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Frequent itemset mining leads to the discovery of as-
sociations and correlations among items in large trans-
actional databases. Apriori is a classical frequent item-
set mining algorithm, which employs iterative passes 
over database combining with generation of candidate 
itemsets based on frequent itemsets found at the pre-
vious iteration, and pruning of clearly infrequent item-
sets. The Dynamic Itemset Counting (DIC) algorithm 
is a variation of Apriori, which tries to reduce the num-
ber of passes made over a transactional database while 
keeping the number of itemsets counted in a pass rel-
atively low. In this paper, we address the problem of 
accelerating DIC on the Intel Xeon Phi many-core 
system for the case when the transactional database 
fits in main memory. Intel Xeon Phi provides a large 
number of small compute cores with vector processing 
units. The paper presents a parallel implementation of 
DIC based on OpenMP technology and thread-level 
parallelism. We exploit the bit-based internal layout 
for transactions and itemsets. This technique reduces 
the memory space for storing the transactional data-
base, simplifies the support count via logical bitwise 
operation, and allows for vectorization of such a step. 
Experimental evaluation on the platforms of the Intel 
Xeon CPU and the Intel Xeon Phi coprocessor with 
large synthetic and real databases showed good perfor-
mance and scalability of the proposed algorithm.
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1. Introduction

Association rule mining is one of the import-
ant problems in data mining [1]. The task is to 
discover strong associations among the items 
from a transactional database such that the oc-
currence of one item in a transaction implies the 
occurrence of another. Association rule mining 
is divided into two subtasks [1]. The first one is 
to find all frequent itemsets that consist of items 
which often occur together in transactions. The 
second one is to generate all the association 
rules from the frequent itemsets found.
In this paper, we address the task of frequent 
itemset mining, which can be formally described 
as follows. Let J = (i1, …, im) be a set of literals, 
called items. Let D = (T1, …, Tn) be a database 
of transactions, where each transaction Ti ⊆ J 
consists of a set of items (itemset). An itemset 
that contains k items is called a k-itemset. The 
support of an itemset I ⊆ J denotes the fraction 
of transactions in D that contain the itemset I. If 
the support of an itemset I ⊆ J satisfies the us-
er-specified minimum support threshold called 
minsup, then I is frequent itemset. Let the set 
of all frequent k-itemsets be denoted by Lk and 
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L L denotes a set of all frequent item-
sets, where kmax is the number of items in the 
longest frequent itemset. Given the transaction-
al database D and minimum support threshold 
minsup, the goal of frequent itemset mining is 
to find the set of all frequent itemsets L.
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There is a wide spectrum of algorithms for fre-
quent itemset mining, and none of them outper-
forms all others for all possible transactional 
databases and values of minsup threshold [9]. 
Apriori [1] is one of the most popular itemset 
mining algorithms, for which many refinements 
and parallel implementations for various plat-
forms were proposed. Dynamic Itemset Count-
ing (DIC) [3] is a variation of Apriori, which 
tries to reduce the number of passes made over 
a transactional database while keeping the num-
ber of itemsets counted in a pass relatively low. 
Despite the fact that DIC has good potential of 
parallelization [3], it still has not been imple-
mented for modern Intel many-core systems, to 
the best of our knowledge.
In this paper, we address the problem of accel-
erating the DIC algorithm on the Intel Xeon Phi 
many-core system. Intel Xeon Phi [21] provides 
a large number of small compute cores with a 
high local memory bandwidth. Each core sup-
ports a computational power weaker than that 
of the Intel Xeon core and provides 512 bit 
wide vector processing unit (VPU). VPU sup-
ports data-level parallelism by a set of vector 
instructions, thanks to which it is possible to 
load and calculate several numbers at once (e.g. 
eight 64 bit integers or sixteen 16 bit floats). 
Such a routine is called vectorization, and Intel 
compilers provide options for automatic vector-
ization. Since Intel Xeon Phi is based on Intel 
x86 architecture, it supports the same program-
ming tools as a regular Intel Xeon CPU. Thus, 
Intel Xeon Phi can be considered as an attrac-
tive hardware platform for the thread-level par-
allel algorithm.
The basic contribution of the paper is as fol-
lows. We propose a parallel implementation of 
the DIC algorithm for the Intel Xeon Phi ma-
ny-core system. We exploit a bit-based internal 
layout for transactions and itemsets assuming 
that such a representation of a transactional 
database fits in main memory. This technique 
reduces memory space of storing the transac-
tional database and simplifies the support count 
and generation of potentially frequent candi-
date itemsets via logical bitwise operations. 
The algorithm is parallelized using OpenMP 
technology and thread-level parallelism. We 
conduct experiments on large synthetic and real 
databases to evaluate the performance and scal-
ability of our algorithm.
The rest of the paper is organized as follows. 
In Section 2, related work is discussed. Section 

3 provides a brief description of the original 
DIC algorithm. The proposed parallel algo-
rithm is presented in Section 4. The results of 
experimental evaluation of the algorithm are 
described in Section 5. Finally, Section 6 con-
cludes the paper.

2. Related Work

The original DIC algorithm was presented by 
Brin et al. in [3], where the authors briefly dis-
cuss a way to parallelize DIC using the distri-
bution of the transactional database among the 
nodes so that each node counts all itemsets for 
its own data segment.
Paranjape-Voditel et al. proposed DIC-OPT 
[16], a parallel version of DIC for distribut-
ed memory systems. The key idea is that each 
node sends messages with the counts of poten-
tially frequent itemsets to other nodes after ev-
ery block of M transactions has been read. This 
initiates the early counting of the itemsets on 
other nodes without waiting for synchroniza-
tion with other nodes. The authors carried out 
experiments on up to 12 nodes where their im-
plementation showed sublinear speedup.
Cheung et al. suggested APM [5], a DIC-based 
parallel algorithm for SMP systems. APM is 
an adaptive parallel mining algorithm, where 
all CPUs generate candidates dynamically and 
count itemset supports independently without 
synchronization. The transactional database is 
partitioned across CPUs with highly homoge-
neous itemset distributions. This technique ad-
dresses the problem of a large number of candi-
dates because of the low homogeneous itemset 
distribution in most cases. The experiments on 
the Sun Enterprise 4000 server with up to 12 
nodes showed that APM outperforms Aprio-
ri-like parallel algorithms. However, the APM 
speedup gradually drops down to 4 when the 
number of nodes is greater than four. This is be-
cause APM suffers from the SMP system inher-
ent problem of I/O contention when the number 
of nodes is large.
Schlegel et al. proposed mcEclat [19], a paral-
lel version of Eclat [22] for the Intel Xeon Phi 
coprocessor. mcEclat converts a dataset being 
mined into a set of tid bitmaps, which are re-
peatedly intersected to obtain the frequent item-
sets. Tid bitmap maps the IDs of transactions, 
in which an itemset exists, to bits in a bitmap 

