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C4.5 Decision Tree Algorithm for 
Spatial Data, Alternatives and 
Performances

Using data mining techniques on spatial data is more 
complex than on classical data. To be able to extract 
useful patterns, the spatial data mining algorithms 
must deal with the representation of data as stack of 
thematic layers and consider, in addition to the object 
of interest itself, its neighbors linked through implic-
it spatial relations. The application of the classifica-
tion by decision trees combined with the visualization 
tools represents a convenient decision support tool for 
spatial data analysis. The purpose of this paper is to 
provide and evaluate an alternative spatial classifica-
tion algorithm that supports the thematic-layered data 
organization, by the adaptation of the C4.5 decision 
tree algorithm to spatial data, named S-C4.5, inspired 
by the SCART and spatial ID3 algorithms and the 
adoption of the Spatial Join Index. Our work concerns 
both data organization and the algorithm adaptation. 
Decision tree construction was experimented on traf-
fic accident dataset and benchmarked on both com-
putation time and memory consumption according to 
different experimentations: study of phenomenon by a 
single and then by multiple other phenomena, includ-
ing one or more spatial relations. Different approaches  
used show compromised and balanced results between 
memory usage and computation time.

ACM CCS (2012) Classification: Information systems 
→ Information systems applications → Data mining
Information systems → Information systems appli-
cations → Spatial-temporal systems → Geographic 
information systems
Computing methodologies → Machine learning → 
Learning paradigms → Supervised learning → Su-
pervised learning by classification
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1. Introduction

Thanks to technological advances, today we are 
living in the digital era where we can assist an 
explosion of the data quantity of which a ma-
jor part is geo-referenced, and so, with a spatial 
nature that obeys the Tobler's first geography 
law [1] "Everything is related to everything else 
but nearby things are more related than distant 
things", introducing the neighborhood notion 
and connecting these data to each other. Ana-
lyzing spatial data disregarding this property 
is definitely incorrect [2]. Such a mass of data 
has a value only if we can extract from it useful 
knowledge, particularly in the fields of Busi-
ness Intelligence (BI), Decision Support Sys-
tem (DSS), large-scale targeting and marketing 
operations and political campaigns.
The spatial dimension of geo-referenced data 
adds a significant complexity to the data mining 
tasks. Spatial objects are characterized by a geo-
metrical representation and relative positioning 
which implicitly define both spatial relations 
and properties. In addition, spatial data are ar-
ranged in a set of spatially linked thematic lay-
ers representing discrete or continuous features. 
Traditional data mining techniques cannot han-
dle spatial data, hence the need to adapt new 
techniques in the area of spatial data mining. 
Enabling the extraction of interesting patterns 
from large datasets, spatial data mining fulfills 
the analysis needs of many geomatic applica-
tions and allows taking advantage of the grow-
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ing availability of spatial data. However, spatial 
data mining is widely derived from convention-
al data mining techniques for spatial classifica-
tion, which could be used to explain or to predict 
a phenomenon by analyzing the properties of 
the geographical environment, e.g. explaining 
the occurrences of accidents according to road 
conditions or the urban environment. The use of 
spatial classification by decision trees represents 
a helpful tool for decision support and analysis, 
operations research and phenomenon prediction.
This paper proposes a C4.5 [3] based spatial de-
cision tree algorithm to construct a classification 
model from a spatial dataset that can be orga-
nized in multi-thematic layers and may contain 
both discrete and continuous features. Our con-
tributions concern the adaptation of information 
gain at the C4.5 algorithm level, based on works 
[4], [5] and the data structure preparation using 
the Spatial Join Index (SJI) introduced in [6] 
(not to be confused with the classical spatial join 
algorithms). We have performed different classi-
fication experimentations on a road safety data-
set in order to evaluate and compare the perfor-
mances of the proposed algorithm alternatives.
Including introduction and conclusion, we 
structured this paper into five sections. Presen-
tation of spatial data mining related works is 
in Section 2. Development of the proposed ap-
proaches, including their experimentations and 
results, is shown in Section 3. A comparative 
study and discussion of results is presented in 
Section 4.

