
209CIT. Journal of Computing and Information Technology, Vol. 26, No. 4, December 2018, 209–221
doi: 10.20532/cit.2018.1004382

Mikhail Zymbler
South Ural State University, Chelyabinsk, Russian Federation

Parallel Algorithm for Frequent
Itemset Mining on Intel Many-core
Systems

This paper is an extended version of the paper [23], which was recommended for publication in CIT. Journal of
Computing and Information Technology by the MiproBIS'2017 Conference Program Committee (within the Inter-
national Convention MIPRO 2017), as the best paper of the conference.

Frequent itemset mining leads to the discovery of as-
sociations and correlations among items in large trans-
actional databases. Apriori is a classical frequent item-
set mining algorithm, which employs iterative passes
over database combining with generation of candidate
itemsets based on frequent itemsets found at the pre-
vious iteration, and pruning of clearly infrequent item-
sets. The Dynamic Itemset Counting (DIC) algorithm
is a variation of Apriori, which tries to reduce the num-
ber of passes made over a transactional database while
keeping the number of itemsets counted in a pass rel-
atively low. In this paper, we address the problem of
accelerating DIC on the Intel Xeon Phi many-core
system for the case when the transactional database
fits in main memory. Intel Xeon Phi provides a large
number of small compute cores with vector processing
units. The paper presents a parallel implementation of
DIC based on OpenMP technology and thread-level
parallelism. We exploit the bit-based internal layout
for transactions and itemsets. This technique reduces
the memory space for storing the transactional data-
base, simplifies the support count via logical bitwise
operation, and allows for vectorization of such a step.
Experimental evaluation on the platforms of the Intel
Xeon CPU and the Intel Xeon Phi coprocessor with
large synthetic and real databases showed good perfor-
mance and scalability of the proposed algorithm.

ACM CCS (2012) Classification: Computing method-
ologies → Parallel computing methodologies → Par-
allel algorithms → Shared memory algorithms
Information systems → Information systems applica-
tions → Data mining → Association rules

Keywords: data mining, dynamic itemset counting,
parallel algorithm, bitmap, OpenMP, many-core, Intel
Xeon Phi

1. Introduction

Association rule mining is one of the import-
ant problems in data mining [1]. The task is to
discover strong associations among the items
from a transactional database such that the oc-
currence of one item in a transaction implies the
occurrence of another. Association rule mining
is divided into two subtasks [1]. The first one is
to find all frequent itemsets that consist of items
which often occur together in transactions. The
second one is to generate all the association
rules from the frequent itemsets found.
In this paper, we address the task of frequent
itemset mining, which can be formally described
as follows. Let J = (i1, …, im) be a set of literals,
called items. Let D = (T1, …, Tn) be a database
of transactions, where each transaction Ti ⊆ J
consists of a set of items (itemset). An itemset
that contains k items is called a k-itemset. The
support of an itemset I ⊆ J denotes the fraction
of transactions in D that contain the itemset I. If
the support of an itemset I ⊆ J satisfies the us-
er-specified minimum support threshold called
minsup, then I is frequent itemset. Let the set
of all frequent k-itemsets be denoted by Lk and

max
1

k k
k k
=
==

L L denotes a set of all frequent item-
sets, where kmax is the number of items in the
longest frequent itemset. Given the transaction-
al database D and minimum support threshold
minsup, the goal of frequent itemset mining is
to find the set of all frequent itemsets L.

210 211M. Zymbler Parallel Algorithm for Frequent Itemset Mining on Intel Many-core Systems

There is a wide spectrum of algorithms for fre-
quent itemset mining, and none of them outper-
forms all others for all possible transactional
databases and values of minsup threshold [9].
Apriori [1] is one of the most popular itemset
mining algorithms, for which many refinements
and parallel implementations for various plat-
forms were proposed. Dynamic Itemset Count-
ing (DIC) [3] is a variation of Apriori, which
tries to reduce the number of passes made over
a transactional database while keeping the num-
ber of itemsets counted in a pass relatively low.
Despite the fact that DIC has good potential of
parallelization [3], it still has not been imple-
mented for modern Intel many-core systems, to
the best of our knowledge.
In this paper, we address the problem of accel-
erating the DIC algorithm on the Intel Xeon Phi
many-core system. Intel Xeon Phi [21] provides
a large number of small compute cores with a
high local memory bandwidth. Each core sup-
ports a computational power weaker than that
of the Intel Xeon core and provides 512 bit
wide vector processing unit (VPU). VPU sup-
ports data-level parallelism by a set of vector
instructions, thanks to which it is possible to
load and calculate several numbers at once (e.g.
eight 64 bit integers or sixteen 16 bit floats).
Such a routine is called vectorization, and Intel
compilers provide options for automatic vector-
ization. Since Intel Xeon Phi is based on Intel
x86 architecture, it supports the same program-
ming tools as a regular Intel Xeon CPU. Thus,
Intel Xeon Phi can be considered as an attrac-
tive hardware platform for the thread-level par-
allel algorithm.
The basic contribution of the paper is as fol-
lows. We propose a parallel implementation of
the DIC algorithm for the Intel Xeon Phi ma-
ny-core system. We exploit a bit-based internal
layout for transactions and itemsets assuming
that such a representation of a transactional
database fits in main memory. This technique
reduces memory space of storing the transac-
tional database and simplifies the support count
and generation of potentially frequent candi-
date itemsets via logical bitwise operations.
The algorithm is parallelized using OpenMP
technology and thread-level parallelism. We
conduct experiments on large synthetic and real
databases to evaluate the performance and scal-
ability of our algorithm.
The rest of the paper is organized as follows.
In Section 2, related work is discussed. Section

3 provides a brief description of the original
DIC algorithm. The proposed parallel algo-
rithm is presented in Section 4. The results of
experimental evaluation of the algorithm are
described in Section 5. Finally, Section 6 con-
cludes the paper.

2. Related Work

The original DIC algorithm was presented by
Brin et al. in [3], where the authors briefly dis-
cuss a way to parallelize DIC using the distri-
bution of the transactional database among the
nodes so that each node counts all itemsets for
its own data segment.
Paranjape-Voditel et al. proposed DIC-OPT
[16], a parallel version of DIC for distribut-
ed memory systems. The key idea is that each
node sends messages with the counts of poten-
tially frequent itemsets to other nodes after ev-
ery block of M transactions has been read. This
initiates the early counting of the itemsets on
other nodes without waiting for synchroniza-
tion with other nodes. The authors carried out
experiments on up to 12 nodes where their im-
plementation showed sublinear speedup.
Cheung et al. suggested APM [5], a DIC-based
parallel algorithm for SMP systems. APM is
an adaptive parallel mining algorithm, where
all CPUs generate candidates dynamically and
count itemset supports independently without
synchronization. The transactional database is
partitioned across CPUs with highly homoge-
neous itemset distributions. This technique ad-
dresses the problem of a large number of candi-
dates because of the low homogeneous itemset
distribution in most cases. The experiments on
the Sun Enterprise 4000 server with up to 12
nodes showed that APM outperforms Aprio-
ri-like parallel algorithms. However, the APM
speedup gradually drops down to 4 when the
number of nodes is greater than four. This is be-
cause APM suffers from the SMP system inher-
ent problem of I/O contention when the number
of nodes is large.
Schlegel et al. proposed mcEclat [19], a paral-
lel version of Eclat [22] for the Intel Xeon Phi
coprocessor. mcEclat converts a dataset being
mined into a set of tid bitmaps, which are re-
peatedly intersected to obtain the frequent item-
sets. Tid bitmap maps the IDs of transactions,
in which an itemset exists, to bits in a bitmap

that any infrequent (k – 1)-itemset cannot be a
subset of a frequent k-itemset. Apriori counts
support of candidates which have not been
pruned, and proceeds with such passes until
there are no more candidates after pruning.
The DIC algorithm tries to reduce the number
of passes made over the transactional database
while keeping the number of itemsets counted
in a pass relatively low. Algorithm 1 depicts
pseudo-code of DIC. The algorithm processes
the database with stops at equal-length intervals
between transactions specified by the M param-
eter of the algorithm. At the end of the transac-
tional database, it is necessary to rewind to its
beginning.

DIC maintains four sets of itemsets, namely
Dashed Circle, Dashed Box, Solid Circle and
Solid Box. Itemsets in the "dashed" sets are sub-

at certain positions. Tid bitmaps are intersected
via logical bitwise AND operation and then the
support of an itemset is obtained by counting
the bits set to one in its respective tid bitmap.
Experiments showed up to 100 times speedup
of mcEclat on Intel Xeon Phi. However, the
algorithm performance on the Intel Xeon Phi
coprocessor is similar or slightly worse (for
smaller values of minsup) than on the system
with two Intel Xeon CPUs when the maximum
number of threads is employed on both sys-
tems. The reason is that mcEclat does not fully
exploit the vector processing capabilities of In-
tel Xeon Phi.
Kumar et al. presented Bitwise DIC [12], a seri-
al version of the DIC algorithm based upon tid
bitmap technique mentioned above. Authors re-
port that Bitwise DIC outruns the original DIC
on datasets with up to 5,000 transactions for the
fixed minsup value.
In serial algorithms, MAFIA [4] and BitTable-
FI [7], Burdick et al. and Dong et al., respec-
tively, employed vertical bitmap to compress
the transactional database for quick candidate
itemsets generation and the support count. Ver-
tical bitmap is a set of integers in which every
bit represents an item. If an item i appears in the
j-th transaction, then the j-th bit of the bitmap
for the item i is set to one; otherwise, the bit is
set to zero. This idea is applied to both trans-
actions and itemsets. In the case when itemsets
appear in a significant number of transactions,
the vertical bitmap is the smallest representa-
tion of the information. However, the weakness
of a vertical representation is the sparseness of
the bitmaps, especially at the lower support lev-
els.