that any infrequent (k – 1)-itemset cannot be a 
subset of a frequent k-itemset. Apriori counts 
support of candidates which have not been 
pruned, and proceeds with such passes until 
there are no more candidates after pruning.
The DIC algorithm tries to reduce the number 
of passes made over the transactional database 
while keeping the number of itemsets counted 
in a pass relatively low. Algorithm 1 depicts 
pseudo-code of DIC. The algorithm processes 
the database with stops at equal-length intervals 
between transactions specified by the M param-
eter of the algorithm. At the end of the transac-
tional database, it is necessary to rewind to its 
beginning.

DIC maintains four sets of itemsets, namely 
Dashed Circle, Dashed Box, Solid Circle and 
Solid Box. Itemsets in the "dashed" sets are sub-

at certain positions. Tid bitmaps are intersected 
via logical bitwise AND operation and then the 
support of an itemset is obtained by counting 
the bits set to one in its respective tid bitmap. 
Experiments showed up to 100 times speedup 
of mcEclat on Intel Xeon Phi. However, the 
algorithm performance on the Intel Xeon Phi 
coprocessor is similar or slightly worse (for 
smaller values of minsup) than on the system 
with two Intel Xeon CPUs when the maximum 
number of threads is employed on both sys-
tems. The reason is that mcEclat does not fully 
exploit the vector processing capabilities of In-
tel Xeon Phi.
Kumar et al. presented Bitwise DIC [12], a seri-
al version of the DIC algorithm based upon tid 
bitmap technique mentioned above. Authors re-
port that Bitwise DIC outruns the original DIC 
on datasets with up to 5,000 transactions for the 
fixed minsup value.
In serial algorithms, MAFIA [4] and BitTable-
FI [7], Burdick et al. and Dong et al., respec-
tively, employed vertical bitmap to compress 
the transactional database for quick candidate 
itemsets generation and the support count. Ver-
tical bitmap is a set of integers in which every 
bit represents an item. If an item i appears in the 
j-th transaction, then the j-th bit of the bitmap 
for the item i is set to one; otherwise, the bit is 
set to zero. This idea is applied to both trans-
actions and itemsets. In the case when itemsets 
appear in a significant number of transactions, 
the vertical bitmap is the smallest representa-
tion of the information. However, the weakness 
of a vertical representation is the sparseness of 
the bitmaps, especially at the lower support lev-
els.

3. Serial DIC Algorithm

Dynamic Itemset Counting (DIC) [3] is a vari-
ation of the best known Apriori algorithm [1]. 
Apriori is an iterative, level-wise algorithm, 
which uses a bottom-up search. At the first 
pass over transactional database, it processes 
1-itemsets and finds L1 set. A subsequent pass k 
consists of two steps, namely candidate gener-
ation and pruning. At the candidate generation 
step, Apriori combines elements of L(k – 1) set to 
form potentially frequent candidate k-itemsets. 
At the pruning step, it discards infrequent can-
didates using the a priori principle which states 

Algorithm 1.  Serial DIC algorithm.

Input: D, minsup, M
Output: L
                          Initialize sets of itemsets
SolidBox ← ∅; SolidCirCle ← ∅; daShedBox ← ∅ 
daShedCirCle ← J
while daShedCirCle    daShedBox ≠ ∅ do
                          Scan database and rewind if necessary
    Read (D, M, Chunk) 
    if EOF (D) then
        Rewind (D)
    for all T ∈ Chunk do
                          Count support of itemsets
      for all I ∈ daShedCirCle    daShedBox do
        if I ⊆ T then
          support (I) ← support (I) + 1
                          Generate candidate itemsets
      for all I ∈ daShedCirCle do
        if support (I) ≥ minsup then
          daShedBox ← daShedBox    I
        for all i ∈ J do
          C ← I     i
          if ∀ s ⊆ C, s Î SolidBox     daShedBox then
            daShedCirCle ← daShedCirCle    C
                          Check full pass completion
      for all I ∈ daShedCirCle    daShedBox do
        if IsPassCompleted (I) then
         switch Shape (I)
            "dashed": daShedBox ← daShedBox    I
            "solid": SolidBox ← SolidBox    I
L ← SolidBox
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There is a wide spectrum of algorithms for fre-
quent itemset mining, and none of them outper-
forms all others for all possible transactional 
databases and values of minsup threshold [9]. 
Apriori [1] is one of the most popular itemset 
mining algorithms, for which many refinements 
and parallel implementations for various plat-
forms were proposed. Dynamic Itemset Count-
ing (DIC) [3] is a variation of Apriori, which 
tries to reduce the number of passes made over 
a transactional database while keeping the num-
ber of itemsets counted in a pass relatively low. 
Despite the fact that DIC has good potential of 
parallelization [3], it still has not been imple-
mented for modern Intel many-core systems, to 
the best of our knowledge.
In this paper, we address the problem of accel-
erating the DIC algorithm on the Intel Xeon Phi 
many-core system. Intel Xeon Phi [21] provides 
a large number of small compute cores with a 
high local memory bandwidth. Each core sup-
ports a computational power weaker than that 
of the Intel Xeon core and provides 512 bit 
wide vector processing unit (VPU). VPU sup-
ports data-level parallelism by a set of vector 
instructions, thanks to which it is possible to 
load and calculate several numbers at once (e.g. 
eight 64 bit integers or sixteen 16 bit floats). 
Such a routine is called vectorization, and Intel 
compilers provide options for automatic vector-
ization. Since Intel Xeon Phi is based on Intel 
x86 architecture, it supports the same program-
ming tools as a regular Intel Xeon CPU. Thus, 
Intel Xeon Phi can be considered as an attrac-
tive hardware platform for the thread-level par-
allel algorithm.
The basic contribution of the paper is as fol-
lows. We propose a parallel implementation of 
the DIC algorithm for the Intel Xeon Phi ma-
ny-core system. We exploit a bit-based internal 
layout for transactions and itemsets assuming 
that such a representation of a transactional 
database fits in main memory. This technique 
reduces memory space of storing the transac-
tional database and simplifies the support count 
and generation of potentially frequent candi-
date itemsets via logical bitwise operations. 
The algorithm is parallelized using OpenMP 
technology and thread-level parallelism. We 
conduct experiments on large synthetic and real 
databases to evaluate the performance and scal-
ability of our algorithm.
The rest of the paper is organized as follows. 
In Section 2, related work is discussed. Section 

