
85CIT. Journal of Computing and Information Technology, Vol. 26, No. 2, June 2018, 85–97
doi: 10.20532/cit.2018.1003892

Issam Al-Azzoni
College of Engineering, Al Ain University of Science and Technology, Al Ain, United Arab Emirates

An Improved Coloured Petri Net Model
for Software Component Allocation on
Heterogeneous Embedded Systems

We extend an approach to component allocation on
heterogeneous embedded systems using Coloured
Petri Nets (CPNs). We improve the CPN model for
the embedded systems and outline a technique that
exploits CPN Tools, a well-known CPN tool, to ef-
ficiently analyze embedded system's state space and
find optimal allocations. The approach is model-based
and represents an advancement towards a model-driv-
en engineering view of the component allocation
problem. We incorporate communication costs be-
tween components by extending the CPN formalism
with a non-trivial technique to analyze the generated
state space. We also suggest a technique to improve
the state space generation time by using the branch-
ing options supported in CPN Tools. In the evaluation,
we demonstrate that this technique significantly cuts
down the size of the generated state space and thereby
reduces the runtime of state space generation and thus
the time to find an optimal allocation.

ACM CCS (2012) Classification: Software and its en-
gineering → Software notations and tools → Context
specific languages → Domain specific languages
Computer systems organization → Embedded and cy-
ber-physical systems → Embedded systems → Em-
bedded software

Keywords: component allocation, coloured Petri Nets,
model-driven engineering, embedded systems, hetero-
geneous systems

1. Introduction and Related Work

Designers of embedded systems today face
new challenges due to the high heterogeneity
that characterizes such systems [1]. An em-
bedded system may consist of several types of
processors (or computational units) varying in

terms of their performance, including Central
Processing units (CPUs), Graphical Process-
ing Units (GPUs), and Field Programmable
Gate Arrays (FPGAs). Also, the software com-
ponents which need to be allocated on top of
the hardware computational units may differ in
terms of their resource usage. Such kind of het-
erogeneity presents a challenge to the designers
when deciding about the placement of software
components on top of the computational units
[2].
The component allocation problem finds op-
timal allocations or mappings of the software
components to the computational units [3].
While several allocations can be functionally
correct in terms of being feasible, one or more
of these allocations can have better non-func-
tional (quality) aspects than the remaining allo-
cations. Finding the allocation that is function-
ally correct and that maximizes a certain quality
metric is at the heart of solution methods to the
component allocation problem. The component
allocation problem can be formulated as an
integer linear programming problem and thus
there are several solution methods in mathe-
matical optimization to the component alloca-
tion problem [4], [5].
In the conference version of this paper [6], we
proposed an approach to address the compo-
nent allocation problem by using Coloured Pe-
tri Nets (CPNs) to model the embedded system.
The CPN model can be dynamically analyzed
by searching through its state space to deter-
mine an optimal allocation. CPNs have a very

86 87I. Al-Azzoni An Improved Coloured Petri Net Model for Software Component Allocation...

rich set of supporting theory and automated
tools for model analysis [7], [8]. In this paper,
we extend the work presented in [6]. The new
contributions of this paper are summarized as
follows:
1. We incorporate the communication costs

between software components in the prob-
lem definition and the CPN model. In [6],
the communication costs were not included.

2. We make several changes to the CPN mod-
el in order to improve the state space gen-
eration time.

3. We modify the CPN model and the CPN
ML queries to incorporate the communica-
tion costs. This is not trivial, since it can-
not be directly accounted for in the CPN
body similar to the non-communication
resource costs.

4. We run several more experiments to veri-
fy the optimal allocations found using our
CPN approach.

5. We suggest a technique to scale the CPN
approach to larger systems by using the
branching options in CPN ML state space
generation tool. This is presented in Sub-
section 3.3.

The use of a model-based approach has several
benefits. For example, the same CPN model can
be used to address the optimal allocations for
other types of non-functional analysis, includ-
ing security and dependability. CPNs have been
applied extensively in analyzing non-function-
al aspects of systems [9], [10]. Furthermore,
models of the embedded system in different
notations can be automatically transformed into
equivalent CPN models. Thus, the main con-
tribution of devising a CPN model to address
the component allocation problem in heteroge-
neous embedded systems is the application of a
model-driven engineering (MDE) approach to
the problem.
MDE advocates the use of models in systems
analysis and design [11], [12], [13]. The use of
models permits various types of analysis to be
performed on the models before the actual sys-
tem is implemented. This can be done at a high
level of abstraction and in an automated fashion.
In [14], the authors propose an approach for the
automatic transformation from an Ecore-based
model of a component allocation problem into

an equivalent CPN model. The resulting CPN
model can be analyzed using the method pre-
sented in this paper. This allows to identify a
component allocation problem and to solve it
without having to know about CPNs.
The authors of [3] apply a genetic algorithm
to find optimal solutions to the component al-
location problem. Our model that defines the
component allocation problem is based on the
model presented in [3]. The authors also apply
analytical hierarchical process to calculate the
trade-off vector. Genetic algorithms usually
find good solutions; however, generally speak-
ing, there is no guarantee that these solutions
are the optimal solutions. A prototype tool that
implements the genetic algorithm is presented
in [15]. The tool is named SCALL (Software
Component ALLocator for Heterogeneous
Embedded Systems). SCALL is developed as
an Eclipse plugin utilizing Eclipse Modeling
Framework (EMF) and Graphical Modeling
Project (GMP). SCALL is based on using a
metamodel for the software component alloca-
tion problem specified in Ecore notation. The
user of SCALL can create a model for a soft-
ware component allocation problem in a drag-
and-drop fashion from a palette. SCALL then
returns an optimal allocation computed using
the genetic algorithm presented in [3].
A model-driven engineering approach for com-
ponent allocation is presented in [16]. The ap-
proach allows to specify allocation constrains
in ASL (Allocation Specification Language)
that uses OCL operations. Then, the feasible al-
locations can be derived automatically without
having to know how to encode and solve the
allocation problem as an integer linear program
(ILP). This is achieved by using model-to-mod-
el transformation that generates models for
ILPs solvable by an ILP solver.
Another method for solving the component
allocation problem is presented in [17]. The
method uses branch-and-bound and forward
checking mechanisms. The method was imple-
mented in the Automatic Integration of Reus-
able Embedded Software (AIRS) toolkit [18].
A generic framework aimed at finding the most
appropriate deployment architecture (mapping
of software components onto hardware resourc-
es) for a distributed software system is present-
ed in [2]. The framework formally defines the

tive networked embedded systems. The compo-
nents communicate with each other via signals
that can be periodic or sporadic. The presented
algorithms minimize the total communication
cost only and are based on graph partitioning
theory. Our component model does not include
signals. The CPN approach presented in this
paper minimizes an objective cost function that
includes multiple resources, including commu-
nication.
The organization of the paper is as follows. In
Section 2, we define the component allocation
problem more formally. We illustrate our ap-
proach in Section 3. In Section 4, we evaluate
our CPN based approach. Section 5 concludes
the paper and outlines future work.

2. Problem Definition

Consider a software system consisting of n
components. Every component needs to be as-
signed to a computational unit on a hardware
platform consisting of m computational units.
The computational units offer a number of re-
sources l (for example, computation, memory,
and energy resources). Our model for the com-
ponent allocation problem is based on [3].
The Component Resource Consumption Matrix
T = [tijk](n × m × l) defines the amount of resourc-
es each component requires. The element tijk
represents the necessary amount of the k-th re-
source required by the i-th software component
when allocated on the j-th computational unit.
The Computational Unit Resource Capaci-
ty Matrix R = [rjk](m × l) defines the amount of
resources that each computational unit can
provide. The element rjk represents the k-th re-
source capacity of a j-th computational unit.
To incorporate the cost of communication be-
tween the software components, we define two
matrices. The first is the Communication Inten-
sity Matrix K = [kij](n × n), where kij represents
the communication intensity between the i-th
and j-th components. If the components i and
j are not communicating, then kij = 0. Also, no-
tice that the matrix K is symmetric since the
direction of communication is assumed to be
not relevant. In addition, the diagonal elements
of k are all equal to zero. The second matrix
is the Platform Communication Cost Matrix

component allocation problem and provides
a set of applicable algorithms for solving the
problem. In addition, a tool suite is developed
to enable the use of the proposed framework.
The component allocation problem presented
in this paper can be thought of as a particular
instantiation of the framework. In addition, the
CPN based approach can supplement the solu-
tion algorithms presented in [2].
Another framework for modeling and analyz-
ing the component allocation problem in het-
erogeneous computing systems is presented in
[19]. The framework is called LOSECO (an al-
location of parallel software to heterogeneous
computing platform framework). In LOSE-
CO, the software execution units, which corre-
spond to components in our model, can have
precedence relationships amongst each other.
Our component model assumes that the com-
ponents are independent. The authors propose
a partitioning based allocation heuristic which
partitions the graph representing the software
execution units and their dependencies into
multiple smaller subgraphs. Subsequently, each
subgraph is solved using heuristics such as ge-
netic algorithms.
The authors of [1] present a formal model for
allocation optimization of embedded systems
which contain a mix of CPU and GPU process-
ing nodes. The authors use mixed-integer non-
linear programming as the optimization model.
In addition, the authors translate the model into
a solver using a standard format called MPS
(Mathematical Programming System) that can
be interpreted using most solvers. The authors
make the observation that the mixed-integer
nonlinear programming solvers do not scale
well for medium and large size problems.
Several approaches exist for component alloca-
tion in real-time embedded systems [11], [20],
[21], [22]. In real-time embedded systems,
components (tasks) have additional attributes
such as completion time, period, and deadline.
The allocation problem for real-time embedded
systems needs to ensure that tasks are com-
pleted before their deadlines. Our CPN based
approach uses a different component model
which does not take these timing properties into
account.
In [23], graph theory is used to address the soft-
ware component allocation problem in automo-

86 87I. Al-Azzoni An Improved Coloured Petri Net Model for Software Component Allocation...

rich set of supporting theory and automated
tools for model analysis [7], [8]. In this paper,
we extend the work presented in [6]. The new
contributions of this paper are summarized as
follows:
1. We incorporate the communication costs

between software components in the prob-
lem definition and the CPN model. In [6],
the communication costs were not included.

2. We make several changes to the CPN mod-
el in order to improve the state space gen-
eration time.

3. We modify the CPN model and the CPN
ML queries to incorporate the communica-
tion costs. This is not trivial, since it can-
not be directly accounted for in the CPN
body similar to the non-communication
resource costs.

4. We run several more experiments to veri-
fy the optimal allocations found using our
CPN approach.

5. We suggest a technique to scale the CPN
approach to larger systems by using the
branching options in CPN ML state space
generation tool. This is presented in Sub-
section 3.3.