3. Serial DIC Algorithm

Dynamic Itemset Counting (DIC) [3] is a vari-
ation of the best known Apriori algorithm [1].
Apriori is an iterative, level-wise algorithm,
which uses a bottom-up search. At the first
pass over transactional database, it processes
1-itemsets and finds L1 set. A subsequent pass k
consists of two steps, namely candidate gener-
ation and pruning. At the candidate generation
step, Apriori combines elements of L(k – 1) set to
form potentially frequent candidate k-itemsets.
At the pruning step, it discards infrequent can-
didates using the a priori principle which states

Algorithm 1. Serial DIC algorithm.

Input: D, minsup, M
Output: L
 Initialize sets of itemsets
SolidBox ← ∅; SolidCirCle ← ∅; daShedBox ← ∅
daShedCirCle ← J
while daShedCirCle daShedBox ≠ ∅ do
 Scan database and rewind if necessary
 Read (D, M, Chunk)
 if EOF (D) then
 Rewind (D)
 for all T ∈ Chunk do
 Count support of itemsets
 for all I ∈ daShedCirCle daShedBox do
 if I ⊆ T then
 support (I) ← support (I) + 1
 Generate candidate itemsets
 for all I ∈ daShedCirCle do
 if support (I) ≥ minsup then
 daShedBox ← daShedBox I
 for all i ∈ J do
 C ← I i
 if ∀ s ⊆ C, s Î SolidBox daShedBox then
 daShedCirCle ← daShedCirCle C
 Check full pass completion
 for all I ∈ daShedCirCle daShedBox do
 if IsPassCompleted (I) then
 switch Shape (I)
 "dashed": daShedBox ← daShedBox I
 "solid": SolidBox ← SolidBox I
L ← SolidBox

∩

∩

∩

∩

∩

∩

∩
∩

∩

210 211M. Zymbler Parallel Algorithm for Frequent Itemset Mining on Intel Many-core Systems

There is a wide spectrum of algorithms for fre-
quent itemset mining, and none of them outper-
forms all others for all possible transactional
databases and values of minsup threshold [9].
Apriori [1] is one of the most popular itemset
mining algorithms, for which many refinements
and parallel implementations for various plat-
forms were proposed. Dynamic Itemset Count-
ing (DIC) [3] is a variation of Apriori, which
tries to reduce the number of passes made over
a transactional database while keeping the num-
ber of itemsets counted in a pass relatively low.
Despite the fact that DIC has good potential of
parallelization [3], it still has not been imple-
mented for modern Intel many-core systems, to
the best of our knowledge.
In this paper, we address the problem of accel-
erating the DIC algorithm on the Intel Xeon Phi
many-core system. Intel Xeon Phi [21] provides
a large number of small compute cores with a
high local memory bandwidth. Each core sup-
ports a computational power weaker than that
of the Intel Xeon core and provides 512 bit
wide vector processing unit (VPU). VPU sup-
ports data-level parallelism by a set of vector
instructions, thanks to which it is possible to
load and calculate several numbers at once (e.g.
eight 64 bit integers or sixteen 16 bit floats).
Such a routine is called vectorization, and Intel
compilers provide options for automatic vector-
ization. Since Intel Xeon Phi is based on Intel
x86 architecture, it supports the same program-
ming tools as a regular Intel Xeon CPU. Thus,
Intel Xeon Phi can be considered as an attrac-
tive hardware platform for the thread-level par-
allel algorithm.
The basic contribution of the paper is as fol-
lows. We propose a parallel implementation of
the DIC algorithm for the Intel Xeon Phi ma-
ny-core system. We exploit a bit-based internal
layout for transactions and itemsets assuming
that such a representation of a transactional
database fits in main memory. This technique
reduces memory space of storing the transac-
tional database and simplifies the support count
and generation of potentially frequent candi-
date itemsets via logical bitwise operations.
The algorithm is parallelized using OpenMP
technology and thread-level parallelism. We
conduct experiments on large synthetic and real
databases to evaluate the performance and scal-
ability of our algorithm.
The rest of the paper is organized as follows.
In Section 2, related work is discussed. Section

3 provides a brief description of the original
DIC algorithm. The proposed parallel algo-
rithm is presented in Section 4. The results of
experimental evaluation of the algorithm are
described in Section 5. Finally, Section 6 con-
cludes the paper.

2. Related Work

The original DIC algorithm was presented by
Brin et al. in [3], where the authors briefly dis-
cuss a way to parallelize DIC using the distri-
bution of the transactional database among the
nodes so that each node counts all itemsets for
its own data segment.
Paranjape-Voditel et al. proposed DIC-OPT
[16], a parallel version of DIC for distribut-
ed memory systems. The key idea is that each
node sends messages with the counts of poten-
tially frequent itemsets to other nodes after ev-
ery block of M transactions has been read. This
initiates the early counting of the itemsets on
other nodes without waiting for synchroniza-
tion with other nodes. The authors carried out
experiments on up to 12 nodes where their im-
plementation showed sublinear speedup.
Cheung et al. suggested APM [5], a DIC-based
parallel algorithm for SMP systems. APM is
an adaptive parallel mining algorithm, where
all CPUs generate candidates dynamically and
count itemset supports independently without
synchronization. The transactional database is
partitioned across CPUs with highly homoge-
neous itemset distributions. This technique ad-
dresses the problem of a large number of candi-
dates because of the low homogeneous itemset
distribution in most cases. The experiments on
the Sun Enterprise 4000 server with up to 12
nodes showed that APM outperforms Aprio-
ri-like parallel algorithms. However, the APM
speedup gradually drops down to 4 when the
number of nodes is greater than four. This is be-
cause APM suffers from the SMP system inher-
ent problem of I/O contention when the number
of nodes is large.
Schlegel et al. proposed mcEclat [19], a paral-
lel version of Eclat [22] for the Intel Xeon Phi
coprocessor. mcEclat converts a dataset being
mined into a set of tid bitmaps, which are re-
peatedly intersected to obtain the frequent item-
sets. Tid bitmap maps the IDs of transactions,
in which an itemset exists, to bits in a bitmap

that any infrequent (k – 1)-itemset cannot be a
subset of a frequent k-itemset. Apriori counts
support of candidates which have not been
pruned, and proceeds with such passes until
there are no more candidates after pruning.
The DIC algorithm tries to reduce the number
of passes made over the transactional database
while keeping the number of itemsets counted
in a pass relatively low. Algorithm 1 depicts
pseudo-code of DIC. The algorithm processes
the database with stops at equal-length intervals
between transactions specified by the M param-
eter of the algorithm. At the end of the transac-
tional database, it is necessary to rewind to its
beginning.

DIC maintains four sets of itemsets, namely
Dashed Circle, Dashed Box, Solid Circle and
Solid Box. Itemsets in the "dashed" sets are sub-

at certain positions. Tid bitmaps are intersected
via logical bitwise AND operation and then the
support of an itemset is obtained by counting
the bits set to one in its respective tid bitmap.
Experiments showed up to 100 times speedup
of mcEclat on Intel Xeon Phi. However, the
algorithm performance on the Intel Xeon Phi
coprocessor is similar or slightly worse (for
smaller values of minsup) than on the system
with two Intel Xeon CPUs when the maximum
number of threads is employed on both sys-
tems. The reason is that mcEclat does not fully
exploit the vector processing capabilities of In-
tel Xeon Phi.
Kumar et al. presented Bitwise DIC [12], a seri-
al version of the DIC algorithm based upon tid
bitmap technique mentioned above. Authors re-
port that Bitwise DIC outruns the original DIC
on datasets with up to 5,000 transactions for the
fixed minsup value.
In serial algorithms, MAFIA [4] and BitTable-
FI [7], Burdick et al. and Dong et al., respec-
tively, employed vertical bitmap to compress
the transactional database for quick candidate
itemsets generation and the support count. Ver-
tical bitmap is a set of integers in which every
bit represents an item. If an item i appears in the
j-th transaction, then the j-th bit of the bitmap
for the item i is set to one; otherwise, the bit is
set to zero. This idea is applied to both trans-
actions and itemsets. In the case when itemsets
appear in a significant number of transactions,
the vertical bitmap is the smallest representa-
tion of the information. However, the weakness
of a vertical representation is the sparseness of
the bitmaps, especially at the lower support lev-
els.

3. Serial DIC Algorithm

Dynamic Itemset Counting (DIC) [3] is a vari-
ation of the best known Apriori algorithm [1].
Apriori is an iterative, level-wise algorithm,
which uses a bottom-up search. At the first
pass over transactional database, it processes
1-itemsets and finds L1 set. A subsequent pass k
consists of two steps, namely candidate gener-
ation and pruning. At the candidate generation
step, Apriori combines elements of L(k – 1) set to
form potentially frequent candidate k-itemsets.
At the pruning step, it discards infrequent can-
didates using the a priori principle which states

Algorithm 1. Serial DIC algorithm.

