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Series

A search for patterns in uncertain time series is 
time-expensive in today's large databases using the 
currently available methods. To accelerate the search 
process for uncertain time series data, in this paper, 
we explore a spatial index structure, which uses uncer-
tain information stored in minimum bounding rectan-
gle and ameliorates the general prune/search process 
along the path from the root to leaves. To get a better 
performance, we normalize the uncertain time series 
using the weighted variance before the prune/hit pro-
cess. Meanwhile, we add two goodness measures with 
respect to the variance to improve the robustness. The 
extensive experiments show that, compared with the 
primitive probabilistic similarity search algorithm, the 
prune/hit process of the spatial index can be more effi-
cient and robust using the specific preprocess and vari-
ant index operations with just a little loss of accuracy.
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1. Introduction

Time series widely exists in various application 
fields such as GIS [6], stock market [16], as-
tronomy [33], [37], medical application [36],  
etc. With the development of modern tech-
nology and applications, the requirements of 
dealing with time series dramatically increases. 
There are several examples of processing time 
series data. In medical application [36], re-

al-time health timestamp data are used to detect 
patients' health condition. In the stock market 
[16], time series data are used to predict the val-
ues of the index in upcoming days. In GIS [6], 
a recognition system is proposed for time series 
data through acoustic emission. More recently, 
time series are used for modeling coronal mass 
ejection in [33], [37], which are analyzed by 
clustering and visualization [34], [35].
With massive time series data available, an ef-
ficient process for searching a specific pattern 
from the database is clearly becoming more and 
more essential. A lot of effort has been devoted 
to working with time series and some essential 
issues have been investigated, such as probabi-
listic range queries [13], [19], similarity match 
for uncertain time series [2], [7], [9], [11], pat-
tern detection for uncertain data [18], and so 
on. Among these issues, one of the common 
requirements is to efficiently find probabilisti-
cally approximate matches from a collection of 
data items for a given query item.
To speed up the match process of a time series, 
several variant indexes are developed to han-
dle diverse data objects. With an index struc-
ture, the target metric such as similarity mea-
surement can be calculated by using feature 
extraction or retrieval values. R*-tree [24], for 
example, is a kind of spatial index and it treats 
each timestamp as one dimension in a spatial 
space. The dimension of this spatial space is of 
equal length as the time series. Here it is as-
sumed that all series in the database must be 
isometric and the prune/hit function can be 
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implicitly or explicitly represented by geome-
try metrics including distance, margin and area 
[24]. 
Uncertainty extensively happens in the real 
world and has been studied in [1]–[4], [7], 
[9], [11], [12], [14], [15], [17], [18]. Instead 
of storing a single value at each timestamp in 
the classical time series, each timestamp can 
be modeled as a range of possible bucket or a 
variable with noise that is linked with a proba-
bility density function (pdf). In contrast to the 
deterministic time series, similarity queries for 
the uncertain one is more uncertain due to the 
underlying noise of data objects. As a result, the 
returned answers are always probably approxi-
mately correct, with probability 1 – δ indicating 
degrees in which they meet the query.
Traditional time series with a large size is fac-
ing an overhead in efficiency, let alone the un-
certain time series. For the massive data set 
consisting of the uncertain time series, match-
ing or searching is not simple, since we need to 
consider a huge number of noisy items taking 
along some probability information. Taking the 
probability information into consideration sig-
nificantly increases the time cost in similarity 
metric calculation [3]. In addition, the existing 
classical time series models cannot properly 
cooperate with uncertain information. Hence, a 
lot of effort has been carried out for the uncer-
tain time series in several indirect ways, such as 
transforming the original question into classical 
deterministic models [19], [31], modifying tra-
ditional measurements or proposing new mea-
surements [2], [3], [9], [17] and optimization 
operations [15].
Uncertain data management has been studied 
in the context of databases and now it resurges 
anew with the development of modern technol-
ogy and applications. Due to the efficient algo-
rithm for the ideal data object without noise, 
it is indispensable to carefully reconstruct the 
structure to embed uncertain information. 
We strive to develop faster-searching methods 
to search a database consisting of a plenty of 
time series. Although the spatial index (e.g., 
R*-trees) can be used to search approximation 
queries, this approach exploits two assump-
tions: the first one is that data sequences and 
query sequences all have the same length; the 
second one is that the sequences are all defi-

nite. The probabilistic approach to processing 
similarity queries over uncertain data streams, 
namely (PROUD) [2] and the novel distance 
measure DUST [3] are both time-expensive 
methods since the prune/hit process involves 
integral calculation over the pdf. The traditional 
spatial index methods simply ignore the noise 
behind the item and do not take advantage of 
variance in each timestamp at all. This causes a 
heavy accuracy loss in final results.
In this paper, we explore a spatial index struc-
ture in connection with the uncertainty entries. 
Based on the PROUD, we plug and exploit 
the variance in minimum bounding rectangle 
(MBR) which is a directory for speeding up 
search process in the spatial index and refine 
the general prune/search process along the 
path from the root to leaves. To keep a better 
approximation in metric measures defined in a 
Euclidean distance, we propose a new prepro-
cess method with weighted variance for uncer-
tain times series. At the same time, we improve 
the robustness of the index using the variance in 
each MBR. Our contributions in this paper are 
summarized as follows:
1. We accommodate uncertain information 

in the classical spatial index R*-tree and 
show that the key to the combination is the 
uncertain monotonic direction of the dis-
tance threshold.

2. We investigate how to use the variance of 
uncertainty information to make less visits 
to deeper nodes, which will evidently im-
prove the index robustness.

3. We propose a heuristic method with the 
variance taken into consideration to prune 
the candidates of the time series in which 
each time stamp has different random vari-
ance.

The rest of this paper is organized as follows. 
In Section 2, we give a brief description of the 
related work for the uncertain time series. Sec-
tion 3 presents the model and the algorithm 
PROUD proposed in [2] for the uncertain time 
series. We present how to combine uncertain-
ties with a classical index to efficiently search 
and construct a variant spatial index in Section 
4. The experiments are presented in Section 5. 
We finally conclude the paper in Section 6.

and process time-sequenced data. Efficient que-
ries contain two vital steps, as shown in Figure 
1.

1. Preprocess. In the real world, we are al-
ways stuck in a dilemma of balancing ac-
curacy and efficiency. This question is a 
complex overhead when the length of the 
series is too long to efficiently calculate a 
metric. Thus, several methods (e.g., Wave-
let decomposition [26] and Discrete Fouri-
er transform (DFT)) were proposed to ex-
tract the features of series and reduce the 
original dimension to a new space, which 
has the least loss in retrieving values. In 
essence, the operation of dimension reduc-
tion is to map the points in a space with 
higher dimension into a lower dimensional 
space which is spanned by only a few new 
orthogonal vectors.

2. Index. After the preprocess in which every 
value of the timestamp is mapped into a 
new space, each time series can be corre-
spondingly regarded as a point in this new 
space. It is clear that the spatial index can 
be constructed with those points. Based 
on some classical index structures such as 
R*-tree, X-tree, S-tree and so on, the target 
measurement can be directly calculated by 
coefficients in the index or implicitly ob-
tained by retrieval values. Note that most 
of the existing work is focused on exact 
data without noise. The assumption with 
the noise absent is hardly adaptable to the 
physical environment which always con-
tains uncertainties.

2.3.  Index for Managing Uncertain Time 
Series

To rapidly deal with the large sequences with 
limited computation source, summarization 
methods for data streams have been consid-

2. Related Work

2.1. Uncertain Time Series and Querying

There has been plenty of work on representing 
and querying uncertain data. However, only a 
few parts of them address querying and index-
ing uncertain time series data. So far, there are 
two kinds of the proposed models for uncertain 
time series. The first one views the timestamp 
as a bucket used to record the historical values 
and the second one, called a pdf-based model, 
regards each timestamp as a variable with a ran-
dom error noise. On the basis of the set, the no-
tion of uncertain time series was formalized and 
two novel and essential types of range queries 
over uncertain time series were proposed in [1]. 
However, the number of combination choices 
for the series is exponential and must be re-
fined by the boundaries proposed in [1]. In [2], 
PROUD, which is based on the Central Limit 
Theorem, was presented in the pdf-based model 
and offered a flexible control through distance 
or probability thresholds defined by users. The 
experiments in [2] showed exactly a trade-off 
between false alarms and false drops controlled 
by the user-defined distance and probability. In 
[3], the notion of the measurement for the un-
certain time series was generalized, in which, 
based on several properties, more probabili-
ty statistical information (e.g., totally various 
pdfs) were accommodated. In each timestamp, 
the measurement named DUST was quantified 
by approximately comparing the probabilities 
using the inequation

( )( ) ( )( )1 2, , .P DIST X Y P DIST X Yε ε≤ > ≤

In [9], [17], the relationship between two se-
ries was explored through the correlation sta-
tistics. And with a preprocess, the relationship 
was used to convert the correlation threshold 
into the distance threshold. Finally, they used 
the measurement on both pdf-based model 
and multiset-based model in experiments and 
showed a flexible result of the measurement.