3 provides a brief description of the original 
DIC algorithm. The proposed parallel algo-
rithm is presented in Section 4. The results of 
experimental evaluation of the algorithm are 
described in Section 5. Finally, Section 6 con-
cludes the paper.

2. Related Work

The original DIC algorithm was presented by 
Brin et al. in [3], where the authors briefly dis-
cuss a way to parallelize DIC using the distri-
bution of the transactional database among the 
nodes so that each node counts all itemsets for 
its own data segment.
Paranjape-Voditel et al. proposed DIC-OPT 
[16], a parallel version of DIC for distribut-
ed memory systems. The key idea is that each 
node sends messages with the counts of poten-
tially frequent itemsets to other nodes after ev-
ery block of M transactions has been read. This 
initiates the early counting of the itemsets on 
other nodes without waiting for synchroniza-
tion with other nodes. The authors carried out 
experiments on up to 12 nodes where their im-
plementation showed sublinear speedup.
Cheung et al. suggested APM [5], a DIC-based 
parallel algorithm for SMP systems. APM is 
an adaptive parallel mining algorithm, where 
all CPUs generate candidates dynamically and 
count itemset supports independently without 
synchronization. The transactional database is 
partitioned across CPUs with highly homoge-
neous itemset distributions. This technique ad-
dresses the problem of a large number of candi-
dates because of the low homogeneous itemset 
distribution in most cases. The experiments on 
the Sun Enterprise 4000 server with up to 12 
nodes showed that APM outperforms Aprio-
ri-like parallel algorithms. However, the APM 
speedup gradually drops down to 4 when the 
number of nodes is greater than four. This is be-
cause APM suffers from the SMP system inher-
ent problem of I/O contention when the number 
of nodes is large.
Schlegel et al. proposed mcEclat [19], a paral-
lel version of Eclat [22] for the Intel Xeon Phi 
coprocessor. mcEclat converts a dataset being 
mined into a set of tid bitmaps, which are re-
peatedly intersected to obtain the frequent item-
sets. Tid bitmap maps the IDs of transactions, 
in which an itemset exists, to bits in a bitmap 

that any infrequent (k – 1)-itemset cannot be a 
subset of a frequent k-itemset. Apriori counts 
support of candidates which have not been 
pruned, and proceeds with such passes until 
there are no more candidates after pruning.
The DIC algorithm tries to reduce the number 
of passes made over the transactional database 
while keeping the number of itemsets counted 
in a pass relatively low. Algorithm 1 depicts 
pseudo-code of DIC. The algorithm processes 
the database with stops at equal-length intervals 
between transactions specified by the M param-
eter of the algorithm. At the end of the transac-
tional database, it is necessary to rewind to its 
beginning.

DIC maintains four sets of itemsets, namely 
Dashed Circle, Dashed Box, Solid Circle and 
Solid Box. Itemsets in the "dashed" sets are sub-

at certain positions. Tid bitmaps are intersected 
via logical bitwise AND operation and then the 
support of an itemset is obtained by counting 
the bits set to one in its respective tid bitmap. 
Experiments showed up to 100 times speedup 
of mcEclat on Intel Xeon Phi. However, the 
algorithm performance on the Intel Xeon Phi 
coprocessor is similar or slightly worse (for 
smaller values of minsup) than on the system 
with two Intel Xeon CPUs when the maximum 
number of threads is employed on both sys-
tems. The reason is that mcEclat does not fully 
exploit the vector processing capabilities of In-
tel Xeon Phi.
Kumar et al. presented Bitwise DIC [12], a seri-
al version of the DIC algorithm based upon tid 
bitmap technique mentioned above. Authors re-
port that Bitwise DIC outruns the original DIC 
on datasets with up to 5,000 transactions for the 
fixed minsup value.
In serial algorithms, MAFIA [4] and BitTable-
FI [7], Burdick et al. and Dong et al., respec-
tively, employed vertical bitmap to compress 
the transactional database for quick candidate 
itemsets generation and the support count. Ver-
tical bitmap is a set of integers in which every 
bit represents an item. If an item i appears in the 
j-th transaction, then the j-th bit of the bitmap 
for the item i is set to one; otherwise, the bit is 
set to zero. This idea is applied to both trans-
actions and itemsets. In the case when itemsets 
appear in a significant number of transactions, 
the vertical bitmap is the smallest representa-
tion of the information. However, the weakness 
of a vertical representation is the sparseness of 
the bitmaps, especially at the lower support lev-
els.

3. Serial DIC Algorithm

Dynamic Itemset Counting (DIC) [3] is a vari-
ation of the best known Apriori algorithm [1]. 
Apriori is an iterative, level-wise algorithm, 
which uses a bottom-up search. At the first 
pass over transactional database, it processes 
1-itemsets and finds L1 set. A subsequent pass k 
consists of two steps, namely candidate gener-
ation and pruning. At the candidate generation 
step, Apriori combines elements of L(k – 1) set to 
form potentially frequent candidate k-itemsets. 
At the pruning step, it discards infrequent can-
didates using the a priori principle which states 

Algorithm 1.  Serial DIC algorithm.

