

deparment0, student1 ub: memberOf,  
[5, 6][5, 7]: "1"

deparment1, student1 ub: memberOf,  
[5, 8][7, UC]: "1"

university3, student1 ub: masterDegreeFrom, 
[12,now][12, UC]: "1"

Table 6. An example of PO_ST table.

RowKey Column Family 
"ST:"

ub: takeCourse,  
course1

student1,  
[6, 7][6, UC]: "1"

ub: memberOf,  
deparment0

student1,  
[5, 6][5, 7]: "1"

ub: memberOf,  
deparment1

student1,  
[5, 8][7, UC]: "1"

ub: masterDegreeFrom, 
university3

student1, 
[12, now][12, UC]: "1"

4.3. Query Strategy

In Subsection 4.2 it is shown that, for temporal 
RDF storage, the storage model introduced in 

this paper can be divided into two parts. TClass 
and TProperty are used to record RDF Schema, 
which covers the domain information involved, 
including inheritance information and relevant 
class instances. SP_OT, OS_PT and PO_ST are 
designed for RDF data, which can satisfy all tri-
ple patterns in query block, and simple queries 
can be hereby responded quickly.
A comparison of diverse temporal triple pat-
terns is summarized in Table 7. It is shown that, 
if any two elements in the triple are known, 
the triple pattern can generate a row key based 
on the known binding values and then select 
an appropriate table from SP_OT, OS_PT and 
PO_ST, to perform the Get operation provided 
by HBase. 

Table 7. Diverse triple patterns.

Triple Pattern Tables
(S, P, ?O) : t SP_OT
(S,?P, ?O) : t SP_OT
(S, ?P, O) : t OS_PT
(?S, P, O) : t PO_ST
(?S, ?P, O) : t OS_PT
(?S, P, ?O) : t PO_ST
(?S, ?P, ?O) : t SP_OT | OS_PT

(?S, rdf:type, C) : t TClass

Note that the triple pattern with rdf:type as a 
known predicate is an exception, which should 
be queried from the TClass table. The case of 
only one known element is handled by the Scan 
operation. The table data in the HBase are ar-
ranged in alphabetical order and the rows with 
the same prefix in the row key are adjacent. 
Therefore, matching a triple pattern can be 
completed quickly by using the known data to 
set the start and end row keys of Scan.

There are some RDF queries that always con-
tain the triple pattern with a wide hierarchy. 
Such queries cannot be processed by the Get 
or Scan operation. Let us look at an example 
in Figure 7. This query example contains two 
non-temporal triple patterns to get the Student 
members of Department0. The first triple can 
acquire the student instances and the second 
triple can get the subjects satisfying this triple. 
However, if the triples are executed directly, the 
returned result will not match the query seman-

Then, the TClass and TProperty tables are 
shown in Table 2 and Table 3, respectively.
Figure 6 is an example of a temporal RDF 
graph, which depicts the information of 
student1[5, 12][5, UC] at university3. The stu-
dent takes course1 during [6, 7] and is enrolled 
in two departments during [5, 8]. The graph 
contains 8 temporal triples. Among them, 4 

temporal triples describe the relationships be-
tween instances and classes and the other 4 
temporal triples describe the relationships be-
tween instances. The former is stored in the 
SP_OT table, the latter are stored in the tables 
SP_OT, OS_PT and PO_ST. These four tables 
are shown in Table 4, Table 5 and Table 6, re-
spectively.

Table 3. An example of TProperty table.

RowKey Column Family 
"Domain:"

Column Family 
"Range:"

Column Family 
"PP:"

Column Family 
"SP:"

degreeFrom, 
[2, now][2, UC]

Person, 
[2, now][2, UC]: "1"

University,  
[2, now][2, UC]: "1"

masterDegreeFrom,  
[4, now][4, UC]: "1"

masterDegreeFrom, 
[4, now][4, UC]

Person, 
[4, now][4, UC]: "1"

University,  
[4, now][4, UC]: "1"

University,  
[4, now][4, UC]: "1"

Table 2. An example of TClass table.