2.2. Index Method for Classical Time 
Series

With a large number of time series data avail-
able, there have been several efforts to model 

Preprocess IndexOriginal Data Search

Figure 1. Flow chart.
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implicitly or explicitly represented by geome-
try metrics including distance, margin and area 
[24]. 
Uncertainty extensively happens in the real 
world and has been studied in [1]–[4], [7], 
[9], [11], [12], [14], [15], [17], [18]. Instead 
of storing a single value at each timestamp in 
the classical time series, each timestamp can 
be modeled as a range of possible bucket or a 
variable with noise that is linked with a proba-
bility density function (pdf). In contrast to the 
deterministic time series, similarity queries for 
the uncertain one is more uncertain due to the 
underlying noise of data objects. As a result, the 
returned answers are always probably approxi-
mately correct, with probability 1 – δ indicating 
degrees in which they meet the query.
Traditional time series with a large size is fac-
ing an overhead in efficiency, let alone the un-
certain time series. For the massive data set 
consisting of the uncertain time series, match-
ing or searching is not simple, since we need to 
consider a huge number of noisy items taking 
along some probability information. Taking the 
probability information into consideration sig-
nificantly increases the time cost in similarity 
metric calculation [3]. In addition, the existing 
classical time series models cannot properly 
cooperate with uncertain information. Hence, a 
lot of effort has been carried out for the uncer-
tain time series in several indirect ways, such as 
transforming the original question into classical 
deterministic models [19], [31], modifying tra-
ditional measurements or proposing new mea-
surements [2], [3], [9], [17] and optimization 
operations [15].
Uncertain data management has been studied 
in the context of databases and now it resurges 
anew with the development of modern technol-
ogy and applications. Due to the efficient algo-
rithm for the ideal data object without noise, 
it is indispensable to carefully reconstruct the 
structure to embed uncertain information. 
We strive to develop faster-searching methods 
to search a database consisting of a plenty of 
time series. Although the spatial index (e.g., 
R*-trees) can be used to search approximation 
queries, this approach exploits two assump-
tions: the first one is that data sequences and 
query sequences all have the same length; the 
second one is that the sequences are all defi-

nite. The probabilistic approach to processing 
similarity queries over uncertain data streams, 
namely (PROUD) [2] and the novel distance 
measure DUST [3] are both time-expensive 
methods since the prune/hit process involves 
integral calculation over the pdf. The traditional 
spatial index methods simply ignore the noise 
behind the item and do not take advantage of 
variance in each timestamp at all. This causes a 
heavy accuracy loss in final results.
In this paper, we explore a spatial index struc-
ture in connection with the uncertainty entries. 
Based on the PROUD, we plug and exploit 
the variance in minimum bounding rectangle 
(MBR) which is a directory for speeding up 
search process in the spatial index and refine 
the general prune/search process along the 
path from the root to leaves. To keep a better 
approximation in metric measures defined in a 
Euclidean distance, we propose a new prepro-
cess method with weighted variance for uncer-
tain times series. At the same time, we improve 
the robustness of the index using the variance in 
each MBR. Our contributions in this paper are 
summarized as follows:
1. We accommodate uncertain information 

in the classical spatial index R*-tree and 
show that the key to the combination is the 
uncertain monotonic direction of the dis-
tance threshold.

2. We investigate how to use the variance of 
uncertainty information to make less visits 
to deeper nodes, which will evidently im-
prove the index robustness.

3. We propose a heuristic method with the 
variance taken into consideration to prune 
the candidates of the time series in which 
each time stamp has different random vari-
ance.

The rest of this paper is organized as follows. 
In Section 2, we give a brief description of the 
related work for the uncertain time series. Sec-
tion 3 presents the model and the algorithm 
PROUD proposed in [2] for the uncertain time 
series. We present how to combine uncertain-
ties with a classical index to efficiently search 
and construct a variant spatial index in Section 
4. The experiments are presented in Section 5. 
We finally conclude the paper in Section 6.

and process time-sequenced data. Efficient que-
ries contain two vital steps, as shown in Figure 
1.

1. Preprocess. In the real world, we are al-
ways stuck in a dilemma of balancing ac-
curacy and efficiency. This question is a 
complex overhead when the length of the 
series is too long to efficiently calculate a 
metric. Thus, several methods (e.g., Wave-
let decomposition [26] and Discrete Fouri-
er transform (DFT)) were proposed to ex-
tract the features of series and reduce the 
original dimension to a new space, which 
has the least loss in retrieving values. In 
essence, the operation of dimension reduc-
tion is to map the points in a space with 
higher dimension into a lower dimensional 
space which is spanned by only a few new 
orthogonal vectors.

2. Index. After the preprocess in which every 
value of the timestamp is mapped into a 
new space, each time series can be corre-
spondingly regarded as a point in this new 
space. It is clear that the spatial index can 
be constructed with those points. Based 
on some classical index structures such as 
R*-tree, X-tree, S-tree and so on, the target 
measurement can be directly calculated by 
coefficients in the index or implicitly ob-
tained by retrieval values. Note that most 
of the existing work is focused on exact 
data without noise. The assumption with 
the noise absent is hardly adaptable to the 
physical environment which always con-
tains uncertainties.

2.3.  Index for Managing Uncertain Time 
Series

To rapidly deal with the large sequences with 
limited computation source, summarization 
methods for data streams have been consid-

2. Related Work

2.1. Uncertain Time Series and Querying

There has been plenty of work on representing 
and querying uncertain data. However, only a 
few parts of them address querying and index-
ing uncertain time series data. So far, there are 
two kinds of the proposed models for uncertain 
time series. The first one views the timestamp 
as a bucket used to record the historical values 
and the second one, called a pdf-based model, 
regards each timestamp as a variable with a ran-
dom error noise. On the basis of the set, the no-
tion of uncertain time series was formalized and 
two novel and essential types of range queries 
over uncertain time series were proposed in [1]. 
However, the number of combination choices 
for the series is exponential and must be re-
fined by the boundaries proposed in [1]. In [2], 
PROUD, which is based on the Central Limit 
Theorem, was presented in the pdf-based model 
and offered a flexible control through distance 
or probability thresholds defined by users. The 
experiments in [2] showed exactly a trade-off 
between false alarms and false drops controlled 
by the user-defined distance and probability. In 
[3], the notion of the measurement for the un-
certain time series was generalized, in which, 
based on several properties, more probabili-
ty statistical information (e.g., totally various 
pdfs) were accommodated. In each timestamp, 
the measurement named DUST was quantified 
by approximately comparing the probabilities 
using the inequation

( )( ) ( )( )1 2, , .P DIST X Y P DIST X Yε ε≤ > ≤

In [9], [17], the relationship between two se-
ries was explored through the correlation sta-
tistics. And with a preprocess, the relationship 
was used to convert the correlation threshold 
into the distance threshold. Finally, they used 
the measurement on both pdf-based model 
and multiset-based model in experiments and 
showed a flexible result of the measurement.

2.2. Index Method for Classical Time 
Series

With a large number of time series data avail-
able, there have been several efforts to model 

Preprocess IndexOriginal Data Search

Figure 1. Flow chart.



194 195D. Zheng et al. Spatial Index for Uncertain Time Series

ered. However, for uncertain time series, few 
proposed indexes can be used for uncertain sta-
tistics.
The first effort was regarding uncertain time se-
ries as cloaked time series based on a synopsis 
model in which each time stamp only knows the 
mean and deviation of the variance. The pattern 
match query was redesigned to work togeth-
er with this model. Due to the dimensionality 
curse, a more efficient algorithm was proposed 
to construct the index with extra statistics such 
as mean and variance. Based on the framework 
proposed in [20], a more flexible measurement 
was offered in [2] by using the cumulative 
distribution function (cdf), which controls the 
false/true alarms or false/true drops. Aiming 
to efficiently prune unqualified series, a Haar 
decomposition index was used in [2]. The mea-
surement can be directly calculated from the 
decomposed values in the index. However, it 
only focuses on the update operation for infinite 
stream data in a limited memory source. It can 
get more flexibility but without great efficiency 
improvement in the prune process.
Note that using the methods like feature ex-
traction or decomposition based on different 
models or different assumptions, index struc-
ture should be explicitly or implicitly modified 
to adapt to the uncertainty information. In this 
paper, we propose a spatial index which can 
be generalized to expand the content of MBR 
and uses the uncertain parameter to update the 
structure.
It is clear that the preprocess such as dimension 
reduction, normalization, etc. can enhance the 
performance of index. However, as we can see, 
there is no great progress in the index and the 
classical index still keeps an original state even 
when we face a greatly different data object. So 
far, the study about the preprocess for uncer-
tain time series receives a lot of attention while 
the optimization is ignored. In this paper, we 
present an optimized spatial index R*-tree for 
the uncertain time series, as well as a modified 
preprocess which cooperate with uncertainty 
information.

