
99CIT. Journal of Computing and Information Technology, Vol. 26, No. 2, June 2018, 99–114
doi: 10.20532/cit.2018.1003955

Dhanalekshmi Gopinathan and Krishna Asawa
Department of Computer Science, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India

CBSL − A Compressed Binary String
Labeling Scheme for Dynamic Update
of XML Documents

The growing volume of XML documents over the Web
has increased the need for an efficient mechanism to
facilitate query processing. Many labeling schemes
have been introduced to optimize data retrieval and
query processing on XML database documents. As
it is known, labels hold information about XML tree
nodes such as their position, their relationship with
other nodes and their order, which helps in query pro-
cessing. Most of the existing labeling schemes support
query processing over static XML documents. How-
ever, they need to re-label during dynamic update. In
this paper a compressed binary string labeling scheme
is proposed which supports dynamic update of XML
documents without re-labeling existing nodes. Ana-
lytical results show that the proposed labeling scheme
takes less label size in comparison with other labeling
schemes. Also, an experiment has been conducted to
evaluate the label generation time as well as update
processing.

ACM CCS (2012) Classification: Information systems
→ World Wide Web → Web data description lan-
guages → Markup languages → Extensible Markup
Language (XML)
Information systems → Data management systems →
Query languages → XML query languages

Keywords: compressed binary string, dynamic XML
update, label size, XML tree, label generation time,
update performance, lexicographic order

1. Introduction

The expressive and extensible nature of XML
has become a key feature for its successful adop-
tion as an interchange format between different
applications and Web services over the Internet.

Moreover, the growing volume of XML docu-
ments over the Web, in turn, increases the need
for an efficient technique to store and accelerate
query processing. XML data comprises nested
collections of elements enclosed between start
and end tags which describe the semantics of
the element.
In general, XML documents are modeled as an
ordered tree structure. Hence, the main chal-
lenge in XML data management is to provide
a storage structure that preserves the tree struc-
ture intact. There are various labeling schemes
proposed in the literature to provide persistent
storage for XML documents by keeping the
tree structure. Many of the labeling schemes
can efficiently process different queries if the
XML documents are static. To include structur-
al modifications of XML data without affecting
existing labels is still a hot topic.
In this paper we present a new labeling scheme
which follows a lexicographic order of strings.
The key contributions of this paper are:
(i) It supports dynamic updating of XML doc-

uments. This scheme need not re-label any
existing nodes and need not re-calculate
any values when inserting an order-sensi-
tive node into the XML tree.

(ii) An analytical study is conducted to show
that this labeling scheme requires less sym-
bols to label each node in the XML tree.

The rest of the paper is organized as follows. In
Section 2 a review of related work is provided.
In Section 3 the proposed approach is elabo-

100 101D. Gopinathan and K. Asawa CBSL - A Compressed Binary String Labeling Scheme for Dynamic Update of XML Documents

rated in detail. Section 4 discusses the formal
algorithm used in this scheme. In Section 5 an
analytical study for the computation of label
size is elucidated. Finally, experiment, results
and conclusion are discussed in Sections 6 and
7, respectively.

2. Related Work

Existing labeling schemes are mainly classified
into two major categories known as interval
based (range based) labeling scheme [1], [2]
and prefix based labeling scheme [3], [4], [5].
Range based labeling scheme generates labels
by assigning two values (begin, end) which de-
note the start and end positions of the element
in the document. These schemes can efficiently
determine ancestor-descendant relationships.
Additionally, the level information is required
to find the parent-child relationship between the
nodes. However, the major limitation of these
labeling schemes is that they cannot determine
the sibling relationship by only looking at the
labels. To determine the sibling relationship be-
tween two nodes, first it is required to search the
parent of one node; further, it has to be checked
whether the other node is the child of this same
parent. This is obviously a time-consuming and
expensive process. The second limitation is that
they do not support dynamic update. During up-
date, it may be necessary to re-label all the ex-
isting or some of the existing labels, which is an
expensive operation. This partially limitation is
latter resolved by keeping a larger interval size.
However, doing this may cause a lot of values
unused, which in turn increases the storage size.
Moreover, if the insertion operation exceeds the
interval size, then a re-labelling may require as-
signing new values to the inserted nodes and
already existing labels.
In the prefix based labeling scheme, each node
is labeled by concatenating the prefix of the
parent label with its self-label. This labeling
scheme efficiently determines all the structur-
al relationships between the nodes by merely
looking at the labels. In [4] the authors pro-
posed DeweyID which is an integer based pre-
fix scheme. Each node is labeled with an inte-
ger concatenated with its parent's label. It is a
static labeling scheme which requires re-label-
ing when new nodes are inserted.

 An extension of this approach is proposed in [6]
to support the dynamic updating of documents
without relabeling. In [3], Cohen proposed the
binary strings labeling scheme characterized by
labeling the root with an empty string. The chil-
dren nodes in the first level are labeled as 0,
10, 110 and so on. For any node u, the children
are labeled as L(u).0, L(u).10, L(u).110 and so
on, where L(u) is label of node u. In [7], O'Neil
proposed the ORDPATH labeling scheme based
on Dewey order using odd numbers for initial
labeling; this scheme reserves even and nega-
tive numbers for later insertions. However, if
the size of the reserved code overflows, it has
to re-label existing nodes. In [8], Duong and
Zhang proposed the LSDX labeling scheme
where each label is a combination of letters and
digits, and the label of the root node is assigned
to 0a, where the integer 0 represents the level or
depth of the node while the alphabet represents
the self-label of the node. Even though LSDX
is designed to meet the dynamic nature of XML
data, it is not a persistent labeling scheme.
There are situations where collisions can occur
during updation. Ko and Lee [9] proposed IBSL
(Improved Binary String Labeling). Each label
in this scheme uses binary bit strings, while the
scheme avoids re-labeling during updations.
However, space overhead and label size are not
efficient. In Dynamic XDAS [10], the labels are
generated based on masking technique; the au-
thors use modified approach form [9] to incor-
porate dynamic updating of XML data.

3. Proposed Approach

The proposed Compressed Binary String La-
beling (CBSL) is inspired by the improved
prefix based labeling scheme [9]. It uses string
encoding to compress the number of symbols in
the binary string to label the XML data. The ad-
vantage of using the compressed binary string
is that it uses less symbols to label each node
in the XML tree. It uses lexicographic order to
compare its labels. The next section explains
the compressed binary string encoding used by
the proposed approach.

3.1. Compressed Binary String Encoding

The proposed Compressed Binary String La-
beling uses binary strings generated as 10, 110,

in Figure 1 is used to illustrate the labeling of
each node using the CBSL label.

3.2. Initial Labeling of CBSL

The initial labeling of CBSL starts with label-
ing the root as NULL. The first level of children
is labeled as "10", "20", "30", …, "90" and so
forth. According to this approach, the first nine
children are labeled with two symbols such as
"10", "20", "30", and so forth; the next ninety
children are labeled "100", "110", "990" with
three symbols and so on.
Initial labeling in this scheme follows the lexi-
cographic order, hence it is a unique label. The
structural relationships such as parent-child
(P-C), ancestor-descendant (A-D) and sibling
relationships are computed by using the rules
discussed below:
(i) Parent-child relationship (P-C): If the la-

bel of Node1 is equal to the prefix label of
Node2, then Node1 is the parent of Node2.

(ii) Ancestor-descendant relationship (A-D):
If the label of Node1 is a prefix string of
the prefix label of Node2, then Node1 is an
ancestor of Node2.

(iii) Sibling relationship: If the prefix of Node1
and the prefix of Node2 are the same, then
Node1 and Node2 are sibling nodes.

These structural relationships play an important
role in query processing. The next section elab-
orates how CBSL handles the dynamic updates.

1110, and so forth. This labeling compression is
defined in Definition 1.
Definition 1. (Compressed Binary String La-
bel). The first binary string, BS (1) = 10, is en-
coded as "10", which means that only one "1" is
followed by a "0". The second binary string, BS
(2) = 110 is encoded as "20", meaning that two
"1"s are followed by a "0". Further, the third
binary string, BS (3) = 1110 is encoded as "30",
meaning that three "1" are followed by a zero.
Finally, for any k, BS (k) = 1k0 means that k "1"s
are followed by a "0".
Table 1 shows the number of labels with its size.
Here the size refers to the number of symbols
used to label each node in the XML document.
Thus, 101 − 100 denotes (10 − 1) = 9 labels,
102 − 101 = (100 − 10) = 90 labels and so on.

Definition 2. (Lexicographical order <). If two
consecutive binary strings Nleft and Nright are
equal (Nleft = Nright), all bits in Nleft and Nright
should be exactly the same. Nleft is lexicograph-
ically smaller than Nright (Nleft < Nright), if one of
the following conditions hold:
a) Nleft [k] = 0 and Nright [k] =1 during bit-by-

bit comparison of binary strings from left
to right, at any position, say k or,

b) Nright has Nleft as its prefix.
For example, consider two binary strings "110"
and "1110": "110" is lexicographically smaller
than "1110" as per condition a) in Definition 2.
For two binary strings "10" and "100", string
"10" is lexicographically smaller than string
"100" as per condition b) in Definition 2.
The next section explains the proposed label-
ing scheme in detail. The example tree shown

Table 1. Number of labels with its size regarding the
number of symbols.

Number of labels Size (#symbols)

101 − 100 2
102 − 101 3
103 − 102 4

… …
10k − 10k − 1 (k + 1)

Figure 1. The component resource consumptions.

100 101D. Gopinathan and K. Asawa CBSL - A Compressed Binary String Labeling Scheme for Dynamic Update of XML Documents

rated in detail. Section 4 discusses the formal
algorithm used in this scheme. In Section 5 an
analytical study for the computation of label
size is elucidated. Finally, experiment, results
and conclusion are discussed in Sections 6 and
7, respectively.