2. Related Work

In order to extract useful knowledge, spatial 
data mining algorithms have to consider the 
neighbors of objects, which makes the discov-
ery processes such as classification for spatial 
data more complex than those for non-spatial 
data [7].
Spatial relations, both topological, direction and 
metric are commonly used in spatial queries and 
analyses. They are usually stored implicitly in 
spatial databases and, therefore, require to be 
computed. These relations translate the influ-
ence of the neighbors of objects, which can be 
classified into two types: intra-theme, e.g. the 
spatial autocorrelation of geographical phe-

nomena measurements (the temperature of two 
nearby places is close) and inter-theme, e.g. the 
influence of road traffic on the phenomenon of 
pollution.
We adopted the same categorization of spa-
tial data mining techniques as presented in [8]. 
Hence, according to the consideration way of 
spatial relations (intra-theme or inter-theme), we 
distinguish mono-thematic and multi-thematic 
spatial data mining approaches families.

2.1. Mono-Thematic Approaches

These approaches are often related to data anal-
ysis and statistics. In the case of a single theme, 
the data are described with the same variables 
and so are comparable. This allows to include 
a contiguity parameter into a weight or model 
variables according to the values of the neigh-
borhood. Below, we summarize the three most 
common mono-thematic approaches.

 ● Analysis of localizations without attri-
butes: based only on localizations, these ap-
proaches tend to reveal the concentrations 
or trends by exploring a set of localizations 
(points set). Among the major works, we 
cite: ''trend analysis by the method of den-
sity'' [9], and ''clustering'' [10].

 ● Analysis of localizations provided with 
numerical measures: these analyses aim to 
characterize the spatial variation of mea-
sures taken on a spatial domain, often cov-
ering space by a surface cutting. It is fre-
quently a single numeric attribute. Among 
the major works, we cite: ''overall and lo-
cal spatial autocorrelation'' [11] and ''trend 
analysis by linear regression'' [7].

 ● Analysis of localizations with provided 
categories: these analyses focus on the 
characteristic properties extending the 
neighborhood or on the simultaneous pres-
ence of categories in space. In this case, 
localizations are assumed to be described 
by categorical attributes. Among the ma-
jor works, we cite: ''co-localization'' [11]–
[13], and ''characterization'' [14].

In the mono-thematic spatial data mining, the 
space is the object of the analysis with few at-
tributes, usually a measure or a single catego-
ry, while the spatial databases and the majority 
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spatial objects and their relations to their neigh-
bors. Generation of the tree with this algorithm 
is made by selecting the best layer for the sepa-
ration of a dataset into as pure as possible small 
partitions, meaning that all objects in partitions 
belong to the same class. This algorithm uses 
an adapted version of the information gain en-
abling the choice of a layer as a splitting layer.
The authors in [5] discuss another decision tree 
from spatial data for the discrete characteristics 
represented with points, lines and polygons. 
The proposed method was based on non-spa-
tial properties of the classified objects, predi-
cates and functions that describe the spatial re-
lation between the objects, in addition to other 
features located in the spatial proximity of the 
classified objects.

2.3. Limitations of Existing Research

In the first category, named mono-thematic ap-
proaches, the analysis of localizations without 
attributes is insufficient in the analysis of spa-
tial databases. The analysis of localizations pro-
vided with numerical measures or categories is 
limited because it is mono-attribute. Generally, 
mono-thematic approaches consider only in-
tra-theme relations between objects, excluding 
the spatial relations that may exist between ob-
jects of different themes.
In the second category, named multi-thematic 
approaches, [7], [15] use (binary) spatial pred-
icates rather than weighted spatial relations 
such as distance. Methods in [15], [16] begin 
by generalizing the data before applying the 
classification algorithm. Although this is seen 
as an optimization technique, it can lead to the 
loss of information. In addition, this method 
involves transformation of the data into pred-
icates that prevents the use of existing classi-
fication algorithms and this rewriting of the 
base as predicates has a cost to be added in the 
building model costs. In [18], [19], PLI based 
methods have the same disadvantages as the 
previous ones. Moreover, unlike the previous 
ones, they do not consider scaling and do not 
propose any indexing or optimization technique 
in this sense.
The SCART algorithm defined in [4] con-
structs, like CART, binary decision trees where 
branches are generated on a single pair of attri-

of Geographic Information Systems (GIS) or-
ganize the data in thematic layers, each with a 
description or its own scheme. Mono-thematic 
methods are not compatible with this data orga-
nization, and therefore are unable to reveal the 
hidden inter-thematic relations.