Input: D, minsup, M
Output: L
 Initialize sets of itemsets
SolidBox ← ∅; SolidCirCle ← ∅; daShedBox ← ∅
daShedCirCle ← J
while daShedCirCle daShedBox ≠ ∅ do
 Scan database and rewind if necessary
 Read (D, M, Chunk)
 if EOF (D) then
 Rewind (D)
 for all T ∈ Chunk do
 Count support of itemsets
 for all I ∈ daShedCirCle daShedBox do
 if I ⊆ T then
 support (I) ← support (I) + 1
 Generate candidate itemsets
 for all I ∈ daShedCirCle do
 if support (I) ≥ minsup then
 daShedBox ← daShedBox I
 for all i ∈ J do
 C ← I i
 if ∀ s ⊆ C, s Î SolidBox daShedBox then
 daShedCirCle ← daShedCirCle C
 Check full pass completion
 for all I ∈ daShedCirCle daShedBox do
 if IsPassCompleted (I) then
 switch Shape (I)
 "dashed": daShedBox ← daShedBox I
 "solid": SolidBox ← SolidBox I
L ← SolidBox

∩

∩

∩

∩

∩

∩

∩
∩

∩

212 213M. Zymbler Parallel Algorithm for Frequent Itemset Mining on Intel Many-core Systems

jects for the support count while itemsets in the
"solid" sets do not need to be counted. "Circles"
contain infrequent itemsets while "boxes" con-
tain frequent itemsets. Thus, Dashed Circle and
Dashed Box contain itemsets that are suspected
infrequent and suspected frequent, respective-
ly, while Solid Circle and Solid Box contain
itemsets that are confirmed infrequent and con-
firmed frequent, respectively. Figure 1 depicts
life cycle of an itemset in the DIC algorithm.
At start, Dashed Box, Solid Circle, and Solid
Box are assumed empty, and Dashed Circle
contains all 1-itemsets. Before the stop, DIC
counts support of itemsets from "dashed" sets
for each transaction. At any stop, DIC per-
forms as follows. Itemsets whose support ex-
ceeds minsup are moved from Dashed Circle
to Dashed Box. New itemsets are added into
Dashed Circle, they are immediate supersets
of those itemsets from Dashed Box with all of
its subsets from "box" sets. Itemsets that have
completed one full pass over the transactional
database are moved from the "dashed" set to
"solid" set. DIC proceeds as long as itemsets
remain in the "dashed" sets.

4. Parallel DIC Algorithm

4.1. Internal Data Layout

In this paper, we propose the direct bit repre-
sentation for both transactions and itemsets.
This means that the transaction T ⊆ D (an item-
set I ⊆ J, respectively) is represented by a word
where each p-th bit is set to one if an item ip Î
T (ip Î I, respectively) and all other bits are set
to zero. The word length W in bytes depends on
the system environment and is calculated as

() .
sizeof byte

mW

=

In our implementation, we use C++ and un-
signed long long int data type, so we have W
= 8 and m = 64. Let us denote by BitMask a
function that returns direct bit representation of
a given itemset or transaction as a word, i.e. Bit-
Mask: J → Z+. Then, the direct bit representa-
tion of transactional database D is an n-element
array B where Bj = BitMask (Tj) ∀j Î 1, ..., n.
The direct bit representation has several major
merits. It often requires less space than byte-
based representation for dense transactional
database with long transactions. In fact, B re-
quires n · W bytes to store and allows B to fit in
main memory. For instance, netflix, one of the
most referenced datasets, contains n = 17,771
transactions consisting of m = 480,189 distinct
items. Hence, the direct bit representation of
the netflix dataset takes about 1 Gb. Thus, we
further assume that B is preliminary produced
from D and available in main memory.
Additionally, the direct bit representation sim-
plifies support counting and vectorization of
this operation. The fact that an itemset I exists
in a transaction T (i.e. I ⊆ T) can be checked by
one logical bitwise operation, that is BitMask (I)
AND BitMask (T) = BitMask (I). Such an imple-
mentation allows for auto-vectorization of the
support count loop by the compiler.
Thereby, we implement an itemset as a record
structure with the following basic fields, name-
ly mask to provide direct bit representation, k as
number of items in the itemset, stop as count-
er to determine when full pass for the given
itemset is completed, and supp to store support
count.

To implement a set of itemsets, we use a vector
which represents an array of elements belong-
ing to the same type and provides random ac-
cess to its elements with the ability to automat-
ically resize when appending elements. Such a
data structure is implemented in C++ Standard
Template Library as a class with iterator and
methods for inserting an element and remov-
ing an element with complexity of O (1) and
O (s) respectively, where s is the current size of
a vector.
In order to reduce costs of moving elements
across vectors, we establish a DASHED vector
for "dashed box" and "dashed circle" itemsets
and a SOLID vector for "solid box" and "solid
circle" itemsets, and provide the itemset record
structure with the shape field to indicate an ap-
propriate set the given itemset belongs to.

4.2. Parallelization of the Algorithm

The proposed parallel version of DIC algorithm
(hereinafter Parallel DIC) is presented in Algo-
rithm 2, and basic sub-algorithms are depicted
in Algorithm 3, Algorithm 4, and Algorithm 5.

We enhance the classical DIC algorithm by
adding two more stages, namely FirstPass and
Prune where each of them is aimed at reduc-
ing the number of itemsets to perform support
counting.

We parallelize the following stages of the al-
gorithm, namely the support count (cf. Algo-
rithm 3), pruning of the Dashed Circle set (cf.
Algorithm 4) and check of full pass completion Figure 1. Life cycle of an itemset in the DIC algorithm.

Algorithm 2. Parallel DIC algorithm.

Input: B, minsup, M, num_of_threads
Output: L
 Initialize sets of itemsets
Solid.init (); daShedBox.init ()
for all i Î 0... m – 1 do
 I.shape ← NIL; SetBit (I.mask, i)
 I.stop ← 0; I.supp ← 0; I.k ← 1
 Solid.push_back (I)
k ← 1; stop ← 0; stopmax ←

n
M

 FirStPaSS (Solid, daShed)

while not daShed.empty () do
 Scan database and rewind if necessary
 stop ← stop + 1
 if stop > stopmax then
 stop ← 1
 first ← (stop – 1) · M; last ← stop · M – 1
 k ← k + 1
 CountSuPPort (daShed, num_of_threads)
 Prune (daShed, minsup)
 MakeCandidateS (daShed)
 CheCkFullPaSS (daShed, minsup)
L ← {i | i ∈ Solid ∧ I.shape = Box}

(a) Count all the "dashed" itemsets for each transaction:
data races among threads are possible.

Figure 2. Support count in the Parallel DIC algorithm.

(b) Count all the transactions for each "dashed" itemset:
no data races among threads.

212 213M. Zymbler Parallel Algorithm for Frequent Itemset Mining on Intel Many-core Systems

jects for the support count while itemsets in the
"solid" sets do not need to be counted. "Circles"
contain infrequent itemsets while "boxes" con-
tain frequent itemsets. Thus, Dashed Circle and
Dashed Box contain itemsets that are suspected
infrequent and suspected frequent, respective-
ly, while Solid Circle and Solid Box contain
itemsets that are confirmed infrequent and con-
firmed frequent, respectively. Figure 1 depicts
life cycle of an itemset in the DIC algorithm.
At start, Dashed Box, Solid Circle, and Solid
Box are assumed empty, and Dashed Circle
contains all 1-itemsets. Before the stop, DIC
counts support of itemsets from "dashed" sets
for each transaction. At any stop, DIC per-
forms as follows. Itemsets whose support ex-
ceeds minsup are moved from Dashed Circle
to Dashed Box. New itemsets are added into
Dashed Circle, they are immediate supersets
of those itemsets from Dashed Box with all of
its subsets from "box" sets. Itemsets that have
completed one full pass over the transactional
database are moved from the "dashed" set to
"solid" set. DIC proceeds as long as itemsets
remain in the "dashed" sets.

4. Parallel DIC Algorithm

4.1. Internal Data Layout

In this paper, we propose the direct bit repre-
sentation for both transactions and itemsets.
This means that the transaction T ⊆ D (an item-
set I ⊆ J, respectively) is represented by a word
where each p-th bit is set to one if an item ip Î
T (ip Î I, respectively) and all other bits are set
to zero. The word length W in bytes depends on
the system environment and is calculated as

() .
sizeof byte

mW

=

In our implementation, we use C++ and un-
signed long long int data type, so we have W
= 8 and m = 64. Let us denote by BitMask a
function that returns direct bit representation of
a given itemset or transaction as a word, i.e. Bit-
Mask: J → Z+. Then, the direct bit representa-
tion of transactional database D is an n-element
array B where Bj = BitMask (Tj) ∀j Î 1, ..., n.
The direct bit representation has several major
merits. It often requires less space than byte-
based representation for dense transactional
database with long transactions. In fact, B re-
quires n · W bytes to store and allows B to fit in
main memory. For instance, netflix, one of the
most referenced datasets, contains n = 17,771
transactions consisting of m = 480,189 distinct
items. Hence, the direct bit representation of
the netflix dataset takes about 1 Gb. Thus, we
further assume that B is preliminary produced
from D and available in main memory.
Additionally, the direct bit representation sim-
plifies support counting and vectorization of
this operation. The fact that an itemset I exists
in a transaction T (i.e. I ⊆ T) can be checked by
one logical bitwise operation, that is BitMask (I)
AND BitMask (T) = BitMask (I). Such an imple-
mentation allows for auto-vectorization of the
support count loop by the compiler.
Thereby, we implement an itemset as a record
structure with the following basic fields, name-
ly mask to provide direct bit representation, k as
number of items in the itemset, stop as count-
er to determine when full pass for the given
itemset is completed, and supp to store support
count.

To implement a set of itemsets, we use a vector
which represents an array of elements belong-
ing to the same type and provides random ac-
cess to its elements with the ability to automat-
ically resize when appending elements. Such a
data structure is implemented in C++ Standard
Template Library as a class with iterator and
methods for inserting an element and remov-
ing an element with complexity of O (1) and
O (s) respectively, where s is the current size of
a vector.
In order to reduce costs of moving elements
across vectors, we establish a DASHED vector
for "dashed box" and "dashed circle" itemsets
and a SOLID vector for "solid box" and "solid
circle" itemsets, and provide the itemset record
structure with the shape field to indicate an ap-
propriate set the given itemset belongs to.