3. Preliminaries

In this section, we introduce the model used for 
uncertain time series as well as the algorithm 

PROUD based on the model in [2]. Although 
the multi-based model proposed in [1] can be 
also indexed abruptly, the exponential number 
of the combination is time-costly and the op-
timization method in [1] can only be taken at 
the level of the leaves. So, we use a continuous 
model for uncertain time series and develop a 
variant index based on this model.

3.1. Continuous Model

An uncertain time series ˆ
uS  is a time series 

that may contain uncertainty at each time point. 
Given a time point j, the value of the uncertain 
time series at j is denoted by [ ]ˆ

uS j  and is rep-
resented as follows [20]

[ ]ˆ .u uj ujS j d e= +

Here duj is the true data value and euj is the arbi-
trary error. An uncertain time series is illustrat-
ed in Figure 2.

The above model of uncertain time series re-
gards a timestamp as a variance and the pruned 
framework deals with the probability statistics. 
A measurement based on the probability func-
tion is explored in [2], which transforms the 
question into a cumulative distribution func-
tion (cdf). With a generation notion about the 
measurement for uncertain time series, a nov-
el measurement quantifying the uncertainty is 
proposed in [3], which will degenerate to the 
Euclidean distance when the distance is large 
enough relative to the error.

3.2. PROUD

We define ˆ
refS  as a reference series with un-

certainty and ˆ
uS  as one of the items with noise 

stored in the database. Both kinds of series con-
sist of the random variable in each time series. 
Given the definition of

( ) [ ] [ ]( )2ˆ ˆ ˆ ˆ, ,ref u ref u
i

Dst S S S i S i= −∑

searching solves the probabilistic problem with 
user defined distance threshold r and probabili-
ty threshold τ ∈ (0, 1] [2]

               ( )( )2ˆ ˆ, .ref uPr Dst S S r τ≤ ≥
           (1)

PROUD [2] addresses an efficient judge in-
equation which is transformed from the origi-
nal question for selecting candidates utilizing 
the property of cumulative distribution.
According to the Central Limit Theorem, 
the distance between ˆ

refS  and ˆ
uS  namely 

( )ˆ ˆ,ref uDst S S  is treated as a joint variable with 
a corresponding mean and variance

( ) ( ) ( )( )ˆ ˆ ˆ ˆ ˆ ˆ, , , , .ref u ref u ref uDst S S N E S S Var S S

(2)

Note that the cdf of a normal distribution can 
be expressed in terms of the well-known error 
function. Given the mean μ and the deviation σ 
of a random variable X with a normal distribu-
tion, its cdf can be formalized as follows:

( ) ( ),
1Ö 1 .2 2

xP X x x erfµ σ
µ

σ
 − ≤ = = +  

  
(3)

Finally, the cumulative distribution of the vari-
able modeled by a pair of time series X and Y 
can be defined as:

( )( )
( ) ( )

( )( )

2ˆ ˆ,

ˆ ˆ ˆ ˆ, ,1 1 .2 ˆ ˆ2 ,

ref u

ref u ref u

ref u

Pr Dst S S r

Dst S S E S S
erf

Var Dst S S

≤

  −  = +      
(4)

Since the monotonicity of ϕ increases, the can-
didates for the uncertain time series can be 
eventually transformed into the following in-
equation.

( ) ( )( )
( )( )

( )

2

1

ˆ ˆ,
ˆ ˆ,

ˆ ˆ2 ,

2 2 1 .

ref u
norm ref u

ref u

r E Dst S S
r S S

Var Dst S S

erf r limitτ−

−
=

≥ − = −

(5)

Here, r-limit is a normalized threshold for the 
matching process. The error ratio is defined as 
the number of incorrect candidates divided by 
all candidates and the miss ratio is defined as 
the correct candidates divided by all correct 
candidates. Experiments in [2] show a flexible 
trade-off between the error ratio and the miss 
ratio through the user-defined distance thresh-
old and probability threshold.

4. Index Construction with 
Uncertainty

In this section, we propose a novel approach 
to index the uncertain time series based on  
PROUD. Resulting from the uncountable mea-
surement in PROUD, the first step is to give a 
measurable distance such as Euclidean and keep 
the same solution space compared to the prim-
itive question. Then we find the correlation be-
tween the index structure and the measurement, 
with respect to the two user-defined thresholds. 
In the experiment, we find the limitation of the 
index for uncertain time series, especially for 
the one with the large noise. Hence, it is neces-
sary to give a preprocess and optimization op-
eration for the matching process.

4.1. Index Construction for Uncertain Time 
Series

We use a synopsis model with the PROUD 
scheme. Although there is a Haar decomposi-
tion on the PROUD, the index concentrates on 
the single stream data prune process and does 
not make use of the any relationship between 
two time series. We define ˆ

refS  as a reference 
series with uncertainty and ˆ

uS  as a series with 

Figure 2. Continuous uncertain time series.
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ty threshold τ ∈ (0, 1] [2]

               ( )( )2ˆ ˆ, .ref uPr Dst S S r τ≤ ≥
           (1)

PROUD [2] addresses an efficient judge in-
equation which is transformed from the origi-
nal question for selecting candidates utilizing 
the property of cumulative distribution.
According to the Central Limit Theorem, 
the distance between ˆ

refS  and ˆ
uS  namely 

( )ˆ ˆ,ref uDst S S  is treated as a joint variable with 
a corresponding mean and variance

( ) ( ) ( )( )ˆ ˆ ˆ ˆ ˆ ˆ, , , , .ref u ref u ref uDst S S N E S S Var S S

(2)

Note that the cdf of a normal distribution can 
be expressed in terms of the well-known error 
function. Given the mean μ and the deviation σ 
of a random variable X with a normal distribu-
tion, its cdf can be formalized as follows:

( ) ( ),
1Ö 1 .2 2

xP X x x erfµ σ
µ

σ
 − ≤ = = +  

  
(3)

Finally, the cumulative distribution of the vari-
able modeled by a pair of time series X and Y 
can be defined as:

( )( )
( ) ( )

( )( )

2ˆ ˆ,

ˆ ˆ ˆ ˆ, ,1 1 .2 ˆ ˆ2 ,

ref u

ref u ref u

ref u

Pr Dst S S r

Dst S S E S S
erf

Var Dst S S

≤

  −  = +      
(4)

Since the monotonicity of ϕ increases, the can-
didates for the uncertain time series can be 
eventually transformed into the following in-
equation.

( ) ( )( )
( )( )

( )

2

1

ˆ ˆ,
ˆ ˆ,

ˆ ˆ2 ,

2 2 1 .

ref u
norm ref u

ref u

r E Dst S S
r S S

Var Dst S S

erf r limitτ−

−
=

≥ − = −

(5)

Here, r-limit is a normalized threshold for the 
matching process. The error ratio is defined as 
the number of incorrect candidates divided by 
all candidates and the miss ratio is defined as 
the correct candidates divided by all correct 
candidates. Experiments in [2] show a flexible 
trade-off between the error ratio and the miss 
ratio through the user-defined distance thresh-
old and probability threshold.

4. Index Construction with 
Uncertainty

In this section, we propose a novel approach 
to index the uncertain time series based on  
PROUD. Resulting from the uncountable mea-
surement in PROUD, the first step is to give a 
measurable distance such as Euclidean and keep 
the same solution space compared to the prim-
itive question. Then we find the correlation be-
tween the index structure and the measurement, 
with respect to the two user-defined thresholds. 
In the experiment, we find the limitation of the 
index for uncertain time series, especially for 
the one with the large noise. Hence, it is neces-
sary to give a preprocess and optimization op-
eration for the matching process.