2. Related Work

Existing labeling schemes are mainly classified
into two major categories known as interval
based (range based) labeling scheme [1], [2]
and prefix based labeling scheme [3], [4], [5].
Range based labeling scheme generates labels
by assigning two values (begin, end) which de-
note the start and end positions of the element
in the document. These schemes can efficiently
determine ancestor-descendant relationships.
Additionally, the level information is required
to find the parent-child relationship between the
nodes. However, the major limitation of these
labeling schemes is that they cannot determine
the sibling relationship by only looking at the
labels. To determine the sibling relationship be-
tween two nodes, first it is required to search the
parent of one node; further, it has to be checked
whether the other node is the child of this same
parent. This is obviously a time-consuming and
expensive process. The second limitation is that
they do not support dynamic update. During up-
date, it may be necessary to re-label all the ex-
isting or some of the existing labels, which is an
expensive operation. This partially limitation is
latter resolved by keeping a larger interval size.
However, doing this may cause a lot of values
unused, which in turn increases the storage size.
Moreover, if the insertion operation exceeds the
interval size, then a re-labelling may require as-
signing new values to the inserted nodes and
already existing labels.
In the prefix based labeling scheme, each node
is labeled by concatenating the prefix of the
parent label with its self-label. This labeling
scheme efficiently determines all the structur-
al relationships between the nodes by merely
looking at the labels. In [4] the authors pro-
posed DeweyID which is an integer based pre-
fix scheme. Each node is labeled with an inte-
ger concatenated with its parent's label. It is a
static labeling scheme which requires re-label-
ing when new nodes are inserted.

 An extension of this approach is proposed in [6]
to support the dynamic updating of documents
without relabeling. In [3], Cohen proposed the
binary strings labeling scheme characterized by
labeling the root with an empty string. The chil-
dren nodes in the first level are labeled as 0,
10, 110 and so on. For any node u, the children
are labeled as L(u).0, L(u).10, L(u).110 and so
on, where L(u) is label of node u. In [7], O'Neil
proposed the ORDPATH labeling scheme based
on Dewey order using odd numbers for initial
labeling; this scheme reserves even and nega-
tive numbers for later insertions. However, if
the size of the reserved code overflows, it has
to re-label existing nodes. In [8], Duong and
Zhang proposed the LSDX labeling scheme
where each label is a combination of letters and
digits, and the label of the root node is assigned
to 0a, where the integer 0 represents the level or
depth of the node while the alphabet represents
the self-label of the node. Even though LSDX
is designed to meet the dynamic nature of XML
data, it is not a persistent labeling scheme.
There are situations where collisions can occur
during updation. Ko and Lee [9] proposed IBSL
(Improved Binary String Labeling). Each label
in this scheme uses binary bit strings, while the
scheme avoids re-labeling during updations.
However, space overhead and label size are not
efficient. In Dynamic XDAS [10], the labels are
generated based on masking technique; the au-
thors use modified approach form [9] to incor-
porate dynamic updating of XML data.

3. Proposed Approach

The proposed Compressed Binary String La-
beling (CBSL) is inspired by the improved
prefix based labeling scheme [9]. It uses string
encoding to compress the number of symbols in
the binary string to label the XML data. The ad-
vantage of using the compressed binary string
is that it uses less symbols to label each node
in the XML tree. It uses lexicographic order to
compare its labels. The next section explains
the compressed binary string encoding used by
the proposed approach.

3.1. Compressed Binary String Encoding

The proposed Compressed Binary String La-
beling uses binary strings generated as 10, 110,

in Figure 1 is used to illustrate the labeling of
each node using the CBSL label.

3.2. Initial Labeling of CBSL

The initial labeling of CBSL starts with label-
ing the root as NULL. The first level of children
is labeled as "10", "20", "30", …, "90" and so
forth. According to this approach, the first nine
children are labeled with two symbols such as
"10", "20", "30", and so forth; the next ninety
children are labeled "100", "110", "990" with
three symbols and so on.
Initial labeling in this scheme follows the lexi-
cographic order, hence it is a unique label. The
structural relationships such as parent-child
(P-C), ancestor-descendant (A-D) and sibling
relationships are computed by using the rules
discussed below:
(i) Parent-child relationship (P-C): If the la-

bel of Node1 is equal to the prefix label of
Node2, then Node1 is the parent of Node2.

(ii) Ancestor-descendant relationship (A-D):
If the label of Node1 is a prefix string of
the prefix label of Node2, then Node1 is an
ancestor of Node2.

(iii) Sibling relationship: If the prefix of Node1
and the prefix of Node2 are the same, then
Node1 and Node2 are sibling nodes.

These structural relationships play an important
role in query processing. The next section elab-
orates how CBSL handles the dynamic updates.

1110, and so forth. This labeling compression is
defined in Definition 1.
Definition 1. (Compressed Binary String La-
bel). The first binary string, BS (1) = 10, is en-
coded as "10", which means that only one "1" is
followed by a "0". The second binary string, BS
(2) = 110 is encoded as "20", meaning that two
"1"s are followed by a "0". Further, the third
binary string, BS (3) = 1110 is encoded as "30",
meaning that three "1" are followed by a zero.
Finally, for any k, BS (k) = 1k0 means that k "1"s
are followed by a "0".
Table 1 shows the number of labels with its size.
Here the size refers to the number of symbols
used to label each node in the XML document.
Thus, 101 − 100 denotes (10 − 1) = 9 labels,
102 − 101 = (100 − 10) = 90 labels and so on.

Definition 2. (Lexicographical order <). If two
consecutive binary strings Nleft and Nright are
equal (Nleft = Nright), all bits in Nleft and Nright
should be exactly the same. Nleft is lexicograph-
ically smaller than Nright (Nleft < Nright), if one of
the following conditions hold:
a) Nleft [k] = 0 and Nright [k] =1 during bit-by-

bit comparison of binary strings from left
to right, at any position, say k or,

b) Nright has Nleft as its prefix.
For example, consider two binary strings "110"
and "1110": "110" is lexicographically smaller
than "1110" as per condition a) in Definition 2.
For two binary strings "10" and "100", string
"10" is lexicographically smaller than string
"100" as per condition b) in Definition 2.
The next section explains the proposed label-
ing scheme in detail. The example tree shown

Table 1. Number of labels with its size regarding the
number of symbols.

Number of labels Size (#symbols)

101 − 100 2
102 − 101 3
103 − 102 4

… …
10k − 10k − 1 (k + 1)

Figure 1. The component resource consumptions.

102 103D. Gopinathan and K. Asawa CBSL - A Compressed Binary String Labeling Scheme for Dynamic Update of XML Documents

3.3. Dynamic Insertions using CBSL

CBSL supports updating XML data dynamical-
ly without collision. Inserting a node for vari-
ous conditions is being elaborated in the form
of cases as given below.

Case 1: Inserting a node before the leftmost
child:
If the leftmost child has a label with distinc-
tive character "#" (hash), the new node will
be assigned a label by changing the last bit
"1" in the left label to "01". For instance, if a
new node is inserted before the leftmost child
"100.10#01", the self-label of the leftmost child
is "#01", therefore the new node will get the la-
bel "100.10#001", as the last bit of the left node
label is changed to 01 as shown in Figure 3.

If the leftmost child doesn't contain the distinc-
tive character "#", then the new node will get a
label by concatenating a string "#01" with the
leftmost child's label, as depicted in Figure 4.

Case 2: Inserting a node after the rightmost
child:
If the rightmost child contains a distinctive
character "#" in its label, the new node will be
assigned a label by concatenating a bit "1" to
the right label. For instance, a new node insert-
ed after the rightmost child "20#11" will get a
label "20#111", as depicted in Figure 5.

Next, if the rightmost child doesn't contain dis-
tinctive character "#", then the new node will get
a label by concatenating a string "#11" with the
rightmost child's label, as depicted in Figure 6.

Case 3: Inserting a node between two adjacent
siblings:
The two conditions considered here are:
(i) the length of the left child's label is less

than or equal to the length of the right
child's label, and

(ii) the length of the left child's label is greater
than the length of the right child's label.

In the first condition, the new node will get a
label by suffixing the string "#01" to the right
child's label if the distinctive character (#) is
not already present in the right node's label, as
shown in Figure 7. Furthermore, if a distinctive
character is present, the new node will get the
label by changing the last bit to "01", as shown
in Figure 8.
In the second condition, where the length of the
left node's label is greater than the length of the
right node's one, the new node will get a label
by suffixing the string "1" to the left node's la-
bel, as depicted in Figure 8.
In the following, the formal labeling algorithm
is elaborated in detail.

3.4. Labeling Algorithm

Algorithm 1 elaborates the initial labeling as
part of the proposed labeling scheme, while
Algorithm 2 defines how dynamic update are
handled by the scheme.

3.4.1. Initial Labeling

Algorithm 1 gives the details of CBSL labels
for each node in the XML tree initially. A
depth-first traversal is performed to assign a
label to each node. The algorithm implements
Definition 1 of the binary encoding. Here "." is
used as the delimiter between the prefix and the
self-label part of a label.

(a)

(b)

(c)

Figure 2. (a), (b) and (c) present the relationships
described in rules (i), (ii) and (iii).

Figure 3. Inserting a node before the leftmost child
(Case 1): label contains #.

Figure 4. Inserting a node before the leftmost child
(Case 1): label contains no #.

Figure 5. Inserting a node after the rightmost child
(Case 2): label contains #.

Figure 6. Inserting a node after the rightmost child
(Case 2): label contains no #.

(a)

(b)

Figure 7. Inserting a node between two nodes:
condition (i).

Figure 8. Inserting a node between two nodes:
 condition (ii).

102 103D. Gopinathan and K. Asawa CBSL - A Compressed Binary String Labeling Scheme for Dynamic Update of XML Documents

3.3. Dynamic Insertions using CBSL

CBSL supports updating XML data dynamical-
ly without collision. Inserting a node for vari-
ous conditions is being elaborated in the form
of cases as given below.

Case 1: Inserting a node before the leftmost
child:
If the leftmost child has a label with distinc-
tive character "#" (hash), the new node will
be assigned a label by changing the last bit
"1" in the left label to "01". For instance, if a
new node is inserted before the leftmost child
"100.10#01", the self-label of the leftmost child
is "#01", therefore the new node will get the la-
bel "100.10#001", as the last bit of the left node
label is changed to 01 as shown in Figure 3.

If the leftmost child doesn't contain the distinc-
tive character "#", then the new node will get a
label by concatenating a string "#01" with the
leftmost child's label, as depicted in Figure 4.

Case 2: Inserting a node after the rightmost
child:
If the rightmost child contains a distinctive
character "#" in its label, the new node will be
assigned a label by concatenating a bit "1" to
the right label. For instance, a new node insert-
ed after the rightmost child "20#11" will get a
label "20#111", as depicted in Figure 5.

Next, if the rightmost child doesn't contain dis-
tinctive character "#", then the new node will get
a label by concatenating a string "#11" with the
rightmost child's label, as depicted in Figure 6.