Input: D, minsup, M
Output: L
                          Initialize sets of itemsets
SolidBox ← ∅; SolidCirCle ← ∅; daShedBox ← ∅ 
daShedCirCle ← J
while daShedCirCle    daShedBox ≠ ∅ do
                          Scan database and rewind if necessary
    Read (D, M, Chunk) 
    if EOF (D) then
        Rewind (D)
    for all T ∈ Chunk do
                          Count support of itemsets
      for all I ∈ daShedCirCle    daShedBox do
        if I ⊆ T then
          support (I) ← support (I) + 1
                          Generate candidate itemsets
      for all I ∈ daShedCirCle do
        if support (I) ≥ minsup then
          daShedBox ← daShedBox    I
        for all i ∈ J do
          C ← I     i
          if ∀ s ⊆ C, s Î SolidBox     daShedBox then
            daShedCirCle ← daShedCirCle    C
                          Check full pass completion
      for all I ∈ daShedCirCle    daShedBox do
        if IsPassCompleted (I) then
         switch Shape (I)
            "dashed": daShedBox ← daShedBox    I
            "solid": SolidBox ← SolidBox    I
L ← SolidBox
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jects for the support count while itemsets in the 
"solid" sets do not need to be counted. "Circles" 
contain infrequent itemsets while "boxes" con-
tain frequent itemsets. Thus, Dashed Circle and 
Dashed Box contain itemsets that are suspected 
infrequent and suspected frequent, respective-
ly, while Solid Circle and Solid Box contain 
itemsets that are confirmed infrequent and con-
firmed frequent, respectively. Figure 1 depicts 
life cycle of an itemset in the DIC algorithm.
At start, Dashed Box, Solid Circle, and Solid 
Box are assumed empty, and Dashed Circle 
contains all 1-itemsets. Before the stop, DIC 
counts support of itemsets from "dashed" sets 
for each transaction. At any stop, DIC per-
forms as follows. Itemsets whose support ex-
ceeds minsup are moved from Dashed Circle 
to Dashed Box. New itemsets are added into 
Dashed Circle, they are immediate supersets 
of those itemsets from Dashed Box with all of 
its subsets from "box" sets. Itemsets that have 
completed one full pass over the transactional 
database are moved from the "dashed" set to 
"solid" set. DIC proceeds as long as itemsets 
remain in the "dashed" sets.

4. Parallel DIC Algorithm

4.1. Internal Data Layout

In this paper, we propose the direct bit repre-
sentation for both transactions and itemsets. 
This means that the transaction T ⊆ D (an item-
set I ⊆ J, respectively) is represented by a word 
where each p-th bit is set to one if an item ip Î 
T (ip Î I, respectively) and all other bits are set 
to zero. The word length W in bytes depends on 
the system environment and is calculated as

( ) .
sizeof byte

mW
 

=  
 

In our implementation, we use C++ and un-
signed long long int data type, so we have W 
= 8 and m = 64. Let us denote by BitMask a 
function that returns direct bit representation of 
a given itemset or transaction as a word, i.e. Bit-
Mask: J → Z+. Then, the direct bit representa-
tion of transactional database D is an n-element 
array B where Bj = BitMask (Tj) ∀j Î 1, ..., n.
The direct bit representation has several major 
merits. It often requires less space than byte-
based representation for dense transactional 
database with long transactions. In fact, B re-
quires n · W bytes to store and allows B to fit in 
main memory. For instance, netflix, one of the 
most referenced datasets, contains n = 17,771 
transactions consisting of m = 480,189 distinct 
items. Hence, the direct bit representation of 
the netflix dataset takes about 1 Gb. Thus, we 
further assume that B is preliminary produced 
from D and available in main memory.
Additionally, the direct bit representation sim-
plifies support counting and vectorization of 
this operation. The fact that an itemset I exists 
in a transaction T (i.e. I ⊆ T) can be checked by 
one logical bitwise operation, that is BitMask (I) 
AND BitMask (T) = BitMask (I). Such an imple-
mentation allows for auto-vectorization of the 
support count loop by the compiler.
Thereby, we implement an itemset as a record 
structure with the following basic fields, name-
ly mask to provide direct bit representation, k as 
number of items in the itemset, stop as count-
er to determine when full pass for the given 
itemset is completed, and supp to store support 
count.

To implement a set of itemsets, we use a vector 
which represents an array of elements belong-
ing to the same type and provides random ac-
cess to its elements with the ability to automat-
ically resize when appending elements. Such a 
data structure is implemented in C++ Standard 
Template Library as a class with iterator and 
methods for inserting an element and remov-
ing an element with complexity of O (1) and 
O (s) respectively, where s is the current size of 
a vector.
In order to reduce costs of moving elements 
across vectors, we establish a DASHED vector 
for "dashed box" and "dashed circle" itemsets 
and a SOLID vector for "solid box" and "solid 
circle" itemsets, and provide the itemset record 
structure with the shape field to indicate an ap-
propriate set the given itemset belongs to.

4.2. Parallelization of the Algorithm

The proposed parallel version of DIC algorithm 
(hereinafter Parallel DIC) is presented in Algo-
rithm 2, and basic sub-algorithms are depicted 
in Algorithm 3, Algorithm 4, and Algorithm 5.

We enhance the classical DIC algorithm by 
adding two more stages, namely FirstPass and 
Prune where each of them is aimed at reduc-
ing the number of itemsets to perform support 
counting.

We parallelize the following stages of the al-
gorithm, namely the support count (cf. Algo-
rithm 3), pruning of the Dashed Circle set (cf. 
Algorithm 4) and check of full pass completion Figure 1. Life cycle of an itemset in the DIC algorithm.

Algorithm 2.  Parallel DIC algorithm.

Input: B, minsup, M, num_of_threads
Output: L
                          Initialize sets of itemsets
Solid.init (); daShedBox.init ()
for all i Î 0... m – 1 do
    I.shape ← NIL; SetBit (I.mask, i)
    I.stop ← 0; I.supp ← 0; I.k ← 1
    Solid.push_back (I)
k ← 1; stop ← 0; stopmax ← 

n
M
 
  FirStPaSS (Solid, daShed)

while not daShed.empty () do
                          Scan database and rewind if necessary
    stop ← stop + 1
    if stop > stopmax then
       stop ← 1
    first ← (stop – 1) · M; last ← stop · M – 1
    k ← k + 1
    CountSuPPort (daShed, num_of_threads)
    Prune (daShed, minsup)
    MakeCandidateS (daShed)
    CheCkFullPaSS (daShed, minsup)
L ← {i | i ∈ Solid ∧ I.shape = Box}




(a) Count all the "dashed" itemsets for each transaction: 
data races among threads are possible.