The use of a model-based approach has several
benefits. For example, the same CPN model can
be used to address the optimal allocations for
other types of non-functional analysis, includ-
ing security and dependability. CPNs have been
applied extensively in analyzing non-function-
al aspects of systems [9], [10]. Furthermore,
models of the embedded system in different
notations can be automatically transformed into
equivalent CPN models. Thus, the main con-
tribution of devising a CPN model to address
the component allocation problem in heteroge-
neous embedded systems is the application of a
model-driven engineering (MDE) approach to
the problem.
MDE advocates the use of models in systems
analysis and design [11], [12], [13]. The use of
models permits various types of analysis to be
performed on the models before the actual sys-
tem is implemented. This can be done at a high
level of abstraction and in an automated fashion.
In [14], the authors propose an approach for the
automatic transformation from an Ecore-based
model of a component allocation problem into

an equivalent CPN model. The resulting CPN
model can be analyzed using the method pre-
sented in this paper. This allows to identify a
component allocation problem and to solve it
without having to know about CPNs.
The authors of [3] apply a genetic algorithm
to find optimal solutions to the component al-
location problem. Our model that defines the
component allocation problem is based on the
model presented in [3]. The authors also apply
analytical hierarchical process to calculate the
trade-off vector. Genetic algorithms usually
find good solutions; however, generally speak-
ing, there is no guarantee that these solutions
are the optimal solutions. A prototype tool that
implements the genetic algorithm is presented
in [15]. The tool is named SCALL (Software
Component ALLocator for Heterogeneous
Embedded Systems). SCALL is developed as
an Eclipse plugin utilizing Eclipse Modeling
Framework (EMF) and Graphical Modeling
Project (GMP). SCALL is based on using a
metamodel for the software component alloca-
tion problem specified in Ecore notation. The
user of SCALL can create a model for a soft-
ware component allocation problem in a drag-
and-drop fashion from a palette. SCALL then
returns an optimal allocation computed using
the genetic algorithm presented in [3].
A model-driven engineering approach for com-
ponent allocation is presented in [16]. The ap-
proach allows to specify allocation constrains
in ASL (Allocation Specification Language)
that uses OCL operations. Then, the feasible al-
locations can be derived automatically without
having to know how to encode and solve the
allocation problem as an integer linear program
(ILP). This is achieved by using model-to-mod-
el transformation that generates models for
ILPs solvable by an ILP solver.
Another method for solving the component
allocation problem is presented in [17]. The
method uses branch-and-bound and forward
checking mechanisms. The method was imple-
mented in the Automatic Integration of Reus-
able Embedded Software (AIRS) toolkit [18].
A generic framework aimed at finding the most
appropriate deployment architecture (mapping
of software components onto hardware resourc-
es) for a distributed software system is present-
ed in [2]. The framework formally defines the

tive networked embedded systems. The compo-
nents communicate with each other via signals
that can be periodic or sporadic. The presented
algorithms minimize the total communication
cost only and are based on graph partitioning
theory. Our component model does not include
signals. The CPN approach presented in this
paper minimizes an objective cost function that
includes multiple resources, including commu-
nication.
The organization of the paper is as follows. In
Section 2, we define the component allocation
problem more formally. We illustrate our ap-
proach in Section 3. In Section 4, we evaluate
our CPN based approach. Section 5 concludes
the paper and outlines future work.

2. Problem Definition

Consider a software system consisting of n
components. Every component needs to be as-
signed to a computational unit on a hardware
platform consisting of m computational units.
The computational units offer a number of re-
sources l (for example, computation, memory,
and energy resources). Our model for the com-
ponent allocation problem is based on [3].
The Component Resource Consumption Matrix
T = [tijk](n × m × l) defines the amount of resourc-
es each component requires. The element tijk
represents the necessary amount of the k-th re-
source required by the i-th software component
when allocated on the j-th computational unit.
The Computational Unit Resource Capaci-
ty Matrix R = [rjk](m × l) defines the amount of
resources that each computational unit can
provide. The element rjk represents the k-th re-
source capacity of a j-th computational unit.
To incorporate the cost of communication be-
tween the software components, we define two
matrices. The first is the Communication Inten-
sity Matrix K = [kij](n × n), where kij represents
the communication intensity between the i-th
and j-th components. If the components i and
j are not communicating, then kij = 0. Also, no-
tice that the matrix K is symmetric since the
direction of communication is assumed to be
not relevant. In addition, the diagonal elements
of k are all equal to zero. The second matrix
is the Platform Communication Cost Matrix

component allocation problem and provides
a set of applicable algorithms for solving the
problem. In addition, a tool suite is developed
to enable the use of the proposed framework.
The component allocation problem presented
in this paper can be thought of as a particular
instantiation of the framework. In addition, the
CPN based approach can supplement the solu-
tion algorithms presented in [2].
Another framework for modeling and analyz-
ing the component allocation problem in het-
erogeneous computing systems is presented in
[19]. The framework is called LOSECO (an al-
location of parallel software to heterogeneous
computing platform framework). In LOSE-
CO, the software execution units, which corre-
spond to components in our model, can have
precedence relationships amongst each other.
Our component model assumes that the com-
ponents are independent. The authors propose
a partitioning based allocation heuristic which
partitions the graph representing the software
execution units and their dependencies into
multiple smaller subgraphs. Subsequently, each
subgraph is solved using heuristics such as ge-
netic algorithms.
The authors of [1] present a formal model for
allocation optimization of embedded systems
which contain a mix of CPU and GPU process-
ing nodes. The authors use mixed-integer non-
linear programming as the optimization model.
In addition, the authors translate the model into
a solver using a standard format called MPS
(Mathematical Programming System) that can
be interpreted using most solvers. The authors
make the observation that the mixed-integer
nonlinear programming solvers do not scale
well for medium and large size problems.
Several approaches exist for component alloca-
tion in real-time embedded systems [11], [20],
[21], [22]. In real-time embedded systems,
components (tasks) have additional attributes
such as completion time, period, and deadline.
The allocation problem for real-time embedded
systems needs to ensure that tasks are com-
pleted before their deadlines. Our CPN based
approach uses a different component model
which does not take these timing properties into
account.
In [23], graph theory is used to address the soft-
ware component allocation problem in automo-

88 89I. Al-Azzoni An Improved Coloured Petri Net Model for Software Component Allocation...

C = [cij](m × m), where cij represents the commu-
nication cost between the i-th and j-th compu-
tational units. For i = j, cij = 0. The inclusion of
both matrices is necessary since the total com-
munication cost depends on the communication
intensity between the components in addition
to the platform characteristics of the commu-
nication channels connecting the computational
units.
An allocation to the components maps each
software component to one of the m compu-
tational units. One or more components can
be allocated on the same computational unit.
From a mathematical viewpoint, an allocation
represents a permutation with repetition which
assigns one computational unit to each software
component. Note that there are mn possible al-
locations, which implies that the search space
increases exponentially with the number of
components and computational units.
Consider an allocation (p1, ..., pn), where com-
ponent i is assigned to computational unit pi.
An allocation is called feasible if the resources
consumed by the software components allocat-
ed to any computational unit do not exceed the
resource capacities that the computational unit
provides. More formally, for any computational
unit j, a feasible allocation satisfies the condi-
tion:

()

,
ik

i
ip jk

i p j
t r

=
≤∑

(1)

for all resources k.
In addition to satisfying (1), we might consider
additional constraints that need to be satisfied
by a feasible allocation. In this paper, we con-
sider the system architectural constraint that
in a feasible allocation a particular component
should (or should not) be allocated to a set of
computational units. There could be several of
such architectural constraints that a feasible al-
location needs to satisfy.
Given an allocation (p1, ..., pn), its cost can be
computed using the following cost function:

 1 1
i i j

l n

k ip k c ij p p
k i i j

w f t f k c
= = ≤

= +∑ ∑ ∑

(2)

Here, fk represents a trade-off factor whose pur-
pose is to specify the weights of each resource
in the cost function. This allows to differentiate

the importance of different resources. Similar-
ly, fc is the communication trade-off factor.
The component allocation problem is to find
an optimal allocation. An optimal allocation
is a feasible allocation that has the smallest w
amongst all feasible allocations. Thus, the cho-
sen allocation needs to satisfy (1) (in addition
to possibly additional constraints) and has the
smallest cost w which is defined by (2).
The component allocation problem can be for-
mulated as a 0 − 1 integer linear programming
problem which is NP-complete [24]. For exact
solutions and small problem sizes (the problem
size is based on the number of components and
computational units), one can use traditional
integer programming techniques. However, for
large problem sizes, one needs to resort to heu-
ristics which find good approximations through
large space search methods.

3. Approach

In this section, we apply the CPN based ap-
proach to solve a component allocation prob-
lem using parameters of a realistic system bor-
rowed from [3]. Subsection 3.1 gives a brief
description of the system. In Subsection 3.2,
we develop a CPN model of the system and in
Subsection 3.3, we describe the generation and
analysis of the state space using CPN Tools.
Subsection 3.4 summarizes the approach.

3.1. Case Study

To demonstrate our approach, we borrow the
same parameters used to develop a component
allocation problem from [3]. The system con-
sidered is a software system that handles and
interprets vision data on an autonomous under-
water vehicle (AUV), while simultaneously in-
teracting with them in real time. That system
is being developed as a part of RALF3 project
[25].
The system consists of n = 11 components.
These are: 1-UI User Interface, 2-CH Commu-
nication Handler, 3-MP Message Parser, 4-MD
Manual Drive, 5-MM Mission Manager, 6-MC
Movement Control, 7-V Vision, 8-AC Actuator
Control, 9-SI Sensors Layer 1, 10-S2 Sensors
Layer 2, and 11-SF Stream Filtering compo-

nents. The hardware platform consists of m = 4
computational units. These are: 1-mCPU Mul-
ticore CPU, 2-FPGA FPGA I, 3-FPGA FPGA
II, and 4-GPU GPU. There are l = 3 resources:
average execution time (measured in millisec-
onds), memory (measured in megabytes), and
average energy consumption (measured in mil-
liamperes per hour).

10 90 90 55
50 20 20 72
30 20 20 72
10 40 40 72
20 40 40 72
20 50 50 55
90 20 20 15
20 10 10 70
20 10 10 70
20 15 15 70
90 10 10 33

48 256 256 128
128 256 256 148
64 256 256 148
48 168 168 148
64 168 168 148
64 168 168 64

168 128 128 64
148 96 96 148
48 32 32 148
48 32 32 148

168 64 64 96

 (a) (b)

2 18 18 11
10 4 4 14
6 4 4 14
2 8 8 14
4 8 8 14
4 10 10 11

18 4 4 3
4 2 2 14
4 2 2 14
4 3 3 14

18 2 2 7

(c)

Figure 1 shows the component resource con-
sumptions (i.e., the elements of the matrix T).
Since T is three-dimensional (components,
computational units, resources), we use three
matrices to display three different resources

(i.e., the third dimension):
a) average execution time,
b) memory, and
c) average energy consumption.