2.2. Multi-Thematic Approaches

Unlike the mono-thematic approaches, the pur-
pose of the multi-thematic data mining is to 
consider, in addition to the description of the 
object by its own attributes, its neighborhood re-
lation as well as the description of neighboring 
objects. These approaches are based on spatial 
predicates which are interpreted as properties 
to be considered in the model to induce. These 
methods distinguish the main theme of the anal-
ysis (named the target theme) and then explore 
the other themes (named phenomena) that may 
influence it. Supervised classification and as-
sociation rules are often used in multi-thematic 
approaches.
Among the pioneers of spatial data mining, Ko-
perski and Han [15], [16], based on the works 
in [17], have defined association rules and 
classification methods involving explicitly the-
matic layers. Malerba and Lisi [18], [19] have 
adapted the works in [15] by the application of 
the Inductive Logic Programming (ILP) based 
multi-relational data mining on multi-thematic 
spatial data.
Ester et al. [7] have proposed a classification 
method based on ID3 algorithm [20] that con-
siders the links and neighbors types, but the no-
tion of the theme is not explicit. Comparatively, 
the classification method of Koperski described 
in [21] considers reference themes and precise 
neighbors relations.
The authors in [4] developed a spatial decision 
tree algorithm named SCART (Spatial Classifi-
cation and Regression Trees) by the extension 
of the CART method, one of the commonly 
used systems for induction of decision trees 
proposed in [22]. SCART considers both the 
organization of geographical data in thematic 
layers, and their spatial relations. SCART uses 
Spatial Join Index table (SJI) [6] to calculate 
the spatial relations between objects.
The study [23] extended the ID3 algorithm [20] 
to support spatial datasets, taking into account 
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bute-value rather than on all values of the se-
lected attribute. However, the drawback of this 
restriction is that the generated tree may be less 
interpretable, because of multiple splits occur-
ring on the same attribute at adjacent levels, so, 
it may be a bad binary division on an attribute 
that has a good multi-way split during the gen-
eration of decision trees using CART [24]. As 
SCART is based on CART, it may be subject to 
the same drawback.
By using the ID3 algorithm, the works in [23] 
are limited to discrete characteristics.

3. Proposed Approach

In order to provide an efficient and convenient 
spatial data analysis tool, our contribution to 
spatial data mining fits the context of classifi-
cation, a commonly used method to find mining 
rules from large databases, by decision trees, a 
frequent method used for the classification be-
cause of its simple hierarchical structure for the 
user understanding and decision making. Our 
contribution complies with the following con-
siderations:
1. taking into account the organization of 

spatial data as stack of thematic layers;
2. support of large spatial datasets with ac-

ceptable performance;
3. flexible solution, allowing the application 

of different models.
In addition to the consideration of spatial objects 
themselves, taking into account their relations 
to neighbors and also the neighbors objects de-
scription, places our vision of spatial data min-
ing in the multi-thematic approaches category, 
as described in the above related works section. 
This allows us to comply with the first consid-
eration.
To satisfy the second consideration about per-
formance, based on the conclusion of a deci-
sion trees comparative study presented in [25], 
which clearly demonstrates the enhancements 
in execution time and accuracy of C4.5, we pro-
pose to use this algorithm for the decision trees 
construction. In addition to the limits presented 
in the end of the related works section concern-
ing the choice of CART an ID3 algorithms, the 
use of C4.5 allows us to the following:

 ● generation of n-ary trees;
 ● ability to handle continuous data;
 ● ability to manage attributes with missing 

values;
 ● possibility to post-prune the generated tree.