Case 3: Inserting a node between two adjacent
siblings:
The two conditions considered here are:
(i) the length of the left child's label is less

than or equal to the length of the right
child's label, and

(ii) the length of the left child's label is greater
than the length of the right child's label.

In the first condition, the new node will get a
label by suffixing the string "#01" to the right
child's label if the distinctive character (#) is
not already present in the right node's label, as
shown in Figure 7. Furthermore, if a distinctive
character is present, the new node will get the
label by changing the last bit to "01", as shown
in Figure 8.
In the second condition, where the length of the
left node's label is greater than the length of the
right node's one, the new node will get a label
by suffixing the string "1" to the left node's la-
bel, as depicted in Figure 8.
In the following, the formal labeling algorithm
is elaborated in detail.

3.4. Labeling Algorithm

Algorithm 1 elaborates the initial labeling as
part of the proposed labeling scheme, while
Algorithm 2 defines how dynamic update are
handled by the scheme.

3.4.1. Initial Labeling

Algorithm 1 gives the details of CBSL labels
for each node in the XML tree initially. A
depth-first traversal is performed to assign a
label to each node. The algorithm implements
Definition 1 of the binary encoding. Here "." is
used as the delimiter between the prefix and the
self-label part of a label.

(a)

(b)

(c)

Figure 2. (a), (b) and (c) present the relationships
described in rules (i), (ii) and (iii).

Figure 3. Inserting a node before the leftmost child
(Case 1): label contains #.

Figure 4. Inserting a node before the leftmost child
(Case 1): label contains no #.

Figure 5. Inserting a node after the rightmost child
(Case 2): label contains #.

Figure 6. Inserting a node after the rightmost child
(Case 2): label contains no #.

(a)

(b)

Figure 7. Inserting a node between two nodes:
condition (i).

Figure 8. Inserting a node between two nodes:
 condition (ii).

104 105D. Gopinathan and K. Asawa CBSL - A Compressed Binary String Labeling Scheme for Dynamic Update of XML Documents

The method nextBstring() generates the next
binary string for the node visited, while the
method countOnes() counts the number of "1"s
in the generated binary string. Dynamic inser-
tions in the proposed scheme are performed as
discussed in Subsection 3.3. Dynamic update
follow the lexicographic order.
Lemma 1. Inserting a node Nnew between the
two lexicographically ordered strings Nleft and
Nright using the CBSL approach follows the lex-
icographic order, i.e. Nleft < Nnew < Nright.
Proof. The above statement is proved by con-
sidering two cases. The first one is when the
length of the left sibling node is less than or
equal to the right sibling node, while the sec-
ond is when the length of the left sibling node
is greater than the right sibling node.
Case a: If length (Nleft) ≤ length (Nright), the
Nnew is assigned a label as shown in steps (b1)
of Algorithm 2 which checks two cases:
(i) both labels without a distinctive character

"#", and
(ii) labels with a distinctive character "#".
In the proposed labeling, according to Definition
1, the valueOf ((length (Nleft) − 1) denotes the
number of "1"s in the binary string representa-
tion of label Nleft, while valueOf ((length (Nright)
− 1) indicates the number of "1"s in the label
Nright. Note that, as per the initial labeling,
valueOf ((length (Nright) − 1) cannot be less than
valueOf ((length (Nleft) − 1).

(a1) Labels without distinctive character "#"
and length (Nleft) <= length (Nright).
Here valueOf (length (Nleft) − 1) <
valueOf (length (Nright) − 1) means that the
number of 1's in Nright is larger than Nleft,
i.e. Nleft is the prefix of Nright. Then, as per
condition b in Definition 3.2, Nright is lex-
icographically larger than Nleft. Thus, Nleft
< Nnew, because Nnew is obtained by con-
catenating "#01" to Nright.

(a2) Length (Nleft) < length (Nright) with dis-
tinctive character "#".
In this case, Nnew is assigned a value by
changing the last bit "1" of Nright to "01".
Since 0 < 1 lexicographically, then, as per
the condition a in Definition 3.2, Nnew <
Nright.

Based on (a1) and (a2), Nleft < Nnew < Nright lexico-
graphically when length (Nleft) ≤ length (Nright).
Next, to prove the second part, Nnew < Nright, we
must also consider two cases.
Case b: If length (Nleft) > length (Nright), Nnew is
assigned a label as shown in step (b2) of Algo-
rithm 2., i.e., Nnew = Nleft + "1".
(b1) From Algorithm 2, Nnew is assigned a la-

bel by concatenating a "1" to Nleft, thus
making Nleft a prefix of Nnew. Now, as per
condition b in Definition 2, Nleft < Nnew
lexicographically.

(b2) Since length (Nleft) > length (Nright) and
Nleft is lexicographically smaller than
Nright, it must satisfy the condition in Defi-
nition 2. It means that there exists some
position, say k, where Nleft [k] is "0" and
Nright [k] is "1". Note that "0" is lexico-
graphically smaller than "1". Therefore,
concatenating "1" to Nleft for assigning a
value for Nnew still makes it smaller than
Nright lexicographically, i.e. Nnew < Nright.

Based on (b1) and (b2), Nleft < Nnew < Nright
when length (Nleft) > length(Nright). Therefore,
from case (a) and case (b), Nleft < Nnew < Nright.

4. Label Size Analysis

In this section, the term size denotes the number
of symbols present in a label. As the first part of
the size analysis, for a given fan-out (F) value,
the maximum number of symbols required to
label each string is computed.

Lemma 2. To self-label sibling nodes, for each
label string in CBSL, will take at most log10 (F)
+ 1 character symbols.
Proof. In this approach,
(i) 2-symbol character strings can represent

the first nine label values, i.e. (101 − 100)
values,

(ii) 3-symbol characters string can represent
90 label values, i.e. (102 − 101) values,

(iii) 4-symbol character strings can represent
900 label values, i.e. (103 − 102).

Thus for any k, to represent (10k − 10k − 1) labels
requires k + 1 symbols.
Let

() () ()
()

1 0 2 1 1

1

1

10 10 10 10 10 10

10 10 .

k k

k
i i

i

F −

−

=

= − + − + + −

= −∑

By mathematical induction,

() ()1

1
10 10 10 .

k
i i k

i
F k−

=
= − = ⋅∑

Hence, the maximum number of character sym-
bols for each label string K = log10 (F) + 1.
Example: for F = 80, F = 90 and F = 8379, the
symbols required to self-label are
(i) F = 90, K = log10 (90) + 1 = 1.97 + 1 = 3

symbols.
(ii) F = 800, K = log10 (800) + 1 = 2.90 + 1 =

4 symbols.
(iii) F = 8375, K = log10 (8375) + 1 = 3.92 + 1

= 5 symbols.
Next, the computation of total sibling size re-
quired for fan-out F nodes is

() () ()
2 2

0, 2 0
9 10 9 10 1

l l
i i

i x i
x F l

− −

= = =

⋅ ⋅ + − ⋅ ⋅ +

∑ ∑

Algorithm 2. Insertion (Nleft , Nright).

Input: Nleft, selflabel of the left sibling, and Nright, selflabel of the right sibling
Output: Nnew, selflabel of the New node
//Case a: Inserting a node before Nleft

begin
 (a1) Nleft without special character "#"
 Nnew = 01# + Nleft
 (a2) Nleft with special character "#"
 Nnew = 0 + Nleft
end
//Case b: Inserting a node between two adjacent siblings
begin
 (b1) if (lenght(Nleft) <= lenght(Nright)) then
 if (!(Nleft .contains("#") and !(Nright .contains("#")) then
 Nnew = Nleft + #01
 else
 if Nright .contains("#") then
 Nnew = Nright with last bit 1 changed to 01
 end
 end
 end
 (b2) if (lenght(Nleft) > lenght(Nright)) then
 Nnew = Nleft + 1
 end
end
//Case c: Inserting a node after right sibling Nright

begin
 (c1) Nright with special character ("#")
 Nnew = Nright + 1
 (c2) Nright without special character ("#")
 Nnew = Nright + 11
end

Algorithm 1. Initial labeling.

Input: XML Document D
Output: Label for each node n in D
begin
 if (n is root) then
 Label (n) = null
 else
 prefix (n) = Label (P)
 end
 if (n is firstChild (P)) then
 selflabel (n) = 10
 else
 templabel = countOnes (nextBstring())
 Label (n) = templabel + 0
 end
 Label (n) = prefix (n) + delimiter + selflabel (n)
end

104 105D. Gopinathan and K. Asawa CBSL - A Compressed Binary String Labeling Scheme for Dynamic Update of XML Documents

The method nextBstring() generates the next
binary string for the node visited, while the
method countOnes() counts the number of "1"s
in the generated binary string. Dynamic inser-
tions in the proposed scheme are performed as
discussed in Subsection 3.3. Dynamic update
follow the lexicographic order.
Lemma 1. Inserting a node Nnew between the
two lexicographically ordered strings Nleft and
Nright using the CBSL approach follows the lex-
icographic order, i.e. Nleft < Nnew < Nright.
Proof. The above statement is proved by con-
sidering two cases. The first one is when the
length of the left sibling node is less than or
equal to the right sibling node, while the sec-
ond is when the length of the left sibling node
is greater than the right sibling node.
Case a: If length (Nleft) ≤ length (Nright), the
Nnew is assigned a label as shown in steps (b1)
of Algorithm 2 which checks two cases:
(i) both labels without a distinctive character

"#", and
(ii) labels with a distinctive character "#".
In the proposed labeling, according to Definition
1, the valueOf ((length (Nleft) − 1) denotes the
number of "1"s in the binary string representa-
tion of label Nleft, while valueOf ((length (Nright)
− 1) indicates the number of "1"s in the label
Nright. Note that, as per the initial labeling,
valueOf ((length (Nright) − 1) cannot be less than
valueOf ((length (Nleft) − 1).

(a1) Labels without distinctive character "#"
and length (Nleft) <= length (Nright).
Here valueOf (length (Nleft) − 1) <
valueOf (length (Nright) − 1) means that the
number of 1's in Nright is larger than Nleft,
i.e. Nleft is the prefix of Nright. Then, as per
condition b in Definition 3.2, Nright is lex-
icographically larger than Nleft. Thus, Nleft
< Nnew, because Nnew is obtained by con-
catenating "#01" to Nright.

(a2) Length (Nleft) < length (Nright) with dis-
tinctive character "#".
In this case, Nnew is assigned a value by
changing the last bit "1" of Nright to "01".
Since 0 < 1 lexicographically, then, as per
the condition a in Definition 3.2, Nnew <
Nright.