4.1. Index Construction for Uncertain Time 
Series

We use a synopsis model with the PROUD 
scheme. Although there is a Haar decomposi-
tion on the PROUD, the index concentrates on 
the single stream data prune process and does 
not make use of the any relationship between 
two time series. We define ˆ

refS  as a reference 
series with uncertainty and ˆ

uS  as a series with 

Figure 2. Continuous uncertain time series.
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noise stored in the database. Both kinds of se-
ries consist of the random variable in each time-
stamp. In [2], a pruned algorithm is explored by 
using the inequation ( )ˆ ˆ,norm ref ur S S r limit≥ −  
for the candidates satisfying the following filter 
inequation:

( )( )
( ) ( )

( )( )

2ˆ ˆ,

ˆ ˆ ˆ ˆ, ,1 1 .2 ˆ ˆ2 ,

ref u

ref u ref u

ref u

Pr Dst S S r

Dst S S E S S
erf

Var Dst S S

≤

  −  = +      
(6)

To construct the spatial index with Euclidean 
distance, we delve further into the algorithm 
PROUD to transform this uncountable mea-
surement into a monotonic and consecutive 
form. In particular, under the assumption of the 
same distribution of timestamp in a time se-
ries for the sake of simplicity, the prune func-
tion can be changed as the following equation, 
which is a vital transformation for equal justice 
of candidates.

( )( )
( )( )
( )( )
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( )( ) ( )
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( )
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=
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−
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⇒ − +
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 − − + ≤ 
 

− + −
⇒ ≤ − ≤

− ≥ =

= − +

= − +

∑

∑

∑

( )( )22 rn σ σ+

(7)

where ( )( )ˆ ˆ,ref uE Dst S S   and ( )( )ˆ ˆ,ref uVar Dst S S  
are expanded and calculated in [2]. As we can 
see, the derivation explores the possibility of 
transforming an uncertain uncountable mea-
surement into an exact monotonic form for dy-
namic progress. The last inequation turns out 
that PROUD can be changed as a Euclidean dis-
tance for the variance. Also, Wavelet Summari-
zation is proposed in [2] for online stream data 
decomposition in a dynamic environment. It is 
focused on how to retain the vital coefficient 
in a limited memory source and on efficient 
summarization by keeping from extracting the 
coefficients from the index structure. Howev-
er, they do not take into consideration the rela-
tionship of uncertain information between two 
random time series. On the contrary, we make 
full use of the uncertain information in each se-
ries by the inequation (7). As we can see, the 
required operation for the uncertain time series 
changes as a deterministic requirement for the 
series that consists of the means. However, the 
distance thresholds for these series are different 
from each other. The monotonic property must 
be shown as follows:

( ) ( ) ( )( )
( )

22 2 2 2
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r

VarThd r limit len r
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with a valid user-defined probability thresh-
old τ in [0, 1], as well as the value of r-limit 
in 4 2,4 2 −  . Since the length is always 
greatly larger than 4 2, which is a very triv-
ial condition, the varying distance threshold is 
monotonically decreasing along σ when τ ≥ 0.5. 

Most of the time, the length of the sequence is 
larger than the limited r-limit. Then we can as-
sume that the coefficient r-limit – len is always 
a negative. With those sign assumptions, we 
can judge the monotonic property for σ, which 
is described in the following theorem.

Theorem 1.         The function ( )f x a x b ax c= − +  
with a < 0, 4 2 4 2b− ≤ ≤ , c ≥ 0, x ≥ 0 is a 
negative if b > 0 or 2 2/ ( ( ))x b c a a b> −  and a 
positive if 2 20 / ( ( ))x b c a a b≤ ≤ − .
The theorem is simple and here we ignore the 
concrete detail of its proof, which is present in 
the appendix. We present a corresponding ex-
ample of the varying threshold in Figure 3.

In our actual application, we define a = 
r-limit2 – len, b = r-limit and c = r2, x = σ2 + 
(σr)2. Therefore, according to Theorem 1, with 
the case τ > 0.5, we have r-limit > 0 and the Var-
Threshold is monotonically decreasing with σ2 
+ (σr)2. However, if r-limit ≤ 0 namely τ ≤ 0.5, 
there are two monotonical directions which are 
divided by b2c/(a(a – b2)) named critical point. 
When the critical point is located in the range 

[σmin, σmax] in an MBR, we must check both σmin 
and σmax for the minimum threshold and calcu-
late the maximum threshold by critical point 
using b2c/(a(a – b2)).
Finally, an MBR in Figure 4 can be judged di-
rectly if it satisfies one of the following inequa-
tions:

( )

( ) ( )( ) ( )

( ) ( )( ) ( )

2

1

2 22 2 2 2

2 22 2 2 2
max max

max

min - -

- -

d
r

i i
i

r r

r r
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r limit len r r limit

µ µ

σ σ σ σ

σ σ σ σ
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−

 ≤ − + + − + 
 

= − + + − +

∑

(10)
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d
r

i i
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r r

r r

r limit len r r limit

r limit len r r limit

µ µ

σ σ σ σ

σ σ σ σ

=

−

 ≥ − + + − + 
 

= − + + − +

∑

(11)

All leaf entries included in an index node sat-
isfying the first inequation must be the candi-
dates because no VarThd in all entries included 
in the MBR could be larger than their parent 
nodes. Therefore, the distance of leaf nodes to 
μref covered by children entries must satisfy the 
first inequation, whereas those satisfying the 
second inequation must be pruned. Also, both 
extreme distances must be in the corners of the 
MBR, which means the complexity of finding 
max and min distances is O (N), where N is the 
dimension of the point.
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Figure 3. Varying threshold.

Figure 4. MBR with σ.
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noise stored in the database. Both kinds of se-
ries consist of the random variable in each time-
stamp. In [2], a pruned algorithm is explored by 
using the inequation ( )ˆ ˆ,norm ref ur S S r limit≥ −  
for the candidates satisfying the following filter 
inequation:

( )( )
( ) ( )
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ref u

ref u ref u

ref u
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erf

Var Dst S S

≤
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(6)

To construct the spatial index with Euclidean 
distance, we delve further into the algorithm 
PROUD to transform this uncountable mea-
surement into a monotonic and consecutive 
form. In particular, under the assumption of the 
same distribution of timestamp in a time se-
ries for the sake of simplicity, the prune func-
tion can be changed as the following equation, 
which is a vital transformation for equal justice 
of candidates.

( )( )
( )( )
( )( )

( )

( )( ) ( )

( )( )
( )

( )( )

2

2

1

2 22

1

22 2

22

1

2

22

2

ˆ ˆ,

ˆ ˆ,

ˆ ˆ,

4

0

40 2

. . 4 0, 1,

4 ,

ref u

ref u

ref u

len
r

i i
i

len
r r

i i
i

r

len
r

i i
i

r

Pr Dst S S r limit

r E Dst S S
r limit

Var Dst S S

r

limit

r len

b b ac
a

s t b ac a

b r limit

c r le

τ

µ µ

σ σ µ µ

σ σ

µ µ

σ σ

=

=

=

≤ − ≥

−
⇒ ≥ −

⇒ − +

− + −

 − − + ≤ 
 

− + −
⇒ ≤ − ≤

− ≥ =

= − +

= − +

∑

∑

∑

( )( )22 rn σ σ+

(7)

where ( )( )ˆ ˆ,ref uE Dst S S   and ( )( )ˆ ˆ,ref uVar Dst S S  
are expanded and calculated in [2]. As we can 
see, the derivation explores the possibility of 
transforming an uncertain uncountable mea-
surement into an exact monotonic form for dy-
namic progress. The last inequation turns out 
that PROUD can be changed as a Euclidean dis-
tance for the variance. Also, Wavelet Summari-
zation is proposed in [2] for online stream data 
decomposition in a dynamic environment. It is 
focused on how to retain the vital coefficient 
in a limited memory source and on efficient 
summarization by keeping from extracting the 
coefficients from the index structure. Howev-
er, they do not take into consideration the rela-
tionship of uncertain information between two 
random time series. On the contrary, we make 
full use of the uncertain information in each se-
ries by the inequation (7). As we can see, the 
required operation for the uncertain time series 
changes as a deterministic requirement for the 
series that consists of the means. However, the 
distance thresholds for these series are different 
from each other. The monotonic property must 
be shown as follows:
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with a valid user-defined probability thresh-
old τ in [0, 1], as well as the value of r-limit 
in 4 2,4 2 −  . Since the length is always 
greatly larger than 4 2, which is a very triv-
ial condition, the varying distance threshold is 
monotonically decreasing along σ when τ ≥ 0.5. 

Most of the time, the length of the sequence is 
larger than the limited r-limit. Then we can as-
sume that the coefficient r-limit – len is always 
a negative. With those sign assumptions, we 
can judge the monotonic property for σ, which 
is described in the following theorem.