In order to develop a flexible solution, we ad-
opted the use of the Spatial Join Index (SJI) 
presented in [6]. The use of the SJI allows also 
the optimization of performance through the 
application of different models.
The main aspect of spatial data mining is the 
consideration of spatial relations between the 
objects. The SJI was proposed in [6] as an ex-
tension of the Join Indices developed in [26] to 
exactly calculate these spatial relations between 
the collections of objects from different the-
matic layers and to improve performance of the 
complex operations in a Database Management 
System (DBMS). The result of the SJI is a new 
table that contains the pre-calculated results of 
spatial relations between different objects. Fig-
ure 1 shows the basic scheme of SJI (IDX, SR, 
IDY), where IDX and IDY reference respectively 
their matching object and SR their computed 
spatial relation, which can be topologic, metric 
or direction, e.g., in the case of metric relation, 
SR will contain the exact distance value. SJI 
can be handled in the same way as other tables 
and manipulated using the standardized SQL 
query language.
Introducing this new intermediate table will 
increase the required space according to the 
number of included spatial relations. To re-
duce additional memory usage generated by the 
SJI, the concerned objects will be referenced 
through their IDs. The pre-computed spatial re-
lations can be quantitative (discrete/continuous) 
variables and will be stored as-is or qualitative 
variables and will be stored using data coding 
techniques. Memory consumption monitoring 
in different experiments is investigated below:
In this paper we focus on the construction of 
decision trees based on the adapted C4.5 algo-
rithm using different approaches and conduct-
ing performance measures. The ensembles of 
decision trees, e.g. bagging, boosting, etc. are 
out of the scope of this work. 
In order to be able to handle spatial data, we 
propose the S-C4.5 alternative, which is an 
adaptation of C4.5 according to two modifica-
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tions, the first is at the data organization level 
and the second is at the algorithm level.
1. Data Organization Modification. This 

modification is necessary in order to con-
sider the spatial nature of data, which con-
sists of including among the analysis data, 
the pre-calculated spatial relations in the 
Spatial Join Index (SJI).

2. Algorithm Modification. This modification 
is necessary given the multi-relational na-
ture of the spatial data, which are general-
ly organized in several tables representing 
individually a spatial phenomenon. The 
change is made at the informational gain 
calculation level. For this purpose, depend-
ing on the choice of the target phenomenon 
to be studied, if the attribute for which we 
want to calculate the informational gain 
is in the same table as the target attribute, 
then the gain is calculated directly, other-
wise a join is necessary before it can be 
calculated.

In Algorithm, 1 we describe the recursive main 
function of the S-C4.5 algorithm.
Steps 2‒7 check the stop criteria: if there are no 
neighbors attributes or if all training tuples are 
in the same class, then a leaf labeled with the 
majority class is returned.
Steps 8‒20 evaluate the measures of all candi-
date features and splitting thresholds to generate 
intermediate nodes. Function bestGainCalcula-
tion in step 9 returns the attribute maximizing 

the informational gain after calculation and op-
erates according to our modification described 
above. Steps 10 to 20 are the same as the clas-
sical C4.5 algorithm with only one difference: 
inclusion of the spatial relations SR pre-calcu-
lated in the SJI.
Dataset and test environment. For the purpose 
of all our experiments, we used a detailed da-
tabase of road safety, of the circumstances and 
injuries of road accidents in Great Britain from 
1979 to 2001 [27], the types (including model) 
of the vehicles involved and the consequences. 
The statistics refer only to the accidents on pub-
lic roads involving bodily injuries, which were 
reported to the police and then recorded. Our 
dataset is detailed in Table 1.
Our entire tests environment is on a machine 
with Intel Quad Core Q9400 2.4 GHz CPU and 
12GB DDR3 memory under Microsoft Win-
dows 10 Pro 64-bit edition using Oracle 10g 
DBMS.

Table 1. Description of the experimentations database.

Table Name Attributes 
Number Tuples Number

Accidents 13 1 048 576
Vehicles 24 1 048 576
Climate 04 1 048 576
Routes 12 1 048 576
Victims 14 1 048 576
Areas 03 1 048 576

Figure 1. General structure of Spatial Join Index (SJI).
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We applied our S-C4.5 algorithm on two major 
study cases:

 ● case 1: study of a phenomenon by a single 
other phenomenon;

 ● case 2: study of a phenomenon by multiple 
other phenomena.

3.1. Study of a Phenomenon by a Single 
other Phenomenon

This study consists of taking two tables as in-
puts: a target table (target phenomenon), and a 
neighbor table (neighbor phenomenon), with-
out missing a Spatial Join Index that links the 

first phenomenon with the second one by in-
cluding one or more spatial relations.
The target table is automatically identified at the 
selection of the target attribute that represents a 
phenomenon for which the spatial study will be 
performed. We can simply define it as the table 
that contains the target attribute and, therefore, 
it can be only a single and unique target table.
The neighbor table defines the considered phe-
nomenon to explain the target phenomenon.
The Spatial Join Index contains the pre-calcu-
lated results of spatial relations between dif-
ferent objects (tables). The SJI is necessary to 
include the spatial character of these data, so, 

Algorithm 1.  Description of the main function of the proposed S-C4.5 algorithm.