The computational unit resource capacity ma-
trix is given by:

100 256 50
150 640 25
150 640 25
100 256 15

R

 =

0 1 0 0 0 0 0 0 0 0 0
1 0 5 0 3 0 0 0 0 0 0
0 5 0 5 3 0 0 0 0 0 0
0 0 5 0 0 1 7 3 0 0 0
0 3 3 0 0 9 9 3 0 0 0
0 0 0 1 9 0 0 0 7 7 0
0 0 0 7 9 0 0 0 0 0 7
0 0 0 3 3 0 0 0 0 0 0
0 0 0 0 0 7 0 0 0 0 0
0 0 0 0 0 7 0 0 0 0 0
0 0 0 0 0 0 7 0 0 0 0

Figure 2 shows the communication intensity
matrix. The platform communication cost ma-
trix is given by:

1 5 5 4
5 1 2 3
5 2 1 3
4 3 3 1

C

 =

To compute the cost of an allocation in (2), we
use the trade-off vector:

[]0.1557 0.0856 0.7095 0.0491F =

Here, the k-th element in vector F represents
the trade-off factor fk. The trade-off factors are

Figure 1. The component resource consumptions.

Figure 2. The communication intensity matrix K.

88 89I. Al-Azzoni An Improved Coloured Petri Net Model for Software Component Allocation...

C = [cij](m × m), where cij represents the commu-
nication cost between the i-th and j-th compu-
tational units. For i = j, cij = 0. The inclusion of
both matrices is necessary since the total com-
munication cost depends on the communication
intensity between the components in addition
to the platform characteristics of the commu-
nication channels connecting the computational
units.
An allocation to the components maps each
software component to one of the m compu-
tational units. One or more components can
be allocated on the same computational unit.
From a mathematical viewpoint, an allocation
represents a permutation with repetition which
assigns one computational unit to each software
component. Note that there are mn possible al-
locations, which implies that the search space
increases exponentially with the number of
components and computational units.
Consider an allocation (p1, ..., pn), where com-
ponent i is assigned to computational unit pi.
An allocation is called feasible if the resources
consumed by the software components allocat-
ed to any computational unit do not exceed the
resource capacities that the computational unit
provides. More formally, for any computational
unit j, a feasible allocation satisfies the condi-
tion:

()

,
ik

i
ip jk

i p j
t r

=
≤∑

(1)

for all resources k.
In addition to satisfying (1), we might consider
additional constraints that need to be satisfied
by a feasible allocation. In this paper, we con-
sider the system architectural constraint that
in a feasible allocation a particular component
should (or should not) be allocated to a set of
computational units. There could be several of
such architectural constraints that a feasible al-
location needs to satisfy.
Given an allocation (p1, ..., pn), its cost can be
computed using the following cost function:

 1 1
i i j

l n

k ip k c ij p p
k i i j

w f t f k c
= = ≤

= +∑ ∑ ∑

(2)

Here, fk represents a trade-off factor whose pur-
pose is to specify the weights of each resource
in the cost function. This allows to differentiate

the importance of different resources. Similar-
ly, fc is the communication trade-off factor.
The component allocation problem is to find
an optimal allocation. An optimal allocation
is a feasible allocation that has the smallest w
amongst all feasible allocations. Thus, the cho-
sen allocation needs to satisfy (1) (in addition
to possibly additional constraints) and has the
smallest cost w which is defined by (2).
The component allocation problem can be for-
mulated as a 0 − 1 integer linear programming
problem which is NP-complete [24]. For exact
solutions and small problem sizes (the problem
size is based on the number of components and
computational units), one can use traditional
integer programming techniques. However, for
large problem sizes, one needs to resort to heu-
ristics which find good approximations through
large space search methods.

3. Approach

In this section, we apply the CPN based ap-
proach to solve a component allocation prob-
lem using parameters of a realistic system bor-
rowed from [3]. Subsection 3.1 gives a brief
description of the system. In Subsection 3.2,
we develop a CPN model of the system and in
Subsection 3.3, we describe the generation and
analysis of the state space using CPN Tools.
Subsection 3.4 summarizes the approach.

3.1. Case Study

To demonstrate our approach, we borrow the
same parameters used to develop a component
allocation problem from [3]. The system con-
sidered is a software system that handles and
interprets vision data on an autonomous under-
water vehicle (AUV), while simultaneously in-
teracting with them in real time. That system
is being developed as a part of RALF3 project
[25].
The system consists of n = 11 components.
These are: 1-UI User Interface, 2-CH Commu-
nication Handler, 3-MP Message Parser, 4-MD
Manual Drive, 5-MM Mission Manager, 6-MC
Movement Control, 7-V Vision, 8-AC Actuator
Control, 9-SI Sensors Layer 1, 10-S2 Sensors
Layer 2, and 11-SF Stream Filtering compo-

nents. The hardware platform consists of m = 4
computational units. These are: 1-mCPU Mul-
ticore CPU, 2-FPGA FPGA I, 3-FPGA FPGA
II, and 4-GPU GPU. There are l = 3 resources:
average execution time (measured in millisec-
onds), memory (measured in megabytes), and
average energy consumption (measured in mil-
liamperes per hour).

10 90 90 55
50 20 20 72
30 20 20 72
10 40 40 72
20 40 40 72
20 50 50 55
90 20 20 15
20 10 10 70
20 10 10 70
20 15 15 70
90 10 10 33

48 256 256 128
128 256 256 148
64 256 256 148
48 168 168 148
64 168 168 148
64 168 168 64

168 128 128 64
148 96 96 148
48 32 32 148
48 32 32 148

168 64 64 96

 (a) (b)

2 18 18 11
10 4 4 14
6 4 4 14
2 8 8 14
4 8 8 14
4 10 10 11

18 4 4 3
4 2 2 14
4 2 2 14
4 3 3 14

18 2 2 7

(c)

Figure 1 shows the component resource con-
sumptions (i.e., the elements of the matrix T).
Since T is three-dimensional (components,
computational units, resources), we use three
matrices to display three different resources

(i.e., the third dimension):
a) average execution time,
b) memory, and
c) average energy consumption.

The computational unit resource capacity ma-
trix is given by:

100 256 50
150 640 25
150 640 25
100 256 15

R

 =

0 1 0 0 0 0 0 0 0 0 0
1 0 5 0 3 0 0 0 0 0 0
0 5 0 5 3 0 0 0 0 0 0
0 0 5 0 0 1 7 3 0 0 0
0 3 3 0 0 9 9 3 0 0 0
0 0 0 1 9 0 0 0 7 7 0
0 0 0 7 9 0 0 0 0 0 7
0 0 0 3 3 0 0 0 0 0 0
0 0 0 0 0 7 0 0 0 0 0
0 0 0 0 0 7 0 0 0 0 0
0 0 0 0 0 0 7 0 0 0 0

Figure 2 shows the communication intensity
matrix. The platform communication cost ma-
trix is given by:

1 5 5 4
5 1 2 3
5 2 1 3
4 3 3 1

C

 =

To compute the cost of an allocation in (2), we
use the trade-off vector:

[]0.1557 0.0856 0.7095 0.0491F =

Here, the k-th element in vector F represents
the trade-off factor fk. The trade-off factors are

Figure 1. The component resource consumptions.

Figure 2. The communication intensity matrix K.

90 91I. Al-Azzoni An Improved Coloured Petri Net Model for Software Component Allocation...

computed using Analytic Hierarchy Process
(AHP) [26]. The last element in F is the com-
munication trade-off factor fc. The details are
given in [3].
We will consider two additional constraints:

 ● Constraint I: Component 7-V should be
allocated to 4-GPU.

 ● Constraint II: Component 4-MD should
not be allocated to 1-mCPU.

3.2. The CPN Model

The CPN model is shown in Figure 3. The CPN
contains four places. Here, we briefly describe
each place. The place Components holds tokens
which represent the components. The place
CompUnits holds tokens representing the com-
putational units. Each token records the avail-
able resources that the corresponding computa-
tional unit currently has. The place Allocations
holds tokens which represent the allocations of
components to computational units. The place
Cost holds a single token which records the
total cost of the allocated components, exclud-
ing the communication costs. There is only one
transition in the CPN. Firing the transition allo-
cate corresponds to assigning a component to
one of the computational units.
The colour sets are defined as follows:

The colour set CompUnit is defined as the prod-
uct of four integer colour sets. This is the colour
set for the place CompUnits holding tokens that
record the available resources in each computa-
tional unit. In each such token, the colours are
ordered as follows: the computational unit id,
the available average execution time resource,
the available memory resource, and the avail-
able average energy consumption resource.
The variables are declared as follows:

The variables c and cu hold the component and
computational unit ids, respectively. The vari-
able co holds the total cost of the allocated com-
ponents, excluding the communication costs.
The variables a_cpu, a_mem, and a_pwr hold

the available average execution time, memory,
and average energy consumption resources, re-
spectively.
To encode the component resource consump-
tion matrix T, we define three two-dimension-
al arrays: cp_cons, mem_cons, and ener_cons.
This is done by using the function fromList de-
fined on Array2 structures in SML library. For
example, the array cpu_cons is defined using
the following:

Components are allocated one by one, in or-
der of their ids. This is valid, since the order
of assigning components to computational units
does not matter with respect to the feasibility
condition (see (1)). The assignment of compo-
nents is controlled by the value of the token re-
siding in place Components. Note that the com-
ponent ids and the computational unit ids start
from zero. Thus, for example, the component

with id = 0 corresponds to the component 1-UI
and the computational unit with id = 0 corre-
sponds to the computational unit 1-mCPU.
The constraints are included in the CPN model
by using the guard of transition allocate. For ex-
ample, in Constraint I, Component 7-V should
be allocated on 4-GPU. Thus, a feasible alloca-
tion of components should satisfy the condition
that (c = 6) → (cu = 3) which is logically equiv-
alent to ¬ (c = 6) ˅ (cu = 3). For Constraint II,
Component 4-MD should not be allocated to
1-mCPU. Thus, a feasible allocation of com-
ponents should also satisfy the condition that
¬ ((c = 3) ˄ (cu = 0)). Both conditions are added
to the guard of transition allocate.
When a component is allocated to a computa-
tional unit, the corresponding cost needs to be
added to the total cost (the colour of the token
in place Cost). This is modeled by using the arc
from transition allocate to place Cost. Note the
trade-off factors fk in the arc expression.

3.3. State Space Generation and Analysis

We use the state space tool of CPN Tools Ver-
sion 4.0 to find an optimal component alloca-
tion. CPN Tools Version 4.0 adds the support
for real colorsets. Figure 4 shows the query
functions used to generate and search through
the state space. These queries are written in the
CPN ML programming language (presented in
Chapter 3 in [8]). For a given marking repre-

Figure 3. The CPN model for the system of the case study.