Based on (a1) and (a2), Nleft < Nnew < Nright lexico-
graphically when length (Nleft) ≤ length (Nright).
Next, to prove the second part, Nnew < Nright, we
must also consider two cases.
Case b: If length (Nleft) > length (Nright), Nnew is
assigned a label as shown in step (b2) of Algo-
rithm 2., i.e., Nnew = Nleft + "1".
(b1) From Algorithm 2, Nnew is assigned a la-

bel by concatenating a "1" to Nleft, thus
making Nleft a prefix of Nnew. Now, as per
condition b in Definition 2, Nleft < Nnew
lexicographically.

(b2) Since length (Nleft) > length (Nright) and
Nleft is lexicographically smaller than
Nright, it must satisfy the condition in Defi-
nition 2. It means that there exists some
position, say k, where Nleft [k] is "0" and
Nright [k] is "1". Note that "0" is lexico-
graphically smaller than "1". Therefore,
concatenating "1" to Nleft for assigning a
value for Nnew still makes it smaller than
Nright lexicographically, i.e. Nnew < Nright.

Based on (b1) and (b2), Nleft < Nnew < Nright
when length (Nleft) > length(Nright). Therefore,
from case (a) and case (b), Nleft < Nnew < Nright.

4. Label Size Analysis

In this section, the term size denotes the number
of symbols present in a label. As the first part of
the size analysis, for a given fan-out (F) value,
the maximum number of symbols required to
label each string is computed.

Lemma 2. To self-label sibling nodes, for each
label string in CBSL, will take at most log10 (F)
+ 1 character symbols.
Proof. In this approach,
(i) 2-symbol character strings can represent

the first nine label values, i.e. (101 − 100)
values,

(ii) 3-symbol characters string can represent
90 label values, i.e. (102 − 101) values,

(iii) 4-symbol character strings can represent
900 label values, i.e. (103 − 102).

Thus for any k, to represent (10k − 10k − 1) labels
requires k + 1 symbols.
Let

() () ()
()

1 0 2 1 1

1

1

10 10 10 10 10 10

10 10 .

k k

k
i i

i

F −

−

=

= − + − + + −

= −∑

By mathematical induction,

() ()1

1
10 10 10 .

k
i i k

i
F k−

=
= − = ⋅∑

Hence, the maximum number of character sym-
bols for each label string K = log10 (F) + 1.
Example: for F = 80, F = 90 and F = 8379, the
symbols required to self-label are
(i) F = 90, K = log10 (90) + 1 = 1.97 + 1 = 3

symbols.
(ii) F = 800, K = log10 (800) + 1 = 2.90 + 1 =

4 symbols.
(iii) F = 8375, K = log10 (8375) + 1 = 3.92 + 1

= 5 symbols.
Next, the computation of total sibling size re-
quired for fan-out F nodes is

() () ()
2 2

0, 2 0
9 10 9 10 1

l l
i i

i x i
x F l

− −

= = =

⋅ ⋅ + − ⋅ ⋅ +

∑ ∑

Algorithm 2. Insertion (Nleft , Nright).

Input: Nleft, selflabel of the left sibling, and Nright, selflabel of the right sibling
Output: Nnew, selflabel of the New node
//Case a: Inserting a node before Nleft

begin
 (a1) Nleft without special character "#"
 Nnew = 01# + Nleft
 (a2) Nleft with special character "#"
 Nnew = 0 + Nleft
end
//Case b: Inserting a node between two adjacent siblings
begin
 (b1) if (lenght(Nleft) <= lenght(Nright)) then
 if (!(Nleft .contains("#") and !(Nright .contains("#")) then
 Nnew = Nleft + #01
 else
 if Nright .contains("#") then
 Nnew = Nright with last bit 1 changed to 01
 end
 end
 end
 (b2) if (lenght(Nleft) > lenght(Nright)) then
 Nnew = Nleft + 1
 end
end
//Case c: Inserting a node after right sibling Nright

begin
 (c1) Nright with special character ("#")
 Nnew = Nright + 1
 (c2) Nright without special character ("#")
 Nnew = Nright + 11
end

Algorithm 1. Initial labeling.

Input: XML Document D
Output: Label for each node n in D
begin
 if (n is root) then
 Label (n) = null
 else
 prefix (n) = Label (P)
 end
 if (n is firstChild (P)) then
 selflabel (n) = 10
 else
 templabel = countOnes (nextBstring())
 Label (n) = templabel + 0
 end
 Label (n) = prefix (n) + delimiter + selflabel (n)
end

106 107D. Gopinathan and K. Asawa CBSL - A Compressed Binary String Labeling Scheme for Dynamic Update of XML Documents

Lemma 3. The total sibling self-label size for a
fan-out of F nodes in the CBSL will be

() () ()
2 2

0, 2 0
9 10 9 10 1

l l
i i

i x i
x F l

− −

= = =

⋅ ⋅ + − ⋅ ⋅ +

∑ ∑

symbols. Here, l denotes the length (F).
Proof. The CBSL scheme starts its labeling with
the root node as null, hence for the first level of
nodes the prefix part will be null. The children
at the first level will have only the self-label.
Hence, the label starts with 2-character strings
such as 10, 20, 30 and so on.
The first step is to compute the size requirement
of sibling labels up to l − 2.
(i) The size requirement of sibling labels is up

to l − 2, where l is the string length (F).
For this, as per the CBSL scheme, labeling falls
within the range (101 − 100), (102 − 101), (103
− 102) with a 2-character string, 3-character
string, 4-character string and so on.
Hence,
a) i = 0 denotes (101 − 100) · 10i = 9 · 100 = 9

sibling labels.
b) i = 1 denotes (101 − 100) · 10i = 9 · 101 =

90 sibling labels.
c) i = 2 denotes (101 − 100) · 10i = 9 · 102 =

900 sibling labels, and so on.
Now, x denotes the number of symbols used to
label these nodes. As per this scheme, "x" starts
with 2 and is incremented by 1 for every "i"
value up to l − 2.
Hence, to label sibling nodes, we need

()
2

0, 2
9 10

l
i

i x
x

−

= =
⋅ ⋅∑ symbols.

(ii) The size requirement of sibling labels falls
in the range l − 1.

Some cases may have the number of nodes less
than (10l − 1 − 10l − 2). In such case, to capture
the exact number of remaining nodes, the num-
ber of nodes which has already been labeled is
subtracted from the fan-out value F. Hence, the
remaining number of nodes is computed as F −

()
2

0
9 10

l
i

i
x

−

=
⋅ ⋅∑ , and the symbols required to label

these nodes are obtained by multiplying (l + 1),
where l denotes the string length of fan-out F.

Therefore, from cases (i) and (ii) it is
shown that the total sibling label size is ob-
tained by using formula

() () ()
2 2

0, 2 0
9 10 9 10 1

l l
i i

i x i
x F l

− −

= = =

⋅ ⋅ + − ⋅ ⋅ +

∑ ∑

Consider an example for fan-out value F = 8875.
Here, the string length (F) = 4. The first term
of the summation series mentioned in Lemma
3 computes the number of symbols required to
label the nodes as
a) i = 0, 9 · 10i = 9 · 100 = 9 label values.

Symbols required are 9 · x =9 · 2 = 18.
b) i = 1, 9 · 10i = 9 · 101 = 90 label values.

Symbols required are 90 · x = 90 · 3 = 270.
c) i = 2, 9 · 10i = 9 · 102 = 900 label values.

Symbols required are 900 · x = 900 · 4 =
3600.

Now, when i = 3, which exceeds (l − 2) = 4, the
second term of the formula is used to get the
exact remaining number of nodes as 8875 − (9
+ 90 + 900) = 7876 label values. Hence, 7876
* 5 = 39380 will give the total number of sym-
bols required to label these nodes. Therefore,
the total number of symbols required to label a
sibling size of 8875 is computed as (18 + 270 +
3600 + 39380) = 43268 symbols. Besides, from
Property 2 below, the average size of a single
label will be 43268/8875 = 4.87.
Property 1. From Lemma 3, the total sibling
label size for a fan-out F is computed as

() () ()
2 2

0, 2 0
9 10 9 10 1 .

l l
i i

i x i
x F l

− −

= = =

⋅ ⋅ + − ⋅ ⋅ +

∑ ∑

Hence, storage requirement for CBSL will be

() () ()
2 2

0, 2 0
9 10 9 10 1 8

l l
i i

i x i
x F l

− −

= = =

⋅ ⋅ + − ⋅ ⋅ + ⋅

∑ ∑

bits. The 8 bits denote the required storage
space for 1 symbol.
Property 2. From Lemma 3, the total sibling
self-label size for a fan-out F in CBSL is

() () ()
2 2

0, 2 0
9 10 9 10 1 .

l l
i i

i x i
x F l

− −

= = =

⋅ ⋅ + − ⋅ ⋅ +

∑ ∑

Hence the average size for a single self-label is

() () ()
2 2

0, 2 0

1 9 10 9 10 1 .
l l

i i

i x i
x F lF

− −

= = =

⋅ ⋅ ⋅ + − ⋅ ⋅ +

∑ ∑

Property 3. Considering the prefix, the maxi-
mum size required to store the complete label
(prefix + self-label) is

() () ()
2 2

0, 2 0
9 10 9 10 1 ,

l l
i i

i x i
D x F l

− −

= = =

⋅ ⋅ ⋅ + − ⋅ ⋅ +

∑ ∑

where D denotes the maximum depth of the
XML tree.
Property 4. The maximum size required by
CBSL for all the nodes in the XML tree with
N nodes is

() () ()
2 2

0, 2 0
9 10 9 10 1 .

l l
i i

i x i
N D x F l

− −

= = =

⋅ ⋅ ⋅ ⋅ + − ⋅ ⋅ +

∑ ∑

5. Performance Analysis of Label
Size Requirements

In this section, a performance analysis study is
conducted to analyze the size required by dif-
ferent labeling schemes such as Dewey, bina-
ry, IBSL, binary string and our CBSL scheme.
"N", "F" and "D" indicate the number of nodes,
maximum fan-out, and max-depth of nodes in
an XML document respectively. In conducting
this study we consider the benchmark datasets
[11], [12] whose characteristics are shown in
Table 2.