Figure 2. Support count in the Parallel DIC algorithm.

(b) Count all the transactions for each "dashed" itemset: 
no data races among threads.
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jects for the support count while itemsets in the 
"solid" sets do not need to be counted. "Circles" 
contain infrequent itemsets while "boxes" con-
tain frequent itemsets. Thus, Dashed Circle and 
Dashed Box contain itemsets that are suspected 
infrequent and suspected frequent, respective-
ly, while Solid Circle and Solid Box contain 
itemsets that are confirmed infrequent and con-
firmed frequent, respectively. Figure 1 depicts 
life cycle of an itemset in the DIC algorithm.
At start, Dashed Box, Solid Circle, and Solid 
Box are assumed empty, and Dashed Circle 
contains all 1-itemsets. Before the stop, DIC 
counts support of itemsets from "dashed" sets 
for each transaction. At any stop, DIC per-
forms as follows. Itemsets whose support ex-
ceeds minsup are moved from Dashed Circle 
to Dashed Box. New itemsets are added into 
Dashed Circle, they are immediate supersets 
of those itemsets from Dashed Box with all of 
its subsets from "box" sets. Itemsets that have 
completed one full pass over the transactional 
database are moved from the "dashed" set to 
"solid" set. DIC proceeds as long as itemsets 
remain in the "dashed" sets.

4. Parallel DIC Algorithm

4.1. Internal Data Layout

In this paper, we propose the direct bit repre-
sentation for both transactions and itemsets. 
This means that the transaction T ⊆ D (an item-
set I ⊆ J, respectively) is represented by a word 
where each p-th bit is set to one if an item ip Î 
T (ip Î I, respectively) and all other bits are set 
to zero. The word length W in bytes depends on 
the system environment and is calculated as

( ) .
sizeof byte

mW
 

=  
 

In our implementation, we use C++ and un-
signed long long int data type, so we have W 
= 8 and m = 64. Let us denote by BitMask a 
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4.2. Parallelization of the Algorithm
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in Algorithm 3, Algorithm 4, and Algorithm 5.
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gorithm, namely the support count (cf. Algo-
rithm 3), pruning of the Dashed Circle set (cf. 
Algorithm 4) and check of full pass completion Figure 1. Life cycle of an itemset in the DIC algorithm.

Algorithm 2.  Parallel DIC algorithm.

Input: B, minsup, M, num_of_threads
Output: L
                          Initialize sets of itemsets
Solid.init (); daShedBox.init ()
for all i Î 0... m – 1 do
    I.shape ← NIL; SetBit (I.mask, i)
    I.stop ← 0; I.supp ← 0; I.k ← 1
    Solid.push_back (I)
k ← 1; stop ← 0; stopmax ← 

n
M
 
  FirStPaSS (Solid, daShed)

while not daShed.empty () do
                          Scan database and rewind if necessary
    stop ← stop + 1
    if stop > stopmax then
       stop ← 1
    first ← (stop – 1) · M; last ← stop · M – 1
    k ← k + 1
    CountSuPPort (daShed, num_of_threads)
    Prune (daShed, minsup)
    MakeCandidateS (daShed)
    CheCkFullPaSS (daShed, minsup)
L ← {i | i ∈ Solid ∧ I.shape = Box}




(a) Count all the "dashed" itemsets for each transaction: 
data races among threads are possible.

Figure 2. Support count in the Parallel DIC algorithm.

(b) Count all the transactions for each "dashed" itemset: 
no data races among threads.
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for itemsets (cf. Algorithm 5) through OpenMP 
technology and thread-level parallelism.
In the classical DIC (cf. Algorithm 1), the 
Dashed Circle set is initialized by all 1 item-
sets. In contrast, we use the technique of full 
first pass [5]. This means that we initially per-
form one full pass over D to find L1, the set of 
frequent 1-itemsets (this done similarly to Al-
gorithm 3).
Then candidate 2-itemsets are computed from 
L1 through the Apriori join procedure [1]. This 
is done via logical bitwise OR operation on 
each pair of frequent 1-itemsets, and candidates 
are inserted in the Dashed Circle set. This tech-
nique helps to reduce cardinality of the Dashed 
Circle set in further computations because in-
frequent 1 itemsets and their supersets have 
been pruned according to the a priori principle.
The original algorithm performs support count-
ing by two nested loops where the outer loop 
takes transactions and the inner loop takes the 
"dashed" itemsets. As opposed to DIC, we 
change the order of these loops (cf. Figure 2). 
This shuffle allows avoiding data races when 
threads process different transactions and need 
to change the support count of the same item-
sets simultaneously.

Then, we parallelize the outer loop through 
omp parallel for pragma (cf. Algorithm 3).

Additionally, our algorithm balances the load of 
threads depending on the current total number 
of elements in both Dashed Circle and Dashed 
Box sets (cf. Figure 3).

If the number of available threads does not ex-
ceed the current total number of "dashed" item-

sets, we parallelize the outer loop (along item-
sets) using all threads. Otherwise, we enable 
nested parallelism and parallelize the outer loop 
using a number of threads equal to the current 
total number of "dashed" itemsets. Then we 
parallelize the inner loop (along transactions) 
so that each outer thread forks an equal-sized 
set of descendant threads where descendants 
perform counting by reducing the summing 
operation. This balancing technique allows for 
processing data effectively in the final stage of 
counting when the number of candidate item-
sets tends to zero and increases the overall per-
formance of the algorithm.
After the support count, in addition to moving 
appropriate itemsets from Dashed Circle set to 
Dashed Box set as in classical DIC, we reduce 
the Dashed Circle set pruning clearly infre-
quent itemsets as follows [12]. We compute an 
itemset highest possible support by adding its 
current support to the number of transactions 
which have not been processed yet (cf. Algo-
rithm 4). If the value of the itemset highest pos-
sible support is less than minsup threshold, then 
the itemset is pruned, and after that, we prune 
all its supersets according to the a priori prin-
ciple.
After the reduction of the Dashed Circle set, we 
generate afresh itemsets to be inserted in the set 
performing Apriori join procedure [1] via the 
logical bitwise OR operation between all item-
sets marked as "boxes".