Theorem 1.         The function ( )f x a x b ax c= − +  
with a < 0, 4 2 4 2b− ≤ ≤ , c ≥ 0, x ≥ 0 is a 
negative if b > 0 or 2 2/ ( ( ))x b c a a b> −  and a 
positive if 2 20 / ( ( ))x b c a a b≤ ≤ − .
The theorem is simple and here we ignore the 
concrete detail of its proof, which is present in 
the appendix. We present a corresponding ex-
ample of the varying threshold in Figure 3.

In our actual application, we define a = 
r-limit2 – len, b = r-limit and c = r2, x = σ2 + 
(σr)2. Therefore, according to Theorem 1, with 
the case τ > 0.5, we have r-limit > 0 and the Var-
Threshold is monotonically decreasing with σ2 
+ (σr)2. However, if r-limit ≤ 0 namely τ ≤ 0.5, 
there are two monotonical directions which are 
divided by b2c/(a(a – b2)) named critical point. 
When the critical point is located in the range 

[σmin, σmax] in an MBR, we must check both σmin 
and σmax for the minimum threshold and calcu-
late the maximum threshold by critical point 
using b2c/(a(a – b2)).
Finally, an MBR in Figure 4 can be judged di-
rectly if it satisfies one of the following inequa-
tions:
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All leaf entries included in an index node sat-
isfying the first inequation must be the candi-
dates because no VarThd in all entries included 
in the MBR could be larger than their parent 
nodes. Therefore, the distance of leaf nodes to 
μref covered by children entries must satisfy the 
first inequation, whereas those satisfying the 
second inequation must be pruned. Also, both 
extreme distances must be in the corners of the 
MBR, which means the complexity of finding 
max and min distances is O (N), where N is the 
dimension of the point.
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Figure 3. Varying threshold.

Figure 4. MBR with σ.
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4.2. Search Strategy

In a recurrence processing that starts from the 
root of the index, we check all its children and 
determine if they satisfy one of the above in-
equations. It is shown that the time complexity 
of visiting all nodes in the index is O (1) under 
the best condition and nearly O (alogb 

n ) under the 
worst condition. If the height of the index is 1, 
the searching is degenerated into an ordered 
searching with the worst time complexity of 
O (n). Compared with the time for calculating 
the measurement for two uncertain time series 
(especially in high dimensions), the visiting 
time takes up a few parts, meaning that in a 
global view, the index performance taking ad-
vantages outweighs taking disadvantages most 
of the time.
We summarize the searching in Algorithm 2. 
Given a target series ˆ

refS  and a root R of the 
R*-tree index, the time series which are prepro-
cessed in advance, a distance threshold r, and 
a probability threshold τ, Algorithm 2 outputs 
a set of all candidates in which the probabili-
ties that the distances of these candidates to the 
target reference series exceed r, is less than τ. 
First, we start with searching for a path from 
the root of the index and then compare each 
pair σmin, σmax in MBRs included in the node. 
We check whether the inequation (10) or (11) 
is satisfied. If the inequation (10) is satisfied, 
we can directly get the leaves covered by this 
node. If the inequation (11) is satisfied, we just 
stop the deeper search along the path from this 
node. Otherwise, we have a deeper visit in the 
lower level.

4.3. Random Variance

Given the uncertain time series with the same 
variance, we construct the leaf entries includ-
ing the same minimum and maximum σ valued 
variance at each timestamp. We can see that the 
forms of σ boundaries in each MBR are similar 
to each other. It means that we can heuristically 
treat the leaf entry as a point that includes the 
min and max σ in a time series. The following 
inequation (12) shows the correctness of this 
heuristic method but it may not be efficient be-
cause sometimes the approximation is sensitive 
to the large amount of noise.

With the max σ, this normalized distance will 
be minimum. If this minimum distance is larger 
than the maximum threshold, it satisfies (10), 
which means that the judge function in the leaf 
entry is the same as in the internal node of the 
index. Therefore, we can treat the leaf entry 
with random σ as internal node hit/pruned by 
(10)/(11).
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(12)

4.4. Optimization for Random Variance

The result of experiments with random variance 
time series has shown that the time cost of pro-
cessing is close to the one shown by PROUD 
for the approximation of the variance. Since 
σ has a large variance, the index will hardly 
meet the filter equations and always search in 
leaf entries. For a closer approximation, sever-
al preprocesses can be considered. The prepro-
cess such as Discrete Fourier transform (DFT) 
or Moving Average (MA) dimension reduction 
operation is carried out. Different preprocess-
es focus on different targets. DFT focuses on 
selecting high frequencies and is inefficient for 
white noise. It merely carries out the dimension 
reduction by centralizing the energy on several 
dimensions with high frequency. The MA makes 
use of the relation of adjacent timestamps for a 
better approximation for noisy series with prob-
abilistic information.
In this paper, we apply a soft preprocess based 
on MA like [15]. In [15], an Uncertain Moving 
Average (UMA) is presented to accommodate σ 
in a traditional preprocess. There are two kinds 
of MA for uncertain time series in [15]. The first 
one is to simply use mathematic average and the 
second one is based on the exponential func-
tion. Both of them are weighted the values by σ 
at each timestamp. This means that it is useful 
for uncertain time series with random σ and the 
values with larger σ offer less contribution to 
the final average. For the sake of simplicity, it 
is assumed that the whole series has the same σ 
for presenting the Euclidean distance between 
UMA values by classical MA values.

Since

          

1 , 12 1

i w
UMA k
i

k i w k

xx i mw σ

+

= −
= ≤ ≤

+ ∑
     

(13)

with a window width w and variance σk cor-
responding to k-th timestamp influences the 
values sensitively by σk and may change exces-
sively the primitive xk, here we present a new 
preprocess named weighted variance uncertain 
moving average, based on [15].

        

2
1

, 1
1

i w
WUMA k
i ki w

k i w
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(14)

It shows that with a larger σ, the values con-
tribute less reliable distances to the real original 
distance. A larger distance with a smaller σ tells 
us that this stamp is greatly possible to have 
large real distance and hence greatly contrib-
ute to the real distance which will be essential 
when comparing it with an original threshold. 
Meanwhile, it keeps a light scale on the primi-
tive value.
Suppose that the time series has the same vari-
ance in each timestamp, then we have

         ( )
1

2 1

i w
WUMA UMA
i k i

k i w
x x x

w σ

+

= −
= =

+ ∑
    

(15)

It explores the relationship between xi
WUMA 

and xi
UMA. Compared with UMA, there will 

be no difference in performance with a series 
consisting of the same variance in each time-
stamp. Moreover, we normalized the xi with the 
weighted σ which will not dramatically affect 
measurement and hence keep a closer approxi-
mation about the sum of all primitive measure-
ments. The mean and variance for the normal-
ized timestamp are shown in Figure 5.
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Algorithm 1.  GetCoveredLeaves.

Input: root N of sub tree
Output: LEqueue
1.   initialize: Create queue; N ⇒  queue
2.   while queue is not empty do
3.      cN ⇐  queue
4.     for i = 1, ..., cN.childNum do
5.          if cN.level = 0 then
6.            cN.Child[i] ⇒  LEqueue
7.          else
8.            cN.Child[i] ⇒  queue
9.          end if
10.   end for
11. end while

push

pop

push

push

Algorithm 2.  Search.

Input: root R of R*-tree, ˆ
refS  target uncertain time 

            series, r distance treshold, τ probability treshold
Output: candidates
1.   initialize:
2.   Create queue
3.   R ⇒  queue
4.   r-limit ← 2 er f –1(2τ – 1)
5.   judge the monotonical property
6.   while queue is not empty do
7.      cN ⇐  queue
8.     for i = 1, ..., cN.childNum do
9.          calculate minimum/maximum tresholds
10.        if minimum distance > maximum treshold 
                then
11.            //pruned
12.        else if maximum distance < minimum 
                treshold then
13.            GetCoveredLeaves ⇒  candidates
14.        else
15.            cN.child[i] ⇒  queue
16.        end if
17.   end for
18. end while

pop

push

push

push
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4.2. Search Strategy

In a recurrence processing that starts from the 
root of the index, we check all its children and 
determine if they satisfy one of the above in-
equations. It is shown that the time complexity 
of visiting all nodes in the index is O (1) under 
the best condition and nearly O (alogb 

n ) under the 
worst condition. If the height of the index is 1, 
the searching is degenerated into an ordered 
searching with the worst time complexity of 
O (n). Compared with the time for calculating 
the measurement for two uncertain time series 
(especially in high dimensions), the visiting 
time takes up a few parts, meaning that in a 
global view, the index performance taking ad-
vantages outweighs taking disadvantages most 
of the time.
We summarize the searching in Algorithm 2. 
Given a target series ˆ

refS  and a root R of the 
R*-tree index, the time series which are prepro-
cessed in advance, a distance threshold r, and 
a probability threshold τ, Algorithm 2 outputs 
a set of all candidates in which the probabili-
ties that the distances of these candidates to the 
target reference series exceed r, is less than τ. 
First, we start with searching for a path from 
the root of the index and then compare each 
pair σmin, σmax in MBRs included in the node. 
We check whether the inequation (10) or (11) 
is satisfied. If the inequation (10) is satisfied, 
we can directly get the leaves covered by this 
node. If the inequation (11) is satisfied, we just 
stop the deeper search along the path from this 
node. Otherwise, we have a deeper visit in the 
lower level.