4.2. Parallelization of the Algorithm

The proposed parallel version of DIC algorithm
(hereinafter Parallel DIC) is presented in Algo-
rithm 2, and basic sub-algorithms are depicted
in Algorithm 3, Algorithm 4, and Algorithm 5.

We enhance the classical DIC algorithm by
adding two more stages, namely FirstPass and
Prune where each of them is aimed at reduc-
ing the number of itemsets to perform support
counting.

We parallelize the following stages of the al-
gorithm, namely the support count (cf. Algo-
rithm 3), pruning of the Dashed Circle set (cf.
Algorithm 4) and check of full pass completion Figure 1. Life cycle of an itemset in the DIC algorithm.

Algorithm 2. Parallel DIC algorithm.

Input: B, minsup, M, num_of_threads
Output: L
 Initialize sets of itemsets
Solid.init (); daShedBox.init ()
for all i Î 0... m – 1 do
 I.shape ← NIL; SetBit (I.mask, i)
 I.stop ← 0; I.supp ← 0; I.k ← 1
 Solid.push_back (I)
k ← 1; stop ← 0; stopmax ←

n
M

 FirStPaSS (Solid, daShed)

while not daShed.empty () do
 Scan database and rewind if necessary
 stop ← stop + 1
 if stop > stopmax then
 stop ← 1
 first ← (stop – 1) · M; last ← stop · M – 1
 k ← k + 1
 CountSuPPort (daShed, num_of_threads)
 Prune (daShed, minsup)
 MakeCandidateS (daShed)
 CheCkFullPaSS (daShed, minsup)
L ← {i | i ∈ Solid ∧ I.shape = Box}

(a) Count all the "dashed" itemsets for each transaction:
data races among threads are possible.

Figure 2. Support count in the Parallel DIC algorithm.

(b) Count all the transactions for each "dashed" itemset:
no data races among threads.

214 215M. Zymbler Parallel Algorithm for Frequent Itemset Mining on Intel Many-core Systems

for itemsets (cf. Algorithm 5) through OpenMP
technology and thread-level parallelism.
In the classical DIC (cf. Algorithm 1), the
Dashed Circle set is initialized by all 1 item-
sets. In contrast, we use the technique of full
first pass [5]. This means that we initially per-
form one full pass over D to find L1, the set of
frequent 1-itemsets (this done similarly to Al-
gorithm 3).
Then candidate 2-itemsets are computed from
L1 through the Apriori join procedure [1]. This
is done via logical bitwise OR operation on
each pair of frequent 1-itemsets, and candidates
are inserted in the Dashed Circle set. This tech-
nique helps to reduce cardinality of the Dashed
Circle set in further computations because in-
frequent 1 itemsets and their supersets have
been pruned according to the a priori principle.
The original algorithm performs support count-
ing by two nested loops where the outer loop
takes transactions and the inner loop takes the
"dashed" itemsets. As opposed to DIC, we
change the order of these loops (cf. Figure 2).
This shuffle allows avoiding data races when
threads process different transactions and need
to change the support count of the same item-
sets simultaneously.

Then, we parallelize the outer loop through
omp parallel for pragma (cf. Algorithm 3).

Additionally, our algorithm balances the load of
threads depending on the current total number
of elements in both Dashed Circle and Dashed
Box sets (cf. Figure 3).

If the number of available threads does not ex-
ceed the current total number of "dashed" item-

sets, we parallelize the outer loop (along item-
sets) using all threads. Otherwise, we enable
nested parallelism and parallelize the outer loop
using a number of threads equal to the current
total number of "dashed" itemsets. Then we
parallelize the inner loop (along transactions)
so that each outer thread forks an equal-sized
set of descendant threads where descendants
perform counting by reducing the summing
operation. This balancing technique allows for
processing data effectively in the final stage of
counting when the number of candidate item-
sets tends to zero and increases the overall per-
formance of the algorithm.
After the support count, in addition to moving
appropriate itemsets from Dashed Circle set to
Dashed Box set as in classical DIC, we reduce
the Dashed Circle set pruning clearly infre-
quent itemsets as follows [12]. We compute an
itemset highest possible support by adding its
current support to the number of transactions
which have not been processed yet (cf. Algo-
rithm 4). If the value of the itemset highest pos-
sible support is less than minsup threshold, then
the itemset is pruned, and after that, we prune
all its supersets according to the a priori prin-
ciple.
After the reduction of the Dashed Circle set, we
generate afresh itemsets to be inserted in the set
performing Apriori join procedure [1] via the
logical bitwise OR operation between all item-
sets marked as "boxes".

Finally, for all itemsets in the Dashed Circle
set, we check if an itemset has been counted
through all transactions, and if yes, we make
the itemset "solid" and stop counting it. If the
itemset support equals to or exceeds the minsup
threshold, then we mark it as "box" (cf. Algo-
rithm 5). This activity is also parallelized along
itemsets through omp parallel for pragma.
In the end, SOLID vector contains "box" item-
sets as an output of the algorithm.

5. Experiments

5.1. Experimental Setup

Hardware. The experiments were carried out
on the node of the Tornado SUSU supercomput-
er [11]. Such a node consists of a host, which is
two 6 core Intel Xeon CPU, and a 61 core Intel
Xeon Phi coprocessor. Table 1 depicts technical
specifications of the hardware.

Table 1. Specifications of hardware.

Specifications Host Coprocessor

Model, Intel Xeon X5680 Phi SE10X

Number of physical cores 2 × 6 61

Hyper-threading factor 2 × 4 ×

Number of logical cores 24 244

Frequency, GHz 3.33 1.1

Peak performance, TFLOPS 0.371 1.076

Memory, Gb 24 8

Cache, Mb 12 30.5

Algorithm 3. Support count sub-algorithm.

Input: daShed, num_of_threads
Output: daShed

if daShed.size () ≥ num_of_threads then
 #pragma omp parallel for
 for all I Î daShed do
 I.stop ← I.stop + 1
 for all T ∈ Bfirst ... Blast do
 if I.mask AND T = I.mask then
 I.supp ← I.supp + 1
else
 omp_set_nested (true)
 #pragma omp parallel for num_threads (daShed.size ())
 for all I Î daShed do
 I.stop ← I.stop + 1
 #pragma omp parallel for reduction (+: I.supp)
 num_threads

ASHED

_ _
D . ()

num of threads
size

 for all T ∈ Bfirst ... Blast do

 if I.mask AND T = I.mask then
 I.supp ← I.supp + 1

(a) Number of threads is less than number of "dashed"
itemsets: a thread takes its "dashed" itemsets to count.

Figure 3. Load balancing in the Parallel DIC algorithm.

(b) Number of threads is greater than number of
"dashed" itemsets: a thread takes one "dashed" itemset

and forks descendant threads to count.

Algorithm 4. Pruning sub-algorithm.

Input: daShed, num_of_threads
Output: daShed

#pragma omp parallel for num_threads (num_of_threads)
for all I Î daShed and I.shape = CirCle do
 if I.supp ≥ minsup then
 Move appropriate itemsets to Dashed Box set
 I.shape ← Box

 else
 Prune clearly infrequent itemsets
 suppmax ← I.supp + M · (stopmax – I.stop)
 if suppmax < minsup then
 I.shape ← nil

 for all J Î daShed and J.shape = CirCle do
 if I.mask AND J.mask = I.mask then
 J.shape ← nil

daShed.erase ({I | I.shape = nil})

Algorithm 5. Check full pass sub-algorithm.

Input: daShed, num_of_threads
Output: daShed

#pragma omp parallel for num_threads (num_of_threads)
for all I Î daShed do
 if I.stop = stopmax then
 if I.supp ≥ minsup then
 I.shape ← Box

 Solid.push_back (I)
 I.shape ← nil

daShed.erase ({I | I.shape = nil})

214 215M. Zymbler Parallel Algorithm for Frequent Itemset Mining on Intel Many-core Systems

for itemsets (cf. Algorithm 5) through OpenMP
technology and thread-level parallelism.
In the classical DIC (cf. Algorithm 1), the
Dashed Circle set is initialized by all 1 item-
sets. In contrast, we use the technique of full
first pass [5]. This means that we initially per-
form one full pass over D to find L1, the set of
frequent 1-itemsets (this done similarly to Al-
gorithm 3).
Then candidate 2-itemsets are computed from
L1 through the Apriori join procedure [1]. This
is done via logical bitwise OR operation on
each pair of frequent 1-itemsets, and candidates
are inserted in the Dashed Circle set. This tech-
nique helps to reduce cardinality of the Dashed
Circle set in further computations because in-
frequent 1 itemsets and their supersets have
been pruned according to the a priori principle.
The original algorithm performs support count-
ing by two nested loops where the outer loop
takes transactions and the inner loop takes the
"dashed" itemsets. As opposed to DIC, we
change the order of these loops (cf. Figure 2).
This shuffle allows avoiding data races when
threads process different transactions and need
to change the support count of the same item-
sets simultaneously.

Then, we parallelize the outer loop through
omp parallel for pragma (cf. Algorithm 3).

Additionally, our algorithm balances the load of
threads depending on the current total number
of elements in both Dashed Circle and Dashed
Box sets (cf. Figure 3).