RowKey Column Family 
"PC:"

Column Family 
"SC:"

Column Family 
"Ins:"

Person, 
[1, now][1, UC]

Student,  
[3, now][3, UC]: "1"

student1, student2,  
teacher1,teacher2

GraduateStudent,  
[4, now][4, UC]: "1" graduateStudent1

Student,  
[3, now][3, UC]

Person,  
[3, now][3, UC]: "1"

GraduateStudent,  
[4, now][4, UC]: "1" student1, student2

GraduateStudent,  
[4, now][4, UC]

Student,  
[4, now][4, UC]: "1" graduateStudent1

University, 
[3, now][3, UC] university3

Figure 6. An example of temporal RDF.
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Table 4. An example of SP_OT table.

RowKey Column Family  
"OT:"

student1,  
rdf: type

ub: Student, 
[5, 12][5, UC]: "1"

student1,  
ub: takeCourse

course1,  
[6, 7][6, UC]: "1"

student1,  
ub: memberOf

deparment0,  
[5, 6][5, 7]: "1"

deparment1,  
[5, 8][5, UC]: ''1''

student1,  
ub: masterDegreeFrom

university3, 
[12, now][12, UC]: ''1''

course1,  
rdf: type

ub: Course,  
[3,12][3,UC]: ''1''

department0,  
rdf: type

ub: Department,  
[2, now][2, UC]: ''1''

department1,  
rdf: type

ub: Department,  
[4, 9][4, UC]: ''1''

Table 5. An example of OS_PT table.

RowKey Column Family 
"PT:"

course1, student1 ub: takeCourse,  
[6, 7][6, UC]: "1"

deparment0, student1 ub: memberOf,  
[5, 6][5, 7]: "1"

deparment1, student1 ub: memberOf,  
[5, 8][7, UC]: "1"

university3, student1 ub: masterDegreeFrom, 
[12,now][12, UC]: "1"

Table 6. An example of PO_ST table.

RowKey Column Family 
"ST:"

ub: takeCourse,  
course1

student1,  
[6, 7][6, UC]: "1"

ub: memberOf,  
deparment0

student1,  
[5, 6][5, 7]: "1"

ub: memberOf,  
deparment1

student1,  
[5, 8][7, UC]: "1"

ub: masterDegreeFrom, 
university3

student1, 
[12, now][12, UC]: "1"

4.3. Query Strategy

In Subsection 4.2 it is shown that, for temporal 
RDF storage, the storage model introduced in 

this paper can be divided into two parts. TClass 
and TProperty are used to record RDF Schema, 
which covers the domain information involved, 
including inheritance information and relevant 
class instances. SP_OT, OS_PT and PO_ST are 
designed for RDF data, which can satisfy all tri-
ple patterns in query block, and simple queries 
can be hereby responded quickly.
A comparison of diverse temporal triple pat-
terns is summarized in Table 7. It is shown that, 
if any two elements in the triple are known, 
the triple pattern can generate a row key based 
on the known binding values and then select 
an appropriate table from SP_OT, OS_PT and 
PO_ST, to perform the Get operation provided 
by HBase. 

Table 7. Diverse triple patterns.

Triple Pattern Tables
(S, P, ?O) : t SP_OT
(S,?P, ?O) : t SP_OT
(S, ?P, O) : t OS_PT
(?S, P, O) : t PO_ST
(?S, ?P, O) : t OS_PT
(?S, P, ?O) : t PO_ST
(?S, ?P, ?O) : t SP_OT | OS_PT

(?S, rdf:type, C) : t TClass

Note that the triple pattern with rdf:type as a 
known predicate is an exception, which should 
be queried from the TClass table. The case of 
only one known element is handled by the Scan 
operation. The table data in the HBase are ar-
ranged in alphabetical order and the rows with 
the same prefix in the row key are adjacent. 
Therefore, matching a triple pattern can be 
completed quickly by using the known data to 
set the start and end row keys of Scan.