Finally, for all itemsets in the Dashed Circle 
set, we check if an itemset has been counted 
through all transactions, and if yes, we make 
the itemset "solid" and stop counting it. If the 
itemset support equals to or exceeds the minsup 
threshold, then we mark it as "box" (cf. Algo-
rithm 5). This activity is also parallelized along 
itemsets through omp parallel for pragma.
In the end, SOLID vector contains "box" item-
sets as an output of the algorithm.

5. Experiments

5.1. Experimental Setup

Hardware. The experiments were carried out 
on the node of the Tornado SUSU supercomput-
er [11]. Such a node consists of a host, which is 
two 6 core Intel Xeon CPU, and a 61 core Intel 
Xeon Phi coprocessor. Table 1 depicts technical 
specifications of the hardware.

Table 1.  Specifications of hardware.

Specifications Host Coprocessor

Model, Intel Xeon X5680 Phi SE10X

Number of physical cores 2 × 6 61

Hyper-threading factor 2 × 4 × 

Number of logical cores 24 244

Frequency, GHz 3.33 1.1

Peak performance, TFLOPS 0.371 1.076

Memory, Gb 24 8

Cache, Mb 12 30.5

Algorithm 3.  Support count sub-algorithm.

Input: daShed, num_of_threads
Output: daShed

if daShed.size () ≥ num_of_threads then
  #pragma omp parallel for
  for all I Î daShed do
      I.stop ← I.stop + 1
      for all T ∈ Bfirst ... Blast do
        if I.mask AND T = I.mask then
           I.supp ← I.supp + 1
else
  omp_set_nested (true)
  #pragma omp parallel for num_threads (daShed.size ())
      for all I Î daShed do
        I.stop ← I.stop + 1
        #pragma omp parallel for reduction (+: I.supp)
                             num_threads 

ASHED

_ _
D . ()

num of threads
size

  
          for all T ∈ Bfirst ... Blast do

        if I.mask AND T = I.mask then
           I.supp ← I.supp + 1

(a) Number of threads is less than number of "dashed" 
itemsets: a thread takes its "dashed" itemsets to count.

Figure 3. Load balancing in the Parallel DIC algorithm.

(b) Number of threads is greater than number of 
"dashed" itemsets: a thread takes one "dashed" itemset 

and forks descendant threads to count.

Algorithm 4.  Pruning sub-algorithm.

Input: daShed, num_of_threads
Output: daShed

#pragma omp parallel for num_threads (num_of_threads)
for all I Î daShed and I.shape = CirCle do
  if I.supp ≥ minsup then
         Move appropriate itemsets to Dashed Box set
      I.shape ← Box

  else
         Prune clearly infrequent itemsets
      suppmax ← I.supp + M · (stopmax – I.stop)
      if suppmax < minsup then
        I.shape ← nil

        for all J Î daShed and J.shape = CirCle do
          if I.mask AND J.mask = I.mask then
             J.shape ← nil

daShed.erase ({I | I.shape = nil})




Algorithm 5.  Check full pass sub-algorithm.

Input: daShed, num_of_threads
Output: daShed

#pragma omp parallel for num_threads (num_of_threads)
for all I Î daShed do
  if I.stop = stopmax then
    if I.supp ≥ minsup then
       I.shape ← Box

    Solid.push_back (I)
    I.shape ← nil

daShed.erase ({I | I.shape = nil})
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for itemsets (cf. Algorithm 5) through OpenMP 
technology and thread-level parallelism.
In the classical DIC (cf. Algorithm 1), the 
Dashed Circle set is initialized by all 1 item-
sets. In contrast, we use the technique of full 
first pass [5]. This means that we initially per-
form one full pass over D to find L1, the set of 
frequent 1-itemsets (this done similarly to Al-
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Then candidate 2-itemsets are computed from 
L1 through the Apriori join procedure [1]. This 
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each pair of frequent 1-itemsets, and candidates 
are inserted in the Dashed Circle set. This tech-
nique helps to reduce cardinality of the Dashed 
Circle set in further computations because in-
frequent 1 itemsets and their supersets have 
been pruned according to the a priori principle.
The original algorithm performs support count-
ing by two nested loops where the outer loop 
takes transactions and the inner loop takes the 
"dashed" itemsets. As opposed to DIC, we 
change the order of these loops (cf. Figure 2). 
This shuffle allows avoiding data races when 
threads process different transactions and need 
to change the support count of the same item-
sets simultaneously.

Then, we parallelize the outer loop through 
omp parallel for pragma (cf. Algorithm 3).

Additionally, our algorithm balances the load of 
threads depending on the current total number 
of elements in both Dashed Circle and Dashed 
Box sets (cf. Figure 3).
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ceed the current total number of "dashed" item-
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using a number of threads equal to the current 
total number of "dashed" itemsets. Then we 
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so that each outer thread forks an equal-sized 
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perform counting by reducing the summing 
operation. This balancing technique allows for 
processing data effectively in the final stage of 
counting when the number of candidate item-
sets tends to zero and increases the overall per-
formance of the algorithm.
After the support count, in addition to moving 
appropriate itemsets from Dashed Circle set to 
Dashed Box set as in classical DIC, we reduce 
the Dashed Circle set pruning clearly infre-
quent itemsets as follows [12]. We compute an 
itemset highest possible support by adding its 
current support to the number of transactions 
which have not been processed yet (cf. Algo-
rithm 4). If the value of the itemset highest pos-
sible support is less than minsup threshold, then 
the itemset is pruned, and after that, we prune 
all its supersets according to the a priori prin-
ciple.
After the reduction of the Dashed Circle set, we 
generate afresh itemsets to be inserted in the set 
performing Apriori join procedure [1] via the 
logical bitwise OR operation between all item-
sets marked as "boxes".