Input:
• A spatial dataset of training tuples SD and their associated class labels constructed from a set of layers using 

spatial relations.
• A target layer TL  SD including a target attribute TA  TL.
• A set of neighbors (explanatory) layers NL  SD.
• A set of neighbors (explanatory) attributes NA, where  NA  NL and  NA  TL.
• Set of spatial relations SR pre-calculated using the SJI method.

Output:
• A spatial decision tree.

Method:
1.   function S-C4.5(SD, TA, NA, SR)
2.         for each table T of SD do
3.               if NA  NULL then → (Terminal node)
4.                     return a node N with the most represented value for TA
5.               else
6.                     if all examples have the same value for TA then → (Terminal node)
7.                           return a node N with this value of TA
8.                     else → (Intermediate node)
9.                           Selected attribute SA  bestGainCalculation(NA, SR, TA)
10.                         Remaining neighbors attributes RNA  deleteFromList(NA, SA)
11.                         New node NN  node labeled with SA
12.                         for each value VSA of SA do
13.                               Filtered sample FS = filterSamplesWithValueForAttribute(T, SA, VSA)
14.                               NN.son(VSA)  S-C4.5(FS, TA, RNA, SR)
15.                         end for
16.                         return NN
17.                   end if
18.             end if
19.       end for
20. end function
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we must consider it as an intermediary table 
to enable the join between the target and the 
neighbor table.
We divide our study into two cases: the first case 
considers only one spatial relation between the 
two studied phenomena (the target table, and 
the neighbor table), in the second case, we con-
sider multiple spatial relations between the two 
phenomena.

3.1.1. Study of a Phenomenon by a Single 
other Phenomenon Including a Single 
Spatial Relation

In this study case, the data structure is as in Fig-
ure 2:

N.B.: TxSRNy represents the pre-calculated spa-
tial relation SR between the target tuple with 
ID  Tx and the neighbor tuple with ID  Ny from 
their spatial attributes (latitude, longitude). 
These relations have discretized values, for ex-
ample, for the distance, according to the situ-
ation; the values are discretized to 3 values of 
near, medium and far.
For real world data example, you can refer to 
Figure 5.

In this study case, we adapted the C4.5 algo-
rithm according to two approaches:

 ● join on the fly;
 ● joins materialization.

The join on the fly method consists of joining 
the target and the neighbor tables through the 
SJI when it is necessary, that means, when the 
attribute for which we want to calculate the in-
formational gain is outside the target table.
On the other side, the joins materialization con-
sists of materializing in advance the join of the  
tables involved: target table, neighbor table, 
Spatial Join Index, and considering the result 
of the join as a single table, then applying the 
classical algorithm of data mining to this table.

3.1.2. Study of a Phenomenon by a Single 
other Phenomenon including multiple 
Spatial Relations

Unlike the first study, this time, the SJI contains 
more than one spatial relation. This allows con-
sidering several spatial relations between the 
objects, which enhances the obtained results. 
The structure is described in Figure 3.

Figure 2. Structure of the study of a phenomenon by a single other phenomenon including a single spatial relation.

Figure 3. Structure of the study of a phenomenon by a single other phenomenon including multiple spatial relations.
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We also applied this study to the two methods, 
namely, the method of the join on the fly and 
that of the joins materialization.
Experimentations. In the study case of a phe-
nomenon by a single other phenomenon, in-
cluding one or more spatial relations, we de-
fine the table Accident as a target table, and the 
table Area as a neighbor table. The purpose of 
this study on this dataset is to link the conse-
quences (represented by the severity attribute) 
of accidents to the areas, which could help to 
make right decisions and intervene effectively 
in a certain area, thanks to predictions of the 
kinds of accidents that can occur depending on 
the location.
Results. For the purpose of comparison with 
other works, we have tested the proposed 
S-C4.5 algorithm with multiple spatial relations 
(distance and direction in our case) according to 
two different methods: join on the fly and joins 
materialization, on a spatial dataset.
We compared our works with the existing 
SCART algorithm [4].
Comparison of performances concerns the du-
ration of analysis and the memory consumption 
during the treatments. The results obtained for 
this study case are detailed in Table 2.