In Dewey ID [4], all the self-labels use a maxi-
mum size of log2 (F), while the maximum size
required to store the complete label including
prefix and self-label is "D · log2 (F)". Fur-
thermore, the maximum size required to store
all the nodes in the XML tree is computed
N · D · log2 (F). The binary string scheme [3]
takes label sizes of 1, 2, 3, ..., F for the first sib-
ling, second sibling and so on. Hence, the total
sibling size taken in this scheme is 1 + 2 + ... +
F which is equal to F

2/2 + F/2. And, the aver-
age size of the single sibling label is F/2 + 1/2.
Therefore, the maximum size required to store
all the nodes in the XML tree is N · D · (F/2 +
1/2).
In IBSL [13] the total sibling size for the
self-label is computed as F · log2 (F − 1) + 2 · F −
log (F − 1) + 1, and the average size for a single
self-label is log (F − 1) + 2 − (log (F − 1))/F
+ 1/F. Therefore, the maximum size required
to store all the nodes in the XML tree is N · D
· [log (F − 1) + 2 − (log (F − 1)/F) + 1/F]. In the
IBSL_2010 [9] the total sibling label, the aver-
age size for a single self-label, and the maxi-
mum size required to store all nodes in an XML
tree are computed in the same way in Binary
[3]. Table 3 shows the label size analysis for
different schemes.
A comparative study of label size computation
in various labeling schemes mentioned in Ta-
ble 3 is performed and the results obtained are
depicted in Table 4. It summarizes comparative
results obtained on the total sibling size, aver-
age size for a single label and maximum size
required to store all nodes in an XML tree by
different schemes on datasets shown in Table
3. From the table it is clear that our proposed

Table 2. Characteristics of data sets used.

DataSet Topic MaxFan-out(F) MaxDepth(D) #Nodes
D1 SigmodRecord 6 3 41
D2 NASA 26 6 4834
D3 Shakespeare Play 48 5 6636
D4 Club 13 3 340
D5 Actor 26 4 1110
D6 Department 25 3 2636
D7 Xmark 25500 12 16663000
D8 DBLP 328858 6 3332130
D9 Treebank 56384 36 2437666

106 107D. Gopinathan and K. Asawa CBSL - A Compressed Binary String Labeling Scheme for Dynamic Update of XML Documents

Lemma 3. The total sibling self-label size for a
fan-out of F nodes in the CBSL will be

() () ()
2 2

0, 2 0
9 10 9 10 1

l l
i i

i x i
x F l

− −

= = =

⋅ ⋅ + − ⋅ ⋅ +

∑ ∑

symbols. Here, l denotes the length (F).
Proof. The CBSL scheme starts its labeling with
the root node as null, hence for the first level of
nodes the prefix part will be null. The children
at the first level will have only the self-label.
Hence, the label starts with 2-character strings
such as 10, 20, 30 and so on.
The first step is to compute the size requirement
of sibling labels up to l − 2.
(i) The size requirement of sibling labels is up

to l − 2, where l is the string length (F).
For this, as per the CBSL scheme, labeling falls
within the range (101 − 100), (102 − 101), (103
− 102) with a 2-character string, 3-character
string, 4-character string and so on.
Hence,
a) i = 0 denotes (101 − 100) · 10i = 9 · 100 = 9

sibling labels.
b) i = 1 denotes (101 − 100) · 10i = 9 · 101 =

90 sibling labels.
c) i = 2 denotes (101 − 100) · 10i = 9 · 102 =

900 sibling labels, and so on.
Now, x denotes the number of symbols used to
label these nodes. As per this scheme, "x" starts
with 2 and is incremented by 1 for every "i"
value up to l − 2.
Hence, to label sibling nodes, we need

()
2

0, 2
9 10

l
i

i x
x

−

= =
⋅ ⋅∑ symbols.

(ii) The size requirement of sibling labels falls
in the range l − 1.

Some cases may have the number of nodes less
than (10l − 1 − 10l − 2). In such case, to capture
the exact number of remaining nodes, the num-
ber of nodes which has already been labeled is
subtracted from the fan-out value F. Hence, the
remaining number of nodes is computed as F −

()
2

0
9 10

l
i

i
x

−

=
⋅ ⋅∑ , and the symbols required to label

these nodes are obtained by multiplying (l + 1),
where l denotes the string length of fan-out F.

Therefore, from cases (i) and (ii) it is
shown that the total sibling label size is ob-
tained by using formula

() () ()
2 2

0, 2 0
9 10 9 10 1

l l
i i

i x i
x F l

− −

= = =

⋅ ⋅ + − ⋅ ⋅ +

∑ ∑

Consider an example for fan-out value F = 8875.
Here, the string length (F) = 4. The first term
of the summation series mentioned in Lemma
3 computes the number of symbols required to
label the nodes as
a) i = 0, 9 · 10i = 9 · 100 = 9 label values.

Symbols required are 9 · x =9 · 2 = 18.
b) i = 1, 9 · 10i = 9 · 101 = 90 label values.

Symbols required are 90 · x = 90 · 3 = 270.
c) i = 2, 9 · 10i = 9 · 102 = 900 label values.

Symbols required are 900 · x = 900 · 4 =
3600.

Now, when i = 3, which exceeds (l − 2) = 4, the
second term of the formula is used to get the
exact remaining number of nodes as 8875 − (9
+ 90 + 900) = 7876 label values. Hence, 7876
* 5 = 39380 will give the total number of sym-
bols required to label these nodes. Therefore,
the total number of symbols required to label a
sibling size of 8875 is computed as (18 + 270 +
3600 + 39380) = 43268 symbols. Besides, from
Property 2 below, the average size of a single
label will be 43268/8875 = 4.87.
Property 1. From Lemma 3, the total sibling
label size for a fan-out F is computed as

() () ()
2 2

0, 2 0
9 10 9 10 1 .

l l
i i

i x i
x F l

− −

= = =

⋅ ⋅ + − ⋅ ⋅ +

∑ ∑

Hence, storage requirement for CBSL will be

() () ()
2 2

0, 2 0
9 10 9 10 1 8

l l
i i

i x i
x F l

− −

= = =

⋅ ⋅ + − ⋅ ⋅ + ⋅

∑ ∑

bits. The 8 bits denote the required storage
space for 1 symbol.
Property 2. From Lemma 3, the total sibling
self-label size for a fan-out F in CBSL is

() () ()
2 2

0, 2 0
9 10 9 10 1 .

l l
i i

i x i
x F l

− −

= = =

⋅ ⋅ + − ⋅ ⋅ +

∑ ∑

Hence the average size for a single self-label is

() () ()
2 2

0, 2 0

1 9 10 9 10 1 .
l l

i i

i x i
x F lF

− −

= = =

⋅ ⋅ ⋅ + − ⋅ ⋅ +

∑ ∑

Property 3. Considering the prefix, the maxi-
mum size required to store the complete label
(prefix + self-label) is

() () ()
2 2

0, 2 0
9 10 9 10 1 ,

l l
i i

i x i
D x F l

− −

= = =

⋅ ⋅ ⋅ + − ⋅ ⋅ +

∑ ∑

where D denotes the maximum depth of the
XML tree.
Property 4. The maximum size required by
CBSL for all the nodes in the XML tree with
N nodes is

() () ()
2 2

0, 2 0
9 10 9 10 1 .

l l
i i

i x i
N D x F l

− −

= = =

⋅ ⋅ ⋅ ⋅ + − ⋅ ⋅ +

∑ ∑

5. Performance Analysis of Label
Size Requirements

In this section, a performance analysis study is
conducted to analyze the size required by dif-
ferent labeling schemes such as Dewey, bina-
ry, IBSL, binary string and our CBSL scheme.
"N", "F" and "D" indicate the number of nodes,
maximum fan-out, and max-depth of nodes in
an XML document respectively. In conducting
this study we consider the benchmark datasets
[11], [12] whose characteristics are shown in
Table 2.

In Dewey ID [4], all the self-labels use a maxi-
mum size of log2 (F), while the maximum size
required to store the complete label including
prefix and self-label is "D · log2 (F)". Fur-
thermore, the maximum size required to store
all the nodes in the XML tree is computed
N · D · log2 (F). The binary string scheme [3]
takes label sizes of 1, 2, 3, ..., F for the first sib-
ling, second sibling and so on. Hence, the total
sibling size taken in this scheme is 1 + 2 + ... +
F which is equal to F

2/2 + F/2. And, the aver-
age size of the single sibling label is F/2 + 1/2.
Therefore, the maximum size required to store
all the nodes in the XML tree is N · D · (F/2 +
1/2).
In IBSL [13] the total sibling size for the
self-label is computed as F · log2 (F − 1) + 2 · F −
log (F − 1) + 1, and the average size for a single
self-label is log (F − 1) + 2 − (log (F − 1))/F
+ 1/F. Therefore, the maximum size required
to store all the nodes in the XML tree is N · D
· [log (F − 1) + 2 − (log (F − 1)/F) + 1/F]. In the
IBSL_2010 [9] the total sibling label, the aver-
age size for a single self-label, and the maxi-
mum size required to store all nodes in an XML
tree are computed in the same way in Binary
[3]. Table 3 shows the label size analysis for
different schemes.
A comparative study of label size computation
in various labeling schemes mentioned in Ta-
ble 3 is performed and the results obtained are
depicted in Table 4. It summarizes comparative
results obtained on the total sibling size, aver-
age size for a single label and maximum size
required to store all nodes in an XML tree by
different schemes on datasets shown in Table
3. From the table it is clear that our proposed

Table 2. Characteristics of data sets used.

DataSet Topic MaxFan-out(F) MaxDepth(D) #Nodes
D1 SigmodRecord 6 3 41
D2 NASA 26 6 4834
D3 Shakespeare Play 48 5 6636
D4 Club 13 3 340
D5 Actor 26 4 1110
D6 Department 25 3 2636
D7 Xmark 25500 12 16663000
D8 DBLP 328858 6 3332130
D9 Treebank 56384 36 2437666

108 109D. Gopinathan and K. Asawa CBSL - A Compressed Binary String Labeling Scheme for Dynamic Update of XML Documents

Ta
bl

e
2.

 C
ha

ra
ct

er
is

tic
s o

f t
he

 d
at

a
se

t.