Components

INT

1`0

CompUnits
CompUnit

1`(0,100,256,50)++1`(1,150,640,25)++
1`(2,150,640,25)++1`(3,100,256,15)

Allocations

Allocation
Cost

REAL

1`0.0

allocate

[c<= 10 andalso a_cpu>= Array2.sub(cpu_cons,c,cu) andalso
a_mem>= Array2.sub(mem_cons,c,cu) andalso
a_pwr>=Array2.sub(ener_cons,c,cu) andalso
(not (c=6) orelse cu=3) andalso not (c=3 andalso cu=0)]

c (cu,a_cpu,a_mem,a_pwr)

(c,cu)

(cu,a_cpu-Array2.sub(cpu_cons,c,cu),a_mem-Array2.sub(mem_cons,c,cu),a_pwr-Array2.sub(ener_cons,c,cu))

co

co+0.1557*(Real.fromInt (Array2.sub(cpu_cons,c,cu)))+
0.0856*(Real.fromInt (Array2.sub(mem_cons,c,cu)))+
0.7095*(Real.fromInt (Array2.sub(ener_cons,c,cu)))

c+1

acolset UNIT = unit;
colset INT = int;
colset REAL = real;
colset BOOL = bool;
colset STRING = string;
colset Component = int;
colset CompUnit = product INT * INT
 * INT * INT;
colset Allocation = product INT * INT;

avar c,cu: INT;
var co:REAL;
var a_cpu,a_mem,a_pwr: INT;

aval cpu_cons = Array2.fromList(
[[10; 90; 90; 55];
[50; 20; 20; 72];
[30; 20; 20; 72];
[10; 40; 40; 72];
[20; 40; 40; 72];
[20; 50; 50; 55];
[90; 20; 20; 15];
[20; 10; 10; 70];
[20; 10; 10; 70];
[20; 15; 15; 70];
[90; 10; 10; 33]]);

Figure 4. The CPN ML queries used to generate and search through the state space for the CPN model in Figure 3.

val max_val: real = 2000.0;

fun alloc (x,y) = y;

fun comm_cost n =
let
val allocation = ext_col alloc (Mark.model'Allocations 1 n);
val allocation_list = ms_to_list(allocation);
val comm_cost = Array2.array(11,11,0);
val reg = {base=comm_cost, row=0, col=0, nrows=NONE, ncols=NONE};
fun c(i,j,k) = Array2.sub(comp_comm2,i,j)*Array2.sub(unit_comm_cost, List.nth(allocation_list,i), List.nth(allocation_list,j));
val u = Array2.modifyi Array2.RowMajor c reg;
fun s(a,b) = a+b;
in
Array2.fold Array2.RowMajor s 0 comm_cost
end;

fun tot_cost n =
let
val accCostsToken = Mark.model'Cost 1 n;
in
hd(accCostsToken) + 0.0491*Real.fromInt(comm_cost(n))
end;

fun DesiredTerminal1 n = (Mark.model'Components 1 n == 1`11);
val x = SearchNodes(EntireGraph, DesiredTerminal1, NoLimit, tot_cost,max_val,Real.min);

fun DesiredTerminal2 n = DesiredTerminal1(n) andalso tot_cost(n) = x;
val y = SearchNodes(EntireGraph, DesiredTerminal2, NoLimit, fn n => n,[],op ::);

90 91I. Al-Azzoni An Improved Coloured Petri Net Model for Software Component Allocation...

computed using Analytic Hierarchy Process
(AHP) [26]. The last element in F is the com-
munication trade-off factor fc. The details are
given in [3].
We will consider two additional constraints:

 ● Constraint I: Component 7-V should be
allocated to 4-GPU.

 ● Constraint II: Component 4-MD should
not be allocated to 1-mCPU.

3.2. The CPN Model

The CPN model is shown in Figure 3. The CPN
contains four places. Here, we briefly describe
each place. The place Components holds tokens
which represent the components. The place
CompUnits holds tokens representing the com-
putational units. Each token records the avail-
able resources that the corresponding computa-
tional unit currently has. The place Allocations
holds tokens which represent the allocations of
components to computational units. The place
Cost holds a single token which records the
total cost of the allocated components, exclud-
ing the communication costs. There is only one
transition in the CPN. Firing the transition allo-
cate corresponds to assigning a component to
one of the computational units.
The colour sets are defined as follows:

The colour set CompUnit is defined as the prod-
uct of four integer colour sets. This is the colour
set for the place CompUnits holding tokens that
record the available resources in each computa-
tional unit. In each such token, the colours are
ordered as follows: the computational unit id,
the available average execution time resource,
the available memory resource, and the avail-
able average energy consumption resource.
The variables are declared as follows:

The variables c and cu hold the component and
computational unit ids, respectively. The vari-
able co holds the total cost of the allocated com-
ponents, excluding the communication costs.
The variables a_cpu, a_mem, and a_pwr hold

the available average execution time, memory,
and average energy consumption resources, re-
spectively.
To encode the component resource consump-
tion matrix T, we define three two-dimension-
al arrays: cp_cons, mem_cons, and ener_cons.
This is done by using the function fromList de-
fined on Array2 structures in SML library. For
example, the array cpu_cons is defined using
the following:

Components are allocated one by one, in or-
der of their ids. This is valid, since the order
of assigning components to computational units
does not matter with respect to the feasibility
condition (see (1)). The assignment of compo-
nents is controlled by the value of the token re-
siding in place Components. Note that the com-
ponent ids and the computational unit ids start
from zero. Thus, for example, the component

with id = 0 corresponds to the component 1-UI
and the computational unit with id = 0 corre-
sponds to the computational unit 1-mCPU.
The constraints are included in the CPN model
by using the guard of transition allocate. For ex-
ample, in Constraint I, Component 7-V should
be allocated on 4-GPU. Thus, a feasible alloca-
tion of components should satisfy the condition
that (c = 6) → (cu = 3) which is logically equiv-
alent to ¬ (c = 6) ˅ (cu = 3). For Constraint II,
Component 4-MD should not be allocated to
1-mCPU. Thus, a feasible allocation of com-
ponents should also satisfy the condition that
¬ ((c = 3) ˄ (cu = 0)). Both conditions are added
to the guard of transition allocate.
When a component is allocated to a computa-
tional unit, the corresponding cost needs to be
added to the total cost (the colour of the token
in place Cost). This is modeled by using the arc
from transition allocate to place Cost. Note the
trade-off factors fk in the arc expression.

3.3. State Space Generation and Analysis

We use the state space tool of CPN Tools Ver-
sion 4.0 to find an optimal component alloca-
tion. CPN Tools Version 4.0 adds the support
for real colorsets. Figure 4 shows the query
functions used to generate and search through
the state space. These queries are written in the
CPN ML programming language (presented in
Chapter 3 in [8]). For a given marking repre-

Figure 3. The CPN model for the system of the case study.

Components

INT

1`0

CompUnits
CompUnit

1`(0,100,256,50)++1`(1,150,640,25)++
1`(2,150,640,25)++1`(3,100,256,15)

Allocations

Allocation
Cost

REAL

1`0.0

allocate

[c<= 10 andalso a_cpu>= Array2.sub(cpu_cons,c,cu) andalso
a_mem>= Array2.sub(mem_cons,c,cu) andalso
a_pwr>=Array2.sub(ener_cons,c,cu) andalso
(not (c=6) orelse cu=3) andalso not (c=3 andalso cu=0)]

c (cu,a_cpu,a_mem,a_pwr)

(c,cu)

(cu,a_cpu-Array2.sub(cpu_cons,c,cu),a_mem-Array2.sub(mem_cons,c,cu),a_pwr-Array2.sub(ener_cons,c,cu))

co

co+0.1557*(Real.fromInt (Array2.sub(cpu_cons,c,cu)))+
0.0856*(Real.fromInt (Array2.sub(mem_cons,c,cu)))+
0.7095*(Real.fromInt (Array2.sub(ener_cons,c,cu)))

c+1

acolset UNIT = unit;
colset INT = int;
colset REAL = real;
colset BOOL = bool;
colset STRING = string;
colset Component = int;
colset CompUnit = product INT * INT
 * INT * INT;
colset Allocation = product INT * INT;

avar c,cu: INT;
var co:REAL;
var a_cpu,a_mem,a_pwr: INT;

aval cpu_cons = Array2.fromList(
[[10; 90; 90; 55];
[50; 20; 20; 72];
[30; 20; 20; 72];
[10; 40; 40; 72];
[20; 40; 40; 72];
[20; 50; 50; 55];
[90; 20; 20; 15];
[20; 10; 10; 70];
[20; 10; 10; 70];
[20; 15; 15; 70];
[90; 10; 10; 33]]);

Figure 4. The CPN ML queries used to generate and search through the state space for the CPN model in Figure 3.

val max_val: real = 2000.0;

fun alloc (x,y) = y;

fun comm_cost n =
let
val allocation = ext_col alloc (Mark.model'Allocations 1 n);
val allocation_list = ms_to_list(allocation);
val comm_cost = Array2.array(11,11,0);
val reg = {base=comm_cost, row=0, col=0, nrows=NONE, ncols=NONE};
fun c(i,j,k) = Array2.sub(comp_comm2,i,j)*Array2.sub(unit_comm_cost, List.nth(allocation_list,i), List.nth(allocation_list,j));
val u = Array2.modifyi Array2.RowMajor c reg;
fun s(a,b) = a+b;
in
Array2.fold Array2.RowMajor s 0 comm_cost
end;

fun tot_cost n =
let
val accCostsToken = Mark.model'Cost 1 n;
in
hd(accCostsToken) + 0.0491*Real.fromInt(comm_cost(n))
end;

fun DesiredTerminal1 n = (Mark.model'Components 1 n == 1`11);
val x = SearchNodes(EntireGraph, DesiredTerminal1, NoLimit, tot_cost,max_val,Real.min);

fun DesiredTerminal2 n = DesiredTerminal1(n) andalso tot_cost(n) = x;
val y = SearchNodes(EntireGraph, DesiredTerminal2, NoLimit, fn n => n,[],op ::);

92 93I. Al-Azzoni An Improved Coloured Petri Net Model for Software Component Allocation...