N.B.: In the joins materialization, 'Phase I' cor-
responds to the materialization of joins; 'Phase 
II' corresponds to the execution of the algo-
rithm.
At first, according to the results, we can deduce 
the same conclusions as those made for the case 
with a single included spatial relation:

 ● the joins materialization method gives bet-
ter results in terms of execution time com-
pared to the join on the fly method;

 ● the join on the fly method consumes less 
memory space compared to the joins mate-
rialization method.

Secondly, we note that the S-C4.5 algorithm uses 
a little bit less memory than the SCART algo-
rithm, for both approaches, the join on the fly and 
the joins materialization; furthermore, it requires 
significantly less execution time than SCART.
The consideration of an additional spatial re-
lation is the equivalent of including addition-
al attributes in the analysis. We can see that in 
all methods of the study of a phenomenon by 
a single other phenomenon including multiple 
spatial relations, the execution time and mem-
ory consumption are slightly higher, compared 
to the study with a single spatial relation. So, 
the results confirm that the inclusion of multi-
ple spatial relations will marginally decrease 
the performances. On the other hand, it will en-
hance the analysis content, because spatial re-
lations are the information that translates an es-
sential property and characteristic of real world, 
which is the influence of the neighborhood. This 
information is usually exploited in the spatial re-
quests and analyses, the more spatial relations 
are included, the more data mining is spatial.
To get closer to reality and to be able to make 
the analysis more relevant, making spatial data 
mining by studying a phenomenon by only a 
single other phenomenon is a limitation in itself, 
despite the consideration of multiple spatial rela-
tions. However, in real world, a phenomenon is 

Table 2. Results of the first contribution including multiple spatial relations.

Algorithm
Joins materialization Querying on the fly different tables

Duration Memory space Duration Memory space

S-C45

Step1

20.460 s

Step2

54 min 01.020 s 6 438 MB 96 min 26.680 s 1 392 MBTotal

13 min 37.075 s

SCART

Step1

20 min 05.496 s

Step2

71 min 44.912 s 6 534 MB 126 min 15.660 s 1 668 MBTotal

18 min 4.310 s
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determined by several other phenomena, hence 
the need to be able to make a study for a certain 
phenomenon by multiple other phenomena.

3.2. Study of a Phenomenon by Multiple 
other Phenomena

Figure 4 illustrates general structure of the study 
of a phenomenon by multiple other phenomena.
Based on this structure of the study of a phenom-
enon by multiple other phenomena, we adapted 
the S-C4.5 algorithm to include more than one 
neighbor according to four methods: join on the 
fly, joins materialization, joins semi-material-
ization and imbricated materialization.

Experimentations were conducted on the same 
database presented in the previous experimen-
tations whose details are illustrated in Table 1. 
The Accident table is considered as the target 
table, the Climate and Road tables are consid-

ered as neighbors tables. For spatial relations, 
we used the distance and direction. Considering 
these tables (phenomena or themes), we will be 
able to determine and predict at certain per-
centage the risk and consequences of accidents 
that can occur depending on the road type and 
weather conditions.
Figure 5 illustrates a real-world sample of the 
structure of this study case.

3.2.1. Method 1: Join on the Fly

This method consists of performing the join 
when the attribute for which we want to calculate 
the gain is out of the target table, going through 
the Spatial Join Index. Based on the structure 
described in Figure 4, we obtain pairs of attri-
butes following this form: [Target attribute, X 
attribute], where X is the attribute for which we 
want to calculate the informational gain, and 
which is situated out of the target table.

Figure 4. General structure of the study of a phenomenon by multiple other phenomena.
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Results. Table 3 illustrates the results obtained 
for the calculation of duration and consumed 
memory space.

Table 3. Results of method 1: join on the fly.

Duration Memory Space
115 min 02.335 s 1 644 MB

Although this method simplifies the inclusion 
of more than one phenomenon, intensive use 
of the joins operations when the concerned at-
tribute by the calculation of the informational 
gain is out of the target table, despite lower con-
sumption of memory space, gives a weak exe-
cution time performance.