4.3. Random Variance

Given the uncertain time series with the same 
variance, we construct the leaf entries includ-
ing the same minimum and maximum σ valued 
variance at each timestamp. We can see that the 
forms of σ boundaries in each MBR are similar 
to each other. It means that we can heuristically 
treat the leaf entry as a point that includes the 
min and max σ in a time series. The following 
inequation (12) shows the correctness of this 
heuristic method but it may not be efficient be-
cause sometimes the approximation is sensitive 
to the large amount of noise.

With the max σ, this normalized distance will 
be minimum. If this minimum distance is larger 
than the maximum threshold, it satisfies (10), 
which means that the judge function in the leaf 
entry is the same as in the internal node of the 
index. Therefore, we can treat the leaf entry 
with random σ as internal node hit/pruned by 
(10)/(11).
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4.4. Optimization for Random Variance

The result of experiments with random variance 
time series has shown that the time cost of pro-
cessing is close to the one shown by PROUD 
for the approximation of the variance. Since 
σ has a large variance, the index will hardly 
meet the filter equations and always search in 
leaf entries. For a closer approximation, sever-
al preprocesses can be considered. The prepro-
cess such as Discrete Fourier transform (DFT) 
or Moving Average (MA) dimension reduction 
operation is carried out. Different preprocess-
es focus on different targets. DFT focuses on 
selecting high frequencies and is inefficient for 
white noise. It merely carries out the dimension 
reduction by centralizing the energy on several 
dimensions with high frequency. The MA makes 
use of the relation of adjacent timestamps for a 
better approximation for noisy series with prob-
abilistic information.
In this paper, we apply a soft preprocess based 
on MA like [15]. In [15], an Uncertain Moving 
Average (UMA) is presented to accommodate σ 
in a traditional preprocess. There are two kinds 
of MA for uncertain time series in [15]. The first 
one is to simply use mathematic average and the 
second one is based on the exponential func-
tion. Both of them are weighted the values by σ 
at each timestamp. This means that it is useful 
for uncertain time series with random σ and the 
values with larger σ offer less contribution to 
the final average. For the sake of simplicity, it 
is assumed that the whole series has the same σ 
for presenting the Euclidean distance between 
UMA values by classical MA values.

Since
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with a window width w and variance σk cor-
responding to k-th timestamp influences the 
values sensitively by σk and may change exces-
sively the primitive xk, here we present a new 
preprocess named weighted variance uncertain 
moving average, based on [15].
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It shows that with a larger σ, the values con-
tribute less reliable distances to the real original 
distance. A larger distance with a smaller σ tells 
us that this stamp is greatly possible to have 
large real distance and hence greatly contrib-
ute to the real distance which will be essential 
when comparing it with an original threshold. 
Meanwhile, it keeps a light scale on the primi-
tive value.
Suppose that the time series has the same vari-
ance in each timestamp, then we have
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It explores the relationship between xi
WUMA 

and xi
UMA. Compared with UMA, there will 

be no difference in performance with a series 
consisting of the same variance in each time-
stamp. Moreover, we normalized the xi with the 
weighted σ which will not dramatically affect 
measurement and hence keep a closer approxi-
mation about the sum of all primitive measure-
ments. The mean and variance for the normal-
ized timestamp are shown in Figure 5.
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Algorithm 1.  GetCoveredLeaves.

Input: root N of sub tree
Output: LEqueue
1.   initialize: Create queue; N ⇒  queue
2.   while queue is not empty do
3.      cN ⇐  queue
4.     for i = 1, ..., cN.childNum do
5.          if cN.level = 0 then
6.            cN.Child[i] ⇒  LEqueue
7.          else
8.            cN.Child[i] ⇒  queue
9.          end if
10.   end for
11. end while

push

pop

push

push

Algorithm 2.  Search.

Input: root R of R*-tree, ˆ
refS  target uncertain time 

            series, r distance treshold, τ probability treshold
Output: candidates
1.   initialize:
2.   Create queue
3.   R ⇒  queue
4.   r-limit ← 2 er f –1(2τ – 1)
5.   judge the monotonical property
6.   while queue is not empty do
7.      cN ⇐  queue
8.     for i = 1, ..., cN.childNum do
9.          calculate minimum/maximum tresholds
10.        if minimum distance > maximum treshold 
                then
11.            //pruned
12.        else if maximum distance < minimum 
                treshold then
13.            GetCoveredLeaves ⇒  candidates
14.        else
15.            cN.child[i] ⇒  queue
16.        end if
17.   end for
18. end while

pop

push

push

push
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After normalizing the time series using (16), 
the distribution of σ will be more uniform and 
critical point has less impact on the efficiency. 
Then we construct the MBR entries and build 
the index based on this preprocessed time se-
ries.

The algorithm Adjust and other operations in 
the traditional index must be altered for un-
certain time series. We just consider a vital 
operation called Insert for this step, including 
Split and Reinsert, which both determine the 
path length and the search efficiency. The tra-
ditional split algorithm does not consider the 
use of uncertainty information while grouping 
the entries in the index node. In addition, the 
goodness measure for the Reinsert does not in-
volve the variance. Heuristic optimization for 
the split and re-insert operation cooperates with 
the minimum and maximum variances which 
are plugged in every MBR. The larger interval 
of the σ is, the more possible is the value cor-
responding to the peak point (see Figure 3) lo-
cated in the range minimum and maximum of 
σ. Hence, the queries profit from the smaller 
variance just like the margin described in [24]. 
Central σ requires less visit to prune/hit the en-
try in the leaf node by using judge inequations.
Before the variant Split and Reinsert are intro-
duced, we review the general Split algorithm as 
well as Reinsert algorithm. The R*-tree in [24] 
uses the following method to find good splits: 
along each axis, the entries are first sorted by 
the lower value and then by the upper value of 
their rectangles. For each sort of M – 2m + 2 
distributions of the M + 1 entries, two groups 
are determined by three goodness measure val-
ues. The first group contains the first (m – 1) 

+ k entries and the second group contains the 
remaining entries. For each distribution, good-
ness measure values are determined by 
1. area-value,
2. margin-value, and
3. overlap-value. 

To achieve dynamic recognition, the R*-tree 
forces entries to be reinserted along the inser-
tion routine by 
1. choosing subtree,
2. judging whether it overflows and
3. doing Reinsert or Split according to the in-

serted time.
As we can see, all of them optimize the index 
from the view of geometry, without considering 
uncertainty gradients. This results in a deep vis-
it like shown in Figure 6.

Given r-limit = –2, len = 40, σr = 1, r = 50, 
the MBR with min and max σ below the bor-
der 2.3 can give a monotonical direction of 
the threshold. Obviously, in Figure 6, the left-
top MBR has a varying threshold in a mono-
tonical and tighter varying threshold range 
[VarThd (σmin), VarThd (σmax)] and the right-bot-
tom MBR presents a wider range with a deter-

ministic peak
[min (VarThd (σmin), VarThd (σ max)), 
VarThd ((r-limit2r2)/((len – r-limit2)len) – (σr)2)].
Finally, the range of the left-top MBR is 
VarThd (1.0) – VarThd (0.0), which equals to 
0.47. The range of the right-bottom MBR is 
VarThd (2.3) – VarThd (0.0), which equals to 
1.06. Therefore, more distance is in the wider 
range in the right-bottom MBR, which causes 
the specific distance value to hardly meet one 
of the prune/candidate inequations (10)/(11).
We present two goodness measures against 
variance in the following formulations.
1. Split. With a new goodness measure, 

VarMargin:     

the split is inclined to generate two groups 
with minimum variance interval. We set 
this goodness measure with the top level 
when the split operation happens.

2. Reinsert. With a new goodness measure, 
VarOverlap    

Reinsert trends to minimum interval over-
lap of the variance in each MBR. We set 
the priority of this goodness measure value 
higher than the one measured against the 
relative distance to the MBR center.