sented by n, the function tot_cost returns the
total cost of the assigned components which is
equal to the value (colour) of the token in place
Cost plus the total communication cost multi-
plied by the communication trade-off factor
fc = 0.0491.
The function comm_cost returns the total com-
munication cost for an allocation. This is im-
plemented in three steps. First, the allocation
corresponding to the marking n is determined.
Note that the place Allocations contains tokens
of colour set Allocation which is defined as
the product of two integer colour sets. Thus,
each token is a tuple containing two integers:
one representing the component and one rep-
resenting its assigned computational unit. By
applying the linear extension of the function
alloc to the marking of place Allocations and
converting the resulting multi-set to list, allo-
cation_list is determined. Second, the elements
of the two-dimensional array comm_cost are
determined. Each element [i, j], where i < j rep-
resents the communication cost between com-
ponents i and j (all other elements are set to
zero). It is calculated using the standard SML
function Array2.modifyi which applies the
function c to each element of comm_cost. Note
that the two-dimensional array comp_comm2 is
defined as the strictly lower triangular version
of the matrix K, while the two-dimensional ar-
ray unit_comm_cost is defined as the matrix C.
Finally, communication costs are summed up
using the function Array2.fold which folds the
function s over the elements of comm_cost to

compute the total communication cost.
To find the optimal allocations, we use the CPN
ML defined function SearchNodes twice. First,
we use it to find the minimum value for the total
allocation cost over all markings which satisfy
the predicate DesiredTerminal1. The predicate
DesiredTerminal1 returns true if and only if the
marking represented by n satisfies the condition
that the token in place Components has value

11 (hence, all components have been assigned).
Thus, the variable x stores the minimum total
component allocation cost. The constant max_
val is a large real number useful in the start for
applying the combination function Real.min of
SearchNodes. The constant max_val can be set
to any large real number, but one should ensure
that it is larger than the cost of a single allocation
chosen at random. Second, we use SearchNodes
to find the markings which satisfy DesiredTer-
minal2. The predicate DesiredTerminal2 re-
turns true if and only if the marking represented
by n satisfies DesiredTerminal1 and that if total
allocation cost is equal to x. Thus, the output of
the second SearchNodes (stored in variable y)
is the list of all markings corresponding to the
optimal allocations. The optimal allocations are
determined by examining the tokens in place
Allocations in any of such markings.
One technique to scale the applicability of the
CPN approach is to determine an upper bound
on the total cost and only generate markings
having total cost less than this upper bound.
This is possible in CPN ML by using the OGSet.
BranchingOptions function as in the following
example:
The branching options are used to specify the
conditions under which the successors of a
node (marking) are calculated. In this example,
if a marking corresponds to an allocation with
a total cost that exceeds 150.88, the successors
of this marking are not calculated. The ratio-
nale of the use of this upper bound (150.88) is
to be explained shortly. The effect is that only
the allocations whose total cost does not exceed
the upper bound are explored. This results in
significant reduction in the size of the generated
state space. Applicable heuristics can be used
to determine appropriate values for the upper
bound. For example, we use the genetic algo-
rithm developed in [3]. We note that heuristics
provide approximate solutions and may not
converge into an optimal solution. This should
not pose a problem when setting the branching
options, since the upper bound needs not be the
optimal solution.

3.4. Summary

The following summarizes the main steps de-
veloped in this section:

1. Creating the CPN model: The modeler can
use the CPN model in Figure 3, but (only)
after updating the trade-off factors in the
expression of the arc from place Cost to
transition allocate, the additional con-
straints and number of components in the
guard of transition allocate, and the tokens
in place CompUnits to match the computa-
tional units' resource capacities.

2. Generating the corresponding state space
using CPN Tools: The modeler first needs
to define the arrays cpu_cons, mem_cons,
and ener_cons as explained earlier.

3. Running CPN ML queries to search
through the state space in order to find an
optimal allocation: The modeler can use
the CPN ML queries presented in Figure
4, but (only) after updating the communi-
cation trade-off factor in the body of the
function tot_cost. The modeler first needs
to define the arrays unit_comm_cost and
comp_comm2 as explained earlier.

4. Evaluation

In this section, we first compare the approach
presented in this paper with the original ap-
proach in [6]. Then, we show the improvement
in performance when using the branching op-
tions as outlined at the end of Subsection 3.3.
Finally, we show the results of applying our ap-
proach on eight different component allocation
problems.
First, in Table 1, we compare the original ap-
proach presented in [6] with the approach
presented in this paper. Since the original ap-
proach does not consider communication cost,

we exclude it when evaluating the cost of the
allocations. To have a fair comparison, the
branching options are not used when applying
the approach described in this paper. The table
also includes the cost of an optimal component
allocation computed by an exhaustive search.
We have implemented the exhaustive search
in a Java program that computes the cost of all
feasible allocations and returns one that has the
minimum total allocation cost. In addition, the
table shows the optimal component allocation
computed using the CPN based approach, its
cost w, the number of markings generated by
CPN Tools, and the time (in seconds) it took for
the CPN Tools to generate the state space (the
markings). The last two results are obtained
by using the CPN ML functions: NoOfNodes()
and NoOfSecs(). Note that the state space gen-
eration was done on a Dell desktop computer
equipped with a 3.00 GHz dual-core processor
and 2 GB RAM.
The table validates the CPN approach in the
case study, since the returned component allo-
cation is optimal (i.e., feasible and its cost is
equal to that of the optimal allocation returned
by the exhaustive search). In addition, although
the same number of markings are generated in
both approaches, the table shows that there is
almost 18% improvement in terms of the time it
took to generate the state space. This is a result
of reducing the memory footprint of each mark-
ing by using an optimized scheme for encoding
the resource consumption matrix and the com-
ponents.
Second, the next three tables show the perfor-
mance improvement of using the branching op-
tions, while applying the approach presented in
this paper. Table 2 shows the evaluation results
when using the component allocation problem

Table 1. Evaluation results including both constraints − no communication cost and no branching options.

Optimal Cost − Exhaustive Search 141.01
Runtime in Seconds − Exhaustive Search 1.78

Optimal Allocation − CPN Approach (1, 3, 1, 3, 1, 1, 4, 3, 3, 2, 2)
Optimal Cost − CPN Approach 141.01

Number of Markings − original CPN Approach 16813
Number of Seconds − original CPN Approach 44

Number of Markings - CPN Approach as presented in this paper 16813
Number of Seconds - CPN Approach as presented in this paper 36

OGSet.BranchingOptions{
TransInsts = NoLimit, Bindings =
NoLimit,
Predicate = fn n => (tot_cost(n) <=
150.88)};

92 93I. Al-Azzoni An Improved Coloured Petri Net Model for Software Component Allocation...

sented by n, the function tot_cost returns the
total cost of the assigned components which is
equal to the value (colour) of the token in place
Cost plus the total communication cost multi-
plied by the communication trade-off factor
fc = 0.0491.
The function comm_cost returns the total com-
munication cost for an allocation. This is im-
plemented in three steps. First, the allocation
corresponding to the marking n is determined.
Note that the place Allocations contains tokens
of colour set Allocation which is defined as
the product of two integer colour sets. Thus,
each token is a tuple containing two integers:
one representing the component and one rep-
resenting its assigned computational unit. By
applying the linear extension of the function
alloc to the marking of place Allocations and
converting the resulting multi-set to list, allo-
cation_list is determined. Second, the elements
of the two-dimensional array comm_cost are
determined. Each element [i, j], where i < j rep-
resents the communication cost between com-
ponents i and j (all other elements are set to
zero). It is calculated using the standard SML
function Array2.modifyi which applies the
function c to each element of comm_cost. Note
that the two-dimensional array comp_comm2 is
defined as the strictly lower triangular version
of the matrix K, while the two-dimensional ar-
ray unit_comm_cost is defined as the matrix C.
Finally, communication costs are summed up
using the function Array2.fold which folds the
function s over the elements of comm_cost to

compute the total communication cost.
To find the optimal allocations, we use the CPN
ML defined function SearchNodes twice. First,
we use it to find the minimum value for the total
allocation cost over all markings which satisfy
the predicate DesiredTerminal1. The predicate
DesiredTerminal1 returns true if and only if the
marking represented by n satisfies the condition
that the token in place Components has value

11 (hence, all components have been assigned).
Thus, the variable x stores the minimum total
component allocation cost. The constant max_
val is a large real number useful in the start for
applying the combination function Real.min of
SearchNodes. The constant max_val can be set
to any large real number, but one should ensure
that it is larger than the cost of a single allocation
chosen at random. Second, we use SearchNodes
to find the markings which satisfy DesiredTer-
minal2. The predicate DesiredTerminal2 re-
turns true if and only if the marking represented
by n satisfies DesiredTerminal1 and that if total
allocation cost is equal to x. Thus, the output of
the second SearchNodes (stored in variable y)
is the list of all markings corresponding to the
optimal allocations. The optimal allocations are
determined by examining the tokens in place
Allocations in any of such markings.
One technique to scale the applicability of the
CPN approach is to determine an upper bound
on the total cost and only generate markings
having total cost less than this upper bound.
This is possible in CPN ML by using the OGSet.
BranchingOptions function as in the following
example:
The branching options are used to specify the
conditions under which the successors of a
node (marking) are calculated. In this example,
if a marking corresponds to an allocation with
a total cost that exceeds 150.88, the successors
of this marking are not calculated. The ratio-
nale of the use of this upper bound (150.88) is
to be explained shortly. The effect is that only
the allocations whose total cost does not exceed
the upper bound are explored. This results in
significant reduction in the size of the generated
state space. Applicable heuristics can be used
to determine appropriate values for the upper
bound. For example, we use the genetic algo-
rithm developed in [3]. We note that heuristics
provide approximate solutions and may not
converge into an optimal solution. This should
not pose a problem when setting the branching
options, since the upper bound needs not be the
optimal solution.

3.4. Summary

The following summarizes the main steps de-
veloped in this section:

1. Creating the CPN model: The modeler can
use the CPN model in Figure 3, but (only)
after updating the trade-off factors in the
expression of the arc from place Cost to
transition allocate, the additional con-
straints and number of components in the
guard of transition allocate, and the tokens
in place CompUnits to match the computa-
tional units' resource capacities.

2. Generating the corresponding state space
using CPN Tools: The modeler first needs
to define the arrays cpu_cons, mem_cons,
and ener_cons as explained earlier.

3. Running CPN ML queries to search
through the state space in order to find an
optimal allocation: The modeler can use
the CPN ML queries presented in Figure
4, but (only) after updating the communi-
cation trade-off factor in the body of the
function tot_cost. The modeler first needs
to define the arrays unit_comm_cost and
comp_comm2 as explained earlier.