3.2.2. Method 2: Joins Materialization

Concerning the method of joins materializa-
tion, which has the advantage of bringing back 
the spatial data mining to classical data mining, 
by the materialization of all the joins operations 
of all tables to a single global table, called ma-
terialized table. 
Implementation of the S-C4.5 algorithm with 
the joins materialization method generates a ma-
terialized table with incoherent data, even more 
when spatial relationships overlap between 

themselves, and this will cause incoherent data 
analysis. Figure 6 illustrates this problem.
The main problem in the structure exposed in 
Figure 6 occurs when we consider the same 
spatial relation with multiple neighbors. When 
calculating the informational gain of a specif-
ic spatial relation, it is impossible to define for 
which explaining phenomenon (neighbor) this 
gain is brought, which is incoherent and falsi-
fies the results. The only possibility is to con-
sider distinct spatial relations for each neigh-
bor. For example, if we consider the distance 
as spatial relation for the first neighbor, it will 
not be used for the other neighbors, which will 
significantly limit the analysis.
However, we can find alternatives to overcome 
this difficulty; we proposed an alternative illus-
trated in Figure 7. This solution requires taking 
back the same spatial relation by precising with 
which neighbor it is calculated. This will gen-
erate a huge table, especially when we work on 
spatial databases.

Results. Table 4 illustrates the duration of calcu-
lation and the memory space needed by method 
2: joins materialization, according to the alter-
native structure detailed in Figure 7 and tested 
with the dataset presented above.

Figure 5. Study of accidents consequences by the roads and the weather conditions.
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Table 4. Results of method 2: joins materialization.

Duration Memory Space
71 min 15.320 s 7 280 MB

The materialization of joins considerably re-
duces the needed duration of execution, com-
pared to method 1: join on the fly, but it requires 
much larger memory space.
Given the implementation constraints related 
to the joins materialization, especially those of 
the management of data duplication, we have 
proposed an alternative approach, which is a 
hybrid method, situated between joins materi-
alization and join on the fly methods. We call it 
joins semi-materialization.

3.2.3. Method 3: Joins Semi-Materialization

This method consists of separately joining the 
target table with each neighbor table through 
its Spatial Join Index. Then, the best attribute 
(with the best informational gain) is determined 
for each triplet (Target Table, Spatial Join In-
dex, and Neighbor Table) which is the divid-
ing element to generate the decision tree. We 
precise that, in this method, the calculation of 
the informational gain for the included spatial 
relations is immediately identified referring to 
the appropriate neighbor. This allows getting 
distinct and common spatial relations for all 
neighbors' tables at the same time. Figure 8 il-
lustrates the joins semi-materialization method.

Figure 6. First structure of multi-thematic joins materialization.

Figure 7. Alternative structure of multi-thematic joins materialization.
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Results. Table 5 illustrates calculation of the du-
ration and memory space needed by method 3: 
joins semi-materialization, tested with the data-
set presented above.

The needed duration of execution is reduced 
compared to method 1: join on the fly, due to 
the lower number of join operations that are re-
duced. Paradoxically, it requires a larger mem-
ory space compared to method 1.

Table 5. Results of method 3: joins semi-materialization.

Duration Memory Space
79 min 24.289 s 3 729 MB

3.2.4. Method 4: Imbricated Materialization

Despite the implementation of the joins 
semi-materialization method, we are still con-
strained by the balance between memory space 
and computing duration. To avoid these con-
straints, we have chosen to use imbricated data 
representation, which can also dispense us from 
other issues, like data duplication. We call this 
new method imbricated materialization.

This method is based on the same principle as 
the joins materialization, to bring all tables into 
a single table. However, this time, the proposed 
approach uses the object-oriented databases. It 
allows to avoid data duplication by including 
the attribute of 'table' type (which must be de-
fined in advance) in the structure of the main 
table (materialized table).
In order to achieve this structure, this approach 
requires two steps:

 ● creation of the 'table' type for the imbricat-
ed tables;

 ● creation of the main table (materialized), 
containing imbricated tables.

The column of the materialized table represents 
a set of imbricated tables, and the line rep-
resents a set of lines in the appropriate imbricat-
ed table. This will generate a materialized table 
with a considerably reduced size, which meets 
all the criteria of avoiding data duplication and 
information loss.
We illustrate this proposed structure in Figure 9.

Results. Table 6 shows the computing time and 
memory space consumed by method 4: imbri-
cated materialization, tested with the dataset 
presented above.