There are some RDF queries that always con-
tain the triple pattern with a wide hierarchy. 
Such queries cannot be processed by the Get 
or Scan operation. Let us look at an example 
in Figure 7. This query example contains two 
non-temporal triple patterns to get the Student 
members of Department0. The first triple can 
acquire the student instances and the second 
triple can get the subjects satisfying this triple. 
However, if the triples are executed directly, the 
returned result will not match the query seman-

Then, the TClass and TProperty tables are 
shown in Table 2 and Table 3, respectively.
Figure 6 is an example of a temporal RDF 
graph, which depicts the information of 
student1[5, 12][5, UC] at university3. The stu-
dent takes course1 during [6, 7] and is enrolled 
in two departments during [5, 8]. The graph 
contains 8 temporal triples. Among them, 4 

temporal triples describe the relationships be-
tween instances and classes and the other 4 
temporal triples describe the relationships be-
tween instances. The former is stored in the 
SP_OT table, the latter are stored in the tables 
SP_OT, OS_PT and PO_ST. These four tables 
are shown in Table 4, Table 5 and Table 6, re-
spectively.

Table 3. An example of TProperty table.

RowKey Column Family 
"Domain:"

Column Family 
"Range:"

Column Family 
"PP:"

Column Family 
"SP:"

degreeFrom, 
[2, now][2, UC]

Person, 
[2, now][2, UC]: "1"

University,  
[2, now][2, UC]: "1"

masterDegreeFrom,  
[4, now][4, UC]: "1"

masterDegreeFrom, 
[4, now][4, UC]

Person, 
[4, now][4, UC]: "1"

University,  
[4, now][4, UC]: "1"

University,  
[4, now][4, UC]: "1"

Table 2. An example of TClass table.

RowKey Column Family 
"PC:"

Column Family 
"SC:"

Column Family 
"Ins:"

Person, 
[1, now][1, UC]

Student,  
[3, now][3, UC]: "1"

student1, student2,  
teacher1,teacher2

GraduateStudent,  
[4, now][4, UC]: "1" graduateStudent1

Student,  
[3, now][3, UC]

Person,  
[3, now][3, UC]: "1"

GraduateStudent,  
[4, now][4, UC]: "1" student1, student2

GraduateStudent,  
[4, now][4, UC]

Student,  
[4, now][4, UC]: "1" graduateStudent1

University, 
[3, now][3, UC] university3

Figure 6. An example of temporal RDF.
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Query 2:
SELECT ?X, ?Y, ?Z
WHERE{

?X rdf:type ub:GraduateStudent .
?Y rdf:type ub:University .
?Z rdf:type ub:Department .
?X ub:memberOf ?Z | t1.
?Z ub:subOrganizationOf ?Y | ?t2.
?X ub:undergraduateDegreeFrom 
?Y | ?t3.

FILTER (Valid(?t) overlaps Valid(?t2) && 
Valid(?t3) during [2016-04-30, now])}

Query 3:
SELECT ?X
WHERE {

?X rdf:type ub:Publication .
?X ub:publicationAuthor http://
www.Department0.University0.
edu/AssistantProfessor0 | ?t.
FILTER (Tansaction(?t) during 
[2013-01-31, 2015-01-31])}

Query 4:
SELECT ?X, ?Y1, ?Y2, ?Y3
WHERE {

?X rdf:type ub:Professor .
?X ub:worksFor http://www.De-
partment0.University0.edu | ?t1.
?X ub:name ?Y1 .
?X ub:emailAddress ?Y2 | ?t2 .
?X ub:telephone ?Y3
FILTER (Valid(?t) during Valid(?t2) 
&& Tansaction(?t1) overlaps 
[2013-01-31, 2015-01-31])}

Query 5:
SELECT ?X
WHERE {

?X rdf:type ub:Person .
?X ub:memberOf http://www.De-
partment0.University0.edu |?t.
FILTER (Valid(?t) starts [2017-05-
20, 2017-05-20])}

Query 6:
SELECT ?X 
WHERE {

?X rdf:type ub:Student | ?t
FILTER (Tansaction(?t) equals 
[2016-09-08, 2018-04-30])}

Query 7:
SELECT ?X, ?Y
WHERE {

?X rdf:type ub:Student .
?Y rdf:type ub:Course .
?X ub:takesCourse ?Y | ?t1.

http://www.Department0.Uni-
versity0.edu/AssociateProfes-
sor0 ub:teacherOf, ?Y | ?t2

FILTER (Valid(?t1) overlaps 
Valid(?t2) && Tansaction(?t1) ends 
[2018-03-10, 2018-07-25])}

Table 9 presents the number of different oper-
ations included in these queries. Note that Get 
and Scan are not time-consuming operations. 
A join operation means the running of a Ma-
pReduce program, which greatly affects the 
response time of queries. Figure 8 presents re-
sponse times of the seven queries over D1 and 
D2. Furthermore, the increment ratios of re-
sponse time for the seven queries are calculated 
by (D2-D1)/D1 and shown in Figure 9.