If the number of available threads does not ex-
ceed the current total number of "dashed" item-

sets, we parallelize the outer loop (along item-
sets) using all threads. Otherwise, we enable
nested parallelism and parallelize the outer loop
using a number of threads equal to the current
total number of "dashed" itemsets. Then we
parallelize the inner loop (along transactions)
so that each outer thread forks an equal-sized
set of descendant threads where descendants
perform counting by reducing the summing
operation. This balancing technique allows for
processing data effectively in the final stage of
counting when the number of candidate item-
sets tends to zero and increases the overall per-
formance of the algorithm.
After the support count, in addition to moving
appropriate itemsets from Dashed Circle set to
Dashed Box set as in classical DIC, we reduce
the Dashed Circle set pruning clearly infre-
quent itemsets as follows [12]. We compute an
itemset highest possible support by adding its
current support to the number of transactions
which have not been processed yet (cf. Algo-
rithm 4). If the value of the itemset highest pos-
sible support is less than minsup threshold, then
the itemset is pruned, and after that, we prune
all its supersets according to the a priori prin-
ciple.
After the reduction of the Dashed Circle set, we
generate afresh itemsets to be inserted in the set
performing Apriori join procedure [1] via the
logical bitwise OR operation between all item-
sets marked as "boxes".

Finally, for all itemsets in the Dashed Circle
set, we check if an itemset has been counted
through all transactions, and if yes, we make
the itemset "solid" and stop counting it. If the
itemset support equals to or exceeds the minsup
threshold, then we mark it as "box" (cf. Algo-
rithm 5). This activity is also parallelized along
itemsets through omp parallel for pragma.
In the end, SOLID vector contains "box" item-
sets as an output of the algorithm.

5. Experiments

5.1. Experimental Setup

Hardware. The experiments were carried out
on the node of the Tornado SUSU supercomput-
er [11]. Such a node consists of a host, which is
two 6 core Intel Xeon CPU, and a 61 core Intel
Xeon Phi coprocessor. Table 1 depicts technical
specifications of the hardware.

Table 1. Specifications of hardware.

Specifications Host Coprocessor

Model, Intel Xeon X5680 Phi SE10X

Number of physical cores 2 × 6 61

Hyper-threading factor 2 × 4 ×

Number of logical cores 24 244

Frequency, GHz 3.33 1.1

Peak performance, TFLOPS 0.371 1.076

Memory, Gb 24 8

Cache, Mb 12 30.5

Algorithm 3. Support count sub-algorithm.

Input: daShed, num_of_threads
Output: daShed

if daShed.size () ≥ num_of_threads then
 #pragma omp parallel for
 for all I Î daShed do
 I.stop ← I.stop + 1
 for all T ∈ Bfirst ... Blast do
 if I.mask AND T = I.mask then
 I.supp ← I.supp + 1
else
 omp_set_nested (true)
 #pragma omp parallel for num_threads (daShed.size ())
 for all I Î daShed do
 I.stop ← I.stop + 1
 #pragma omp parallel for reduction (+: I.supp)
 num_threads

ASHED

_ _
D . ()

num of threads
size

 for all T ∈ Bfirst ... Blast do

 if I.mask AND T = I.mask then
 I.supp ← I.supp + 1

(a) Number of threads is less than number of "dashed"
itemsets: a thread takes its "dashed" itemsets to count.

Figure 3. Load balancing in the Parallel DIC algorithm.

(b) Number of threads is greater than number of
"dashed" itemsets: a thread takes one "dashed" itemset

and forks descendant threads to count.

Algorithm 4. Pruning sub-algorithm.

Input: daShed, num_of_threads
Output: daShed

#pragma omp parallel for num_threads (num_of_threads)
for all I Î daShed and I.shape = CirCle do
 if I.supp ≥ minsup then
 Move appropriate itemsets to Dashed Box set
 I.shape ← Box

 else
 Prune clearly infrequent itemsets
 suppmax ← I.supp + M · (stopmax – I.stop)
 if suppmax < minsup then
 I.shape ← nil

 for all J Î daShed and J.shape = CirCle do
 if I.mask AND J.mask = I.mask then
 J.shape ← nil

daShed.erase ({I | I.shape = nil})

Algorithm 5. Check full pass sub-algorithm.

Input: daShed, num_of_threads
Output: daShed

#pragma omp parallel for num_threads (num_of_threads)
for all I Î daShed do
 if I.stop = stopmax then
 if I.supp ≥ minsup then
 I.shape ← Box

 Solid.push_back (I)
 I.shape ← nil

daShed.erase ({I | I.shape = nil})

216 217M. Zymbler Parallel Algorithm for Frequent Itemset Mining on Intel Many-core Systems

Measures. In the experiments, we evaluated
the speedup and parallel efficiency of the de-
veloped algorithm, where such characteristics
of parallel-algorithm scalability are defined as
follows. Speedup and parallel efficiency of a
parallel algorithm employing k threads are cal-
culated, respectively, as

() 1

k

ts k t=

and

() () ,
s k

e k k=

where t1 and tk are the run times of the algo-
rithm when one and k threads are employed,
respectively.
Competitors. In the previous work [23], our
experiments showed that the performance of
serial implementation of DIC in [8] is substan-
tially inferior to both our algorithm and serial
Apriori in [2]. Thus, in this paper, we compared
the performance of Parallel DIC with serial im-
plementations of the following algorithms in
[2]: Apriori, Eclat, and FP Growth.
Datasets. Experiments in our previous work
[23] also showed that, for datasets with hun-
dreds of thousands of transactions (e.g. the
SKIN [6] dataset and the RECORDLINK [18]
dataset with 245,057 and 574,913 transactions,
respectively), Parallel DIC demonstrates deg-
radation of the speedup and parallel efficiency.
This is because of the following reasons. For
datasets with relatively small number of short
transactions, our algorithm provides insufficient
amount of work in support counting, which is
the heaviest part of the algorithm. At the same
time, efficiency of Intel Xeon Phi utilization as
well as vectorization increases with the growth
of the problem size [20]. Thus, in this paper, we
evaluated our algorithm on two datasets, each
of which contains tens of millions transactions
(cf. Table 2).

Synthetic dataset 20M was prepared through
IBM Quest Data Generator [10] similar to the
paper [3] where the original DIC algorithm was
proposed. Eventually, the 20M dataset gives
more than 4,600 frequent itemsets with at most
6 items.
Tornado20M is a real dataset with one-month
voltage log of the Tornado SUSU supercom-
puter [11] nodes. Such a log is mined to dis-
cover the strong associations among the racks,
shelves, and nodes of the supercomputer, and
dangerous values of voltage. Tornado SUSU
consists of 8 racks, and each rack consists of 8
shelves, each with 6 nodes onboard. For each
node, there are 4 possible values of measured
voltage, and for each possible value there are 4
statuses (i.e. "less than norm", "norm", "greater
than norm", and "error"). Thus, it is possible to
code a transaction of such a log using 64 bits
(i.e. 8 bits for the number of a rack, 8 bits for
the number of a shelf, and 8 bits for each of
6 nodes where each pair of bits represents the
status of the measured voltage). Eventually, the
Tornado20M dataset gives more than 340 fre-
quent itemsets with at most 4 items.
Parameters. In the experiments, we took M,
the number of transactions that should be pro-
cessed before a stop, as n /2 in order to avoid
overheads for initializing threads at each stop
and increase the algorithm performance. We
also evaluated the effect of the minsup thresh-
old on the algorithm speedup. As for the exper-
iments studying the algorithm scalability, we
took minsup threshold as 0.1 as the most com-
mon value of support.

5.2. Results

Figure 4 illustrates the performance of Paral-
lel DIC on both Intel Xeon and Intel Xeon Phi
in comparison with serial Apriori, FP Growth,
and Eclat on Intel Xeon. Among serial imple-

mentations, Apriori performs the worst for the
20M dataset and performs the best for the Tor-
nado20M dataset because this algorithm perfor-
mance suffers when datasets with long transac-
tions and the large number of frequent itemsets
are processed, and may overtake competitors
when transactions are relatively short and the
number of frequent itemsets is small.
As we can see, Parallel DIC on Intel Xeon Phi
outruns itself on two Intel Xeon up to 1.5 times.
Parallel DIC on Intel Xeon Phi also outruns
the best serial competitor on Intel Xeon up to
2 times. This is because more threads of Intel
Xeon Phi allow for better exploiting the vector-
ization abilities of our algorithm.

In addition, we compare performance of Par-
allel DIC for the cases when the Intel compiler
auto-vectorization option was enabled or dis-
abled. Results in Table 3 show that, for the Tor-
nado20M dataset, vectorization gives a perfor-
mance boost of 1.2 and 2.6 times on Intel Xeon
and Intel Xeon Phi, respectively.

Figure 5 depicts the speedup and parallel effi-
ciency of Parallel DIC. On Intel Xeon Phi, our
algorithm shows close-to-linear speedup and
near 100% parallel efficiency, when the num-
ber of threads matches the number of physical
cores the algorithm is running on. When the
algorithm employs more than one thread per
physical core, speedup becomes sublinear (it
slows down to 88 and 108 for the 20M data-
set and the Tornado20M dataset, respectively),
and parallel efficiency diminishes accordingly
(down to 37% and 45% with respect to a data-
set). On two Intel Xeon, there is a similar ten-
dency but with more moderate results for the
Tornado20M dataset. For this dataset, the al-
gorithm speedup and parallel efficiency drop
to 8 and 35%, respectively, when the maximal
possible number of threads per physical core is
employed.
Figure 6 depicts speedup of the algorithm with
respect to the minsup threshold. As expected,
on both platforms and for both datasets, the al-
gorithm speedup suffers from decreasing of the
minsup value since this significantly increases
the number of candidate itemsets to be counted.
Our algorithm still shows better speedup when
only physical cores are involved, and better
speedup on Intel Xeon Phi system than on two
Intel Xeon nodes.
Summing up, Parallel DIC demonstrates good
performance and scalability for large datasets
(about tens of millions of transactions) and for

Figure 4. Comparison of performance.