4. Evaluation

In this section, we first compare the approach
presented in this paper with the original ap-
proach in [6]. Then, we show the improvement
in performance when using the branching op-
tions as outlined at the end of Subsection 3.3.
Finally, we show the results of applying our ap-
proach on eight different component allocation
problems.
First, in Table 1, we compare the original ap-
proach presented in [6] with the approach
presented in this paper. Since the original ap-
proach does not consider communication cost,

we exclude it when evaluating the cost of the
allocations. To have a fair comparison, the
branching options are not used when applying
the approach described in this paper. The table
also includes the cost of an optimal component
allocation computed by an exhaustive search.
We have implemented the exhaustive search
in a Java program that computes the cost of all
feasible allocations and returns one that has the
minimum total allocation cost. In addition, the
table shows the optimal component allocation
computed using the CPN based approach, its
cost w, the number of markings generated by
CPN Tools, and the time (in seconds) it took for
the CPN Tools to generate the state space (the
markings). The last two results are obtained
by using the CPN ML functions: NoOfNodes()
and NoOfSecs(). Note that the state space gen-
eration was done on a Dell desktop computer
equipped with a 3.00 GHz dual-core processor
and 2 GB RAM.
The table validates the CPN approach in the
case study, since the returned component allo-
cation is optimal (i.e., feasible and its cost is
equal to that of the optimal allocation returned
by the exhaustive search). In addition, although
the same number of markings are generated in
both approaches, the table shows that there is
almost 18% improvement in terms of the time it
took to generate the state space. This is a result
of reducing the memory footprint of each mark-
ing by using an optimized scheme for encoding
the resource consumption matrix and the com-
ponents.
Second, the next three tables show the perfor-
mance improvement of using the branching op-
tions, while applying the approach presented in
this paper. Table 2 shows the evaluation results
when using the component allocation problem

Table 1. Evaluation results including both constraints − no communication cost and no branching options.

Optimal Cost − Exhaustive Search 141.01
Runtime in Seconds − Exhaustive Search 1.78

Optimal Allocation − CPN Approach (1, 3, 1, 3, 1, 1, 4, 3, 3, 2, 2)
Optimal Cost − CPN Approach 141.01

Number of Markings − original CPN Approach 16813
Number of Seconds − original CPN Approach 44

Number of Markings - CPN Approach as presented in this paper 16813
Number of Seconds - CPN Approach as presented in this paper 36

OGSet.BranchingOptions{
TransInsts = NoLimit, Bindings =
NoLimit,
Predicate = fn n => (tot_cost(n) <=
150.88)};

94 95I. Al-Azzoni An Improved Coloured Petri Net Model for Software Component Allocation...

presented in Subsection 3.1. Table 3 shows
the evaluation results from the same alloca-
tion problem, but excluding Constraint II. To
exclude this constraint, we remove the corre-
sponding condition from the guard of transition
allocate. The evaluation results, when exclud-
ing both constraints, are shown in Table 4.
In order to set the upper bound necessary when
using the branching options, applicable heuris-
tics can be used to determine appropriate val-
ues for the upper bound. We use the genetic
algorithm developed in [3]. Each execution of

the algorithm can have a different result. The
algorithm is run five times, and we choose the
smallest optimal cost as an upper bound in the
setting of the branching options.
We can make three conclusions when analyz-
ing the results. First, the optimal cost found by
the CPN approach is equal to that found by the
exhaustive search. This validates the CPN ap-
proach. Second, the generated state space ex-
ponentially increases when the size of the com-
ponent allocation problem is increased. This is
evident by comparing the different numbers of

markings when including both constraints, ex-
cluding a constraint, and excluding both con-
straints. Third, the tables show significant im-
provement in terms of the generated number
of markings and the time to generate the state
space when utilizing the branching options. For
example, Table 4 shows that the time to gen-
erate the state space when using the branching
options is almost 366 times quicker than when
not using them for the case of excluding both
constraints.
As Table 4 shows, the CPN-based approach
with branching options is slower than the ex-
haustive search. This is due to the overhead
incurred when using the CPN-based approach.
The exhaustive search is implemented directly
in Java, while the CPN-based approach uses
CPN Tools simulation which incurs some over-
head when constructing and analyzing the state
space. However, the results in terms of run-
time might be different for larger problems for
which the branching options severely cut down
the generated state space.
Lastly, we show the results of applying our ap-
proach on several system instances. The system
instances were obtained by random shuffling
of the elements of the matrices T and K of the
case study in Subsection 3.1. The details of the
system instances can be obtained by contacting
the author. Table 5 shows the optimal costs ob-
tained using the CPN approach for eight system
instances. For each instance, the table shows the
optimal cost when including both constraints
(case A) and when excluding Constraint II
(case B). We verified the results by comparing
them with the optimal costs obtained when us-
ing exhaustive search. Note that for the instanc-
es 3.A and 3.B, there is no feasible allocation. In
such cases, the list of markings that are returned
by the second application of SearchNodes (see
Figure 4) is empty. For this part of the evalua-
tion, we did not use the branching options.

5. Conclusion and Future Work

In this paper, we presented several improve-
ments to the CPN-based approach for software
component allocation on heterogeneous sys-
tems. We incorporated the costs of communi-
cation between the software components in the
CPN model. Also, we explored the use of the

branching options in the CPN ML state space
generation tool to scale the CPN approach to
larger systems.
One potential limitation of the CPN-based ap-
proach is the exponential increase in the gener-
ated state space for larger systems. In this paper,
we suggested a technique to determine an upper
bound on the cost and only generate the states
having cost less than this upper bound. The up-
per bound can be determined using heuristics
such as genetic algorithms. This significantly
cuts down the generated state space.
However, the generated state space can become
intractable for larger systems. Thus, it is of in-
terest to explore the ways to generate and ana-
lyze the state space more intelligently. For ex-
ample, the work of [27] surveys several parallel
algorithms to solve discrete optimization prob-
lems such as the component allocation prob-
lem. A discrete optimization problem is often
formulated as the problem of finding a path in
a graph (the state space graph) from a designat-
ed initial node to one of several possible final
nodes. The authors review several techniques
to search the state space and discuss how these

Table 2. Evaluation results including both constraints.

Optimal Cost − Exhaustive Search 153.43
Runtime in Seconds − Exhaustive Search 1.52

Optimal Allocation − CPN Approach (1, 3, 1, 3, 1, 1, 4, 3, 3, 2, 2)
Optimal Cost − CPN Approach 153.43

Number of Markings − CPN Approach − No Branching Options 16813
Number of Seconds − CPN Approach − No Branching Options 36

Number of Markings - CPN Approach − With Branching Options 2313
Number of Seconds - CPN Approach − With Branching Options 1

Table 3. Evaluation results excluding constraints II.

Optimal Cost − Exhaustive Search 144.50
Runtime in Seconds − Exhaustive Search 1.50

Optimal Allocation − CPN Approach (1, 2, 1, 1, 1, 4, 4, 2, 2, 3, 2)
Optimal Cost − CPN Approach 144.50

Number of Markings − CPN Approach − No Branching Options 27745
Number of Seconds − CPN Approach − No Branching Options 109

Number of Markings - CPN Approach − With Branching Options 3703
Number of Seconds - CPN Approach − With Branching Options 1

Table 4. Evaluation results excluding both constraints.

Optimal Cost − Exhaustive Search 144.50
Runtime in Seconds − Exhaustive Search 1.54

Optimal Allocation − CPN Approach (1, 2, 1, 1, 1, 4, 4, 2, 2, 2, 2)
Optimal Cost − CPN Approach 144.50

Number of Markings − CPN Approach − No Branching Options 103863
Number of Seconds − CPN Approach − No Branching Options 2193

Number of Markings - CPN Approach − With Branching Options 8741
Number of Seconds - CPN Approach − With Branching Options 6

Table 5. Evaluation results for different system
instances.

Instance
Number

Optimal
Cost

Number of
Markings

Number of
Seconds

1.A 188.40 1853 0
1.B 188.40 2152 1
2.A 169.30 2272 1
2.B 169.30 3082 1
3.A None 906 0
3.B None 1297 0
4.A 198.00 1556 0
4.B 198.00 2340 0
5.A 208.54 608 0
5.B 208.53 672 0
6.A 218.43 1320 0
6.B 218.43 1945 0
7.A 195.48 2423 0
7.B 195.48 2546 1
8.A 161.72 5743 4
8.B 161.72 6565 7

94 95I. Al-Azzoni An Improved Coloured Petri Net Model for Software Component Allocation...

presented in Subsection 3.1. Table 3 shows
the evaluation results from the same alloca-
tion problem, but excluding Constraint II. To
exclude this constraint, we remove the corre-
sponding condition from the guard of transition
allocate. The evaluation results, when exclud-
ing both constraints, are shown in Table 4.
In order to set the upper bound necessary when
using the branching options, applicable heuris-
tics can be used to determine appropriate val-
ues for the upper bound. We use the genetic
algorithm developed in [3]. Each execution of

the algorithm can have a different result. The
algorithm is run five times, and we choose the
smallest optimal cost as an upper bound in the
setting of the branching options.
We can make three conclusions when analyz-
ing the results. First, the optimal cost found by
the CPN approach is equal to that found by the
exhaustive search. This validates the CPN ap-
proach. Second, the generated state space ex-
ponentially increases when the size of the com-
ponent allocation problem is increased. This is
evident by comparing the different numbers of

markings when including both constraints, ex-
cluding a constraint, and excluding both con-
straints. Third, the tables show significant im-
provement in terms of the generated number
of markings and the time to generate the state
space when utilizing the branching options. For
example, Table 4 shows that the time to gen-
erate the state space when using the branching
options is almost 366 times quicker than when
not using them for the case of excluding both
constraints.
As Table 4 shows, the CPN-based approach
with branching options is slower than the ex-
haustive search. This is due to the overhead
incurred when using the CPN-based approach.
The exhaustive search is implemented directly
in Java, while the CPN-based approach uses
CPN Tools simulation which incurs some over-
head when constructing and analyzing the state
space. However, the results in terms of run-
time might be different for larger problems for
which the branching options severely cut down
the generated state space.
Lastly, we show the results of applying our ap-
proach on several system instances. The system
instances were obtained by random shuffling
of the elements of the matrices T and K of the
case study in Subsection 3.1. The details of the
system instances can be obtained by contacting
the author. Table 5 shows the optimal costs ob-
tained using the CPN approach for eight system
instances. For each instance, the table shows the
optimal cost when including both constraints
(case A) and when excluding Constraint II
(case B). We verified the results by comparing
them with the optimal costs obtained when us-
ing exhaustive search. Note that for the instanc-
es 3.A and 3.B, there is no feasible allocation. In
such cases, the list of markings that are returned
by the second application of SearchNodes (see
Figure 4) is empty. For this part of the evalua-
tion, we did not use the branching options.

5. Conclusion and Future Work

In this paper, we presented several improve-
ments to the CPN-based approach for software
component allocation on heterogeneous sys-
tems. We incorporated the costs of communi-
cation between the software components in the
CPN model. Also, we explored the use of the

branching options in the CPN ML state space
generation tool to scale the CPN approach to
larger systems.
One potential limitation of the CPN-based ap-
proach is the exponential increase in the gener-
ated state space for larger systems. In this paper,
we suggested a technique to determine an upper
bound on the cost and only generate the states
having cost less than this upper bound. The up-
per bound can be determined using heuristics
such as genetic algorithms. This significantly
cuts down the generated state space.
However, the generated state space can become
intractable for larger systems. Thus, it is of in-
terest to explore the ways to generate and ana-
lyze the state space more intelligently. For ex-
ample, the work of [27] surveys several parallel
algorithms to solve discrete optimization prob-
lems such as the component allocation prob-
lem. A discrete optimization problem is often
formulated as the problem of finding a path in
a graph (the state space graph) from a designat-
ed initial node to one of several possible final
nodes. The authors review several techniques
to search the state space and discuss how these

Table 2. Evaluation results including both constraints.