Finally, for all itemsets in the Dashed Circle 
set, we check if an itemset has been counted 
through all transactions, and if yes, we make 
the itemset "solid" and stop counting it. If the 
itemset support equals to or exceeds the minsup 
threshold, then we mark it as "box" (cf. Algo-
rithm 5). This activity is also parallelized along 
itemsets through omp parallel for pragma.
In the end, SOLID vector contains "box" item-
sets as an output of the algorithm.
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Hardware. The experiments were carried out 
on the node of the Tornado SUSU supercomput-
er [11]. Such a node consists of a host, which is 
two 6 core Intel Xeon CPU, and a 61 core Intel 
Xeon Phi coprocessor. Table 1 depicts technical 
specifications of the hardware.

Table 1.  Specifications of hardware.
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Algorithm 3.  Support count sub-algorithm.
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  for all I Î daShed do
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else
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(b) Number of threads is greater than number of 
"dashed" itemsets: a thread takes one "dashed" itemset 

and forks descendant threads to count.

Algorithm 4.  Pruning sub-algorithm.

Input: daShed, num_of_threads
Output: daShed

#pragma omp parallel for num_threads (num_of_threads)
for all I Î daShed and I.shape = CirCle do
  if I.supp ≥ minsup then
         Move appropriate itemsets to Dashed Box set
      I.shape ← Box

  else
         Prune clearly infrequent itemsets
      suppmax ← I.supp + M · (stopmax – I.stop)
      if suppmax < minsup then
        I.shape ← nil

        for all J Î daShed and J.shape = CirCle do
          if I.mask AND J.mask = I.mask then
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Algorithm 5.  Check full pass sub-algorithm.

Input: daShed, num_of_threads
Output: daShed

#pragma omp parallel for num_threads (num_of_threads)
for all I Î daShed do
  if I.stop = stopmax then
    if I.supp ≥ minsup then
       I.shape ← Box

    Solid.push_back (I)
    I.shape ← nil

daShed.erase ({I | I.shape = nil})
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Measures. In the experiments, we evaluated 
the speedup and parallel efficiency of the de-
veloped algorithm, where such characteristics 
of parallel-algorithm scalability are defined as 
follows. Speedup and parallel efficiency of a 
parallel algorithm employing k threads are cal-
culated, respectively, as

( ) 1

k

ts k t=

and

( ) ( ) ,
s k

e k k=

where t1 and tk are the run times of the algo-
rithm when one and k threads are employed, 
respectively.
Competitors. In the previous work [23], our 
experiments showed that the performance of 
serial implementation of DIC in [8] is substan-
tially inferior to both our algorithm and serial 
Apriori in [2]. Thus, in this paper, we compared 
the performance of Parallel DIC with serial im-
plementations of the following algorithms in 
[2]: Apriori, Eclat, and FP Growth.
Datasets. Experiments in our previous work 
[23] also showed that, for datasets with hun-
dreds of thousands of transactions (e.g. the 
SKIN [6] dataset and the RECORDLINK [18] 
dataset with 245,057 and 574,913 transactions, 
respectively), Parallel DIC demonstrates deg-
radation of the speedup and parallel efficiency. 
This is because of the following reasons. For 
datasets with relatively small number of short 
transactions, our algorithm provides insufficient 
amount of work in support counting, which is 
the heaviest part of the algorithm. At the same 
time, efficiency of Intel Xeon Phi utilization as 
well as vectorization increases with the growth 
of the problem size [20]. Thus, in this paper, we 
evaluated our algorithm on two datasets, each 
of which contains tens of millions transactions 
(cf. Table 2).

Synthetic dataset 20M was prepared through 
IBM Quest Data Generator [10] similar to the 
paper [3] where the original DIC algorithm was 
proposed. Eventually, the 20M dataset gives 
more than 4,600 frequent itemsets with at most 
6 items.
Tornado20M is a real dataset with one-month 
voltage log of the Tornado SUSU supercom-
puter [11] nodes. Such a log is mined to dis-
cover the strong associations among the racks, 
shelves, and nodes of the supercomputer, and 
dangerous values of voltage. Tornado SUSU 
consists of 8 racks, and each rack consists of 8 
shelves, each with 6 nodes onboard. For each 
node, there are 4 possible values of measured 
voltage, and for each possible value there are 4 
statuses (i.e. "less than norm", "norm", "greater 
than norm", and "error"). Thus, it is possible to 
code a transaction of such a log using 64 bits 
(i.e. 8 bits for the number of a rack, 8 bits for 
the number of a shelf, and 8 bits for each of 
6 nodes where each pair of bits represents the 
status of the measured voltage). Eventually, the 
Tornado20M dataset gives more than 340 fre-
quent itemsets with at most 4 items.
Parameters. In the experiments, we took M, 
the number of transactions that should be pro-
cessed before a stop, as n /2 in order to avoid 
overheads for initializing threads at each stop 
and increase the algorithm performance. We 
also evaluated the effect of the minsup thresh-
old on the algorithm speedup. As for the exper-
iments studying the algorithm scalability, we 
took minsup threshold as 0.1 as the most com-
mon value of support.

5.2. Results

Figure 4 illustrates the performance of Paral-
lel DIC on both Intel Xeon and Intel Xeon Phi 
in comparison with serial Apriori, FP Growth, 
and Eclat on Intel Xeon. Among serial imple-

mentations, Apriori performs the worst for the 
20M dataset and performs the best for the Tor-
nado20M dataset because this algorithm perfor-
mance suffers when datasets with long transac-
tions and the large number of frequent itemsets 
are processed, and may overtake competitors 
when transactions are relatively short and the 
number of frequent itemsets is small.
As we can see, Parallel DIC on Intel Xeon Phi 
outruns itself on two Intel Xeon up to 1.5 times. 
Parallel DIC on Intel Xeon Phi also outruns 
the best serial competitor on Intel Xeon up to 
2 times. This is because more threads of Intel 
Xeon Phi allow for better exploiting the vector-
ization abilities of our algorithm.

In addition, we compare performance of Par-
allel DIC for the cases when the Intel compiler 
auto-vectorization option was enabled or dis-
abled. Results in Table 3 show that, for the Tor-
nado20M dataset, vectorization gives a perfor-
mance boost of 1.2 and 2.6 times on Intel Xeon 
and Intel Xeon Phi, respectively.