L
ab

el
in

g
Sc

he
m

e
To

ta
l S

ib
lin

g
L

ab
el

 S
iz

e
Av

er
ag

e
si

ze
 fo

r
a

si
ng

le
 se

lf-
la

be
l

M
ax

im
al

 S
iz

e
re

qu
ir

ed
 to

 st
or

e
al

l n
od

es
 in

 a
n

X
M

L
tr

ee

D
ew

ey
lo

g 2
F

N
 ·

D
 ·

lo
g 2

F

B
in

ar
y

F2 +
 F

/2
F/

2
+

1/
2

N
 ·

D
 ·

(F
/2

 +
 1

/2
)

IB
SL

 –
 L

i,
Li

ng

(2
00

5)
F

· l
og

2
(F

 −
 1

) +
 2

 ·
F

−
lo

g (F
 −

 1
) +

 1
lo

g (F
 −

 1
) +

 2
 −

 (l
og

 (F
 −

 1
))

/F
 +

 1
/F

N
 ·

D
 ·

[lo
g (F

 −
 1

) +
 2

 −
 (l

og
 (F

 −
 1

)/F
) +

 1
/F

]

IB
SL

 –
 K

o,
 L

ee

(2
01

0)
F2 /2

F/
2

+
1/

2
N

 ·
D

 ·
(F

/2
 +

 1
/2

)

C
B

SL

(p
ro

po
se

d
sc

he
m

e)
(

)
(

)(
)

2
2

0,
2

0
9

10
9

10
1

l
l

i
i

i
x

i
x

F
l

−
−

=
=

=

⋅
⋅
+

−
⋅

⋅
+

∑
∑

(
)

(
)(

)
2

2

0,
2

0,
2

9
10

9
10

1
l

l
i

i

i
x

i
x

x
F

l

F

−
−

=
=

=
=

⋅
⋅
+

−
⋅

⋅
+

∑
∑

(
)

(
)(

)
2

2

0,
2

0,
2

9
10

9
10

1
l

l
i

i

i
x

i
x

N
D

x
F

l

F

−
−

=
=

=
=

⋅
⋅

⋅
⋅
+

−
⋅

⋅
+

∑
∑

Ta
bl

e
4.

 L
ab

el
 si

ze
 a

na
ly

si
s o

f d
iff

er
en

t l
ab

el
in

g
sc

he
m

es
.

To
ta

l s
ib

lin
g

la
be

l s
iz

e
Av

er
ag

e
si

ze
 fo

r
a

si
ng

le
 se

lf
la

be
l

M
ax

im
al

 si
ze

 r
eq

ui
re

d
to

 st
or

e
al

l n
od

es
 in

 X
M

L
tr

ee

D
at

a
se

t
B

in
ar

y
IB

L
S

–
L

i,
L

in
g

(2
00

5)

IB
L

S
–

K
o,

L

ee
 (2

01
0)

C
B

SL
D

ew
ey

ID
B

in
ar

y
IB

L
S

–
L

i,
L

in
g

(2
00

5)

IB
L

S
–

K
o,

 L
ee

(2

01
0)

C
B

L
S

D
ew

ey
ID

B
in

ar
y

IB
L

S
–

L
i,

L
in

g
(2

00
5)

IB
L

S
–

K
o,

 L
ee

(2

01
0)

C
B

L
S

D
1

21
24

.6
1

21
12

3.
5

3.
5

4.
1

3.
5

2
31

7.
95

40
3.

5
31

7.
95

43
0.

5
24

6

D
2

35
1

16
9.

1
35

1
10

8
13

.5
13

.5
6.

5
13

.5
4.

15
13

63
32

39
15

54
13

63
31

.6
39

15
54

12
03

66
.6

D
3

11
76

35
8.

07
11

76
14

4
24

.5
24

.5
7.

46
24

.5
3

18
53

09
81

29
10

18
53

09
.1

81
29

10
99

54
0

D
4

91
70

.2
91

39
7

7
5.

39
7

3
37

74
.4

5
71

40
37

74
.4

5
71

40
30

60

D
5

35
1

16
9.

1
35

1
78

13
.5

13
.5

6.
5

13
.5

3
20

87
0

59
94

0
20

86
9.

95
59

94
0

13
32

0

D
6

32
5

16
1.

04
32

5
75

13
13

6.
44

13
3

36
72

3.
6

10
28

04
36

72
3.

61
10

28
04

23
72

4

D
7

32
51

37
75

0
42

42
59

32
51

37
75

0
13

68
00

12
75

0.
5

12
75

0.
5

16
.6

4
12

75
0.

5
5.

36
2.

9E
+0

9
2.

55
E+

12
2.

93
E+

09
2.

5E
+1

2
1.

07
E+

09

D
8

5.
40

74
E+

10
66

84
71

2
5.

40
74

E+
10

20
50

00
6

16
44

29
.5

16
44

30
20

.3
3

16
44

30
6.

23
3.

7E
+0

8
3.

29
E+

12
3.

66
E+

08
3.

3E
+1

2
1.

25
E+

08

D
9

1.
59

E+
09

10
02

66
0

15
89

60
59

20
32

21
04

28
19

2.
5

28
19

2.
5

17
.7

8
28

19
2.

5
5.

71
1.

4E
+0

9
2.

47
E+

12
1.

39
E+

09
2.

5E
+1

2
5.

01
E+

08

108 109D. Gopinathan and K. Asawa CBSL - A Compressed Binary String Labeling Scheme for Dynamic Update of XML Documents

Ta
bl

e
2.

 C
ha

ra
ct

er
is

tic
s o

f t
he

 d
at

a
se

t.

L
ab

el
in

g
Sc

he
m

e
To

ta
l S

ib
lin

g
L

ab
el

 S
iz

e
Av

er
ag

e
si

ze
 fo

r
a

si
ng

le
 se

lf-
la

be
l

M
ax

im
al

 S
iz

e
re

qu
ir

ed
 to

 st
or

e
al

l n
od

es
 in

 a
n

X
M

L
tr

ee

D
ew

ey
lo

g 2
F

N
 ·

D
 ·

lo
g 2

F

B
in

ar
y

F2 +
 F

/2
F/

2
+

1/
2

N
 ·

D
 ·

(F
/2

 +
 1

/2
)

IB
SL

 –
 L

i,
Li

ng

(2
00

5)
F

· l
og

2
(F

 −
 1

) +
 2

 ·
F

−
lo

g (F
 −

 1
) +

 1
lo

g (F
 −

 1
) +

 2
 −

 (l
og

 (F
 −

 1
))

/F
 +

 1
/F

N
 ·

D
 ·

[lo
g (F

 −
 1

) +
 2

 −
 (l

og
 (F

 −
 1

)/F
) +

 1
/F

]

IB
SL

 –
 K

o,
 L

ee

(2
01

0)
F2 /2

F/
2

+
1/

2
N

 ·
D

 ·
(F

/2
 +

 1
/2

)

C
B

SL

(p
ro

po
se

d
sc

he
m

e)
(

)
(

)(
)

2
2

0,
2

0
9

10
9

10
1

l
l

i
i

i
x

i
x

F
l

−
−

=
=

=

⋅
⋅
+

−
⋅

⋅
+

∑
∑

(
)

(
)(

)
2

2

0,
2

0,
2

9
10

9
10

1
l

l
i

i

i
x

i
x

x
F

l

F

−
−

=
=

=
=

⋅
⋅
+

−
⋅

⋅
+

∑
∑

(
)

(
)(

)
2

2

0,
2

0,
2

9
10

9
10

1
l

l
i

i

i
x

i
x

N
D

x
F

l

F

−
−

=
=

=
=

⋅
⋅

⋅
⋅
+

−
⋅

⋅
+

∑
∑

Ta
bl

e
4.

 L
ab

el
 si

ze
 a

na
ly

si
s o

f d
iff

er
en

t l
ab

el
in

g
sc

he
m

es
.

To
ta

l s
ib

lin
g

la
be

l s
iz

e
Av

er
ag

e
si

ze
 fo

r
a

si
ng

le
 se

lf
la

be
l

M
ax

im
al

 si
ze

 r
eq

ui
re

d
to

 st
or

e
al

l n
od

es
 in

 X
M

L
tr

ee

D
at

a
se

t
B

in
ar

y
IB

L
S

–
L

i,
L

in
g

(2
00

5)

IB
L

S
–

K
o,

L

ee
 (2

01
0)

C
B

SL
D

ew
ey

ID
B

in
ar

y
IB

L
S

–
L

i,
L

in
g

(2
00

5)

IB
L

S
–

K
o,

 L
ee

(2

01
0)

C
B

L
S

D
ew

ey
ID

B
in

ar
y

IB
L

S
–

L
i,

L
in

g
(2

00
5)

IB
L

S
–

K
o,

 L
ee

(2

01
0)

C
B

L
S

D
1

21
24

.6
1

21
12

3.
5

3.
5

4.
1

3.
5

2
31

7.
95

40
3.

5
31

7.
95

43
0.

5
24

6

D
2

35
1

16
9.

1
35

1
10

8
13

.5
13

.5
6.

5
13

.5
4.

15
13

63
32

39
15

54
13

63
31

.6
39

15
54

12
03

66
.6

D
3

11
76

35
8.

07
11

76
14

4
24

.5
24

.5
7.

46
24

.5
3

18
53

09
81

29
10

18
53

09
.1

81
29

10
99

54
0

D
4

91
70

.2
91

39
7

7
5.

39
7

3
37

74
.4

5
71

40
37

74
.4

5
71

40
30

60

D
5

35
1

16
9.

1
35

1
78

13
.5

13
.5

6.
5

13
.5

3
20

87
0

59
94

0
20

86
9.

95
59

94
0

13
32

0

D
6

32
5

16
1.

04
32

5
75

13
13

6.
44

13
3

36
72

3.
6

10
28

04
36

72
3.

61
10

28
04

23
72

4

D
7

32
51

37
75

0
42

42
59

32
51

37
75

0
13

68
00

12
75

0.
5

12
75

0.
5

16
.6

4
12

75
0.

5
5.

36
2.

9E
+0

9
2.

55
E+

12
2.

93
E+

09
2.

5E
+1

2
1.

07
E+

09

D
8

5.
40

74
E+

10
66

84
71

2
5.

40
74

E+
10

20
50

00
6

16
44

29
.5

16
44

30
20

.3
3

16
44

30
6.

23
3.

7E
+0

8
3.

29
E+

12
3.

66
E+

08
3.

3E
+1

2
1.

25
E+

08

D
9

1.
59

E+
09

10
02

66
0

15
89

60
59

20
32

21
04

28
19

2.
5

28
19

2.
5

17
.7

8
28

19
2.

5
5.

71
1.

4E
+0

9
2.

47
E+

12
1.