Table 2. Specifications of datasets.

bb Category
Transaction Frequent itemsets (minsup = 0.1)

n m Avg. length Total number kmax

20M Synthetic 2 · 107 64 40 4,606 6

Tornado20M Real 2 · 107 64 15 346 4

(a) 20M dataset

(b) Tornado20M dataset.

Table 3. Specifications of hardware.

Hardware
Run time, s when vectorization is

enabled disabled

Intel Xeon Phi 4.00 10.36

Intel Xeon 6.95 8.55

216 217M. Zymbler Parallel Algorithm for Frequent Itemset Mining on Intel Many-core Systems

Measures. In the experiments, we evaluated
the speedup and parallel efficiency of the de-
veloped algorithm, where such characteristics
of parallel-algorithm scalability are defined as
follows. Speedup and parallel efficiency of a
parallel algorithm employing k threads are cal-
culated, respectively, as

() 1

k

ts k t=

and

() () ,
s k

e k k=

where t1 and tk are the run times of the algo-
rithm when one and k threads are employed,
respectively.
Competitors. In the previous work [23], our
experiments showed that the performance of
serial implementation of DIC in [8] is substan-
tially inferior to both our algorithm and serial
Apriori in [2]. Thus, in this paper, we compared
the performance of Parallel DIC with serial im-
plementations of the following algorithms in
[2]: Apriori, Eclat, and FP Growth.
Datasets. Experiments in our previous work
[23] also showed that, for datasets with hun-
dreds of thousands of transactions (e.g. the
SKIN [6] dataset and the RECORDLINK [18]
dataset with 245,057 and 574,913 transactions,
respectively), Parallel DIC demonstrates deg-
radation of the speedup and parallel efficiency.
This is because of the following reasons. For
datasets with relatively small number of short
transactions, our algorithm provides insufficient
amount of work in support counting, which is
the heaviest part of the algorithm. At the same
time, efficiency of Intel Xeon Phi utilization as
well as vectorization increases with the growth
of the problem size [20]. Thus, in this paper, we
evaluated our algorithm on two datasets, each
of which contains tens of millions transactions
(cf. Table 2).

Synthetic dataset 20M was prepared through
IBM Quest Data Generator [10] similar to the
paper [3] where the original DIC algorithm was
proposed. Eventually, the 20M dataset gives
more than 4,600 frequent itemsets with at most
6 items.
Tornado20M is a real dataset with one-month
voltage log of the Tornado SUSU supercom-
puter [11] nodes. Such a log is mined to dis-
cover the strong associations among the racks,
shelves, and nodes of the supercomputer, and
dangerous values of voltage. Tornado SUSU
consists of 8 racks, and each rack consists of 8
shelves, each with 6 nodes onboard. For each
node, there are 4 possible values of measured
voltage, and for each possible value there are 4
statuses (i.e. "less than norm", "norm", "greater
than norm", and "error"). Thus, it is possible to
code a transaction of such a log using 64 bits
(i.e. 8 bits for the number of a rack, 8 bits for
the number of a shelf, and 8 bits for each of
6 nodes where each pair of bits represents the
status of the measured voltage). Eventually, the
Tornado20M dataset gives more than 340 fre-
quent itemsets with at most 4 items.
Parameters. In the experiments, we took M,
the number of transactions that should be pro-
cessed before a stop, as n /2 in order to avoid
overheads for initializing threads at each stop
and increase the algorithm performance. We
also evaluated the effect of the minsup thresh-
old on the algorithm speedup. As for the exper-
iments studying the algorithm scalability, we
took minsup threshold as 0.1 as the most com-
mon value of support.

5.2. Results

Figure 4 illustrates the performance of Paral-
lel DIC on both Intel Xeon and Intel Xeon Phi
in comparison with serial Apriori, FP Growth,
and Eclat on Intel Xeon. Among serial imple-

mentations, Apriori performs the worst for the
20M dataset and performs the best for the Tor-
nado20M dataset because this algorithm perfor-
mance suffers when datasets with long transac-
tions and the large number of frequent itemsets
are processed, and may overtake competitors
when transactions are relatively short and the
number of frequent itemsets is small.
As we can see, Parallel DIC on Intel Xeon Phi
outruns itself on two Intel Xeon up to 1.5 times.
Parallel DIC on Intel Xeon Phi also outruns
the best serial competitor on Intel Xeon up to
2 times. This is because more threads of Intel
Xeon Phi allow for better exploiting the vector-
ization abilities of our algorithm.

In addition, we compare performance of Par-
allel DIC for the cases when the Intel compiler
auto-vectorization option was enabled or dis-
abled. Results in Table 3 show that, for the Tor-
nado20M dataset, vectorization gives a perfor-
mance boost of 1.2 and 2.6 times on Intel Xeon
and Intel Xeon Phi, respectively.

Figure 5 depicts the speedup and parallel effi-
ciency of Parallel DIC. On Intel Xeon Phi, our
algorithm shows close-to-linear speedup and
near 100% parallel efficiency, when the num-
ber of threads matches the number of physical
cores the algorithm is running on. When the
algorithm employs more than one thread per
physical core, speedup becomes sublinear (it
slows down to 88 and 108 for the 20M data-
set and the Tornado20M dataset, respectively),
and parallel efficiency diminishes accordingly
(down to 37% and 45% with respect to a data-
set). On two Intel Xeon, there is a similar ten-
dency but with more moderate results for the
Tornado20M dataset. For this dataset, the al-
gorithm speedup and parallel efficiency drop
to 8 and 35%, respectively, when the maximal
possible number of threads per physical core is
employed.
Figure 6 depicts speedup of the algorithm with
respect to the minsup threshold. As expected,
on both platforms and for both datasets, the al-
gorithm speedup suffers from decreasing of the
minsup value since this significantly increases
the number of candidate itemsets to be counted.
Our algorithm still shows better speedup when
only physical cores are involved, and better
speedup on Intel Xeon Phi system than on two
Intel Xeon nodes.
Summing up, Parallel DIC demonstrates good
performance and scalability for large datasets
(about tens of millions of transactions) and for

Figure 4. Comparison of performance.

Table 2. Specifications of datasets.

bb Category
Transaction Frequent itemsets (minsup = 0.1)

n m Avg. length Total number kmax

20M Synthetic 2 · 107 64 40 4,606 6

Tornado20M Real 2 · 107 64 15 346 4

(a) 20M dataset

(b) Tornado20M dataset.

Table 3. Specifications of hardware.

Hardware
Run time, s when vectorization is

enabled disabled

Intel Xeon Phi 4.00 10.36

Intel Xeon 6.95 8.55

218 219M. Zymbler Parallel Algorithm for Frequent Itemset Mining on Intel Many-core Systems

the most common value of minimum support
threshold (minsup = 0.1) on Intel many-core
platforms, especially on the Intel Xeon Phi sys-
tem.

5.3. Discussion

In this paper, we propose a parallel version of
the DIC algorithm for Intel Xeon and Xeon Phi
many-core systems and exploit a direct bit rep-
resentation of both transactional database and
itemsets. Our implementation codes a transac-
tion or an itemset as a 64 bit integer, i.e. m, the
number of items in the problem statement, is
limited by 64. This limitation is clearly unac-
ceptable for some applications, e.g. search for
items that are frequently purchased together by
customers in a supermarket, search for frequent
DNA sequences, and so on. However, the fol-
lowing brief review of papers shows that our
algorithm is applicable for discovering interest-

ing association rules in medical data. Li et al.
in [13] proposed a method for mining optimal
risk pattern sets and evaluated the algorithm
on two real medical datasets with less than 30
attributes. In [14] and [15], Ordonez et al. in-
troduced an algorithm to discover association
rules in medical data, which incorporates sever-
al important constraints. Authors described how
medical records were mapped to a transactional
format suitable for mining. In the experiments,
authors took at most 25 attributes of more than
100 patient's attributes since the chosen attri-
butes provide a complete picture of patients'. In
addition, the authors' experience showed that
rules with more than 5 medical attributes were
hard to interpret. At last, Pattanaprateep et al. in
[17] described mining the association rules in
a hospital database with more than 2.5 million
records of patients' visits including attributes
regarding their demographics, diagnoses, and
drug utilization.

6. Conclusion

In this paper, we have presented Parallel DIC,
a parallel implementation of Dynamic Itemset
Counting (DIC) algorithm for Intel many-core
systems. DIC is a variation of classical Apri-
ori algorithm for frequent itemset mining. We
parallelize the DIC algorithm through Open-
MP technology and thread-level parallelism.
We propose the direct bit representation for
transactions and itemsets with the assumption
that such a representation of the transactional
database fits in main memory. This technique
reduces memory space for storing the transac-
tional database, simplifies the support count via
logical bit-wise operation, and provides vector-
ization of this step. Our algorithm balances the
support count between threads, depending on
the current total number of candidate itemsets.
We performed an experimental evaluation on
the platforms of the Intel Xeon CPU and the

Xeon Phi coprocessors with large synthetic and
real databases (about millions of transactions),
showing the good performance and scalability
of the proposed algorithm, especially on the In-
tel Xeon Phi system.
However, it should be remembered that since
Parallel DIC exploits the direct bit technique,
this limits the number of items in the problem
statement to 64. Nevertheless, literature review
shows that despite this limitation, our algorithm
is applicable for discovering interesting associ-
ation rules in large medical datasets.

Acknowledgement

This work was financially supported by
the Russian Foundation for Basic Research
(grant No. 17-07-00463), by Act 211 Govern-
ment of the Russian Federation (contract No.

Figure 5. Speedup and parallel efficiency of the algorithm.

(a) 2 × Intel Xeon

(b) Intel Xeon Phi

Figure 6. Speedup of the algorithm on Tornado20M (left) and 20M (right) datasets
w.r.t. the minsup threshold.