Figure 8. Structure of method 3: joins semi-materialization.
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Table 6. Results of method 4: imbricated materialization.

Duration Memory Space
67 min 42.010 s 2 456 MB

The use of imbricated databases allowed us to 
optimize performance by reducing the size of 
the materialized table, represented as an object 
that contains imbricated tables, without any du-
plication (principal element for size reduction), 
which has automatically reduced the comput-
ing time. Consequently, this method establishes 
a certain balance between computing duration 
and memory space.

4. Comparison and Discussion

Table 7 summarizes the results of the study of 
phenomenon by multiple other phenomena, ac-
cording to different approaches.

Table 7. Results of multiple methods of spatial data 
mining studying of a phenomenon by multiple other 

phenomena.

Method Duration Memory 
Space

Method 1: 
join on the fly

115 min 
02.335s 1 644 MB

Method 2: 
joins materialization

71 min 
15.320 s 7 280 MB

Method 3: 
joins semi-materialization

79 min 
24.289 s 3 729 MB

Method 4: 
imbricated materialization

67 min 
42.010 s 2 456 MB

For comparison purpose, we have used the same 
dataset throughout our works under the same 
tests environment. Depending on the applied 
method, we obtained different results; each one 
has its own advantages and disadvantages com-
pared to the other methods. The first method ap-

plied consists of using the join operation when it 
is necessary, reducing the need of memory space 
at the expense of higher computing time, because 
of the important number of join operations.
Unlike the first method, the second one reduces 
the computing duration, but it uses more mem-
ory space by materializing all the tables into a 
single table once and for all. Considering the is-
sues of this method, we have opted for another 
method that combines the first and the second 
methods, which are join on the fly and joins ma-
terialization. We have called this method joins 
semi-materialization. It reduces the number of 
joins operation, which gives better computing 
time compared to the first method.
The last method, imbricated materialization, 
allows a certain balance between computation 
time and required memory space, combining the 
advantages of previous methods and this is per-
mitted through the object-oriented databases.

5. Conclusion and Perspectives

We have presented our work on spatial data min-
ing by the adaptation of the classification C4.5 
algorithm to spatial data according to two mod-
ifications, the first at the data organization level 
by the use of the Spatial Join Index (SJI) and 
the second at the algorithm level. We applied 
our S-C4.5 algorithm on the road safety spatial 
dataset organized in multi-thematic layers and 
conducted performance measures through dif-
ferent approaches divided into two study cases. 
The first case is a study of a phenomenon by 
a single other phenomenon, including one or 
multiple spatial relations. The second case is a 
study of a phenomenon by multiple other phe-
nomena, including multiple spatial relations.
In the first case, we have used two methods, the 
join on the fly and joins materialization. The 

Figure 9. Structure of method 4: imbricated materialization.



42 S. Oujdi, H. Belbachir and F. Boufares

first method fosters the consumption of memo-
ry space despite the necessary computing time, 
unlike the second one that reduces calculation 
time by consuming more memory space.
For the second case, we have included multiple 
phenomena and spatial relations, which had a 
negative impact on the performance in terms of 
computing time with the method 1, join on the 
fly, this leads us to experiment with the second 
method joins materialization, which presented 
data duplication issues.
To overcome this problem, we have proposed 
a new method, which we have named joins 
semi-materialization. It is situated between the 
two previous methods in terms of calculation 
time and memory space.
Finally, we have used object-oriented databas-
es, in order to achieve a certain balance be-
tween the computing time and required mem-
ory space, by avoiding at the same time the 
previous methods' disadvantages, especially the 
data duplication.
Spatial data represent a huge complex data vol-
ume that negatively influences automatic learn-
ing algorithms, which makes the analysis of this 
data painful on a single machine due to limited 
memory and CPU resources. For these reasons, 
it would be interesting to bring our work to 
parallel and/or distributed computing architec-
tures, where the method of join on the fly, for 
example, could present better results. It would 
be also interesting to experiment and compare 
our work with recent well-known technologies 
of Big Data, Data Warehouses and Data Lakes, 
with different databases management systems 
(column-oriented, kes-value, in-memory).
Future works will not be limited to performance 
issues only, it will also deal with other import-
ant classification aspects such as accuracy im-
provement.
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