Figure 5 depicts the speedup and parallel effi-
ciency of Parallel DIC. On Intel Xeon Phi, our 
algorithm shows close-to-linear speedup and 
near 100% parallel efficiency, when the num-
ber of threads matches the number of physical 
cores the algorithm is running on. When the 
algorithm employs more than one thread per 
physical core, speedup becomes sublinear (it 
slows down to 88 and 108 for the 20M data-
set and the Tornado20M dataset, respectively), 
and parallel efficiency diminishes accordingly 
(down to 37% and 45% with respect to a data-
set). On two Intel Xeon, there is a similar ten-
dency but with more moderate results for the 
Tornado20M dataset. For this dataset, the al-
gorithm speedup and parallel efficiency drop 
to 8 and 35%, respectively, when the maximal 
possible number of threads per physical core is 
employed.
Figure 6 depicts speedup of the algorithm with 
respect to the minsup threshold. As expected, 
on both platforms and for both datasets, the al-
gorithm speedup suffers from decreasing of the 
minsup value since this significantly increases 
the number of candidate itemsets to be counted. 
Our algorithm still shows better speedup when 
only physical cores are involved, and better 
speedup on Intel Xeon Phi system than on two 
Intel Xeon nodes.
Summing up, Parallel DIC demonstrates good 
performance and scalability for large datasets 
(about tens of millions of transactions) and for 

Figure 4. Comparison of performance.

Table 2.  Specifications of datasets.

bb Category
Transaction Frequent itemsets (minsup = 0.1)

n m Avg. length Total number kmax

20M Synthetic 2 · 107 64 40 4,606 6

Tornado20M Real 2 · 107 64 15 346 4

(a) 20M dataset

(b) Tornado20M dataset.

Table 3.  Specifications of hardware.

Hardware
Run time, s when vectorization is

enabled disabled

Intel Xeon Phi 4.00 10.36

Intel Xeon 6.95 8.55
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Measures. In the experiments, we evaluated 
the speedup and parallel efficiency of the de-
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of parallel-algorithm scalability are defined as 
follows. Speedup and parallel efficiency of a 
parallel algorithm employing k threads are cal-
culated, respectively, as
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respect to the minsup threshold. As expected, 
on both platforms and for both datasets, the al-
gorithm speedup suffers from decreasing of the 
minsup value since this significantly increases 
the number of candidate itemsets to be counted. 
Our algorithm still shows better speedup when 
only physical cores are involved, and better 
speedup on Intel Xeon Phi system than on two 
Intel Xeon nodes.
Summing up, Parallel DIC demonstrates good 
performance and scalability for large datasets 
(about tens of millions of transactions) and for 

Figure 4. Comparison of performance.

Table 2.  Specifications of datasets.

bb Category
Transaction Frequent itemsets (minsup = 0.1)

n m Avg. length Total number kmax

20M Synthetic 2 · 107 64 40 4,606 6

Tornado20M Real 2 · 107 64 15 346 4

(a) 20M dataset

(b) Tornado20M dataset.

Table 3.  Specifications of hardware.

Hardware
Run time, s when vectorization is

enabled disabled

Intel Xeon Phi 4.00 10.36

Intel Xeon 6.95 8.55
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the most common value of minimum support 
threshold (minsup = 0.1) on Intel many-core 
platforms, especially on the Intel Xeon Phi sys-
tem.

5.3. Discussion

In this paper, we propose a parallel version of 
the DIC algorithm for Intel Xeon and Xeon Phi 
many-core systems and exploit a direct bit rep-
resentation of both transactional database and 
itemsets. Our implementation codes a transac-
tion or an itemset as a 64 bit integer, i.e. m, the 
number of items in the problem statement, is 
limited by 64. This limitation is clearly unac-
ceptable for some applications, e.g. search for 
items that are frequently purchased together by 
customers in a supermarket, search for frequent 
DNA sequences, and so on. However, the fol-
lowing brief review of papers shows that our 
algorithm is applicable for discovering interest-

ing association rules in medical data. Li et al. 
in [13] proposed a method for mining optimal 
risk pattern sets and evaluated the algorithm 
on two real medical datasets with less than 30 
attributes. In [14] and [15], Ordonez et al. in-
troduced an algorithm to discover association 
rules in medical data, which incorporates sever-
al important constraints. Authors described how 
medical records were mapped to a transactional 
format suitable for mining. In the experiments, 
authors took at most 25 attributes of more than 
100 patient's attributes since the chosen attri-
butes provide a complete picture of patients'. In 
addition, the authors' experience showed that 
rules with more than 5 medical attributes were 
hard to interpret. At last, Pattanaprateep et al. in 
[17] described mining the association rules in 
a hospital database with more than 2.5 million 
records of patients' visits including attributes 
regarding their demographics, diagnoses, and 
drug utilization.

6. Conclusion

In this paper, we have presented Parallel DIC, 
a parallel implementation of Dynamic Itemset 
Counting (DIC) algorithm for Intel many-core 
systems. DIC is a variation of classical Apri-
ori algorithm for frequent itemset mining. We 
parallelize the DIC algorithm through Open-
MP technology and thread-level parallelism. 
We propose the direct bit representation for 
transactions and itemsets with the assumption 
that such a representation of the transactional 
database fits in main memory. This technique 
reduces memory space for storing the transac-
tional database, simplifies the support count via 
logical bit-wise operation, and provides vector-
ization of this step. Our algorithm balances the 
support count between threads, depending on 
the current total number of candidate itemsets. 
We performed an experimental evaluation on 
the platforms of the Intel Xeon CPU and the 

Xeon Phi coprocessors with large synthetic and 
real databases (about millions of transactions), 
showing the good performance and scalability 
of the proposed algorithm, especially on the In-
tel Xeon Phi system. 
However, it should be remembered that since 
Parallel DIC exploits the direct bit technique, 
this limits the number of items in the problem 
statement to 64. Nevertheless, literature review 
shows that despite this limitation, our algorithm 
is applicable for discovering interesting associ-
ation rules in large medical datasets.
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