Optimal Cost − Exhaustive Search 153.43
Runtime in Seconds − Exhaustive Search 1.52

Optimal Allocation − CPN Approach (1, 3, 1, 3, 1, 1, 4, 3, 3, 2, 2)
Optimal Cost − CPN Approach 153.43

Number of Markings − CPN Approach − No Branching Options 16813
Number of Seconds − CPN Approach − No Branching Options 36

Number of Markings - CPN Approach − With Branching Options 2313
Number of Seconds - CPN Approach − With Branching Options 1

Table 3. Evaluation results excluding constraints II.

Optimal Cost − Exhaustive Search 144.50
Runtime in Seconds − Exhaustive Search 1.50

Optimal Allocation − CPN Approach (1, 2, 1, 1, 1, 4, 4, 2, 2, 3, 2)
Optimal Cost − CPN Approach 144.50

Number of Markings − CPN Approach − No Branching Options 27745
Number of Seconds − CPN Approach − No Branching Options 109

Number of Markings - CPN Approach − With Branching Options 3703
Number of Seconds - CPN Approach − With Branching Options 1

Table 4. Evaluation results excluding both constraints.

Optimal Cost − Exhaustive Search 144.50
Runtime in Seconds − Exhaustive Search 1.54

Optimal Allocation − CPN Approach (1, 2, 1, 1, 1, 4, 4, 2, 2, 2, 2)
Optimal Cost − CPN Approach 144.50

Number of Markings − CPN Approach − No Branching Options 103863
Number of Seconds − CPN Approach − No Branching Options 2193

Number of Markings - CPN Approach − With Branching Options 8741
Number of Seconds - CPN Approach − With Branching Options 6

Table 5. Evaluation results for different system
instances.

Instance
Number

Optimal
Cost

Number of
Markings

Number of
Seconds

1.A 188.40 1853 0
1.B 188.40 2152 1
2.A 169.30 2272 1
2.B 169.30 3082 1
3.A None 906 0
3.B None 1297 0
4.A 198.00 1556 0
4.B 198.00 2340 0
5.A 208.54 608 0
5.B 208.53 672 0
6.A 218.43 1320 0
6.B 218.43 1945 0
7.A 195.48 2423 0
7.B 195.48 2546 1
8.A 161.72 5743 4
8.B 161.72 6565 7

96 97I. Al-Azzoni An Improved Coloured Petri Net Model for Software Component Allocation...

algorithms can be parallelized. CPN Tools in-
clude limited functionality to control how the
state space is generated. However, in order to
scale our approach to larger systems, it is of in-
terest to explore the use of these techniques in
the context of our CPN approach.
Part of our future work should also concentrate
on automated methods for model transforma-
tion to/from other modeling languages, includ-
ing the UML Profile for Modeling and Analysis
of Real-Time and Embedded systems (MAR-
TE) [28]. Finally, the CPN models need to be
analyzed in terms of other non-functional prop-
erties such as security and dependability.

References

[1] G. Campeanu et al., "Component Allocation Op-
timization for Heterogeneous CPU-GPU Embed-
ded Systems", in Proceedings of the Conference
on Software Engineering and Advanced Applica-
tions, 2014, pp. 229–236.
http://dx.doi.org/10.1109/SEAA.2014.29

[2] S. Malek et al., "An Extensible Framework for
Improving a Distributed Software System's De-
ployment Architecture", IEEE Transactions on
Software Engineering, vol. 38, no. 1, pp. 73–100,
2012.
http://dx.doi.org/10.1109/TSE.2011.3

[3] I. Švogor et al., "An Extended Model for
Multi-criteria Software Component Allocation on
a Heterogeneous Embedded Platform", Journal
of Computing and Information Technology, vol.
21, no. 4, pp. 211–222, 2013.
https://doi.org/10.2498/cit.1002284

[4] H. A. Taha, "Operations Research: An Introduc-
tion", 10th ed. Prentice Hall, 2010.

[5] L. A. Wolsey, "Integer Programming", Wiley-In-
terscience, 1998.

[6] I. Al-Azzoni, "Software Component Allocation
on Heterogeneous Embedded Systems using Co-
loured Petri Nets", in Proceedings of the Confer-
ence on Advances and Trends in Software Engi-
neering, 2015, pp. 23 – 28.

[7] K. Jensen et al., "Coloured Petri Nets and CPN
Tools for Modelling and Validation of Concur-
rent Systems", International Journal on Software
Tools for Technology Transfer, vol. 9, no. 3, pp.
213–254, 2007.
http://dx.doi.org/10.1007/s10009-007-0038-x

[8] K. Jensen and L. M. Kristensen, "Coloured Petri
Nets − Modelling and Validation of Concurrent
Systems", Springer, 2009.
http://dx.doi.org/10.1007/b95112

[9] I. Al-Azzoni et al., "Modeling and Verification
of Cryptographic Protocols using Coloured Petri
Nets and Design/CPN", Nordic Journal of Com-
puting, vol. 12, no. 3, pp. 201–228, 2005.

[10] L. Wells, "Performance Analysis using Coloured
Petri Nets", in Proceedings of the Symposium on
Modeling, Analysis and Simulation of Comput-
er and Telecommunications Systems, 2002, pp.
217–221.
http://dx.doi.org/10.7146/dpb.v31i563.7120

[11] J. Feljann et al., "Towards a Model-based Ap-
proach for Allocating Tasks to Multicore Proces-
sors", in Proceedings of the Conference on Soft-
ware Engineering and Advanced Applications,
2012, pp. 117–124.
http://dx.doi.org/10.1109/SEAA.2012.56

[12] P. Liggesmeyer and M. Trapp, "Trends in Embed-
ded Software Engineering", IEEE Software, vol.
26, no. 3, pp. 19–25, 2009.
http://dx.doi.org/10.1109/MS.2009.80

[13] B. Selic, "Model-driven Development: Its Es-
sence and Opportunities", in Proceedings of The
Symposium on Object and Component-Orient-
ed Real-Time Distributed Computing, 2006, pp.
313–319.
http://dx.doi.org/10.1109/ISORC.2006.54

[14] L. Al-Dakheel and I. Al-Azzoni, "Model-to-Mod-
el based Approach for Software Components Al-
location in Embedded Systems", in Proceedings
of the International Conference on Model-Driven
Engineering and Software Development, 2017,
pp. 321–328.
http://dx.doi.org/10.5220/0006126903200328

[15] I. Švogor and J. Carlson, "SCALL: Software
Component Allocator for Heterogeneous Embed-
ded Systems", in Proceedings of the European
Conference on Software Architecture Workshops,
2015, pp. 66:1–66:5.
http://doi.acm.org/10.1145/2797433.2797501

[16] U. Pohlmann and M. Hüwe, "Model-driven Al-
location Engineering", in Proceedings of the In-
ternational Conference on Automated Software
Engineering, 2015, pp. 374–384.
http://dx.doi.org/10.1109/ASE.2015.18

[17] S. Wang et al., "Component Allocation with Mul-
tiple Resource Constraints for Large Embedded
Real-time Software Design", in Proceedings of
the Real-Time and Embedded Technology and
Applications Symposium, 2004, pp. 219–226.
http://dx.doi.org/10.1109/RTTAS.2004.1317267

[18] AIRES, [Accessed March 2017].
https://kabru.eecs.umich.edu/aires/

[19] Z. Krpić et al., "Towards a Common Soft-
ware-to-hardware Allocation Framework for the
Heterogeneous High Performance Computing",
in Proceedings of the Computers, Software and
Applications Conference, 2014, pp. 378–383.
http://dx.doi.org/10.1109/COMPSACW.2014.65

[20] J. Carlson et al., "Deployment Modelling and
Synthesis in a Component Model for Distributed
Embedded Systems", in Proceedings of the Con-
ference on Software Engineering and Advanced
Applications, 2010, pp. 74–82.
http://dx.doi.org/10.1109/SEAA.2010.43

[21] J. Fredriksson et al., "Optimizing Resource Usage
Component-based Real-time Systems", in Pro-
ceedings of the Symposium on Component-based
Software Engineering, 2005, pp. 49–65.
http://dx.doi.org/10.1007/11424529_4

[22] I. Bate and P. Emberson, "Incorporating Scenar-
ios and Heuristics to Improve Flexibility in Re-
al-time Embedded Systems", in Proceedings of
the Real-Time and Embedded Technology and
Applications Symposium, 2006, pp. 221–230.
http://dx.doi.org/10.1109/RTAS.2006.21

[23] Y. Shoukry et al., "Graph-based Approach for
Software Allocation in Automotive Networked
Embedded Systems: A Partition-and-map Algo-
rithm", in Proceedings of the Forum on Specifi-
cation and Design Languages, 2013.
http://dx.doi.org/10.1007/978-3-319-06317-1_11

[24] R. M. Karp, "Reducibility Among Combinatorial
Problems", in Proceedings of the Symposium on
the Complexity of Computer Computations, 1972,
pp. 85–103.
http://dx.doi.org/10.1007/978-1-4684-2001-2_9

[25] RALF3 Project Web, [Accessed March 2017].
http://www.mrtc.mdh.se/projects/ralf3/

[26] T. L. Saaty, "Fundamentals of Decision Making
and Priority Theory with the Analytic Hierarchy
Process", RWS Publications, 1994.

[27] A. Grama and V. Kumar, "State of the Art in
Parallel Search Techniques for Discrete Optimi-
zation Problems", IEEE Transactions on Knowl-
edge and Data Engineering, vol. 11, no. 1, pp.
28–35, 1999.
http://dx.doi.org/10.1109/69.755612

[28] OMG, UML Profile for MARTE: Modeling and
Analysis of Real-Time and Embedded Systems,
version 1.1, formal/11-06-02; June 2011.