(a) 2 × Intel Xeon

(b) Intel Xeon Phi

218 219M. Zymbler Parallel Algorithm for Frequent Itemset Mining on Intel Many-core Systems

the most common value of minimum support
threshold (minsup = 0.1) on Intel many-core
platforms, especially on the Intel Xeon Phi sys-
tem.

5.3. Discussion

In this paper, we propose a parallel version of
the DIC algorithm for Intel Xeon and Xeon Phi
many-core systems and exploit a direct bit rep-
resentation of both transactional database and
itemsets. Our implementation codes a transac-
tion or an itemset as a 64 bit integer, i.e. m, the
number of items in the problem statement, is
limited by 64. This limitation is clearly unac-
ceptable for some applications, e.g. search for
items that are frequently purchased together by
customers in a supermarket, search for frequent
DNA sequences, and so on. However, the fol-
lowing brief review of papers shows that our
algorithm is applicable for discovering interest-

ing association rules in medical data. Li et al.
in [13] proposed a method for mining optimal
risk pattern sets and evaluated the algorithm
on two real medical datasets with less than 30
attributes. In [14] and [15], Ordonez et al. in-
troduced an algorithm to discover association
rules in medical data, which incorporates sever-
al important constraints. Authors described how
medical records were mapped to a transactional
format suitable for mining. In the experiments,
authors took at most 25 attributes of more than
100 patient's attributes since the chosen attri-
butes provide a complete picture of patients'. In
addition, the authors' experience showed that
rules with more than 5 medical attributes were
hard to interpret. At last, Pattanaprateep et al. in
[17] described mining the association rules in
a hospital database with more than 2.5 million
records of patients' visits including attributes
regarding their demographics, diagnoses, and
drug utilization.

6. Conclusion

In this paper, we have presented Parallel DIC,
a parallel implementation of Dynamic Itemset
Counting (DIC) algorithm for Intel many-core
systems. DIC is a variation of classical Apri-
ori algorithm for frequent itemset mining. We
parallelize the DIC algorithm through Open-
MP technology and thread-level parallelism.
We propose the direct bit representation for
transactions and itemsets with the assumption
that such a representation of the transactional
database fits in main memory. This technique
reduces memory space for storing the transac-
tional database, simplifies the support count via
logical bit-wise operation, and provides vector-
ization of this step. Our algorithm balances the
support count between threads, depending on
the current total number of candidate itemsets.
We performed an experimental evaluation on
the platforms of the Intel Xeon CPU and the

Xeon Phi coprocessors with large synthetic and
real databases (about millions of transactions),
showing the good performance and scalability
of the proposed algorithm, especially on the In-
tel Xeon Phi system.
However, it should be remembered that since
Parallel DIC exploits the direct bit technique,
this limits the number of items in the problem
statement to 64. Nevertheless, literature review
shows that despite this limitation, our algorithm
is applicable for discovering interesting associ-
ation rules in large medical datasets.

Acknowledgement

This work was financially supported by
the Russian Foundation for Basic Research
(grant No. 17-07-00463), by Act 211 Govern-
ment of the Russian Federation (contract No.

Figure 5. Speedup and parallel efficiency of the algorithm.

(a) 2 × Intel Xeon

(b) Intel Xeon Phi

Figure 6. Speedup of the algorithm on Tornado20M (left) and 20M (right) datasets
w.r.t. the minsup threshold.

(a) 2 × Intel Xeon

(b) Intel Xeon Phi

220 221M. Zymbler Parallel Algorithm for Frequent Itemset Mining on Intel Many-core Systems

02.A03.21.0011), and by the Ministry of Ed-
ucation and Science of Russian Federation
(government order 2.7905.2017/8.9). The au-
thor thanks Lyudmila Kuznetsova and Valentin
Komkov for their valuable comments on appli-
cation of the algorithm in medicine.

References

[1] R. Agrawal and R. Srikant, "Fast Algorithms for
Mining Association Rules in Large Databases",
in Proc. of the 20th International Conference on
Very Large Data Bases (VLDB'94), 1994, pp.
487–499.

[2] C. Borgelt, "Frequent Item Set Mining", WIREs:
Data Mining and Knowledge Discovery, vol. 2,
no. 6, pp. 437–456, 2012.
https://doi.org/10.1002/widm.1074

[3] S. Brin et al., "Dynamic Itemset Counting and Im-
plication Rules for Market Basket Data", in Proc.
of the 1997 ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD'1997),
1997, pp. 255–264.
https://doi.org/10.1145/253260.253325

[4] D. Burdick et al., "MAFIA: A Maximal Frequent
Itemset Algorithm", IEEE Trans. Knowl. Data
Eng., vol. 17, no. 11, pp. 1490–1504, 2005.
https://doi.org/10.1109/TKDE.2005.183

[5] D. W. Cheung et al., "An Adaptive Algorithm for
Mining Association Rules on Shared-memory
Parallel Machines", Distributed and Parallel Da-
tabases, vol. 9, no. 2, pp. 99–132, 2001.
https://doi.org/10.1023/A:1018951022124

[6] A. Dhall et al., "Adaptive Digital Makeup", in
Proc. of the 5th International Symposium on Ad-
vances in Visual Computing (ISVC'2009), Spring-
er, 2009, vol. 5876. pp. 728–736.
https://doi.org/10.1007/978-3-642-10520-3_69

[7] J. Dong and M. Han, "BitTableFI: an Efficient
Mining Frequent Itemsets Algorithm", Knowl.-
Based Syst., vol. 20, no. 4, pp. 329–335, 2007.
https://doi.org/10.1016/j.knosys.2006.08.005

[8] B. Goethals, "Frequent Pattern Mining Imple-
mentations",
http://adrem.ua.ac.be/~goethals/software/

[9] M. HooshSadat et al., "Fastest Association Rule
Mining Algorithm Predictor (FARM AP)", in
Proc. of the 4th International C* Conference
on Computer Science and Software Engineering
(C3S2E'2011), 2011, pp. 43–50.
https://doi.org/10.1145/1992896.1992902

[10] IBM Quest Synthetic Data Generator
https://ibmquestdatagen.sourceforge.io/

[11] P. Kostenetskiy and P. Semenikhina, "SUSU Su-
percomputer Resources for Industry and Fun-

damental Science", in Proc. of the 2018 Global
Smart Industry Conference, (GloSIC'2018), 2018,
art. no. 8570068.
https://doi.org/10.1109/GloSIC.2018.8570068

[12] P. Kumar et al., "Bitwise Dynamic Itemset Count-
ing Algorithm", in Proc. of the IEEE Internation-
al Conference on Computational Intelligence and
Computing Research (ICCIC'2015), 2015, pp.
1–4.

[13] L. Li et al., "Efficient Discovery of Risk Patterns
in Medical Data", Artificial Intelligence in Medi-
cine, vol. 45, no. 1, pp. 77–89, 2009.
https://doi.org/10.1016/j.artmed.2008.07.008

[14] C. Ordonez et al., "Constraining and Summariz-
ing Association Rules in Medical Data", Knowl-
edge and Information Systems, vol. 9, no. 3, pp.
1–2, 2006.
https://doi.org/10.1007/s10115-005-0226-5

[15] C. Ordonez et al., "Discovering Interesting Asso-
ciation Rules in Medical Data", in Proc. of the
2000 ACM SIGMOD Workshop on Research Is-
sues in Data Mining and Knowledge Discovery,
2000, pp. 78–85.

[16] P. Paranjape-Voditel and U. Deshpande, "A DIC-
based Distributed Algorithm for Frequent Itemset
Generation", Journal of Software, vol. 6, no. 2,
pp. 306–313, 2011.

[17] O. Pattanaprateep et al., "Evaluation of Rational
Nonsteroidal Anti-inflammatory Drugs and Gas-
tro-protective Agents Use; Association Rule Data
Mining using Outpatient Prescription Patterns",
BMC Med. Inf. and Decision Making, vol. 17, no.
1, pp. 96:1–96:7, 2017.
https://doi.org/10.1186/s12911-017-0496-3

[18] M. Sariyar et al., "Controlling False Match Rates
in Record Linkage using Extreme Value Theory",
Journal of Biomedical Informatics, vol. 44, no. 4,
pp. 648–654, 2011.
https://doi.org/10.1016/j.jbi.2011.02.008

[19] B. Schlegel et al., "Scalable Frequent Itemset
Mining on Many-core Processors", in Proc. of the
9th International Workshop on Data Management
on New Hardware (DaMoN'1013), 2013, pp. 3.
https://doi.org/10.1145/2485278.2485281

[20] I. Sokolinskaya and L. Sokolinsky, "Revised Pur-
suit Algorithm for Solving Non-stationary Linear
Programming Problems on Modern Computing
Clusters with Many-core Accelerators", Commu-
nications in Computer and Information Science,
vol. 687, pp. 212–223, 2016.
https://doi.org/10.1007/978-3-319-55669-7_17

[21] A. Sodani et al., "Knights Landing: Second-gen-
eration Intel Xeon Phi Product", IEEE Micro, vol.
36, no. 2, pp. 34–46, 2016.
https://doi.org/10.1109/MM.2016.25

[22] M. J. Zaki et al., "New Algorithms for Fast Dis-
covery of Association Rules", in Proc. of the 3rd

International Conference on Knowledge Discov-
ery and Data Mining (KDD'97), 1997, pp. 283–
286.