Table 9. Operations in temporal queries.
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ry
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ry
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ry
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Get 2 4 2 3 3 1 2

Scan 0 3 0 3 0 0 1

Joins 1 3 1 1 1 0 2

First, it is shown in Figure 8 that, for a given 
query, its response time over D1 is less than that 
over D2 because D2 is larger than D1. So, gen-
erally speaking, a given query will take more 
time as the size of the dataset increases. But 
we can observe from Figure 9 that the query 
time increases only by a factor of 3 while the 
amount of RDF data is increased by 10 times. 
This demonstrates the advantages of the storage 
model based on HBase.
Second, it is shown in Figure 8 that different 
queries may have very different response times. 
In particular, Query 2 has the longest response 
times over both D1 and D2 and Query 6 has the 
shortest response times over both D1 and D2, 
compared to other queries over D1 and D2. The 
main reason why the response times of Query 
2 are significantly higher than other queries is 
that Query 2 contains three join operations. The 
main reason why the response times of Query 6 
are significantly less than other queries is that 
Query 6 contains only one triple pattern, not in-
volving the MapReduce calculations. Then this 

tics because ub:Student and ub:memberOf have 
implicit subclasses and sub-properties. There-
fore, a preprocessing is required before execut-
ing such queries. We need to search the TClass 
or TProperty table to get the corresponding 
instances or sub-properties, and then use these 
sub-properties to extend the triple patterns.

It is required that all triple patterns must meet 
the temporal constraints given in FILTER key-
word. Temporal constraints mean some time 
interval relationships with one or two time 
variables. In order to reduce the amount of data 
transmission and the number of queries, a FIL-
TER parsing is divided into two parts. One part 
is composed of time interval relationships with 
a single variable, which is added to the relevant 
triple patterns. Another part is handled in the 
triple pattern joins. In this paper, we adopt the 
greedy multiple join strategy proposed in [13] 
and use MapReduce to perform join operations. 
The detailed steps for a query are as follows:

1. decomposing the query block into 
non-temporal triple patterns and temporal 
constraints;

2. extracting RDFS domain objects from 
non-temporal triple patterns;

3. retrieving subclasses or sub-properties 
from the TClass or TProperty table for 
domain instances and predicates, and then 
extending the relevant triple patterns;

4. adding temporal constraints with a single 
variable to the triple patterns;

5. determining the join strategy with the 
greedy algorithm and selecting a join 
method for the temporal constraints with 
two variables; 

6. executing temporal triple patterns with 
the filters provided by HBase and making 
joins with the MapReduce programs.

5. Experiments

Our experimental sets include one master serv-
er and two slave nodes each. All machines have 
the same configuration: Intel Core i5-2450M 
2.5GHZ and Ubuntu 64-bit. The master server 
has a 4GB main memory and each slave node 
has a 2GB main memory. We use RDF data 
provided by LUBM, including the univ-bench, 
Uba generator and a set of test queries. The 
univ-bench is the benchmark which defines 
the university domain ontology. The Uba is an 
OWL text generator which requires some spe-
cific parameters to generate file sets of different 
size. All instance files can be parsed into triples 
by Jena. Note that the RDF data from LUBM 
do not contain temporal information. For the 
purpose of our experiments, we add temporal 
information by a random time generator. Then 
we have two temporal RDF datasets D1 and D2 
shown in Table 8, which are imported into the 
HBase by BulkLoad.

Table 8. Temporal RDF datasets.

DataSets Universities Temporal RDF Triples
D1 5 874899
D2 15 13739264

In order to verify the validity of our storage 
model, we refer to the LUBM test queries and 
create the following 7 test queries with temporal 
constraints, which are executed on D1 and D2.