39
E+

09
2.

5E
+1

2
5.

01
E+

08

110 111D. Gopinathan and K. Asawa CBSL - A Compressed Binary String Labeling Scheme for Dynamic Update of XML Documents

scheme CBSL takes less number of symbols in
comparison with the others.
Figure 9 shows the total sibling size taken
by CBSL, compared with binary and IBSL
schemes. CBSL takes less number of symbols
to label XML data sets in comparison with oth-
er schemes. For example, the dataset (D3) with
a maximum fan-out 48 took 1176 symbols by
the Binary [3] and IBSL [9] and IBSL [13] took
354 symbols, whereas CBSL took only 144
symbols to label the same dataset.
The percentage of improvement of CBSL on
total sibling label size over binary, and IBSL
is shown in Table 5. It can be seen that CBSL
achieves a maximum improvement, i.e. 100%,
for XMark, DBLP, and Treebank while a min-
imum improvement, 43%, for SigmodRecord
when compared to the binary labeling scheme.

Besides, CBSL achieves the overall average
improvement of 91% over binary labeling
scheme.
The average size of a single label is shown in
Table 6 while the improvement percentage on
the average size of the single label is shown in
Table 7.
The percentage of improvement of CBSL on
average size for a single label over Dewey ID,
Binary, and ISBSL schemes is shown in Ta-
ble 8, where it can be seen that the proposed
scheme outperforms all the other ones.
For IBSL [13], the minimum improvement
of CBSL achieved for SigmodRecord is 0.51,
while the maximum improvement is 0.9 for
XMark data set.
Next, the maximum label size required to la-
bel all nodes in the XML tree for the differ-
ent datasets is computed and compared with
the existing schemes Binary, IBSL – Li, Ling
(2005), IBSL – Ko, Lee (2010) and CBSL. The
percentage of improvement on maximum label
size of CBSL over other schemes on different
datasets is shown in Table 8. CBSL achieves a
minimum improvement of 23% on maximal la-
bel size compared to Dewey ID, and IBSL for
the SigmodRecord. Besides, it achieves a maxi-
mum improvement of 100% on XMark, DBLP,
and Treebank datasets. Additionally, the overall
average improvement of the proposed CBSL
over other schemes is 90%.

6. Experiments and Results

Two sets of experiments are conducted to eval-
uate the performance of the proposed labelling
scheme. The first set evaluates the time taken to
generate the labels, while the second evaluates
the update performance of CBLS.

6.1. Label Generation Time

This section explains the time taken to label
each node in the XML document by the pro-
posed labeling scheme CBSL. The results are
compared with the existing IBSL – Li, Ling
(2005), IBSL – Ko, Lee (2010), Dewey ID for
the datasets DBLP, XMark, Mondial, and Auc-
tion. It is observed that CBSL needs less time
to generate the label in comparison with IBSL

and Dewey, and provides an 88% improvement
over IBSL on labeling the DBLP dataset, 63%
improvement on the XMark dataset, and 24%
improvement on the Mondial dataset. For the
Auction dataset almost all the schemes give ap-
proximately the same result.

6.2. Performance Evaluation of Update
Processing

Update performance is evaluated using the
dataset Shakespeare play Hamlet.xml. As part
of the evaluation, the time needed to insert

Table 6. Average size for a single label.

DataSet Dewey ID Binary IBSL – Li, Ling (2005) IBSL – Ko, Lee (2010) Proposed CBSL
D1 3.5 3.5 4.1 3.5 2
D2 13.5 13.5 6.5 13.5 4.15
D3 24.5 24.5 7.46 24.5 3
D4 7 7 5.39 7 3
D5 13.5 13.5 6.5 13.5 3
D6 13 13 6.44 13 3
D7 12750.5 12750.5 16.64 12750.5 5.36
D8 164429.5 164429.5 20.33 164429.5 6.23
D9 28192.5 28192.5 17.78 28192.5 5.71

Table 7. Improvement of CBSL on average label size of single label.

DataSet Dewey Binary IBSL – Li, Ling (2005) IBSL – Ko, Lee (2010)
SigmodRecord 0.43 0.43 0.51 0.43

NASA 0.85 0.85 0.69 0.85
Shakespeare Play 0.92 0.92 0.73 0.92

Club 0.71 0.71 0.63 0.71
Actor 0.85 0.85 0.69 0.85

Department 0.85 0.85 0.69 0.85
Xmark 1 1 0.88 1
DBLP 1 1 0.9 1

Treebank 1 1 0.89 1

Table 8. Improvement of CBSL on maximum label size.

DataSet Dewey Binary IBSL – Li, Ling (2005) IBSL – Ko, Lee (2010)
SigmodRecord 0.23 0.43 0.23 0.43

NASA 1 1 1 1
Shakespeare Play 1 1 1 1

Club 0.93 0.97 0.93 0.97
Actor 0.99 1 0.99 1

Department 0.99 1 0.99 1
Xmark 1 1 1 1
DBLP 1 1 1 1

Treebank 1 1 1 1

Figure 9. Total sibling label size for the datasets.

Table 5. Improvement of CBSL on total sibling label
size.

Dataset Binary IBSL – Li,
Ling (2005)

IBSL – Ko,
Lee (2010)

SigmodRecord 0.43 0.51 0.43
NASA 0.97 0.93 0.97

Shakespeare
Play 0.99 0.97 0.99

Club 0.87 0.83 0.87
Actor 0.97 0.93 0.97

Department 0.96 0.93 0.96
XMark 1 1 1
DBLP 1 1 1

Treebank 1 1 1
Average 0.91 0.9 0.91

110 111D. Gopinathan and K. Asawa CBSL - A Compressed Binary String Labeling Scheme for Dynamic Update of XML Documents

scheme CBSL takes less number of symbols in
comparison with the others.
Figure 9 shows the total sibling size taken
by CBSL, compared with binary and IBSL
schemes. CBSL takes less number of symbols
to label XML data sets in comparison with oth-
er schemes. For example, the dataset (D3) with
a maximum fan-out 48 took 1176 symbols by
the Binary [3] and IBSL [9] and IBSL [13] took
354 symbols, whereas CBSL took only 144
symbols to label the same dataset.
The percentage of improvement of CBSL on
total sibling label size over binary, and IBSL
is shown in Table 5. It can be seen that CBSL
achieves a maximum improvement, i.e. 100%,
for XMark, DBLP, and Treebank while a min-
imum improvement, 43%, for SigmodRecord
when compared to the binary labeling scheme.

Besides, CBSL achieves the overall average
improvement of 91% over binary labeling
scheme.
The average size of a single label is shown in
Table 6 while the improvement percentage on
the average size of the single label is shown in
Table 7.
The percentage of improvement of CBSL on
average size for a single label over Dewey ID,
Binary, and ISBSL schemes is shown in Ta-
ble 8, where it can be seen that the proposed
scheme outperforms all the other ones.
For IBSL [13], the minimum improvement
of CBSL achieved for SigmodRecord is 0.51,
while the maximum improvement is 0.9 for
XMark data set.
Next, the maximum label size required to la-
bel all nodes in the XML tree for the differ-
ent datasets is computed and compared with
the existing schemes Binary, IBSL – Li, Ling
(2005), IBSL – Ko, Lee (2010) and CBSL. The
percentage of improvement on maximum label
size of CBSL over other schemes on different
datasets is shown in Table 8. CBSL achieves a
minimum improvement of 23% on maximal la-
bel size compared to Dewey ID, and IBSL for
the SigmodRecord. Besides, it achieves a maxi-
mum improvement of 100% on XMark, DBLP,
and Treebank datasets. Additionally, the overall
average improvement of the proposed CBSL
over other schemes is 90%.

6. Experiments and Results

Two sets of experiments are conducted to eval-
uate the performance of the proposed labelling
scheme. The first set evaluates the time taken to
generate the labels, while the second evaluates
the update performance of CBLS.

6.1. Label Generation Time

This section explains the time taken to label
each node in the XML document by the pro-
posed labeling scheme CBSL. The results are
compared with the existing IBSL – Li, Ling
(2005), IBSL – Ko, Lee (2010), Dewey ID for
the datasets DBLP, XMark, Mondial, and Auc-
tion. It is observed that CBSL needs less time
to generate the label in comparison with IBSL

and Dewey, and provides an 88% improvement
over IBSL on labeling the DBLP dataset, 63%
improvement on the XMark dataset, and 24%
improvement on the Mondial dataset. For the
Auction dataset almost all the schemes give ap-
proximately the same result.

6.2. Performance Evaluation of Update
Processing

Update performance is evaluated using the
dataset Shakespeare play Hamlet.xml. As part
of the evaluation, the time needed to insert

Table 6. Average size for a single label.

DataSet Dewey ID Binary IBSL – Li, Ling (2005) IBSL – Ko, Lee (2010) Proposed CBSL
D1 3.5 3.5 4.1 3.5 2
D2 13.5 13.5 6.5 13.5 4.15
D3 24.5 24.5 7.46 24.5 3
D4 7 7 5.39 7 3
D5 13.5 13.5 6.5 13.5 3
D6 13 13 6.44 13 3
D7 12750.5 12750.5 16.64 12750.5 5.36
D8 164429.5 164429.5 20.33 164429.5 6.23
D9 28192.5 28192.5 17.78 28192.5 5.71

Table 7. Improvement of CBSL on average label size of single label.

DataSet Dewey Binary IBSL – Li, Ling (2005) IBSL – Ko, Lee (2010)
SigmodRecord 0.43 0.43 0.51 0.43

NASA 0.85 0.85 0.69 0.85
Shakespeare Play 0.92 0.92 0.73 0.92

Club 0.71 0.71 0.63 0.71
Actor 0.85 0.85 0.69 0.85

Department 0.85 0.85 0.69 0.85
Xmark 1 1 0.88 1
DBLP 1 1 0.9 1

Treebank 1 1 0.89 1

Table 8. Improvement of CBSL on maximum label size.

DataSet Dewey Binary IBSL – Li, Ling (2005) IBSL – Ko, Lee (2010)
SigmodRecord 0.23 0.43 0.23 0.43

NASA 1 1 1 1
Shakespeare Play 1 1 1 1

Club 0.93 0.97 0.93 0.97
Actor 0.99 1 0.99 1

Department 0.99 1 0.99 1
Xmark 1 1 1 1
DBLP 1 1 1 1

Treebank 1 1 1 1

Figure 9. Total sibling label size for the datasets.