[23] M. Zymbler, "Accelerating Dynamic Itemset
Counting on Intel Many-core Systems", in Proc.
of the 2017 40th International Convention on
Information and Communication Technology,
Electronics and Microelectronics (MIPRO'2017),
2017, pp. 1575–1580.
https://doi.org/10.23919/MIPRO.2017.7973631

Received: September 2018
Revised: December 2018

Accepted: December 2018

Contact address:
Mikhail Zymbler

South Ural State University
Chelyabinsk

Russian Federation
e-mail: mzym@susu.ru

Mikhail ZyMBler holds the Candidate of Science (PhD) degree (in
Physics and Mathematics). He is currently working as an Associ-
ate Professor in the System Programming Department at the School
of Electrical Engineering and Computer Science of South Ural State
University (Chelyabinsk, Russia). His major research interests are in
parallel and distributed data mining algorithms.

https://doi.org/10.1002/widm.1074
https://doi.org/10.1145/253260.253325
https://doi.org/10.1109/TKDE.2005.183
https://doi.org/10.1023/A:1018951022124
https://doi.org/10.1007/978-3-642-10520-3_69
https://doi.org/10.1016/j.knosys.2006.08.005
http://adrem.ua.ac.be/~goethals/software/
https://doi.org/10.1145/1992896.1992902
https://ibmquestdatagen.sourceforge.io/
https://doi.org/10.1109/GloSIC.2018.8570068
https://doi.org/10.1016/j.artmed.2008.07.008
https://doi.org/10.1007/s10115-005-0226-5
https://doi.org/10.1186/s12911-017-0496-3
https://doi.org/10.1016/j.jbi.2011.02.008
https://doi.org/10.1145/2485278.2485281
https://doi.org/10.1007/978-3-319-55669-7_17
https://doi.org/10.1109/MM.2016.25
https://doi.org/10.23919/MIPRO.2017.7973631

220 221M. Zymbler Parallel Algorithm for Frequent Itemset Mining on Intel Many-core Systems

02.A03.21.0011), and by the Ministry of Ed-
ucation and Science of Russian Federation
(government order 2.7905.2017/8.9). The au-
thor thanks Lyudmila Kuznetsova and Valentin
Komkov for their valuable comments on appli-
cation of the algorithm in medicine.

References

[1] R. Agrawal and R. Srikant, "Fast Algorithms for
Mining Association Rules in Large Databases",
in Proc. of the 20th International Conference on
Very Large Data Bases (VLDB'94), 1994, pp.
487–499.

[2] C. Borgelt, "Frequent Item Set Mining", WIREs:
Data Mining and Knowledge Discovery, vol. 2,
no. 6, pp. 437–456, 2012.
https://doi.org/10.1002/widm.1074

[3] S. Brin et al., "Dynamic Itemset Counting and Im-
plication Rules for Market Basket Data", in Proc.
of the 1997 ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD'1997),
1997, pp. 255–264.
https://doi.org/10.1145/253260.253325

[4] D. Burdick et al., "MAFIA: A Maximal Frequent
Itemset Algorithm", IEEE Trans. Knowl. Data
Eng., vol. 17, no. 11, pp. 1490–1504, 2005.
https://doi.org/10.1109/TKDE.2005.183

[5] D. W. Cheung et al., "An Adaptive Algorithm for
Mining Association Rules on Shared-memory
Parallel Machines", Distributed and Parallel Da-
tabases, vol. 9, no. 2, pp. 99–132, 2001.
https://doi.org/10.1023/A:1018951022124

[6] A. Dhall et al., "Adaptive Digital Makeup", in
Proc. of the 5th International Symposium on Ad-
vances in Visual Computing (ISVC'2009), Spring-
er, 2009, vol. 5876. pp. 728–736.
https://doi.org/10.1007/978-3-642-10520-3_69

[7] J. Dong and M. Han, "BitTableFI: an Efficient
Mining Frequent Itemsets Algorithm", Knowl.-
Based Syst., vol. 20, no. 4, pp. 329–335, 2007.
https://doi.org/10.1016/j.knosys.2006.08.005

[8] B. Goethals, "Frequent Pattern Mining Imple-
mentations",
http://adrem.ua.ac.be/~goethals/software/

[9] M. HooshSadat et al., "Fastest Association Rule
Mining Algorithm Predictor (FARM AP)", in
Proc. of the 4th International C* Conference
on Computer Science and Software Engineering
(C3S2E'2011), 2011, pp. 43–50.
https://doi.org/10.1145/1992896.1992902

[10] IBM Quest Synthetic Data Generator
https://ibmquestdatagen.sourceforge.io/

[11] P. Kostenetskiy and P. Semenikhina, "SUSU Su-
percomputer Resources for Industry and Fun-

damental Science", in Proc. of the 2018 Global
Smart Industry Conference, (GloSIC'2018), 2018,
art. no. 8570068.
https://doi.org/10.1109/GloSIC.2018.8570068

[12] P. Kumar et al., "Bitwise Dynamic Itemset Count-
ing Algorithm", in Proc. of the IEEE Internation-
al Conference on Computational Intelligence and
Computing Research (ICCIC'2015), 2015, pp.
1–4.

[13] L. Li et al., "Efficient Discovery of Risk Patterns
in Medical Data", Artificial Intelligence in Medi-
cine, vol. 45, no. 1, pp. 77–89, 2009.
https://doi.org/10.1016/j.artmed.2008.07.008

[14] C. Ordonez et al., "Constraining and Summariz-
ing Association Rules in Medical Data", Knowl-
edge and Information Systems, vol. 9, no. 3, pp.
1–2, 2006.
https://doi.org/10.1007/s10115-005-0226-5

[15] C. Ordonez et al., "Discovering Interesting Asso-
ciation Rules in Medical Data", in Proc. of the
2000 ACM SIGMOD Workshop on Research Is-
sues in Data Mining and Knowledge Discovery,
2000, pp. 78–85.

[16] P. Paranjape-Voditel and U. Deshpande, "A DIC-
based Distributed Algorithm for Frequent Itemset
Generation", Journal of Software, vol. 6, no. 2,
pp. 306–313, 2011.

[17] O. Pattanaprateep et al., "Evaluation of Rational
Nonsteroidal Anti-inflammatory Drugs and Gas-
tro-protective Agents Use; Association Rule Data
Mining using Outpatient Prescription Patterns",
BMC Med. Inf. and Decision Making, vol. 17, no.
1, pp. 96:1–96:7, 2017.
https://doi.org/10.1186/s12911-017-0496-3

[18] M. Sariyar et al., "Controlling False Match Rates
in Record Linkage using Extreme Value Theory",
Journal of Biomedical Informatics, vol. 44, no. 4,
pp. 648–654, 2011.
https://doi.org/10.1016/j.jbi.2011.02.008

[19] B. Schlegel et al., "Scalable Frequent Itemset
Mining on Many-core Processors", in Proc. of the
9th International Workshop on Data Management
on New Hardware (DaMoN'1013), 2013, pp. 3.
https://doi.org/10.1145/2485278.2485281

[20] I. Sokolinskaya and L. Sokolinsky, "Revised Pur-
suit Algorithm for Solving Non-stationary Linear
Programming Problems on Modern Computing
Clusters with Many-core Accelerators", Commu-
nications in Computer and Information Science,
vol. 687, pp. 212–223, 2016.
https://doi.org/10.1007/978-3-319-55669-7_17

[21] A. Sodani et al., "Knights Landing: Second-gen-
eration Intel Xeon Phi Product", IEEE Micro, vol.
36, no. 2, pp. 34–46, 2016.
https://doi.org/10.1109/MM.2016.25

[22] M. J. Zaki et al., "New Algorithms for Fast Dis-
covery of Association Rules", in Proc. of the 3rd

International Conference on Knowledge Discov-
ery and Data Mining (KDD'97), 1997, pp. 283–
286.

[23] M. Zymbler, "Accelerating Dynamic Itemset
Counting on Intel Many-core Systems", in Proc.
of the 2017 40th International Convention on
Information and Communication Technology,
Electronics and Microelectronics (MIPRO'2017),
2017, pp. 1575–1580.
https://doi.org/10.23919/MIPRO.2017.7973631

Received: September 2018
Revised: December 2018

Accepted: December 2018

Contact address:
Mikhail Zymbler

South Ural State University
Chelyabinsk

Russian Federation
e-mail: mzym@susu.ru

Mikhail ZyMBler holds the Candidate of Science (PhD) degree (in
Physics and Mathematics). He is currently working as an Associ-
ate Professor in the System Programming Department at the School
of Electrical Engineering and Computer Science of South Ural State
University (Chelyabinsk, Russia). His major research interests are in
parallel and distributed data mining algorithms.

https://doi.org/10.1002/widm.1074
https://doi.org/10.1145/253260.253325
https://doi.org/10.1109/TKDE.2005.183
https://doi.org/10.1023/A:1018951022124
https://doi.org/10.1007/978-3-642-10520-3_69
https://doi.org/10.1016/j.knosys.2006.08.005
http://adrem.ua.ac.be/~goethals/software/
https://doi.org/10.1145/1992896.1992902
https://ibmquestdatagen.sourceforge.io/
https://doi.org/10.1109/GloSIC.2018.8570068
https://doi.org/10.1016/j.artmed.2008.07.008
https://doi.org/10.1007/s10115-005-0226-5
https://doi.org/10.1186/s12911-017-0496-3
https://doi.org/10.1016/j.jbi.2011.02.008
https://doi.org/10.1145/2485278.2485281
https://doi.org/10.1007/978-3-319-55669-7_17
https://doi.org/10.1109/MM.2016.25
https://doi.org/10.23919/MIPRO.2017.7973631

 HistoryItem_V1
 Shuffle

 Group size: 1
 Shuffle type: Normal, or perfect bound
 Rule: 1 1

 1
 1
 1
 1 1
 704
 286
 2
 2

 CurrentAVDoc

 Normal

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0
 Quite Imposing Plus 3
 1

 1

 HistoryList_V1
 qi2base