Query 1:
SELECT ?X
WHERE {

?X rdf:type ub:GraduateStudent .
?X ub:takesCourse 
http://www.Department0.Universi-
ty0.edu/GraduateCourse0 | ?t.
FILTER (Tansaction (?t) before 
[2014-06-30, 2014-06-30])}

Figure 7. An example of wide hierarchy query.
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Query 2:
SELECT ?X, ?Y, ?Z
WHERE{

?X rdf:type ub:GraduateStudent .
?Y rdf:type ub:University .
?Z rdf:type ub:Department .
?X ub:memberOf ?Z | t1.
?Z ub:subOrganizationOf ?Y | ?t2.
?X ub:undergraduateDegreeFrom 
?Y | ?t3.

FILTER (Valid(?t) overlaps Valid(?t2) && 
Valid(?t3) during [2016-04-30, now])}

Query 3:
SELECT ?X
WHERE {

?X rdf:type ub:Publication .
?X ub:publicationAuthor http://
www.Department0.University0.
edu/AssistantProfessor0 | ?t.
FILTER (Tansaction(?t) during 
[2013-01-31, 2015-01-31])}

Query 4:
SELECT ?X, ?Y1, ?Y2, ?Y3
WHERE {

?X rdf:type ub:Professor .
?X ub:worksFor http://www.De-
partment0.University0.edu | ?t1.
?X ub:name ?Y1 .
?X ub:emailAddress ?Y2 | ?t2 .
?X ub:telephone ?Y3
FILTER (Valid(?t) during Valid(?t2) 
&& Tansaction(?t1) overlaps 
[2013-01-31, 2015-01-31])}

Query 5:
SELECT ?X
WHERE {

?X rdf:type ub:Person .
?X ub:memberOf http://www.De-
partment0.University0.edu |?t.
FILTER (Valid(?t) starts [2017-05-
20, 2017-05-20])}

Query 6:
SELECT ?X 
WHERE {

?X rdf:type ub:Student | ?t
FILTER (Tansaction(?t) equals 
[2016-09-08, 2018-04-30])}

Query 7:
SELECT ?X, ?Y
WHERE {

?X rdf:type ub:Student .
?Y rdf:type ub:Course .
?X ub:takesCourse ?Y | ?t1.

http://www.Department0.Uni-
versity0.edu/AssociateProfes-
sor0 ub:teacherOf, ?Y | ?t2

FILTER (Valid(?t1) overlaps 
Valid(?t2) && Tansaction(?t1) ends 
[2018-03-10, 2018-07-25])}

Table 9 presents the number of different oper-
ations included in these queries. Note that Get 
and Scan are not time-consuming operations. 
A join operation means the running of a Ma-
pReduce program, which greatly affects the 
response time of queries. Figure 8 presents re-
sponse times of the seven queries over D1 and 
D2. Furthermore, the increment ratios of re-
sponse time for the seven queries are calculated 
by (D2-D1)/D1 and shown in Figure 9.
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First, it is shown in Figure 8 that, for a given 
query, its response time over D1 is less than that 
over D2 because D2 is larger than D1. So, gen-
erally speaking, a given query will take more 
time as the size of the dataset increases. But 
we can observe from Figure 9 that the query 
time increases only by a factor of 3 while the 
amount of RDF data is increased by 10 times. 
This demonstrates the advantages of the storage 
model based on HBase.
Second, it is shown in Figure 8 that different 
queries may have very different response times. 
In particular, Query 2 has the longest response 
times over both D1 and D2 and Query 6 has the 
shortest response times over both D1 and D2, 
compared to other queries over D1 and D2. The 
main reason why the response times of Query 
2 are significantly higher than other queries is 
that Query 2 contains three join operations. The 
main reason why the response times of Query 6 
are significantly less than other queries is that 
Query 6 contains only one triple pattern, not in-
volving the MapReduce calculations. Then this 

tics because ub:Student and ub:memberOf have 
implicit subclasses and sub-properties. There-
fore, a preprocessing is required before execut-
ing such queries. We need to search the TClass 
or TProperty table to get the corresponding 
instances or sub-properties, and then use these 
sub-properties to extend the triple patterns.