5. Experimental Performances

Under the assumption that each timestamp in 
uncertain time series has the same variance, 
performance of the index approach is the same 
as the one of PROUD. Hence, in this section, 
we focus only on the random variance at each 
timestamp for all series.
To evaluate the performance of R*-tree, we 
conducted experiments with synthetic data and 
compared the efficiency of Search operation 
and qualified the performance by

    
    

true candidates not in selectionmiss ratio all true candidates in database=

   
   

false candidates in selectionerror ratio number of candidates selected=

First, we compared the Search operation of our 
index approach with the PROUD prune algo-
rithm in an ordered sequence. Then we evaluat-
ed the improvement of the central variance Split 
against the general Split. The general Split does 
not make use of the variance stored in the MBR. 
Our experiments were conducted in Visual Stu-
dio and run on the PC with 2.4 GHz CPU and 
4 GB RAM.

5.1. Experiments with Synthetic Data

The parameters which are used in our experi-
ments are listed in Table 1. The distance thresh-
old is generated dynamically during the pro-
cessing of the beginning phase. We generated 
the data set including num series that have len 
timestamps. Each experiment would run group 
times and the average results were finally pre-
sented. The dratio was used to multiply he orig-
inal uniform variance to change the variance of 
each timestamp. We picked τ in [0.1, 0.2, …, 
0.9] when we compared the PROUD with our 
index approach using miss/error ratio as our 
evaluation standard. We constructed our index 
after the preprocess for less overlap between 
the interval of the variance in each MBR and 
make the Euclidean distance of σ the same as 
raw measurement. The ground truth is based 
on real data without uncertain noise. As point-
ed out in [15], the impact of filtering uncertain 
time series works only in a specified range. We 
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Table 1.  Parameters we use in experiments.

Parameter Value Desc.

len 100 Sequence length
τ [0.1, 0.9] Probability threshold
σ 1.0 Variance of sequence

dratio [0.1, 2.0] Variance ratio
num ≤ 5000 Sequence number per group

group 10 Test groups
xi

[0, 3] The value in each timestamp
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After normalizing the time series using (16), 
the distribution of σ will be more uniform and 
critical point has less impact on the efficiency. 
Then we construct the MBR entries and build 
the index based on this preprocessed time se-
ries.

The algorithm Adjust and other operations in 
the traditional index must be altered for un-
certain time series. We just consider a vital 
operation called Insert for this step, including 
Split and Reinsert, which both determine the 
path length and the search efficiency. The tra-
ditional split algorithm does not consider the 
use of uncertainty information while grouping 
the entries in the index node. In addition, the 
goodness measure for the Reinsert does not in-
volve the variance. Heuristic optimization for 
the split and re-insert operation cooperates with 
the minimum and maximum variances which 
are plugged in every MBR. The larger interval 
of the σ is, the more possible is the value cor-
responding to the peak point (see Figure 3) lo-
cated in the range minimum and maximum of 
σ. Hence, the queries profit from the smaller 
variance just like the margin described in [24]. 
Central σ requires less visit to prune/hit the en-
try in the leaf node by using judge inequations.
Before the variant Split and Reinsert are intro-
duced, we review the general Split algorithm as 
well as Reinsert algorithm. The R*-tree in [24] 
uses the following method to find good splits: 
along each axis, the entries are first sorted by 
the lower value and then by the upper value of 
their rectangles. For each sort of M – 2m + 2 
distributions of the M + 1 entries, two groups 
are determined by three goodness measure val-
ues. The first group contains the first (m – 1) 

+ k entries and the second group contains the 
remaining entries. For each distribution, good-
ness measure values are determined by 
1. area-value,
2. margin-value, and
3. overlap-value. 

To achieve dynamic recognition, the R*-tree 
forces entries to be reinserted along the inser-
tion routine by 
1. choosing subtree,
2. judging whether it overflows and
3. doing Reinsert or Split according to the in-

serted time.
As we can see, all of them optimize the index 
from the view of geometry, without considering 
uncertainty gradients. This results in a deep vis-
it like shown in Figure 6.

Given r-limit = –2, len = 40, σr = 1, r = 50, 
the MBR with min and max σ below the bor-
der 2.3 can give a monotonical direction of 
the threshold. Obviously, in Figure 6, the left-
top MBR has a varying threshold in a mono-
tonical and tighter varying threshold range 
[VarThd (σmin), VarThd (σmax)] and the right-bot-
tom MBR presents a wider range with a deter-

ministic peak
[min (VarThd (σmin), VarThd (σ max)), 
VarThd ((r-limit2r2)/((len – r-limit2)len) – (σr)2)].
Finally, the range of the left-top MBR is 
VarThd (1.0) – VarThd (0.0), which equals to 
0.47. The range of the right-bottom MBR is 
VarThd (2.3) – VarThd (0.0), which equals to 
1.06. Therefore, more distance is in the wider 
range in the right-bottom MBR, which causes 
the specific distance value to hardly meet one 
of the prune/candidate inequations (10)/(11).
We present two goodness measures against 
variance in the following formulations.
1. Split. With a new goodness measure, 

VarMargin:     

the split is inclined to generate two groups 
with minimum variance interval. We set 
this goodness measure with the top level 
when the split operation happens.

2. Reinsert. With a new goodness measure, 
VarOverlap    

Reinsert trends to minimum interval over-
lap of the variance in each MBR. We set 
the priority of this goodness measure value 
higher than the one measured against the 
relative distance to the MBR center.

5. Experimental Performances

Under the assumption that each timestamp in 
uncertain time series has the same variance, 
performance of the index approach is the same 
as the one of PROUD. Hence, in this section, 
we focus only on the random variance at each 
timestamp for all series.
To evaluate the performance of R*-tree, we 
conducted experiments with synthetic data and 
compared the efficiency of Search operation 
and qualified the performance by

    
    

true candidates not in selectionmiss ratio all true candidates in database=

   
   

false candidates in selectionerror ratio number of candidates selected=

First, we compared the Search operation of our 
index approach with the PROUD prune algo-
rithm in an ordered sequence. Then we evaluat-
ed the improvement of the central variance Split 
against the general Split. The general Split does 
not make use of the variance stored in the MBR. 
Our experiments were conducted in Visual Stu-
dio and run on the PC with 2.4 GHz CPU and 
4 GB RAM.

5.1. Experiments with Synthetic Data

The parameters which are used in our experi-
ments are listed in Table 1. The distance thresh-
old is generated dynamically during the pro-
cessing of the beginning phase. We generated 
the data set including num series that have len 
timestamps. Each experiment would run group 
times and the average results were finally pre-
sented. The dratio was used to multiply he orig-
inal uniform variance to change the variance of 
each timestamp. We picked τ in [0.1, 0.2, …, 
0.9] when we compared the PROUD with our 
index approach using miss/error ratio as our 
evaluation standard. We constructed our index 
after the preprocess for less overlap between 
the interval of the variance in each MBR and 
make the Euclidean distance of σ the same as 
raw measurement. The ground truth is based 
on real data without uncertain noise. As point-
ed out in [15], the impact of filtering uncertain 
time series works only in a specified range. We 
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len 100 Sequence length
τ [0.1, 0.9] Probability threshold
σ 1.0 Variance of sequence

dratio [0.1, 2.0] Variance ratio
num ≤ 5000 Sequence number per group

group 10 Test groups
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calculated the average distance from the uncer-
tain series to the reference series as the distance 
threshold to enlarge the performance gap be-
tween the effect of the index and the PROUD.
Figure 7 shows the results of the index com-
pared with the PROUD. It is evident that the 
index has a transaction between efficiency and 
error ratio. As we can see, both algorithms have 
a violent reaction to the distance threshold in-
stead of the probability. Moreover, when both 
have the same error ratio, the distance threshold 
of the index is less than the one of the PROUD, 
which means that the index needs more rigid 
threshold and performs poorly in selecting true 
candidates. On the contrary, the miss ratio of 
the index is much looser than the one of the 
PROUD. However, there is no difference be-
tween PROUD and index in sensitivity for the 
distance or the probability since the slopes of 
error ratio are parallel.
In Figure 8 and Figure 9, the error ratio of 
the index is always higher than the one of the 
PROUD. It is obviously true with larger noise, 
since the interval δmax – δmin in leaf entries is 
too big to keep a closer approximation by for-

mulations (10) and (11). Hence, the preprocess 
for uncertain time series before constructing the 
index gives a great improvement in Figure 9, as 
we can see, the index for the preprocessed se-
ries has a great balance between error ratio and 
miss ratio like the PROUD. Even with a lot of 
noise, the index is still performing well.
Here, we give the performance comparison for 
PROUD and R*-tree under different dimensions 
of time series. There is no doubt that the slopes 
of curves are the same, since the key judgement 
for candidates is determined by user-defined 
distance threshold and probability thresholds. 
Specifically, with the probabilistic thresholds 
of 0.7 and 0.2, both performances have a dra-
matic change. Afterward, we compare the in-
fluence of probability threshold on the pruning 
process under different noise. It turns out that 
with a large variance of the σ, the index without 
preprocess didn't work well, since the MBR is 
likely to cross the critical point, which makes 
threshold non-monotonic in relation to the vari-
ance. But then, after using the preprocess, the 
index performs better, both for the miss ratio 
and for the error ratio. In summary, index struc-

ture gives a flexible tradeoff between perfor-
mance and efficiency with a little loss in accu-
racy.