Table 5. Improvement of CBSL on total sibling label
size.

Dataset Binary IBSL – Li,
Ling (2005)

IBSL – Ko,
Lee (2010)

SigmodRecord 0.43 0.51 0.43
NASA 0.97 0.93 0.97

Shakespeare
Play 0.99 0.97 0.99

Club 0.87 0.83 0.87
Actor 0.97 0.93 0.97

Department 0.96 0.93 0.96
XMark 1 1 1
DBLP 1 1 1

Treebank 1 1 1
Average 0.91 0.9 0.91

112 113D. Gopinathan and K. Asawa CBSL - A Compressed Binary String Labeling Scheme for Dynamic Update of XML Documents

new nodes and the number of nodes required
to re-label are measured. As Hamlet has five
acts, the evaluation is tested in four cases such
as inserting a node before the act [1], inserting
a node between act [2] and act [3], inserting a
node between act [4] and act [5] and inserting a
node after act [5]. The result is compared with
different labeling schemes such as Dewey, Bi-
nary, IBSL and XDAS. Figure 12 shows that
out of 6636 total nodes of Hamlet file, Dew-
ey and Binary re-label around 6595 nodes, and
IBSL, XDAS and the proposed CBSL need not
re-label any of the nodes.
Finally, the time required to perform the inser-
tion operation is measured and the result depict-
ed in Figure 13. From the result, it is clear that
IBSL, XDAS, and the proposed CBSL take al-
most the same time for this operation, whereas
Dewey ID and Binary took more time for all the
cases considered.

7. Conclusion

In this paper a new labeling scheme called
CBLS is proposed, which is based on the com-
pressed representation of binary string. This
scheme supports dynamic updating of XML

documents without re-labeling existing labels,
and efficiently recognizes all the structural re-
lationships between the nodes. Additionally, it
shows a compact label size. It is noted from the
experimental results that CBSL takes less time
to generate labels, and the update cost is low-
er in comparison with other labeling schemes.
From the analytical results it is clear that, on
different benchmark data sets, this labeling
scheme takes less storage space, compared to
Dewey ID, Binary, and IBSL.

References

[1] Q. Li et al., "Indexing and Querying XML Data
for Regular Path Expressions", in VLDB, 2001.

[2] C. Zhang et al., "On Supporting Containment
Queries in Relational Database Management Sys-
tems", in ACM SIGMOD Record, 2001.

[3] E. Cohen et al., "Labeling Dynamic XML Trees",
SIAM Journal on Computing, vol. 39, no. 5, pp.
2048−2074, 2010.

[4] I. Tatarinov et al., "Storing and Querying Ordered
XML using a Relational Database System", in
Proceedings of the 2002 ACM SIGMOD Interna-
tional Conference on Management of Data, 2002.

[5] G. Dhanalekshmi and A. Krishna, "LPLX-lexi-
cographic-based Persistent Labelling Scheme of
XML Documents for Dynamic Update", Interna-
tional Journal of Web Science, vol. 2, no. 4, pp.
237−257, 2014.

[6] L. Xu et al., "DDE: from Dewey to a Fully Dy-
namic XML Labeling Scheme", in Proceedings
of the 2009 ACM SIGMOD International Confer-
ence on Management of Data, 2009.

[7] P. O'Neil et al., "ORDPATHs: Insert-friendly
XML Node Labels," in Proceedings of the 2004
ACM SIGMOD International Conference on
Management of Data, 2004.

[8] M. Duong and Y. Zhang, "LSDX: a New Label-
ling Scheme for Dynamically Updating XML
data", in Proceedings of the 16th Australasian
Database Conference, vol. 39, 2005.

[9] H.-K. Ko and S. Lee, "A Binary String Approach
for Updates in Dynamic Ordered XML Data",

Figure 9. Total sibling label size for the datasets.

(a)

Figure 10. Improvement of CBSL (a) on average size of
a single label, and (b) on maximum label size.

(b)

Figure 11. Label generation time in [ms].

Figure 12. Number of nodes re-labeled during insertion operation.

Figure 13. Time taken for each insertion operation in [ms].

112 113D. Gopinathan and K. Asawa CBSL - A Compressed Binary String Labeling Scheme for Dynamic Update of XML Documents

new nodes and the number of nodes required
to re-label are measured. As Hamlet has five
acts, the evaluation is tested in four cases such
as inserting a node before the act [1], inserting
a node between act [2] and act [3], inserting a
node between act [4] and act [5] and inserting a
node after act [5]. The result is compared with
different labeling schemes such as Dewey, Bi-
nary, IBSL and XDAS. Figure 12 shows that
out of 6636 total nodes of Hamlet file, Dew-
ey and Binary re-label around 6595 nodes, and
IBSL, XDAS and the proposed CBSL need not
re-label any of the nodes.
Finally, the time required to perform the inser-
tion operation is measured and the result depict-
ed in Figure 13. From the result, it is clear that
IBSL, XDAS, and the proposed CBSL take al-
most the same time for this operation, whereas
Dewey ID and Binary took more time for all the
cases considered.

7. Conclusion

In this paper a new labeling scheme called
CBLS is proposed, which is based on the com-
pressed representation of binary string. This
scheme supports dynamic updating of XML

documents without re-labeling existing labels,
and efficiently recognizes all the structural re-
lationships between the nodes. Additionally, it
shows a compact label size. It is noted from the
experimental results that CBSL takes less time
to generate labels, and the update cost is low-
er in comparison with other labeling schemes.
From the analytical results it is clear that, on
different benchmark data sets, this labeling
scheme takes less storage space, compared to
Dewey ID, Binary, and IBSL.

References

[1] Q. Li et al., "Indexing and Querying XML Data
for Regular Path Expressions", in VLDB, 2001.

[2] C. Zhang et al., "On Supporting Containment
Queries in Relational Database Management Sys-
tems", in ACM SIGMOD Record, 2001.

[3] E. Cohen et al., "Labeling Dynamic XML Trees",
SIAM Journal on Computing, vol. 39, no. 5, pp.
2048−2074, 2010.

[4] I. Tatarinov et al., "Storing and Querying Ordered
XML using a Relational Database System", in
Proceedings of the 2002 ACM SIGMOD Interna-
tional Conference on Management of Data, 2002.

[5] G. Dhanalekshmi and A. Krishna, "LPLX-lexi-
cographic-based Persistent Labelling Scheme of
XML Documents for Dynamic Update", Interna-
tional Journal of Web Science, vol. 2, no. 4, pp.
237−257, 2014.

[6] L. Xu et al., "DDE: from Dewey to a Fully Dy-
namic XML Labeling Scheme", in Proceedings
of the 2009 ACM SIGMOD International Confer-
ence on Management of Data, 2009.

[7] P. O'Neil et al., "ORDPATHs: Insert-friendly
XML Node Labels," in Proceedings of the 2004
ACM SIGMOD International Conference on
Management of Data, 2004.

[8] M. Duong and Y. Zhang, "LSDX: a New Label-
ling Scheme for Dynamically Updating XML
data", in Proceedings of the 16th Australasian
Database Conference, vol. 39, 2005.

[9] H.-K. Ko and S. Lee, "A Binary String Approach
for Updates in Dynamic Ordered XML Data",

Figure 9. Total sibling label size for the datasets.

(a)

Figure 10. Improvement of CBSL (a) on average size of
a single label, and (b) on maximum label size.

(b)

Figure 11. Label generation time in [ms].

Figure 12. Number of nodes re-labeled during insertion operation.

Figure 13. Time taken for each insertion operation in [ms].

114 D. Gopinathan and K. Asawa

IEEE Transactions on Knowledge and Data En-
gineering, vol. 22, no. 4, pp. 602−607, 2010.

[10] T. A. Ghaleb and S. Mohammed, "A Dynamic
Labeling Scheme Based on Logical Operators: A
Support for Order-Sensitive XML Updates", Pro-
cedia Computer Science, vol. 57, pp. 1211−1218,
2015.

[11] G. Miklau and D. Suciu, "XML Data Reposito-
ry", University of Washington, 2003.

[12] [Online] Available:
http://www.cs.wisc.edu/niagara/data.html

[13] C. Li and T. W. Ling, "An Improved Prefix La-
beling Scheme: a Binary String Approach for
Dynamic Ordered XML", in International Con-
ference on Database Systems for Advanced Ap-
plications, 2005.

[14] J.-K. Min et al., "An Efficient XML Encoding and
Labeling Method for Query Processing and Up-
dating on Dynamic XML Data", Journal of Sys-
tems and Software, vol. 82, no. 3, pp. 503−515,
2009.

[15] J. Lu et al., "From Region Encoding to Extended
Dewey: On Efficient Processing of XML Twig
Pattern Matching", in Proceedings of the 31st In-
ternational Conference on Very Large Data Bas-
es, 2005.

Received: December 2017
Revised: June 2018

Accepted: July 2018

Contact addresses:
Dhanalekshmi Gopinathan

Department of Computer Science
Jaypee Institute of Information Technology

Noida, Uttar Pradesh
India

e-mail: dhanalekshmi.g@jiit.ac.in

Krishna Asawa
Department of Computer Science

Jaypee Institute of Information Technology
Noida, Uttar Pradesh

India
e-mail: krishna.asawa@jiit.ac.in

Dhanalekshmi Gopinathan has received her M.Tech degree from the
Department of Computer Science, National Institute of Technology,
Calicut, Kerala in 2002. Her research interest covers database manage-
ment systems, artificial intellegence, theory of computation and com-
piler design. She is currently doing research in the area of XML data-
bases and query processing. She is pursuing her doctoral work under
the supervision of Dr. Krishna Asawa.

krishna asawa is working with the Jaypee Institute of Information
Technology (JIIT), Noida, India in the capacity of Professor. She was
awarded the Doctor of Philosophy (CSE) degree in 2002 from Banasth-
ali Vidyapeeth University, India. Her areas of interest and expertise are
soft computing and its applications, information security, knowledge
and data engineering. Before joining JIIT she has workedat the National
Institute of Technology, Jaipur, India and Banasthali Vidyapith, India.

http://www.cs.wisc.edu/niagara/data.html

 HistoryItem_V1
 Shuffle

 Group size: 1
 Shuffle type: Normal, or perfect bound
 Rule: 1 1

 1
 1
 1
 1 1
 622
 261
 2
 2

 CurrentAVDoc

 Normal

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0
 Quite Imposing Plus 3
 1

 1

 HistoryList_V1
 qi2base