It is required that all triple patterns must meet 
the temporal constraints given in FILTER key-
word. Temporal constraints mean some time 
interval relationships with one or two time 
variables. In order to reduce the amount of data 
transmission and the number of queries, a FIL-
TER parsing is divided into two parts. One part 
is composed of time interval relationships with 
a single variable, which is added to the relevant 
triple patterns. Another part is handled in the 
triple pattern joins. In this paper, we adopt the 
greedy multiple join strategy proposed in [13] 
and use MapReduce to perform join operations. 
The detailed steps for a query are as follows:

1. decomposing the query block into 
non-temporal triple patterns and temporal 
constraints;

2. extracting RDFS domain objects from 
non-temporal triple patterns;

3. retrieving subclasses or sub-properties 
from the TClass or TProperty table for 
domain instances and predicates, and then 
extending the relevant triple patterns;

4. adding temporal constraints with a single 
variable to the triple patterns;

5. determining the join strategy with the 
greedy algorithm and selecting a join 
method for the temporal constraints with 
two variables; 

6. executing temporal triple patterns with 
the filters provided by HBase and making 
joins with the MapReduce programs.

5. Experiments

Our experimental sets include one master serv-
er and two slave nodes each. All machines have 
the same configuration: Intel Core i5-2450M 
2.5GHZ and Ubuntu 64-bit. The master server 
has a 4GB main memory and each slave node 
has a 2GB main memory. We use RDF data 
provided by LUBM, including the univ-bench, 
Uba generator and a set of test queries. The 
univ-bench is the benchmark which defines 
the university domain ontology. The Uba is an 
OWL text generator which requires some spe-
cific parameters to generate file sets of different 
size. All instance files can be parsed into triples 
by Jena. Note that the RDF data from LUBM 
do not contain temporal information. For the 
purpose of our experiments, we add temporal 
information by a random time generator. Then 
we have two temporal RDF datasets D1 and D2 
shown in Table 8, which are imported into the 
HBase by BulkLoad.

Table 8. Temporal RDF datasets.

DataSets Universities Temporal RDF Triples
D1 5 874899
D2 15 13739264

In order to verify the validity of our storage 
model, we refer to the LUBM test queries and 
create the following 7 test queries with temporal 
constraints, which are executed on D1 and D2.

Query 1:
SELECT ?X
WHERE {

?X rdf:type ub:GraduateStudent .
?X ub:takesCourse 
http://www.Department0.Universi-
ty0.edu/GraduateCourse0 | ?t.
FILTER (Tansaction (?t) before 
[2014-06-30, 2014-06-30])}

Figure 7. An example of wide hierarchy query.
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query can be executed directly via Java APIs 
provided by HBase. The situation occurring in 
Query 2 or Query 6 will further be aggravat-
ed while the query is issued over very differ-
ently sized datasets. This is why, for Query 2 
and Query 6, their response times over D1 are 
significantly less than their response times over 
D2.
Now let us look at other queries. It is shown in 
Figure 8 that, for Query 1, Query 3 and Query 
5, their response times over D1 and D2 are rel-
atively stable because of their high selectivity. 
Among these three queries, Query 1 does not 
contain a hierarchical reasoning of classes, but 
its implicit hierarchical information can be di-
rectly obtained from TClass and TProperty. So, 
Query 1 does not cause an excessive time con-
sumption.

Query 4 is similar to Query 1 in terms of the 
query structure, but it involves a hierarchical 
reasoning and the triple with sub-properties of 
ub:worksFor must be extended. At this point, 
for Query 4 over D2, more data are involved 
in join operations and its response time (72.612 
sec.) is a little longer than the response time of 
Q1 over D2 (62.823 sec.) (i.e., 15.58% longer). 
As for Query 7, it is actually an extension of 
Query 6 and has a higher data selectivity. How-
ever, Query 7 needs more MapReduce calcula-
tions for join operations. So, the response time 
of Query 7 is much longer than the response 
time of Query 6. 

In addition, temporal constraints with a single 
variable are executed in the Get or Scan oper-
ation by the filters in advance. This can reduce 
the IO cost. As for the multivariable temporal 
constraints, they are handled during the join 
processing and there are no redundant join op-
erations. This is one of the reasons why most 
response times of the queries do not increase 
when data volumes increase.

Figure 9. Response increment ratio.