5.2. Experiments with Data Originated 
from Real Data

We use the archive files containing average dai-
ly temperatures for 157 U.S. and 167 interna-
tional cities. Source data for these files are from 
the Global Summary of the Day (GSOD) da-
tabase archived by the National Climatic Data 
Center (NCDC). The average daily tempera-
tures posted on this site are computed from 24 
hourly temperature readings in the Global Sum-
mary of the Day (GSOD) data. The data fields 
in each file posted on this site are month, day, 
year, average daily temperature (F). Data con-
taining ''–99'' no-data flag is not available. Since 
some cities contain heavily missed data and the 
spatial index requires equal-length series, we 
exclude cities azflagst, azyuma, behmlton, bib-
jmbra, bwdhaka, cnmontrl, cynicosi, dewilmin, 
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Figure 9. Preprocess with synthetic data.
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from real data.
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calculated the average distance from the uncer-
tain series to the reference series as the distance 
threshold to enlarge the performance gap be-
tween the effect of the index and the PROUD.
Figure 7 shows the results of the index com-
pared with the PROUD. It is evident that the 
index has a transaction between efficiency and 
error ratio. As we can see, both algorithms have 
a violent reaction to the distance threshold in-
stead of the probability. Moreover, when both 
have the same error ratio, the distance threshold 
of the index is less than the one of the PROUD, 
which means that the index needs more rigid 
threshold and performs poorly in selecting true 
candidates. On the contrary, the miss ratio of 
the index is much looser than the one of the 
PROUD. However, there is no difference be-
tween PROUD and index in sensitivity for the 
distance or the probability since the slopes of 
error ratio are parallel.
In Figure 8 and Figure 9, the error ratio of 
the index is always higher than the one of the 
PROUD. It is obviously true with larger noise, 
since the interval δmax – δmin in leaf entries is 
too big to keep a closer approximation by for-

mulations (10) and (11). Hence, the preprocess 
for uncertain time series before constructing the 
index gives a great improvement in Figure 9, as 
we can see, the index for the preprocessed se-
ries has a great balance between error ratio and 
miss ratio like the PROUD. Even with a lot of 
noise, the index is still performing well.
Here, we give the performance comparison for 
PROUD and R*-tree under different dimensions 
of time series. There is no doubt that the slopes 
of curves are the same, since the key judgement 
for candidates is determined by user-defined 
distance threshold and probability thresholds. 
Specifically, with the probabilistic thresholds 
of 0.7 and 0.2, both performances have a dra-
matic change. Afterward, we compare the in-
fluence of probability threshold on the pruning 
process under different noise. It turns out that 
with a large variance of the σ, the index without 
preprocess didn't work well, since the MBR is 
likely to cross the critical point, which makes 
threshold non-monotonic in relation to the vari-
ance. But then, after using the preprocess, the 
index performs better, both for the miss ratio 
and for the error ratio. In summary, index struc-

ture gives a flexible tradeoff between perfor-
mance and efficiency with a little loss in accu-
racy.

5.2. Experiments with Data Originated 
from Real Data

We use the archive files containing average dai-
ly temperatures for 157 U.S. and 167 interna-
tional cities. Source data for these files are from 
the Global Summary of the Day (GSOD) da-
tabase archived by the National Climatic Data 
Center (NCDC). The average daily tempera-
tures posted on this site are computed from 24 
hourly temperature readings in the Global Sum-
mary of the Day (GSOD) data. The data fields 
in each file posted on this site are month, day, 
year, average daily temperature (F). Data con-
taining ''–99'' no-data flag is not available. Since 
some cities contain heavily missed data and the 
spatial index requires equal-length series, we 
exclude cities azflagst, azyuma, behmlton, bib-
jmbra, bwdhaka, cnmontrl, cynicosi, dewilmin, 
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dlbonn, dlfrnkft, fldaytna, gygrgtwn, istelavi, 
istelaviv, labatonr, mwlilngw, paharris, rstblisi, 
rsyervan, slfretwn, ygpristn. The way of gener-
ating noise as well as the synthetic data through 
dratio and σ is done in the same manner.

5.3.  Evaluations of Running Time 

Clearly, the running time for querying target 
item with index should be more efficient than 
with the PROUD, because we condense the lin-
ear comparing operation in several directories 
of the index. Here we perform several experi-
ments over databases with different sizes. The 
dratio is always generated between 0.1 and 2.0.  
The results shown in Figure 12 are as what we 
expected. Performance of the index with size 
5000 is as well as good the size 500.

5.4. Variant Insertion

To evaluate performance of the variant index, 
we conduct extensive experiments and compare 
the running time of Insert with the variant In-

sert under both synthetic data and real data. It 
is shown in Figure 13 that, with a larger vari-
ance, which means greater uncertainty, general 
Insert produces more overlap of the variance, 
which requires deeper visits in the subtree and 
eventually performs unsteadily in time cost. 
Meanwhile, the Variant Index keeps a smooth 
fluctuation under different uncertainty levels 
and with lower time cost than Index does under 
most conditions.

6. Conclusions

For a given time series with random variance, 
Figure 7 shows the sensitive range by PROUD 
prune process as well as the index search pro-
cess. Although the index search process thresh-
old delays, the change gradient is almost paral-
lel. It means that the sensitivity to distance or 
the probability are similar. However, if the vari-
ance interval in one series is too large to meet 
the index candidate inequation, the result will 
be inclined to higher miss and lower error ratio 
since the critical point is likely to be positioned 
in the variance interval. By decreasing the ef-
fect of the variance and protecting Euclidean 
distance from a dramatic change using prepro-
cess, we can see that the index performance is 
good in Figure 9.
It is believed that the index can accelerate search 
in static databases. In this paper, we deal with 
how to construct a spatial index for uncertain 
time series. In our future work, we will work 
on indexing dynamic databases or data streams 
in a quickly changing environment. Moreover, 
given different targets, the index performance 
will dramatically be up and down. From the re-
search here presented, it is clear that the index 
with variant Insert is more robust and smoother 
compared to general Insert.
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ments over databases with different sizes. The 
dratio is always generated between 0.1 and 2.0.  
The results shown in Figure 12 are as what we 
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5000 is as well as good the size 500.

5.4. Variant Insertion

To evaluate performance of the variant index, 
we conduct extensive experiments and compare 
the running time of Insert with the variant In-

sert under both synthetic data and real data. It 
is shown in Figure 13 that, with a larger vari-
ance, which means greater uncertainty, general 
Insert produces more overlap of the variance, 
which requires deeper visits in the subtree and 
eventually performs unsteadily in time cost. 
Meanwhile, the Variant Index keeps a smooth 
fluctuation under different uncertainty levels 
and with lower time cost than Index does under 
most conditions.
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cess. Although the index search process thresh-
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ance interval in one series is too large to meet 
the index candidate inequation, the result will 
be inclined to higher miss and lower error ratio 
since the critical point is likely to be positioned 
in the variance interval. By decreasing the ef-
fect of the variance and protecting Euclidean 
distance from a dramatic change using prepro-
cess, we can see that the index performance is 
good in Figure 9.
It is believed that the index can accelerate search 
in static databases. In this paper, we deal with 
how to construct a spatial index for uncertain 
time series. In our future work, we will work 
on indexing dynamic databases or data streams 
in a quickly changing environment. Moreover, 
given different targets, the index performance 
will dramatically be up and down. From the re-
search here presented, it is clear that the index 
with variant Insert is more robust and smoother 
compared to general Insert.
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Appendix

Proof of Theorem 1

We separate the function into two conditions 
according to the sign of b.
1) b ≤ 0
Obviously f (x) will be monotonically increased 
since x is non-negative.
2) b > 0
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In a similar way, we have f (x) ≤ 0 ⇒ x ≤ (b2 c)/
(a2 – b2a).
We can make sure that the sign of b2c is non-neg-
ative since c ≥ 0. But there is no constraint on 
a2 – b2 a. Hence the sign about the target f (x) 
cannot be sure when b > 0.
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