Received: November 2017
Revised: June 2018

Accepted: July 2018

Contact address:
Issam Al-Azzoni

College of Engineering
Al Ain University of Science and Technology

Al Ain
United Arab Emirates

e-mail: issam.alazzoni@aau.ac.ae

Issam al-azzonI received his MSc and PhD degrees in software engi-
neering from McMaster University, Hamilton, Ontario, Canada in 2005
and 2009, respectively. He is presently an Assistant Professor in the
Department of Software Engineering and Computer Science in the Col-
lege of Engineering at Al Ain University of Science and Technology,
United Arab Emirates. His research interests include modeling, mod-
el transformation, Coloured Petri Nets, and the application of formal
methods in software engineering. He is a member of the IEEE.

http://dx.doi.org/10.1109/SEAA.2014.29
http://dx.doi.org/10.1109/TSE.2011.3
https://doi.org/10.2498/cit.1002284
http://dx.doi.org/10.1007/s10009-007-0038-x
http://dx.doi.org/10.1007/b95112
http://dx.doi.org/10.7146/dpb.v31i563.7120
http://dx.doi.org/10.1109/SEAA.2012.56
http://dx.doi.org/10.1109/MS.2009.80
http://dx.doi.org/10.1109/ISORC.2006.54
http://dx.doi.org/10.5220/0006126903200328
http://doi.acm.org/10.1145/2797433.2797501
http://dx.doi.org/10.1109/ASE.2015.18
http://dx.doi.org/10.1109/RTTAS.2004.1317267
https://kabru.eecs.umich.edu/aires/
http://dx.doi.org/10.1109/COMPSACW.2014.65
http://dx.doi.org/10.1109/SEAA.2010.43
http://dx.doi.org/10.1007/11424529_4
http://dx.doi.org/10.1109/RTAS.2006.21
http://dx.doi.org/10.1007/978-3-319-06317-1_11
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://www.mrtc.mdh.se/projects/ralf3/
http://dx.doi.org/10.1109/69.755612

96 97I. Al-Azzoni An Improved Coloured Petri Net Model for Software Component Allocation...

algorithms can be parallelized. CPN Tools in-
clude limited functionality to control how the
state space is generated. However, in order to
scale our approach to larger systems, it is of in-
terest to explore the use of these techniques in
the context of our CPN approach.
Part of our future work should also concentrate
on automated methods for model transforma-
tion to/from other modeling languages, includ-
ing the UML Profile for Modeling and Analysis
of Real-Time and Embedded systems (MAR-
TE) [28]. Finally, the CPN models need to be
analyzed in terms of other non-functional prop-
erties such as security and dependability.

References

[1] G. Campeanu et al., "Component Allocation Op-
timization for Heterogeneous CPU-GPU Embed-
ded Systems", in Proceedings of the Conference
on Software Engineering and Advanced Applica-
tions, 2014, pp. 229–236.
http://dx.doi.org/10.1109/SEAA.2014.29

[2] S. Malek et al., "An Extensible Framework for
Improving a Distributed Software System's De-
ployment Architecture", IEEE Transactions on
Software Engineering, vol. 38, no. 1, pp. 73–100,
2012.
http://dx.doi.org/10.1109/TSE.2011.3

[3] I. Švogor et al., "An Extended Model for
Multi-criteria Software Component Allocation on
a Heterogeneous Embedded Platform", Journal
of Computing and Information Technology, vol.
21, no. 4, pp. 211–222, 2013.
https://doi.org/10.2498/cit.1002284

[4] H. A. Taha, "Operations Research: An Introduc-
tion", 10th ed. Prentice Hall, 2010.

[5] L. A. Wolsey, "Integer Programming", Wiley-In-
terscience, 1998.

[6] I. Al-Azzoni, "Software Component Allocation
on Heterogeneous Embedded Systems using Co-
loured Petri Nets", in Proceedings of the Confer-
ence on Advances and Trends in Software Engi-
neering, 2015, pp. 23 – 28.

[7] K. Jensen et al., "Coloured Petri Nets and CPN
Tools for Modelling and Validation of Concur-
rent Systems", International Journal on Software
Tools for Technology Transfer, vol. 9, no. 3, pp.
213–254, 2007.
http://dx.doi.org/10.1007/s10009-007-0038-x

[8] K. Jensen and L. M. Kristensen, "Coloured Petri
Nets − Modelling and Validation of Concurrent
Systems", Springer, 2009.
http://dx.doi.org/10.1007/b95112

[9] I. Al-Azzoni et al., "Modeling and Verification
of Cryptographic Protocols using Coloured Petri
Nets and Design/CPN", Nordic Journal of Com-
puting, vol. 12, no. 3, pp. 201–228, 2005.

[10] L. Wells, "Performance Analysis using Coloured
Petri Nets", in Proceedings of the Symposium on
Modeling, Analysis and Simulation of Comput-
er and Telecommunications Systems, 2002, pp.
217–221.
http://dx.doi.org/10.7146/dpb.v31i563.7120

[11] J. Feljann et al., "Towards a Model-based Ap-
proach for Allocating Tasks to Multicore Proces-
sors", in Proceedings of the Conference on Soft-
ware Engineering and Advanced Applications,
2012, pp. 117–124.
http://dx.doi.org/10.1109/SEAA.2012.56

[12] P. Liggesmeyer and M. Trapp, "Trends in Embed-
ded Software Engineering", IEEE Software, vol.
26, no. 3, pp. 19–25, 2009.
http://dx.doi.org/10.1109/MS.2009.80

[13] B. Selic, "Model-driven Development: Its Es-
sence and Opportunities", in Proceedings of The
Symposium on Object and Component-Orient-
ed Real-Time Distributed Computing, 2006, pp.
313–319.
http://dx.doi.org/10.1109/ISORC.2006.54

[14] L. Al-Dakheel and I. Al-Azzoni, "Model-to-Mod-
el based Approach for Software Components Al-
location in Embedded Systems", in Proceedings
of the International Conference on Model-Driven
Engineering and Software Development, 2017,
pp. 321–328.
http://dx.doi.org/10.5220/0006126903200328

[15] I. Švogor and J. Carlson, "SCALL: Software
Component Allocator for Heterogeneous Embed-
ded Systems", in Proceedings of the European
Conference on Software Architecture Workshops,
2015, pp. 66:1–66:5.
http://doi.acm.org/10.1145/2797433.2797501

[16] U. Pohlmann and M. Hüwe, "Model-driven Al-
location Engineering", in Proceedings of the In-
ternational Conference on Automated Software
Engineering, 2015, pp. 374–384.
http://dx.doi.org/10.1109/ASE.2015.18

[17] S. Wang et al., "Component Allocation with Mul-
tiple Resource Constraints for Large Embedded
Real-time Software Design", in Proceedings of
the Real-Time and Embedded Technology and
Applications Symposium, 2004, pp. 219–226.
http://dx.doi.org/10.1109/RTTAS.2004.1317267

[18] AIRES, [Accessed March 2017].
https://kabru.eecs.umich.edu/aires/

[19] Z. Krpić et al., "Towards a Common Soft-
ware-to-hardware Allocation Framework for the
Heterogeneous High Performance Computing",
in Proceedings of the Computers, Software and
Applications Conference, 2014, pp. 378–383.
http://dx.doi.org/10.1109/COMPSACW.2014.65

[20] J. Carlson et al., "Deployment Modelling and
Synthesis in a Component Model for Distributed
Embedded Systems", in Proceedings of the Con-
ference on Software Engineering and Advanced
Applications, 2010, pp. 74–82.
http://dx.doi.org/10.1109/SEAA.2010.43

[21] J. Fredriksson et al., "Optimizing Resource Usage
Component-based Real-time Systems", in Pro-
ceedings of the Symposium on Component-based
Software Engineering, 2005, pp. 49–65.
http://dx.doi.org/10.1007/11424529_4

[22] I. Bate and P. Emberson, "Incorporating Scenar-
ios and Heuristics to Improve Flexibility in Re-
al-time Embedded Systems", in Proceedings of
the Real-Time and Embedded Technology and
Applications Symposium, 2006, pp. 221–230.
http://dx.doi.org/10.1109/RTAS.2006.21

[23] Y. Shoukry et al., "Graph-based Approach for
Software Allocation in Automotive Networked
Embedded Systems: A Partition-and-map Algo-
rithm", in Proceedings of the Forum on Specifi-
cation and Design Languages, 2013.
http://dx.doi.org/10.1007/978-3-319-06317-1_11

[24] R. M. Karp, "Reducibility Among Combinatorial
Problems", in Proceedings of the Symposium on
the Complexity of Computer Computations, 1972,
pp. 85–103.
http://dx.doi.org/10.1007/978-1-4684-2001-2_9

[25] RALF3 Project Web, [Accessed March 2017].
http://www.mrtc.mdh.se/projects/ralf3/

[26] T. L. Saaty, "Fundamentals of Decision Making
and Priority Theory with the Analytic Hierarchy
Process", RWS Publications, 1994.

[27] A. Grama and V. Kumar, "State of the Art in
Parallel Search Techniques for Discrete Optimi-
zation Problems", IEEE Transactions on Knowl-
edge and Data Engineering, vol. 11, no. 1, pp.
28–35, 1999.
http://dx.doi.org/10.1109/69.755612

[28] OMG, UML Profile for MARTE: Modeling and
Analysis of Real-Time and Embedded Systems,
version 1.1, formal/11-06-02; June 2011.

Received: November 2017
Revised: June 2018

Accepted: July 2018

Contact address:
Issam Al-Azzoni

College of Engineering
Al Ain University of Science and Technology

Al Ain
United Arab Emirates

e-mail: issam.alazzoni@aau.ac.ae

Issam al-azzonI received his MSc and PhD degrees in software engi-
neering from McMaster University, Hamilton, Ontario, Canada in 2005
and 2009, respectively. He is presently an Assistant Professor in the
Department of Software Engineering and Computer Science in the Col-
lege of Engineering at Al Ain University of Science and Technology,
United Arab Emirates. His research interests include modeling, mod-
el transformation, Coloured Petri Nets, and the application of formal
methods in software engineering. He is a member of the IEEE.

http://dx.doi.org/10.1109/SEAA.2014.29
http://dx.doi.org/10.1109/TSE.2011.3
https://doi.org/10.2498/cit.1002284
http://dx.doi.org/10.1007/s10009-007-0038-x
http://dx.doi.org/10.1007/b95112
http://dx.doi.org/10.7146/dpb.v31i563.7120
http://dx.doi.org/10.1109/SEAA.2012.56
http://dx.doi.org/10.1109/MS.2009.80
http://dx.doi.org/10.1109/ISORC.2006.54
http://dx.doi.org/10.5220/0006126903200328
http://doi.acm.org/10.1145/2797433.2797501
http://dx.doi.org/10.1109/ASE.2015.18
http://dx.doi.org/10.1109/RTTAS.2004.1317267
https://kabru.eecs.umich.edu/aires/
http://dx.doi.org/10.1109/COMPSACW.2014.65
http://dx.doi.org/10.1109/SEAA.2010.43
http://dx.doi.org/10.1007/11424529_4
http://dx.doi.org/10.1109/RTAS.2006.21
http://dx.doi.org/10.1007/978-3-319-06317-1_11
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://www.mrtc.mdh.se/projects/ralf3/
http://dx.doi.org/10.1109/69.755612

 HistoryItem_V1
 Shuffle

 Group size: 1
 Shuffle type: Normal, or perfect bound
 Rule: 1 1

 1
 1
 1
 1 1
 622
 261
 2
 2

 CurrentAVDoc

 Normal

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0
 Quite Imposing Plus 3
 1

 1

 HistoryList_V1
 qi2base