6. Conclusion

To store temporal RDF data, in this paper we 
investigate the structural characteristics of 
HBase and present the problems in its built-in 
time mechanism. On this basis, we propose an 
HBase storage model with 5 tables for tempo-
ral RDF data storage, which can preserve data 
semantics of temporal RDF and solve temporal 
representation in the built-in time mechanism. 
Based on the storage model, we put forward the 

query strategy. We classify temporal constraints 
according to the number of variables in the bi-
nary relationship. Constraints with a single vari-
able are executed by filters provided by HBase, 
and this can reduce the amount of data involved 
in join operations and reduce the IO cost. Other 
constraints are dealt with during the join oper-
ations and this does not increase the number of 
join operations. All triple patterns are covered 
by the SP_OT, OS_PT and PO_ST tables. With 
the proposed query approach, the queries with 
wide hierarchies can be executed effectively for 
TClass and TProperty tables. Furthermore, we 
used a cluster with three nodes and the LUBM 
test queries to verify the validity of our storage 
and query strategy on two datasets. 
Note that there is no benchmark of temporal 
RDF. So, we do not test our approach with very 
large datasets, say TB datasets. In the near fu-
ture, we will enlarge our datasets and increase 
the cluster nodes to optimize our storage model. 
In addition, the response time of queries based 
on the MapReduce framework is not quick 
enough. In the next phase, we will improve 
the processing algorithm of join operation and 
adjust the configuration parameters of Ma-
pReduce to obtain better query performance.
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query can be executed directly via Java APIs 
provided by HBase. The situation occurring in 
Query 2 or Query 6 will further be aggravat-
ed while the query is issued over very differ-
ently sized datasets. This is why, for Query 2 
and Query 6, their response times over D1 are 
significantly less than their response times over 
D2.
Now let us look at other queries. It is shown in 
Figure 8 that, for Query 1, Query 3 and Query 
5, their response times over D1 and D2 are rel-
atively stable because of their high selectivity. 
Among these three queries, Query 1 does not 
contain a hierarchical reasoning of classes, but 
its implicit hierarchical information can be di-
rectly obtained from TClass and TProperty. So, 
Query 1 does not cause an excessive time con-
sumption.

Query 4 is similar to Query 1 in terms of the 
query structure, but it involves a hierarchical 
reasoning and the triple with sub-properties of 
ub:worksFor must be extended. At this point, 
for Query 4 over D2, more data are involved 
in join operations and its response time (72.612 
sec.) is a little longer than the response time of 
Q1 over D2 (62.823 sec.) (i.e., 15.58% longer). 
As for Query 7, it is actually an extension of 
Query 6 and has a higher data selectivity. How-
ever, Query 7 needs more MapReduce calcula-
tions for join operations. So, the response time 
of Query 7 is much longer than the response 
time of Query 6. 

In addition, temporal constraints with a single 
variable are executed in the Get or Scan oper-
ation by the filters in advance. This can reduce 
the IO cost. As for the multivariable temporal 
constraints, they are handled during the join 
processing and there are no redundant join op-
erations. This is one of the reasons why most 
response times of the queries do not increase 
when data volumes increase.
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investigate the structural characteristics of 
HBase and present the problems in its built-in 
time mechanism. On this basis, we propose an 
HBase storage model with 5 tables for tempo-
ral RDF data storage, which can preserve data 
semantics of temporal RDF and solve temporal 
representation in the built-in time mechanism. 
Based on the storage model, we put forward the 

query strategy. We classify temporal constraints 
according to the number of variables in the bi-
nary relationship. Constraints with a single vari-
able are executed by filters provided by HBase, 
and this can reduce the amount of data involved 
in join operations and reduce the IO cost. Other 
constraints are dealt with during the join oper-
ations and this does not increase the number of 
join operations. All triple patterns are covered 
by the SP_OT, OS_PT and PO_ST tables. With 
the proposed query approach, the queries with 
wide hierarchies can be executed effectively for 
TClass and TProperty tables. Furthermore, we 
used a cluster with three nodes and the LUBM 
test queries to verify the validity of our storage 
and query strategy on two datasets. 
Note that there is no benchmark of temporal 
RDF. So, we do not test our approach with very 
large datasets, say TB datasets. In the near fu-
ture, we will enlarge our datasets and increase 
the cluster nodes to optimize our storage model. 
In addition, the response time of queries based 
on the MapReduce framework is not quick 
enough. In the next phase, we will improve 
the processing algorithm of join operation and 
adjust the configuration parameters of Ma-
pReduce to obtain better query performance.
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